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Abstract: In everyday life, people often stand up and sit down. Unlike young, able-bodied individuals,
older adults and those with disabilities usually stand up or sit down slowly, often pausing during
the transition. It is crucial to design interfaces that accommodate these movements. Additionally, in
public settings, protecting personal information is essential. Addressing these considerations, this
paper presents a distance-based representation scheme for the motions of standing up and sitting
down. This proposed scheme identifies both standing and sitting positions, as well as the transition
process between these two states. Our scheme is based solely on the variations in distance between
a sensor and the surfaces of the human body during these movements. Specifically, the proposed
solution relies on distance as input, allowing for the use of a proximity sensor without the need for
cameras or additional wearable sensor attachments. A single microcontroller is adequate for this
purpose. Our contribution highlights that using a proximity sensor broadens the applicability of
the approach while ensuring that personal information remains secure. Additionally, the scheme
alleviates users’ mental burden, particularly regarding privacy concerns. Extensive experiments were
performed on 58 subjects, including 19 people over the age of 70, to verify the effectiveness of the
proposed solution, and the results are described in detail.

Keywords: standing-and-sitting motions; one-dimensional representation; interface; distance
measurements; proximity sensor

1. Introduction

Standing up and sitting down are seemingly simple actions that most people repeat
numerous times each day. However, elderly individuals and those with muscle diseases or
disorders may find these movements challenging. The ability to stand up from a seated po-
sition and return is crucial for maintaining independence in daily living. Various assistive
technologies [1–4] have been developed to assist with these motions. Among these, recog-
nition methods for standing up and sitting down have been extensively researched. These
approaches are used to monitor the health of elderly individuals in nursing homes [5–8],
diagnose lower-limb diseases and assess locomotion in hospitals [9–12], and develop in-
terfaces for assistive systems [13,14]. Measurement methods serve as the core technology
for these approaches. Based on their sensor installation, measurement tools are primarily
categorized into two types: wearable and nonwearable devices.

Wearable devices for measuring human activities are increasingly being reported.
These devices incorporate sensors such as inertial measurement units (IMUs), barome-
ters, pressure sensors, and electromyography (EMG) sensors. An IMU-based wearable
device [10,15–20] measures the acceleration and angular velocity of the specific body part
to which it is attached. Multiple sensors must be integrated into the device to assess the
posture of the entire body. A wearable barometer [21–23] provides the height of the part of
the body’s position, whether standing or sitting, to which it is affixed. Since this wearable
device is influenced by environmental conditions, the sensor values must be calibrated fre-
quently. Next, wearable devices equipped with pressure sensors [1,24–26] are used to detect
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variations in forces on the contacted surfaces. However, these pressure sensors are sensitive
to temperature and encounter challenges owing to signal acquisition noise. Additionally,
EMG sensor-type wearable devices [8,9,27–29] use muscle potential and frequency analysis
to identify changes in fatigue resulting from muscle movements. However, inadequate skin
contact hampers stable signal acquisition. These wearable devices facilitate the measure-
ment and swift recognition of standing-up and sitting-down motions, thus eliminating the
need to monitor computer screens. Most of the devices mentioned are portable, hands-free
tools; however, they exhibit a notably short battery life. Additionally, their size and the
effort needed to wear them render them impractical for daily use. A drawback of several
wearable devices is the requirement for wires connecting the sensors to their electronic
terminals. While these wires are essential for transmitting signals from the human body,
they further impede the practicality of these devices for everyday tasks.

Several studies have detailed the measurement methods for typical nonwearable
devices. First, these devices use an interface scheme that relies on visual input from a
camera [12,30–34]; this visual input can capture three-dimensional posture data of the
entire body from a single point or frame. By improving the identification of related mo-
tion features, these visual data enable the interface scheme to detect emerging trends. In
recognizing standing and sitting motions, camera-based interface schemes efficiently and
quickly convey motion intents, thereby expediting the decision-making process. However,
the quality of their data is influenced by lighting conditions and environmental factors.
Additionally, the expenses associated with processing large amounts of information must
be taken into account. Finally, privacy protection is a critical consideration when cam-
era systems are used in sensitive areas such as toilets or bathrooms. Second, a force
plate [12,34–37], which consists of multiple force sensors, measures the ground reaction
force exerted on the human body during standing-up or sitting-down movements. The
input from the force plate can be used to analyze the movement of the center of mass. In
addition, by detecting the ground reaction force, the force plate enables the measurement of
postural stability, explosive force, and leg strength and power. However, the maintenance
and calibration of a force plate are expensive.

Based on our survey, we summarize the interface requirements for standing and
sitting motions here. First, physical strength diminishes with age, resulting in slower
movements and reflexes among the elderly. Second, older individuals often find complex
controls with small characters and intricate buttons challenging to learn and use. Third,
because these interfaces are expected to be used in diverse locations, protecting users’
personal information is essential. In public spaces, it is important to implement noncontact
maneuvering to the greatest extent possible in the post-COVID-19 era.

