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Abstract: Grasspea (Lathyrus sativus L.) is a climate-smart legume crop with adaptation to fragile
agroecosystems. The genus Lathyrus is recognized for its vast genetic diversity, encompassing over
160 species, many of which are cultivated for various purposes across different regions of the world.
Among these, Lathyrus sativus is widely cultivated as food, feed, and fodder in South Asia, Sub-
Saharan Africa, and the Central and West Asia and North Africa (CWANA) regions. Its global
cultivation has declined substantially due to the stigma posed by the presence of neurotoxin β-N-
oxalyl-L-α, β-diaminopropionic acid (β-ODAP) in its seeds and green foliage. Overconsumption for
a longer period of grasspea seeds harvested from landraces may lead to a neurological disorder called
neurolathyrism in humans. ODAP is an obstacle for grasspea expansion, but crop wild relatives
(CWRs) have been found to offer a solution. The incorporation of CWRs, particularly Lathyrus cicera,
and landraces into breeding programs may reduce the ODAP content in grasspea varieties to a safer
level. Recent advances in genomics-assisted breeding have expanded the potential for utilizing
challenging CWRs to develop grasspea varieties that combine ultra-low ODAP levels with improved
yield, stability, and adaptability. Further progress in omics technologies—such as transcriptomics,
proteomics, and metabolomics—along with genome sequencing and editing, has greatly accelerated
the development of grasspea varieties with reduced or zero ODAP content, while also enhancing the
plant’s agronomic value. This review highlights the significance of utilizing CWRs in pre-breeding
programs, and harnessing advanced tools and technologies to enhance the performance, adaptability,
and resilience of grasspea in response to changing environmental conditions.

Keywords: Lathyrus; grasspea; CWRs; pre-breeding; germplasm conservation and utilization

1. Introduction

Grasspea (Lathyrus sativus L.) is a diploid legume (2n = 14), domesticated in the Balkan
peninsula [1]. It belongs to the family Leguminosae, the subfamily Papilionoideae, and the
tribe Vicieae. Grasspea is primarily a self-pollinated crop, but outcrossing, to the extent
of 9–25%, is reported depending on flower color and size, and pollinators [2]. It thrives
on poor soils in semi-arid and arid environments and exhibits remarkable tolerance to
biotic and abiotic stresses [3]. It is highly efficient at fixing atmospheric nitrogen through
symbiotic relationships with Rhizo-bacteria and contributes ~108–125 kg/ha of nitrogen
to the soil [4,5]. Cultivating grasspea in rotation with cereals reduces the nitrogen require-
ments of subsequent crops, making it a crucial element of sustainable farming systems [6].
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Grasspea is cultivated in many countries across Asia (India, Pakistan, Bangladesh, Nepal,
and China), Southern Europe (France, Portugal, Italy, and Spain), and Africa (Ethiopia,
Eritrea, Ghana, Sudan, Niger, Ivory Coast, and Mauritania). It serves as a protein source
for both humans and animals. In certain regions, including North America, South America,
Australia, and Europe, grasspea finds use in fodder production [7]. Additionally, in both
Europe and North America, it is grown as a cover crop and a green manure crop to prevent
soil erosion [8–10]. Grasspea holds good potential as a legume crop for low-rainfall parts
of the Canadian prairies and low-quality soils in South Australia and Central Asia [8–10].

Nutrient-rich food crops with reduced water demands such as grasspea hold an im-
portant place in the food system to mitigate global malnutrition. Grasspea ranks as the
second-richest protein source after soybean and it also contains L-homoarginine, which im-
proves cardiac function [11]. While the crop possesses numerous favorable agronomic and
nutritional qualities, the primary barrier preventing it from becoming the first choice among
legumes is the presence of an anti-nutritional factor, b-N-oxalyl-L-α, β-diaminopropionic
acid (β-ODAP), in most of the plant’s tissues, including its seeds. The prolonged consump-
tion of β-ODAP causes neurolathyrism, a neurological condition in humans that results in
irreversible paralysis of the lower limbs [12,13]. The presence of β-ODAP has led to reduced
acreage under grasspea cultivation and even to a ban on the sale and cultivation of grasspea
in some countries, and to it being given the status of an “orphan crop” [14]. Despite such
bans, the potential of grasspea for research and future agricultural use cannot be hidden.
The primary area of research on grasspea is developing varieties with low or zero β-ODAP
content. To reach this goal, plant breeders have developed cultivars with low β-ODAP, such
as Mahateora, Ceora, LS8246, BioL-212, Bari Khesari-1, and Prateek [15]. Despite the efforts,
no cultivar has been developed with zero β-ODAP content to date. Efforts have been made
to understand the biosynthesis and genetics of β-ODAP, but there are still significant gaps
in our knowledge of the production β-ODAP in grasspea. Widespread use of grasspea
cultivation is also constrained by a few other undesirable agronomic characteristics, such
as pod shattering, its prostrate-spreading plant habit, late maturity, and indeterminate
development, that require improvement [16].