In light of the aforementioned considerations, this study addresses the interface issue
related to representing the motions of standing up and sitting down. Our proposed solution
involves using distance measurements from a fixed sensor to the body of an individual in
either a standing or sitting position. The underlying concept is as follows. When observed
from the side, a standing body appears as a straight line, while the sitting body forms a
bent line at the waist and knee. Based on this idea, we propose a distance-based represen-
tation scheme for the standing position, the sitting position, and the transition between
these two positions. The core technology behind this solution involves the conversion
of one-dimensional (1D) information (distance) and the estimation of lower-limb joints,
leading to the creation of a linkage model consisting of three rotational joints. A notable
advantage of this solution is its reliance on 1D distances, allowing it to function with
a proximity sensor that only requires a single microcontroller, eliminating the need for
additional memory. This representation scheme broadens the application potential of the
solution beyond spatial limitations. Given its applications, such as with public transport
straps, these interfaces should be compact and portable, and it is also preferable to maintain
low computational costs for recognition processes. For example, each strap in a public
transport vehicle should ascend and descend as its user (passenger) stands up and sits
down, respectively.
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This paper is structured as follows. Section 2 outlines our research problem and
its definitions. Section 3 provides an explanation of the proposed solution. Section 4
details the results from extensive experiments performed to evaluate the effectiveness
and performance of the proposed approach, along with a discussion of these findings and
potential future directions. Finally, Section 5 presents our conclusions.

2. Problem Statement
2.1. Problem Definition

We aim to create an interface model for the standing-up and sitting-down motions
without requiring additional sensor equipment or compromising privacy. Typically, these
motions are categorized into two primary patterns: standing and sitting positions. The
distinction between these positions can be determined by measuring the difference in
distance from the sensor to the surfaces of the human body in each position. However,
additional effort is essential to achieve a more sophisticated representation of the standing-
up and sitting-down motions. First, as illustrated in Figures 1 and 2, the transitional states
between the sitting and standing positions must be clearly defined. Elderly individuals tend
to raise or lower themselves slowly and often pause during this transition. Second, aligning
with the aforementioned requirement, the transition process should be monitored in sync
with human motions for the effective use of assistive systems. Third, experiments involving
participants across a broad age range should be performed to validate the effectiveness of
the proposed approach.

Figure 1. Illustration of the standing-up motion process from sitting position to standing position
((a) preparation, (b) standing phase I, (c) standing phase II, (d) standing phase III).

Figure 2. Illustration of the sitting-down motion process from standing position to sitting position
((a) preparation, (b) sitting phase I, (c) sitting phase II, (d) sitting phase III).

To meet these requirements, we study the representation of standing-up and sitting-
down motions. By connecting the physical characteristics of the elderly to these motion
processes, it becomes essential to describe the transitional states for a clear estimation of
these motions. Consequently, we pose the following problem: How can the standing-up and
sitting-down motions, along with their individual transition processes, be described and modeled
using distances?

This problem is considered a representation challenge between human motions and a
sensor system. Our approach uses a distance measurement-based model, which facilitates
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the representation of standing and sitting positions as well as the transition process between
them. These motions replace a linkage model to streamline the representation of the human
body. Based on this linkage model, we propose a distance-based representation scheme,
which is detailed in the following subsection.

2.2. Definitions of Measurement Model

To start, we introduce the model definition for the standing-up and sitting-down
motions. A two-dimensional (2D) observation plane is designated as the sagittal plane. As
shown in Figure 3, the horizontal axis parallel to the ground is defined as x⃗, while the axis
that is counterclockwise and perpendicular to x⃗ is denoted by y⃗. The intersection point of
x⃗ and y⃗ is labeled as O. Following this, we present three types of lengths measured from
the ground along y⃗. First, lc represents the height of the stool. Second, for an individual
seated on a stool of lc, lk represents the distance from the ground to the knee pk, with the
assumption that lk is greater than lc. Third, for a person in a standing posture, the height
from the ground to a section of the thigh is denoted by lse, which is greater than lk. Lastly,
pse refers to a point that is positioned at a height of lse from the ground along y⃗.

Figure 3. Definitions and notations of linkage representation where the linkage is composed of three
rigid bars and three joints ((a) standing position, (b) transition process, and (c) sitting position).

The linkage model, consisting of three rigid bars, is created to simplify the motions
of standing up and sitting down. In the linkage model shown in Figure 3b, pa, pk, ph, and
ps denote the ankle, knee, hip, and shoulder joints, respectively. From bottom to top, the
three bars are as follows: the bar connecting the foot to the knee (bak), the bar connecting
the knee to the pelvis (bkh), and the bar connecting the pelvis to the shoulder (bhs). Next,
several geometric definitions are presented. pa pk, pk ph, and ph ps denote the straight lines
connecting pa to pk, pk to ph, and ph to ps, respectively. The lengths between individual
joints, from bottom to top, are defined as lak, lkh, and lhs. In addition, p⃗a denotes a vector
that is parallel to x⃗ and passes through pa. Using these straight lines, the angles formed
between p⃗a and pa pk, between pa pk and pk ph, and between pk ph and ph ps are defined as
θa, θk, and θh, respectively.

Moreover, bak, bkh, and bhs are assumed to be rotatable at pa, pk, and ph to illustrate
the motions of standing up and sitting down. In this linkage, these motions are assumed to
occur solely in the anteroposterior (front to back) and vertical (top to bottom) directions. In
the standing position, bak, bkh, and bhs are aligned along the same line (Figure 3a). In the
sitting position (Figure 3c), bak, bkh, and bhs are oriented at right angles to each other. There
are also transitional states observed between the standing and sitting positions (Figure 3b).