The development of high-yielding grasspea varieties with zero/low seed ODAP
content and an early maturity is needed to make the crop significantly more suitable for
human consumption and expand its cultivation, particularly in dry regions. To facilitate
the continued development of new cultivars, CWRs serve as a valuable source of diversity.
Breeders often face one of the most difficult challenges when searching for useful genetic
diversity in elite germplasm, particularly economically important traits.

However, wild Lathyrus holds an extensive reservoir of valuable traits, including
tolerance to abiotic stresses, resistance to diseases, and low ODAP content, which can signif-
icantly enhance the resilience, yield, and nutritional quality of cultivated grasspea. Despite
this great potential, wild Lathyrus remains largely underutilized in breeding programs
due to challenges such as reproductive barriers, lack of effective pre-breeding efforts, and
underdeveloped genomic resources. The emergence of high-throughput genotyping and
phenotyping technologies, along with advancing biotechnologies, offers new opportunities
to explore genetic variation. These can be leveraged for the development of enhanced
grasspea lines with zero/low ODAP content. This review aims to fill this gap by providing
a comprehensive synthesis of the genetic diversity present in wild species, identifying
key reproductive and technological challenges, and outlining modern tools like genome
sequencing, omics approaches, and genome editing that can unlock this diversity for breed-
ing. By addressing these gaps, the review will offer a roadmap for utilizing wild Lathyrus
to drive crop improvement and ensure greater food security in challenging environments.

2. Origin, Domestication, and Geographic Distribution

The genus Lathyrus exhibits a wide range of diversity, with its species distributed across
Europe, Asia, North America, South America, and East Africa. However, the primary center
of diversity is concentrated in the Mediterranean and Irano-Turanian regions [17]. While
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the genus is naturally adapted to temperate regions, it can also be found at high altitudes in
tropical Africa. It is worth noting that the genus also includes numerous restricted endemic
species, which are distributed across all continents except Australia and Antarctica [17]. The
eco-geographic distribution of all but a few Lathyrus species is poorly understood, particularly
for those in the section Notolathyrus that are endemic to South America. There is a need for
a detailed eco-geographic study of the whole genus if it is to be effectively and efficiently
conserved and utilized for grasspea improvement. The most widely cultivated species for
human consumption is L. sativus. Other species grown for forage and/or grain include L. cicera,
L. ochrus, L. clymenum, L. tingitanus, L. latifolius, and L. sylvestris [18]. Lathyrus cicera is cultivated
in Greece, Cyprus, Iran, Iraq, Jordan, Spain, and Syria and L. ochrus in Cyprus, Greece, Syria,
and Turkey [19]. Lathyrus hirsutus and L. clymenum are cultivated as minor forage or fodder in
the southern United States and Greece [20]. A few species such as L. odoratus, L. latifolius, and
L. sylvestris are grown as ornamental crops [21].

Grasspea originated in southwest and central Asia and later expanded into the east-
ern Mediterranean region [1]. However, phytogeographical and archaeobotanical data
indicate that its origin on the Balkan peninsula dates back to the 6th millennium BC [1].
Vavilov [22] described Central Asia and Abyssinia as the centers of origin for grasspea.
The important archaeological evidence of grasspea is noted in adjacent areas of Tepe Sadz
(7500–5700 BCE) and Ali Kosh (9500–7600 BC) in Iran [23] and in the Gangetic plains of
India (2000–1500 BCE) [24] with presumption of its introduction from West Asia. The old-
est fossils of grasspea utilized for human consumption were discovered in the Euphrates
valley during the middle pre-pottery Neolithic era (8200–7500 BCE) [25]. Evidence of
grasspea cultivation has been discovered at Bronze Age sites in India, Greece [26], and
Ethiopia [27]. In the Fertile Crescent, Eastern Europe, and the Mediterranean region, a
multitude of Neolithic archaeological sites have discovered fossilized seeds dating back to
6000 BCE of L. sativus L. and related species like L. cicera L. and L. ochrus L. DC. [1,28,29].
The true natural distribution of L. sativus is heavily concealed by the effects of cultivation,
which complicates the exact identification of its center of origin. The absence of significant
morphological distinctions between wild and domesticated populations likely stems from
the fact that L. sativus has historically served a dual purpose, both as a source of grain and
forage, in its native regions. Within this context, small-seeded accessions represent the
more primitive types with hard seeds. In contrast, the selection for forage use has given
rise to local varieties characterized by larger leaves, pods, and seeds, although these tend
to have lower seed yields, particularly in the Mediterranean region.

3. Taxonomic Classification and the Gene Pool

Lathyrus belongs to the tribe Vicieae of the subfamily Papilionoideae, along with other
genera that are Vicia, Lens, Pisum, and Vavilovia. The exact differences between Lathyrus
and Vicia are poorly defined; however, oroboid species serve as a bridge between both
genera [17]. Schaefer et al. [30] suggested that the Fabeae tribe originated in the Eastern
Mediterranean during the middle Miocene. From this region, the tribe expanded its range
across Eurasia, into Tropical Africa, and made at least seven transoceanic migrations to
the Americas via the Atlantic and Pacific. The most likely explanation for these Atlantic
crossings appears to be long-distance dispersal events, as Schaefer et al. [30] ruled out the
possibility of ancient steppingstone dispersal through the Atlantic islands. The authors,
based on phylogenetic data, indicated that the genus Lathyrus is not monophyletic and
suggested that a more accurate classification of the Fabeae tribe should incorporate Pisum
and Vavilovia as well. This reclassification is further supported by the whole-plastid
genomes currently available for L. sativus and P. sativum [31]. Additionally, the genera
Pisum and Lathyrus both produce the phytoalexin pisatin, a compound absent in Vicia and
Lens [32]. Recent taxonomic revisions have proposed placing Pisum sativum within the
Lathyrus genus [33], though this reclassification has been questioned [34]. These conflicting
perspectives highlight the need for further comprehensive studies, including additional
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molecular data and phylogenetic analyses, to clarify the relationship between these genera
and ensure a more accurate classification.

The genus Lathyrus contains approximately 187 species [35,36]. Kupicha [37] divided
the genus into 13 sections based on the taxonomic classification, but more research is
needed to establish the phylogenetic relationships among the sections and species (Table 1).
Lathyrus species have been divided further into five groups, namely, Nissolia, Aphaca, Ci-
cerula, Clymenum, and Lathyrus. The Lathyrus group includes perennial species, whereas the
other four groups are annual [37–39]. Asmussen and Liston [38] provided a comprehensive
summary of the taxonomic identification and evolution of the genus Lathyrus based on mor-
phological characterization. Lathyrus has been further classified into primary, secondary,
and tertiary gene pools based on crossability [23,40–42]. The primary gene pool includes
grasspea landraces and cultivars, and the secondary gene pool includes different species
such as L. cicera, L. pseudocicera Pamp., L. amphicarpus L., L. gorgoni Parl., L. marmoratus
Boiss. & Balansa, L. blepharicarpus Boiss., L. chloranthus Boiss. & Balansa, L. chrysanthus
Boiss., L. hierosolymitanus Boiss., and L. hirsutus L. There is limited information available
regarding the cross-compatibility of these species with cultivated L. sativus. However,
Heywood et al. [43] noted that certain species, including L. chrysanthus, L. gorgoni, L. mar-
moratus, and L. pseudocicera, which belong to the secondary gene pool, are compatible
with L. sativus, though they only produce ovules. The remaining species are kept in the
tertiary gene pool and might be utilized for grasspea improvement by using bridge species
and tissue culture techniques to break crossability barriers. The literature presents some
ambiguity regarding the progenitor of L. sativus. However, species such as L. cicera, L. mar-
moratus, L. blepharicarpus, and L. pseudocicera are considered probable candidates based on
their morphology and relatedness to the cultivated form [21].

Table 1. Classification and distribution of the genus Lathyrus [29].

Section Species Important Species Geographical Distribution

Orobus 54 - Europe, West and East Asia, Northwest Africa, North and Central America