3. Distance-Based Representation Scheme
3.1. Measurements Using Proximity Sensor

We outline the measurement method for the standing-up and sitting-down motions.
As shown in Figure 4a, the sensor (S) is located at pse with the center of S defined as O
(= pse). Scanning is performed by S across a range of −90◦ to +90◦ at predetermined
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intervals. The rotation time of S is designated as one sampling time t. The input number for
t is represented as 1, · · · , m, · · · , ss. The distance from pse to the body surface is denoted as
dm, and the scanning angle of S corresponding to dm is defined as αm. Using trigonometric
functions with dm and αm, a point (pm = (xm, ym)) is determined. After one rotation of
S, as depicted in Figure 4b, a set of pm is collected. It is assumed that the feet do not
move along the x⃗ direction while a person is standing up or sitting down. Additionally, in
both standing and sitting positions, bak, bkh, and bhs remain stationary, with no surging or
swaying occurring.

(a) (b)

Figure 4. Illustration of measurement method using proximity sensor (S) positioned at pse (= O).
(a) Location of a sensor and measurement parameters; (b) Computations by pairs of distances
and angles.

3.2. Overall Computation Flow

Figure 5 shows the computation flow of the proposed distance-based representation
scheme. The input consists of {dm|1 ≤ m ≤ ss}, derived from S, while the output denotes
phase determination (either standing or sitting). Using dm, the distance estimation and
joint angle estimation modules calculate the distance changes from the standing position to
the sitting position, as well as the joint angles θa, θk, and θh, respectively. These modules
operate in parallel. At time t, the motion phase can be identified using the outputs from
the standing/sitting phase determination (SPD) module. Detailed descriptions of these
modules and their computation flows are provided in the subsequent subsections. In
summary, at t, the representation scheme calculates the motion process based on dm,
producing the determination result as the current phase. Notably, the scheme performs
scheduling at t recursively without retaining any prior data.

Figure 5. Computation flow of the distance-based representation scheme, with detailed explanations
of individual modules provided in the subsequent subsections.
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3.3. Distance Estimation Module

The distance estimation module is designed to identify standing and sitting positions
by calculating the distance change l(t) during the actions of standing up and sitting down.
This module computes and outputs l(t) based on t. The computation process of l(t) is
illustrated in Figure 6.

Figure 6. Illustration of l(t) computation based on the rotation of bhk centered at pk and lts formula.

First, three types of distances are defined. For the sitting position, lsi represents the
distance from pse to a point psi on the body surface. In the standing position, the distance
from pse to a point psa on the body surface is expressed as lsa. During the standing-up and
sitting-down motions, a predetermined beam of S identifies a point pts on the body surface,
where lts denotes the distance from pse to pts. In the standing position, lsa is equal to lts. In
the sitting position, lsi and lts are equivalent. Relative to pse, lsi can be decomposed into lsa
and l(t). This means that, during the motions, lts(t) can be expressed as lsa and l(t). Next,
to derive l(t), the rotational movement of bkh is examined. Following the conditions and
assumptions regarding bkh as detailed in Section 2.2, the standing-up and sitting-down
motions on the x⃗y⃗ plane are modeled by the rotation of bkh around pk.

The circular movements during these actions create a fan-like shape with an angle of θ
(0◦ ≤ θ ≤ 90◦), configured by pk psa and pk pts. In other words, the changes in this fan shape
can be seen as the reciprocating motions between psa and psi. Since these reciprocating
motions can be represented by the distance from pse to pts, the standing and sitting positions
can be tracked by measuring the variation in this distance.

With reference to pk, two types of distances with respect to x⃗ and y⃗ are illustrated in
Figure 6. First, the distance between pk and psa (or pts) in the x⃗ direction is defined as Sx.
Second, Sy represents the distance between pk and psa in the y⃗ direction. When Sx = 0, the
distance from pse to psa is denoted as lsa, indicating the standing position. According to the
definition of θ, if Sx is nonzero, it is determined by equation Sx = Sy tan θ. Therefore, from
the aforementioned geometric considerations, the distance lts from pse to pts is expressed
by combining lsa and Sx, formulated as lts = lsa + Sx. Concerning lts(t), the variations
in Sx as a function of t are designated as l(t) during the standing-up and sitting-down
motions. As a result, the rotational motion can be perceived as a 1D reciprocating motion
of l(t) transitioning from psa to psi. From the perspective of circular movement, the angular
velocity ω relative to t is taken into account. Using the relation ω · t = θ, θ can be calculated.

Next, the standing-up and sitting-down motions are analyzed to estimate θ at t. Our
observations reveal that these motions gradually accelerate at the beginning and then
gradually decelerate toward the end. Therefore, the ω value of the fan-shaped motion can
be represented as an exponential function. The approximation of this exponential motion is
related to the use of the well-known Gudermannian function [38]. Using this function, the
rotation is transformed into linear motion as follows:
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lts(t) =


2
π (lsi − lsa) tan−1

(
e−kit+bi

)
+ lsa (standing)

2
π (lsi − lsa) tan−1

(
ekit−bi

)
+ lsa (sitting)

(1)

where ki and bi are positive constants, representing the motion speed and starting time
parameters, respectively. Based on this equation, Figure 7a shows the trajectories repre-
sented by lts(t). Individual motions are plotted according to the sign of ekit. The slopes and
starting times are modified by adjusting ki and bi as shown in Figure 7b.