Lathyrostylis 20 - Central and Southern Europe, West Asia, Northwest Africa

Orobon 1 - Anatolia, Caucasia, Crimea, Iran

Lathyrus 33

L. annuus, L. cicera, L. sativus,
L. sylvestris, L. tingitanus,

L. tuberosus, L. gorgoni, L. hirsutus,
L. latifolius, L. odoratus,

L. rotundifolius, L. blepharicarpus

Europe, Canaries, West and Central Asia, North Africa

Pratensis 6 L. pratensis Europe, West and Central Asia, North Africa

Aphaca 2 L. aphaca Europe, West and Central Asia, North Africa

Clymenum 3 L. clymenum, L. ochrus Mediterranean

Orobastrum 1 - Mediterranean, Crimea, Caucasia

Viciopsis 1 - Southern Europe, Eastern Anatolia, North Africa

Linearicarpus 7 - Europe, West and Central Asia, North and East Africa

Nissolia 1 - Europe, West and Central Asia, Northwest Africa

Neurolobus 1 - West Crete

Notolathyrus 23 - Temperate South America, Southeast USA

4. Conservation of Wild Relatives of L. sativus

The escalating concerns of climate change, genetic erosion, and rising global demand for
food production pose a significant challenge to the preservation, characterization, and utiliza-
tion of Lathyrus plant genetic resources in various geographical regions. Global germplasm
collections have huge genetic variability of both cultivated and wild species which have been
assembled and maintained ex situ at various national and international institutes (Table 2). In
2016, the International Center for Agricultural Research in the Dry Areas (ICARDA) inaugu-
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rated a new crop genebank in Lebanon which holds 29% of the world’s Lathyrus collections
from around the world. This collection stands out for its unique composition, with 45% and
54% of the accessions being wild relatives and landraces, primarily of L. sativus, followed
by L. cicera and L. ochrus. The largest collections of Lathyrus are held by the Conservatoire
botanique national Midi-Pyrénées, France (4477), ICARDA, Lebanon (4468), the Indian Coun-
cil of Agricultural Research National Bureau of Plant Genetic Resources, India (2622), and the
Bangladesh Agricultural Research Institute, Bangladesh (2422). The global conservation strat-
egy for Lathyrus emphasizes the importance of enhancing documentation systems, ensuring
safe multiplication and duplication, and adopting international standards to manage existing
collections [44]. These measures are crucial in establishing a rational and effective conser-
vation system for grasspea germplasm. As part of a global backup strategy, the Svalbard
Global Seed Vault stores 4510 accessions from 18 depositors. These accessions come from
diverse regions and belong to 45 different Lathyrus species (https://seedvault.nordgen.org/
accessed on 15 October 2024). In the last few decades, the creation of the Lathyrus Genetic
Resources Network [45] and Global Crop Diversity Trust laid the groundwork for organized
international conservation, collection, and other pre-breeding work on Lathyrus. Large col-
lections, comprising over 800 accessions of L. cicera and L. odoratus and fewer collections
of other Lathyrus species can be found in several countries [46,47]. The International Plant
Genetic Resources Institute (IPGRI) compiled Lathyrus germplasm in different countries to
stimulate interest in conservation and utilization and paved the pathway for research and
development in this underutilized genus [45]. Genesys (online global portal) contains over
15,208 accessions of Lathyrus (as of 14 August 2024), which are stored in various genebanks
worldwide. Most of these accessions are of L. sativus (8005), L. cicera (1242), L. aphaca (783),
L. ochrus (616), L. inconspicuus (373), L. hirsutus (356), Lathyrus sp. (327), L. clymenum (280),
L. hierosolymitanus (262), and L. annus (241) (accessible at www.genesys-pgr.org accessed on
24 August 2024). Many of them are duplicates and need proper phenotypic and genotypic
characterization. Moreover, it is imperative to explore the genetic diversity within these
collections to fully comprehend their potential use and identify key gaps. Nevertheless,
the considerable sizes of many of these collections, both individually and collectively, pose
challenges for characterizing, assessing, and maintaining them, impeding their effective
utilization [48].

In-situ conservation of Lathyrus has received relatively less attention, and local popu-
lations are vulnerable to genetic deterioration or even extinction. Gap analyses have been
suggested to direct upcoming collections of Lathyrus as well as to focus in situ preservation
initiatives [47]. A gap analysis of ex situ conservation revealed that only 6 out of 37 priority
species have been sufficiently sampled, underscoring the need for additional collection
missions in the under-represented areas and the collection of closely related wild taxa [44].
Furthermore, six priority species lack any ex-situ collections, necessitating focused collec-
tion missions. Surveys based on eco-geographical regions indicated that the conservation
efforts should prioritize L. sativus, L. cicera, L. ochrus, and other relevant species within their
natural habitats [44]. The highest genetic diversity within the grasspea was identified in
the Near East and North Africa, making these regions essential for further investigation.
However, the often allogamous nature of grasspea has significant implications for collecting
and multiplying genetic resources for conservation and future breeding [20].

Table 2. The collections of Lathyrus in major global genebanks (modified and updated from [49]).

Scheme Major Genebanks Total Accessions
(with Three Major Species)

1 Conservatoire botanique national Midi-Pyrénées (CBNPMP), France # 4477

2 International Center for Agricultural Research in Dry Areas,
Lebanon (ICARDA) * 4468 (L. sativus—2577, L. aphaca—346, L. cicera—216)

3 Indian Council of Agricultural Research National Bureau of Plant
Genetic Resources (ICAR-NBPGR), New Delhi, India ** 2767

https://seedvault.nordgen.org/
www.genesys-pgr.org
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Table 2. Cont.

Scheme Major Genebanks Total Accessions
(with Three Major Species)

4 Bangladesh Agricultural Research Institute (Plant Genetic Resource Centre
(BARI-PGRC)), Bangladesh # 2422 (L. sativus)

5 Instituto Nacional de Investigación Agraria (INIA), Chile # 1824

6 Australian Grains Genebank, Australia * 1477 (L. sativus—896, L. cicera—201,
L. ochrus—122)

7 Millennium Seed Bank (MSB), Kew, England * 1103 (L. aphaca—196, L. sativus—155,
L. hierosolymitanus—86)

8 Ustymivka Experimental Station of Plant Production, Ukraine * 1215 (L. sativus—782, L. cicera—73,
L. hirsutus—70)

9 N.I. Vavilov All-Russian Scientific Research Institute of Plant Industry,
Saint Petersburg, Russia *

1207 (L. sativus—824, L. cicera—86,
L. hirsutus —45)

10 United States Department of Agriculture (USDA) National Plant
Germplasm System * 864 (L. sativus—294, Lathyrus sp.—120, L. odoratus—52)

# [50]. * https://www.genesys-pgr.org/a/overview/v2Vd8B228KX (accessed on 24 August 2024). ** http:
//genebank.nbpgr.ernet.in/SeedBank/CropSpecieswithICECWise.aspx?CropCode = 1641 (accessed on 15 Octo-
ber 2024).

5. β-ODAP: A Persistent Barrier for Grasspea Improvement

β-ODAP is a plant active ingredient, soluble in water and an analog of the proteino-
genic amino acid L-glutamic acid [51]. It was first isolated from the seeds of L. sativus, with
hemostatic and anti-inflammatory effects [52], and later was also reported in 20 species of
Lathyrus, 17 of Acacia, and 13 of Crotalaria [53]. The grasspea toxin is present in two isomeric
forms, α and β, with the β-isomer accounting for approximately 95% of the total toxic
ODAP content [54,55]. While the plant’s relative tolerance against both biotic and abiotic
stresses may be linked to the presence of β-ODAP, ongoing research has yet to provide con-
clusive evidence to support this hypothesis. β-ODAP (β-N-oxalyl-L-α,β-diaminopropionic
acid) is a neurotoxic compound found in grasspea (L. sativus) that has been associated with
lathyrism, a neurological disorder causing paralysis of the lower limbs. Research indicates
that the accumulation of β-ODAP in grasspea may be associated with levels of total free
nitrogenous compounds, with nitrogen and phosphate being critical factors affecting neu-
rotoxin content under field conditions [56]. Some studies have suggested that deficiencies
in cysteine and methionine may exacerbate β-ODAP’s neurotoxicity [56]. Although the
full biosynthetic pathway of β-ODAP is yet to be identified, it has been proposed that
β-ODAP production may be linked to sulfur metabolism. However, our understanding
of sulfur metabolism and its role in ODAP biosynthesis in grasspea remains limited [57].
Additionally, an inverse relationship has been observed between certain amino acids, such
as serine and cysteine, and β-ODAP accumulation, with β-cyanoalanine synthase emerging
as a key enzyme in the process [58].

The presence of β-ODAP in grasspea has been one of the major limitations in its
widespread use as a food source, especially during times of famine when it becomes a sta-
ple in some regions. Several grasspea varieties with reduced β-ODAP content have been
developed through selection from natural germplasm and classical breeding and have been
released in countries such as India, Bangladesh, Australia, and Ethiopia [3,59–61]. How-
ever, to eliminate the risk of neurolathyrism and fully harness the potential of grasspea,
developing varieties with extremely low (below 0.1% of seed weight) or zero β-ODAP lev-
els, irrespective of environmental factors, remains a crucial breeding goal for the ICARDA
and countries like Bangladesh and Ethiopia, which heavily rely on this crop. Despite
the efforts, no cultivar has yet developed with zero β-ODAP content. Efforts have been
made toward understanding the biosynthesis and genetics of β-ODAP, but there are still
significant gaps in our understanding of the production of β-ODAP in grasspea. The lack
of a suitable animal model for neurolathyrism and the absence of a defined safe threshold

https://www.genesys-pgr.org/a/overview/v2Vd8B228KX
http://genebank.nbpgr.ernet.in/SeedBank/CropSpecieswithICECWise.aspx?CropCode
http://genebank.nbpgr.ernet.in/SeedBank/CropSpecieswithICECWise.aspx?CropCode
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for β-ODAP consumption complicate efforts to address the disease. One potential solution
to address the challenge of high β-ODAP levels in grasspea is the use of CWRs to develop
low-ODAP varieties. CWRs often possess genetic traits not found in the cultivated gene
pool, such as natural tolerance to stresses and lower ODAP content. In the following sec-
tions, we explore the use of CWRs in the improvement of Lathyrus species. By leveraging
the genetic diversity found in CWRs, breeding programs are making significant strides
toward reducing ODAP content and enhancing the overall safety and viability of grasspea
as a food crop.