(a) standing/sitting position (b) parameter changes of k1, k2, b1, and b2

Figure 7. Computational results for lts(t) trajectories in the distance estimation module when
lsa = 300 and lsi = 650.

3.4. Joint Angle Estimation Module

To compute θa, θk, and θh, as detailed in Section 3.2, the joint angle estimation mod-
ule performs two functions: point cloud generation and joint angle identification. The
computation process of this module is as follows.

As illustrated in Figure 4b, the point cloud generation function produces a set of points
that represent the body surface. At t, pm is calculated using dm and αm. Once p1, p2, · · · , pm,
· · · , pss are calculated, the points are analyzed to identify the valid range that represents
the body surface. Starting from the point p1 (= (x1, y1)), which corresponds to the −90◦

direction of S, the y⃗ coordinate of each point is checked to see if it exceeds the value of
y1. If the ordinate is greater, then that coordinate is considered to be the front of the toes.
Specifically, this point is designated as p f t. After establishing p f t, pa is positioned at a
predetermined distance lax along +x⃗. Subsequently, the distance dist(pm, pm+1) between
pm and pm+1 in the direction of 90◦ of S is calculated from p f t to pss. This calculation
routine verifies whether dist(pm, pm+1) exceeds the assigned length lsout, which serves
as our empirical value. If dist(pm, pm+1) is greater than lsout, then points following the
(m + 1)th are disregarded as part of the body surface. In this context, the mth point is
defined as p f s. This function outputs a set of points that represents the valid range from
p f t to p f s. For convenience, this set of these points is represented by {pi|1 ≤ i ≤ n}, and
p f s is empirically considered as ps.

Next, the joint angle identification function aims to determine pk and ph. The un-
derlying principle of this computation is to locate points with larger βi (=∠pi−1 pi pi+1)
values, which are established by neighboring points. Since human-body movements occur
at joints, points with higher βi can be considered joints. Thus, the first step is to calculate
βi formed by contiguous points pi−1, pi, and pi+1. The calculation of βi uses the inner
product formula. For β1, · · · , βi, · · · , βn−1, points that correspond to substantial tilts are
selected as joint candidates. Subsequently, pk and ph are identified by referencing pi, which
corresponds to the largest βi.

Then, lak, lkh, and lhs are calculated through distance computations involving pa, pk, ph,
and ps. The values of pk and ph are sequentially assessed to determine the appropriateness
of these estimations. If lak, lkh, and lhs fall outside of the effective range of the lengths,
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alternative point candidates are calculated and substituted with new joint points. This
calculation process is reiterated to identify pa, pk, ph, and ps, allowing for the computation
of θa, θk, and θh using the inner product formula. This applies to a standing posture or a
similar position. If all differences in βi are negligible, it will be challenging to ascertain
pk and ph. To mitigate this uncertainty, the length ratios of lak, lkh, and lhs are empirically
established as 0.35, 0.35, and 0.3, respectively, relative to dist(pa, ps). These values are
derived from research findings pertaining to Japanese body size [39].

3.5. SPD Module

The SPD module is illustrated using Figures 1 and 2. The motions of standing up and
sitting down are broadly categorized into two states: dynamic and static. The dynamic
state includes the actions involved in transitioning to a standing or sitting position. First,
the dynamic state of the standing-up motion is split into two phases: the forward flexion
phase and the upward movement with the body extension phase. For ease of reference,
these phases are labeled standing phase I (Sa-I) and standing phase II (Sa-II), respectively
(Figure 1). Next, the dynamic state of the sitting-down motion is further divided into
two phases, specifically, the downward movement associated with the sitting phase and
the back extension phase, referred to as sitting phase I (Si-I) and sitting phase II (Si-II),
respectively (see Figure 2). In contrast, the static state, encompassing both the standing and
sitting positions, exhibits no variations in θa, θk, and θh. Since these positions can also be
viewed as distinct phases in the context of continuous movements, the standing position
is designated as standing phase III (Sa-III), while the sitting position is denoted as sitting
phase III (Si-III).

Here, we explain the relationships between the postures and the angles θa, θk, and
θh. The changes in these angles between time points t − 1 and t are denoted as ∆θa, ∆θk,
and ∆θh, respectively. As shown in Figure 8, when ∆θa is positive, bak bends forward while
the knee is pushed outward; conversely, when ∆θa is negative, bak extends. Furthermore,
if ∆θk > 0, both bak and bkh at pk bend, causing ph to move backward. In contrast, when
∆θk < 0, ph is lifted forward owing to an extension movement. Additionally, when ∆θh
is positive, bkh and bhs at ph bend forward, whereas when ∆θh is negative, bkh and bhs at
ph extend.

Figure 8. Pose explanation based on angle variations ∆θa, ∆θk, and ∆θh of individual joint angles θa,
θk, and θh ((a) definitions of θa, θk, and θh, (b) ∆θk variations, (c) θa and θh variations).

Considering these conditions and assumptions, we propose a phase determination
algorithm (Algorithm 1) for the SPD module. The inputs for Algorithm 1 include lts(t) from
the distance estimation module and θa, θk, and θh from the joint angle estimation module.
The phase determination computation uses these inputs, producing one of six possible
phases at t.
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Algorithm 1: Standing/sitting phase determination.

Input :{lts(t), θa, θk, θh}

1 ∆θa, ∆θk, ∆θh := δdi f f {θa, θk, θh}(t, t − 1)

2 if (∆θa = 0 && ∆θk = 0 && ∆θh = 0) then
3 if (lts(t) = lsi && θk = θh ≃ 90◦) then

SITTING PHASE III; (sitting position)

4 else if (lts(t) = lsa && θk = θh ≃ 0◦) then
STANDING PHASE III; (standing position)

5 else
STANDSTILL;

6 else if (∆θa ̸= 0 ∥ ∆θk ̸= 0 ∥ ∆θh ̸= 0) then
7 switch (∆θa, ∆θk, ∆θh) do
8 case (∆θk = 0 && ∆θh > 0) do

STANDING PHASE I;

9 case (∆θa ̸= 0 && ∆θk < 0 && ∆θh ̸= 0) do
STANDING PHASE II;

10 case (∆θa ̸= 0 && ∆θk > 0 && ∆θh ̸= 0) do
SITTING PHASE I;

11 case (∆θk = 0 && ∆θh < 0) do
SITTING PHASE II;

12 otherwise do
FALLING;

Output : current standing/sitting phase

The details of the computation are as follows. Figures 1a,d and 2a,d illustrate the static
state, where ∆θa, ∆θk, and ∆θh are all 0 (indicating that θa, θk, and θh are stationary). As
noted in Section 1, an individual may pause while either standing up or sitting down. To
avoid incorrect phase determination, lts(t) is used to verify if the current phase is Sa-III
or Si-III. When θk = θh ≃ 0◦ and lts = lsa, this indicates a standing position as shown in
Figures 1d and 2a. Conversely, when θk = θh ≃ 90◦ and lts = lsi, it indicates a sitting
position as depicted in Figures 1a and 2d.

Next, each phase is identified based on the variations in θa, θk, and θh. As depicted
in Figure 1b, in Sa-I, the body bends forward while the knee remains fixed. This phase
is recognized when ∆θk = 0 and ∆θh > 0. Sa-II, shown in Figure 1c, commences when
the buttocks leave the stool’s surface and concludes just before the individual reaches a
standing position. During this phase, the center of gravity of the body rises, and θk is
extended. Sa-II is identified when ∆θa ̸= 0, ∆θk < 0, and ∆θh ̸= 0. As seen in Figure 2c,
Si-I begins at the standing position and ends when the buttocks reconnect with the stool
surface. During this phase, the body posture shifts downward through the bending of joint
angles. Consequently, Si-I is identified when ∆θa ̸= 0, ∆θk > 0. As illustrated in Figure 2c,
Si-II encompasses the motion process until a seated position is achieved after the buttocks
make contact with the seating surface. In this phase, the bent body rises. If ∆θk = 0 and
∆θh < 0, then Si-II is determined. Finally, for any posture not included in the six previously
mentioned processes, it is assumed that the individual is in a state of falling.

4. Evaluation Results and Discussion
4.1. Evaluation Direction and Experimental Settings

Five types of experiments were performed for the standing-up and sitting-down
motions on two types of voluntary participants, namely, laboratory colleagues and anony-
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mous individuals (including elderly people), to verify the effectiveness of the proposed
representation scheme. Specifically, we examined the characteristics of the scheme using
a proximity sensor and validated its performance by comparing measurement sensors.
Before performing the experiments, we outlined the objectives of this study along with
the experimental processes and settings to the participants. Subsequently, we obtained
written informed consent from the voluntary subjects for their participation and for any
accompanying images. Lastly, we obtained approval from the ethics committee of the
University of Miyazaki for the experiments (approval No. 2021-002). Additionally, all
experiments were performed in accordance with the protocol established by the University
of Miyazaki Ethics Committee.

As illustrated in Figure 9, the experimental setup comprised a height-adjustable stool
capable of adjusting lc, a UST-10LX proximity sensor (Hokuyo Automatic Co., Ltd., Tokyo,
Japan), and its supporting frame. Figure 10 shows the statistical analysis results from
100 trials, measuring distances at 250 mm intervals in a range of 500 mm to 2000 mm.
Despite a slight decrease in the measurement accuracy, the proximity sensor demonstrated
satisfactory performance for practical experimental applications. Subsequently, lc was
adjusted to ensure that the subjects’ heels naturally made contact with the ground when
seated. The subjects were instructed to wear lightweight clothing or to adjust their shirts and
pants to minimize the distance from S to their bodies. The surfaces were measured. During
these experiments, participants assumed the following postures: they were instructed to
either cross their arms in front of their chest or let their arms rest by their sides. At times,
the positioning of the hands interfered with the distances to the body surface, leading to
inaccuracies in the distance measurements. These complications made it challenging to
accurately detect the joint locations, resulting in some deviated data. Additionally, we
asked participants to perform these motions slowly according to our command signals for
standing up and sitting down to avoid causing them any strain. Each individual’s body
was oriented toward the installation frame of S to facilitate distance measurements along
the sagittal plane.

Figure 9. Experimental setting using proximity sensor (left) and experimental scene (right).