6. Pre-Breeding for Accessing Novel Alleles from Wild Species for Crop Improvement

Pre-breeding provides interesting opportunities to harness genetic diversity by intro-
ducing desirable traits and genes from CWRs into cultivated crops by using innovative
techniques. Wild species offer a wealth of valuable traits, including disease resistance
and environmental adaptability, making them promising contributors to crop resilience.
Despite the well-recognized potential of CWRs, their underutilization in breeding pro-
grams remains a matter of concern. This requires focused research on cross-compatibility
barriers between cultivated and wild species, disparities in ploidy levels, linkage drags,
and issues related to the poor viability and sterility of F1 hybrids, and the identification
and management of desirable recombinants in subsequent generations. A prerequisite for
engaging in pre-breeding initiatives is the identification of advantageous traits and/or
genes within unadapted germplasm, encompassing exotic landraces or wild species.
Through strategic hybridization, one strives to introgress a significant frequency of these
advantageous genes and alleles into an elite background. In comparison to conventional
breeding, pre-breeding populations often are assessed to pinpoint valuable introgression
lines (ILs) featuring traits or genes from wild species. These ILs, chosen for their accept-
able agronomic backgrounds, can then be made available for breeders to use in their
ongoing breeding programs. This approach ensures a consistent infusion of diverse ge-
netic variability into the breeding pipeline, facilitating the development of new cultivars
with a broad genetic base.

7. Role of CWRs in Grasspea Improvement

A significant portion of a crop’s genetic diversity can come from its CWRs which
have remained unaffected by domestication. CWRs can play crucial roles in the genetic
enhancement of domesticated species, providing valuable traits and genetic resources
that can contribute to crop improvement. Unlike the cultivated gene pool, landraces and
wild relatives retain functional and adaptive genetic variation [62]. In the case of grasspea,
the use of CWRs has been critical for further domestication and cultivation of L. sativus
for sustenance, particularly to develop low-ODAP cultivars with high biological yield
(Table 3). Some wild relatives, i.e., L. cicera, L. amphicarpus, and L. ochrus, species with
almost no β-ODAP content (≤0.01%), can be utilized for the development of toxin-free
grasspea varieties [21,63]. In addition to having low ODAP content, L. cicera is also an
excellent source for earliness, biomass, and cold tolerance. Screening of L. aphaca, L. cicera,
L. blepharicarpus, L. cassius, L. pseudocicera, and L. ochrus has also identified sources of
resistance to broomrape [64–67], indicating utilization of CWRs in introgression breeding
for grasspea improvement. In addition, Vaz Patto and Rubiales [68] also identified L. cicera
accessions with resistance to powdery mildew and rust. Other pertinent reports include
resistance to the northern root-knot nematode (Meloidogyne hapla), and Pseudomonas
syringae pv. Syringae in L. latifolius, L. sylvestris, and L. hirsutus [69].
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Table 3. Potential sources of crop wild relatives for grasspea improvement.

Species Trait Reference

L. aphaca Broomrape (Orobanche crenata and O. foetida) [67]

L. cicera

Zero or low ODAP (0.01% or less) [3,63]

Bruchid [70]

Earliness and cold tolerance [71]

Low ODAP, earliness, and cold tolerance [3,72,73]

Pseudomonas syringae [69]

Broomrape (Orobanche crenata Frosk) [65,66]

L. clymenum Crenata broomrape (Orobanche crenata) [64]

L. cicera, L. odoratus Pod borer [45]

L. hirsutus, L. latifolius, L. sylvestris Root-knot nematode (Meloidogyne artiella) [74]

L. cicera, L. ochrus, L. amphicarpus Zero or low ODAP [21,63]

L. ochrus
Broomrape (Orobanche crenata) [64,75]

Broomrape (Orobanche crenata and O. foetida) [67]

L. ochrus, L. clymenum Ascochyta blight
(Mycosphaerella pinodes) [76,77]

L. sativus
Powdery mildew (Erysiphe pisi and E. trifolii) [69]

Cercospora pisi-sativae [78]

L. sativus, L. cicera
Powdery mildew (Erysiphe pisi) [7,79,80]

Rust (Uromyces pisi) [81,82]

L. tingitanus

Drought tolerance
Heat tolerance

High protein content
Low ODAP content

[3,83]

L. czeczottianus High phenolic content [84]

L. nissolia Enzymatic inhibitory effects against cholinesterase, amylase,
and glucosidase [84]

L. sphaericus High phenolic content [85]

High protein content [86]

L. annuus High antioxidant activity [85]

High protein content [86]