A FDR-AX700 digital 4K video camera recorder (SONY Corporation, Tokyo, Japan)
and a Vantage V8 motion capture device (Vicon) (Inter Reha Co., Ltd., Tokyo, Japan) were
used to evaluate the results of the proposed scheme. The standing-up and sitting-down
motions were recorded on the x⃗y⃗ plane using the video camera, and the results were
analyzed through video analysis for comparison. Additionally, the motion capture was
performed to assess the results of the proposed scheme further. Furthermore, an EAS
linear actuator (Orientalmotor Co., Ltd., Tokyo, Japan), simulating the standing-up or
sitting-down motion, was used as an index for evaluating the phase determination.
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Figure 10. Experimental results for distance measurements at 250 mm intervals using the UST-10LX
proximity sensor

4.2. Experimental Results in Laboratory Environment

The initial experiments were performed to validate the functionality of the distance
estimation module, with the results presented in Figure 11. In this figure, the horizontal axis
represents time (in seconds), and the vertical axis represents distance (in millimeters). The
trajectories depicting the average lts(t) values, measured over 10 trials while the subjects
were performing standing-up and sitting-down motions, are shown in Figure 11a. The black
dotted line represents the lts(t) trajectories for the standing-up motion, while the red solid
line indicates the trajectories for the sitting-down motion, respectively. These results con-
firmed that lts(t) obtained during these motions was similar to the findings of Equation (1)
(Figure 7a). Therefore, this module could adequately determine the standing and sitting
positions and compute lts(t) according to the standing-up and sitting-down motions.

In Figure 11b, the black dotted line represents Equation (1), while the red bold line
corresponds to the measured lts(t). As illustrated in Figure 7, Equation (1) and lts(t) show
a relatively close resemblance. Figure 11c shows that the speed differences during the
sitting-down motion were evident between 2 and 4 s after the start. The black dotted line
indicates the results of slow sitting-down motions, whereas the red solid line represents the
results of normal sitting-down motions. As expected, a shorter motion time led to a steeper
incline in relation to the change in distance. Whether standing up or sitting down quickly
or slowly, variations in completion time are attributed to differences in motion speeds.
It was concluded that the distance estimation module, by adjusting ki in Equation (1), is
capable of monitoring both standing-up and sitting-down motions.

Figure 11d shows the trajectories of lts(t) based on the following motion patterns.
During the standing-up process, each subject was instructed to stop moving. After approxi-
mately 1 s, they were prompted to resume standing up. Subsequently, participants were
asked to sit down from the standing position. In the middle of these movements, subjects
were again instructed to stop. After approximately 1 s, they continued the downward
motion. During these pauses, the module mistakenly classified the stop as a single phase,
assigning the pausing commands to Sa-II and Si-I. As detailed in Section 3.3, Equation (1)
only identifies the static phase based on lts(t). While elderly individuals may pause during
transitions, these transitional states should be accurately represented.
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(a) (b)

(c) (d)

Figure 11. Experimental results obtained using distance estimation module. (a) Trajectories of
lts(t) when standing up and sitting down; (b) Comparative results between Equation (1) and lts(t)
(measurements); (c) Comparisons according sitting speeds k1 and k2; (d) Trajectories of lts(t) when
pausing in sa-II and si-I.

Second, to assess the effectiveness of the joint angle estimation module, we compared
the module’s outputs with the image analysis results derived from video clips. Figure 12a
shows the experimental setup. Markers were affixed to the ankle, knee, and hip of each
participant. Their standing-up and sitting-down motions were simultaneously recorded by
a video camera, allowing for the computation of θa, θk, and θh through the module. The
trajectories of the three markers were extracted from the video clip.

Figure 12b shows the θa, θk, and θh trajectories calculated by the joint angle estimation
module. Figure 12c presents the θa, θk, and θh trajectories extracted from the video clips
recorded during the standing-up and sitting-down motions depicted in Figure 12b. In these
figures, the horizontal axis represents time (in seconds), while the vertical axis indicates
the angle (in degrees). The red vertical lines denote the boundaries of individual phases.
The transition between the preparation phase and Sa-I (or Si-I) corresponds to the moment
when command signals were issued. Other boundary lines were marked based on the
sitting position on the stool. Overall, the trajectories of θa, θk, and θh exhibited similar
trends. Despite the small differences in the θa, θk, and θh values obtained from the module
and those from the video clips, our comparisons demonstrated that the proposed module
could calculate the individual angles based on only di as explained in Section 3.2.

In a different experimental setting, unlike the scenarios depicted in Figure 12b,c, we
instructed the subject to perform standing-up and sitting-down motions at a faster pace.
Figure 12d shows the θa, θk, and θh trajectories for these motions. The results indicate that
the overall characteristics of these trajectories displayed similar patterns. Owing to the
increased speed of the actions in these experiments, the maximum θh observed was lower
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compared to those in Figure 12b. Notably, distinct speeds were reflected in θh during the
standing-up and sitting-down motions. As a result, although the motions were performed
1.3 times faster when comparing the motion duration in Figure 12b with those in Figure 12d,
the joint angle estimation module effectively monitored and calculated the variations in θa,
θk, and θh.

(a) Experimental scene (b) Output of the module

(c) Video analyses for joint angles (d) output of the module

Figure 12. Computation and video analysis results for θa, θk, and θh are provided to evaluate
the joint angle estimation module, with cases (b,c) representing trajectories obtained by the joint-
angle estimation module and those obtained from the video clips, respectively, and with cases (b,d)
representing the results for normal motions and swifter motions, respectively.