8. Reproductive Barriers Hindering Utilization of CWRs in Grasspea Improvement

Wide hybridization can transfer beneficial traits from related crop species or their
wild relatives, but major impediments often curtail its effectiveness. Despite the successful
production of viable seeds, attempts to transfer alien genes among L. sativus, L. cicera, and
L. amphicarpus are rare [87–89]. Using easily crossable species like L. cicera and L. amphicarpus,
alien gene transfer into L. sativus is possible, based on information regarding crossability,
alteration of chromosome behavior in hybrids, and the successful production of viable
seeds. However, there are pre- and post-fertilization barriers that restrict interspecific
and intergeneric hybridization. Pre-fertilization barriers can involve a lack of pollen
germination, restriction in the growth of pollen tubes, or their failure to penetrate the
embryo [90]. In contrast, post-fertilization barriers result in the degradation or death
of hybrid embryos or abnormal seed development [91]. Even if pollen germination and
fertilization are successful, post-zygotic barriers can arise, leading to disturbances in normal
seed development through embryo abortion and hindering endosperm development [92].
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Pre-fertilization barriers were observed in L. odoratus × L. chloranthus crosses and
reciprocal L. odoratus × L. chrysanthus crosses involving long-styled L. odoratus cultivars
which prevented the growth of foreign pollen tubes to the base of styles. Herrick et al. [93]
attempted interspecific hybridization between L. odoratus L. and L. chloranthus Boiss. to
transfer the yellow flower color to L. odoratus L., but the reciprocal crosses yielded no viable
seeds, indicating the presence of post-fertilization barriers that inhibited embryo maturation.

Cross incompatibilities in Lathyrus can be due to genetic incompatibility, differences in
nuclear DNA content [94], and the presence of the non-protein amino acid lathyrine [95],
which affects pollen germination and pollen tube growth when crossing between Lathyrus
species. Biotechnological tools, including tissue culture techniques, can be deployed to
overcome significant reproductive barriers among different species [96]. Use of embryo
rescue techniques is a promising avenue for achieving interspecific crosses between certain
species that would otherwise fail due to embryo abortion after fertilization. Mehta and
Santha [97] successfully developed plant regeneration techniques, demonstrating their
efficiency for reliable grasspea plant regeneration from stem, leaf, and root explants. The
regenerated plants exhibited a significant degree of somaclonal variation in their plant habit.
Attempts to rescue aborted interspecific hybrid embryos through in vitro culture revealed
varying responses, with successful callus formation observed in most combinations, and
with mature plants regenerated from immature embryos of the cross between L. sativus
(male parent) and L. cicera (female parent) but not the reciprocal [90]. Despite efforts to
expand the range of successful interspecific crosses via embryo rescue and protoplast fusion
protocols, these methods have not yet been widely adopted for grasspea improvement [98].
The challenges lie in improving the efficiency of regenerating hybrid plants, hindering the
practical integration of this approach in breeding initiatives.

9. Interspecific Hybridization

Interspecific hybridization is employed to introduce novel alleles into cultivated
species, broadening their genetic diversity and potentially enhancing desirable traits. The
success of interspecific crosses depends on various factors, such as the physical proximity
of the parent plants, time of flowering, specific parental genotypes, pollen transfer methods,
direction of the cross (female parent), environmental conditions, and presence of male
sterility in one parent [99,100].

Several successful instances of interspecific crosses within Lathyrus have been doc-
umented which can serve as a viable base for grasspea pre-breeding. Many researchers
have attempted to achieve interspecific hybridization within the genus Lathyrus following
Barker’s [101] successful crossing of L. hirsutus and L. odoratus. In 1956, Lwin [102] accom-
plished the hybridization of L. cicera with L. sativus; nevertheless, subsequent attempts
to replicate this cross proved unsuccessful [87,103]. According to Khawaja [87], L. sativus
readily forms hybrids with L. amphicarpus when the latter is employed as the female parent.
Other successful interspecific hybrids have been obtained from the crosses L. rotundifolius
× L. tuberosus and L. sylvestris × L. latifolius [103–105], L. hirsutus × L. odoratus [87,106,107],
L. marmoratus Boiss. × L. blepharicarpus, L. gorgoni × L. pseudocicera, L. cicera × L. marmoratus,
L. cicera × L. blepharicarpus, L. cicera × L. gorgoni, L. cicera × L. pseudocicera [41,105,106],
L. cicera × L. clymenus and L. cicera × L. ochrus [108,109], and L. annuus × L. hierosolymi-
lanus Boiss. and L. odoratus × L. belinenesis [107,108]. Yunus and Jackson [40] reported
interspecific hybridization involving L. sativus and 15 wild Lathyrus species and obtained
viable F1 hybrids with reduced fertility from the cross between L. sativus (as male parent)
and L. amphicarpus and L. cicera. Yunus [88] attempted interspecific hybridization using
11 wild species and L. sativus, but only an L. cicera × L. amphicarpus cross yielded viable
seeds. Abdallah et al. [67] investigated the crossability of L. sativus with six wild species,
resulting in viable seeds with L. cicera and, to a lesser extent, with L. ochrus, L. inconspicuous,
L. marmoratus, and L. heirosolymitanus. Many Lathyrus species, such as L. odoratus, are
cultivated as garden plants, and there is considerable interest in exploring the secondary
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gene pool in L. odoratus for the development of new pigmentations and scents. L. odoratus
has been successfully crossed with L. hirsutus, L. chlorantus [87], and L. belinensis [109,110].