The third experiment was performed to assess the feasibility of the joint angle es-
timation module by comparing its measurements to those from the motion capture de-
vice. Figure 13a shows the experimental setup with a young subject, while the results in
Figure 13b–d show the θa, θk, and θh trajectories, respectively. In these graphs, the black
solid line represents the motion capture results, and the red dotted line indicates the com-
putation results from the proposed module (obtained using the proximity sensor). The
horizontal and vertical axes represent time (in seconds) and angle (in degrees), respectively.
The two sets of results showed a close approximation regarding both the time-change
zones and angle magnitudes. Fluctuations in θh were noticeable, even though the trends
of the θa and θk trajectories were comparable. Additionally, when compared to the results
from the motion capture device, θh displayed the largest error, with an average deviation
of up to 13◦. This increased error in θh occurred since, when flexed, the waist position
was relatively distant from S, located in the front direction, making its measurement more
challenging compared to θa and θk. Despite this slight difference, we confirmed that the
joint angle estimation module is capable of producing patterns similar to those measured
by the motion capture.
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(a) Experimental scene (b) Trends of θa

(c) Trends of θk (d) Trends of θh

Figure 13. Comparison results between the joint-angle estimation module and the motion cap-
ture device.

Fourth, as detailed in Section 3.5, the SPD module (Algorithm 1) produced outputs for
each motion phase at t. The effectiveness of this module was evaluated through experiments
performed with a linear actuator. Figure 14a shows the experimental setup and provides a
conceptual depiction of the experiments involving the linear actuator. This actuator was
governed by the motions of each subject. During the standing-up (sitting-down) motions,
the transitional displacements controlled by the linear actuator were specified as changes
in the lkh projected onto y⃗ exclusively at Sa-II (and Si-I), meaning the displacements of
the subject’s ph in the y⃗ direction. In summary, the goal of this experiment was to assess
the accuracy of the θa, θk, and θh values generated by the joint angle estimation module
and to evaluate the reliability of the SPD module’s output. Under identical experimental
conditions, as shown in Figure 12, we recorded the transitional movements using a camera,
and the video clips were analyzed to simultaneously verify the subjects’ motions alongside
those of the actuator. Figure 14b shows photographs of a subject executing the sitting-down
motion from a standing position.

As comparative results, Figure 15 shows the variations in the lkh projected onto y⃗,
alongside the corresponding displacements of the linear actuator in the same direction
when Sa-II (and Si-I) are applied. In this figure, the black solid lines represent the displace-
ments of the linear actuator, while the red dotted lines denote the lkh of the subject. The
horizontal and vertical axes depict time (in seconds) and displacement (in millimeters),
respectively. Additionally, the blue and green bidirectional arrows indicate the range of
displacement observed during continuous movements and the pause intervals in these
motions, respectively. (See video-S1: Experimental-scene-1.mp4 submitted as Supplemen-
tary Materials.)

As illustrated in Figure 15a, each subject paused once during both the standing-up
and sitting-down motions (motion pattern #1). Despite these pauses, the linear actuator
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rose and subsequently returned to its initial position. In contrast, during the second trial
shown in Figure 15b, we instructed each subject to pause twice during the standing-up
and sitting-down motions (motion pattern #2). This required the subjects to maintain
unfamiliar pause postures as directed, leading to body swaying. Consequently, minor
fluctuations were noted during the preparation phase, as the subjects readied themselves
for their next movements or during the pauses. Upon analysis of the data, the average
displacement of these fluctuations was recorded at 3 cm before the initiation of the motions
and 5 cm during the paused postures. We initially attributed the delay in the actuator’s
motions, which was approximately 0.3 s, to the acceleration and deceleration processes.
From a hardware perspective, we observed that the standing-up and sitting-down motions
coincided with similar displacements of the actuator, which confirmed the accuracy of the
SPD module. Finally, Figure 16 presents the experimental results from the feasibility test
of one target application, wherein the proposed scheme monitors the standing-up and
sitting-down actions of a passenger in a bus. According to these motions, the marker of the
linear actuator ascends and descends, respectively.

(a) Left: experimental setting, right: illustration of displacement variations by the linear actuator

(b) A series of the sitting-down motion from the standing position

Figure 14. Experimental setup using linear actuator to evaluate the effectiveness of the SPD module.

(a) motion pattern #1 (b) motion pattern #2

Figure 15. Comparison of displacements of linear actuator, shown in Figure 14, according to two
patterns of subject movements.
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Figure 16. Experimental scene for our application example in a bus.

4.3. Experimental Results for Elderly and Voluntary Subjects

We performed experiments to assess the usability of the proposed representation
scheme for anonymous subjects with individual differences. The participants included
58 male and female volunteers: 4 in their 20 s, 5 in their 30 s, 8 in their 40 s, 11 in their 50 s,
11 in their 60 s, 14 in their 70 s, and 5 in their 80 s. Approximately 33% of the participants
were elderly (aged 70 and above). As illustrated in Figure 14, comparative experiments
were performed at a nursing home and during a regional welfare event, with the results
from the scheme being thoroughly analyzed. (See video-S2: Experimental-scene-2.mp4 and
video-S3: Experimental-scene-3.mp4 submitted as Supplementary Materials.)

The statistical data from the experiments are shown in Figure 17. In this figure, the
boxes represent the confidence intervals of 25–75%, the horizontal bars in the boxes indicate
the mean values, and the error bars denote the standard deviations.
Figures 17a,d, 17b,e, and 17c,f depict the statistical variations in θa, θk, and θh over time
taken for the standing-up and sitting-down motions. Each subject exhibited unique mo-
tion patterns and speeds during these movements, making it challenging to analyze the
data of all participants without an appropriate standard. Consequently, we developed
a comparison standard based on individual variations. The joint angle in the sitting
position was designated as the initial value of 0◦; thus, the comparison standard was
defined as the change in angle over the duration needed to complete the standing-up or
sitting-down motion.

The trends observed in Figure 17 were consistent with those in Figures 12 and 13,
despite the variations in motion speeds attributed to individual differences. The median
values indicate that the displacement ranges for each joint during these motions were
between 7◦ and −7◦ relative to the initial θa, between 0◦ and −78◦ relative to the initial θk,
and between 10◦ and −58◦ relative to the initial θh. As demonstrated in the submitted video
clip, individual differences in the standing-up and sitting-down motions were influenced
by personal habits, muscle strength, and body types. It is believed that this contributed
to the increase in the error bar at θk and θh. These ranges can serve as an index for the
variability in the joint angles. As a result, different motion trends can be represented despite
individual differences leading to variations in motion speeds. Furthermore, the proposed
distance-based representation scheme successfully estimated θa, θk, and θh, confirming that
the six phases could be identified even among subjects with differing motion speeds.
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(a) θa when standing up (d) θa when sitting down

(b) θk when standing up (e) θk when sitting down

(c) θh when standing up (f) θh when sitting down

Figure 17. Statistical trends of experimental results for θa, θk, and θh over time rate (%) during
standing-up and sitting-down motions of 58 subjects.

4.4. Discussion

The findings from the experiments mentioned above are summarized as follows. First,
the di measurement and the estimation of θa, θk, and θh using the geometric model showed
trends in their angle transitions that closely aligned with the joint angles obtained through
motion capture. This confirms the efficacy of the angle estimation method. Second, to
assess the effectiveness of the SPD module, we validated the phase determination and
the displacements of lkh derived from θa, θk, and θh during standing-up and sitting-down
motions through comparative experiments involving a linear actuator and multiple subjects.
Third, we performed experiments on 58 voluntary subjects and found that the proposed
scheme could be applied to cases involving individual differences during the standing-up
and sitting-down motions.

These analyses suggest that this study is valuable for interface development. However,
dispersions were observed in the transition processes for θa, θk, and θh due to several
factors. The proximity sensor measurements relied on the distances from the sensor to
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the body surface, while the video camera and motion capture device tracked markers
attached to the body. Additionally, the type of clothing worn also contributed to these
variations. The upper garments worn by the subjects were specifically designed for the
experiments; however, the lower garments were not designated for this purpose. Some
hems were wide and shifted during movement. For the postures in these experiments,
subjects were asked to either cross their arms in front of their chests or place their arms at
their sides. Given the intended applications, it is undesirable to impose such restrictions
on the positions and locations of the hands. One of our ongoing projects focuses on the
accuracy of the measurement setups in relation to these factors. Additionally, we are
developing an algorithm for situations where only a portion of the body is visible owing to
obstacles that restrict the sensor’s line of sight.

This study will have a considerable impact on the field of assistive systems for lower
limbs because the proposed scheme prioritizes user privacy and can seamlessly integrate
into daily routines. However, there is still potential for improvement. A measurement
method capable of working with thick clothing, skirts, or textured fabrics will be necessary
to implement this representation scheme in everyday life. Furthermore, the proposed
measurement method uses a proximity sensor to scan the body surface from the shoulder
to the toes on the sagittal plane. As such, during experiments, subjects were instructed
to stand in easily scannable positions. Taking these factors into account, future works
can further refine the measurement method, including sensor installation, to develop an
interface system based on this scheme.

5. Conclusions

An interface scheme that uses relative distance measurements to represent the motions
of standing up and sitting down is introduced. This scheme encompasses the measurement
of relative distance from a proximity sensor to the body surface, data reduction to a
2D coordinate plane, and the determination of motion phases based on variations in
joint angles. Additionally, the transition process of the joint locations is captured by
modeling the human body as a geometric linkage structure. Using a proximity sensor,
the recognition of standing-up and sitting-down motions requires less data compared to
other measurement methods, such as cameras. The sensors do not need to be affixed to
the body for measurement purposes. Furthermore, individual privacy is protected since
the scheme does not require extensive data that could identify individuals. Comparative
experiments were performed with subjects of varying ages to showcase the effectiveness
and performance of the proposed approach. While minor fluctuations in the experimental
results were noted owing to individual variations among participants, the proposed scheme
proved to be satisfactorily effective. In conclusion, the scheme emphasizes the following
key aspects: noncontact handling in the post-COVID-19 era and the recognition of the
discontinuous transition process between standing and sitting positions, and vice versa.
The proposed scheme is applicable to the interfaces of welfare and measurement devices in
medical and welfare facilities, among others. Our future research will focus on improving
the measurement accuracy of the developed method and exploring its applications in
public spaces.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24216967/s1. The first video clip shows the experimental results
obtained with the linear actuator on one laboratory colleague to examine the effectiveness of the SPD
module as shown in Figures 14 and 15. The second video clip shows the experimental scene in the
nursing home. The results are shown in Figure 17. The third video clip presents the experimental
scene with the voluntary subjects at the regional event. The related results are shown in Figure 17.
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