The Lathyrus gene pool presents significant potential as a valuable source of eco-
nomically important traits, including low or zero ODAP content, enhanced resistance to
biotic and abiotic stresses, and traits suitable for ornamental purposes. The genetic diver-
sity observed in wild Lathyrus species offers substantial potential for improving grasspea
through pre-breeding efforts. At the ICARDA, the grasspea program has benefited from
the use of CWRs by generating interspecific hybrids between L. sativus and other Lathyrus
species, demonstrating successful interspecific crosses with L. cicera, followed by crosses
with L. ochrus, and, to a lesser extent, crosses with L. inconspicuous, L. marmoratus, and
L. heirosolymitanus, through embryo rescue using B5 media (unpublished CWR project re-
port). In addition, more than 100 fixed pre-bred lines emanating from L. sativus and L. cicera
crosses were successfully made and evaluated at the ICARDA. Out of these, twenty-one
CWR lines were selected based on their low ODAP content and high grain yield under the
BOLD (Biodiversity for Opportunities, Livelihoods, and Development) project, funded by
the Crop Trust, to assess their performance for yield, stability, and ODAP content during the
2023–2024 cropping season across four countries: Bangladesh, India, Nepal, and Morocco
(in progress).

To effectively harness the genetic diversity of the Lathyrus gene pool, it is crucial to
address the reproductive barriers that exist between species. Modern biotechnological
techniques, such as tissue culture, somaclonal variation [111], and protoplast fusion, may
play a vital role in facilitating these interspecific crosses [96,112]. Consequently, the devel-
opment of reliable and reproducible protocols is essential for the successful application
of genetic transformation techniques [113,114]. Interspecific hybrids between L. sativus
and L. cicera were produced at the ICARDA (CWR project report 2020) through an embryo
rescue that involved the isolation and culture of embryos at a stage where they might fail to
develop under normal conditions (Figure 1). The implementation of this protocol effectively
overcame fertilization barriers, resulting in successful interspecific crosses. Techniques
including use of 2,4-D and GA3 were employed to address fertilization incompatibility,
although the initial pod yield was low at 5.9%. However, modifying the protocol by using
honey to weld both wings raised humidity levels within the flowers, contributing to an
increased pod yield of 15.7%. After pollinating 576 florets, the embryo rescue protocol
was applied to rescue young embryos and successfully saved 33 embryos. These embryos
were then transferred to a special nutrient-rich medium containing B5 and Gamborg nutri-
ents. From these rescued embryos, we successfully grew 19 hybrid plant, demonstrating
the effectiveness of the embryo rescue protocol in overcoming post-zygotic barriers in
Lathyrus species.

The challenges of interspecific hybrids become more significant as the phylogenetic
distance between the parent species increases [115]. In interspecific crosses, a phenomenon
called the “one-way reproductive barrier” often occurs, where successful hybridization
is observed when one species is used as the maternal parent but not in the reciprocal
direction [92]. Lathyrus cicera, L. nissola, L. stenophyllus, and L. tingitanus, when crossed
with L. sativus, developed pods when L. sativus is used as female parent. However, the
viable seeds did not develop as the pods dried prematurely [89]. Addis and Narayan [89]
attempted 12 reciprocal crosses and only 1 cross, L. sativus (male parent) and L. amphicar-
pus (female parent), produced viable seeds. These findings align with those of other re-
searchers [116], confirming the difficulties in making interspecific hybrids in Lathyrus [116].
Nandini et al. [117] produced interspecific hybrids involving L. latifolius, L. sylvestris, and
L. heterophyllus (all perennial species). The observation of pachytene pairing within spread
synaptonemal complexes indicated that the reduced fertility in these hybrids is unlikely to
be due to structural difference in chromosomes between the parental species [117].
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10. Novel Tools and Technologies in Unraveling the Potential of Crop Wild Relatives
10.1. Molecular Phylogenetic Relationships Among Lathyrus

Cytologically, Lathyrus species differ widely in chromosome number, but most have
basic (x) and somatic (2n) chromosome numbers of 7 and 14, respectively [118]. The
ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, the non-coding
trnH-psbA intergenic spacer of chloroplast DNA, and the internal transcribed spacer (ITS)
gene region of nuclear ribosomal DNA are often employed in molecular phylogeny studies
to address the questions in phylogenetic reconstruction and classification [119–121]. Various
studies have used these methods to resolve phylogenetic issues within the genus Lath-
yrus [38,122–124]. Asmussen and Liston [38] studied the cytoplasmic diversity of 42 species
of Lathyrus, whereas Kenicer et al. [39] used cpDNA sequences for a biogeographical study.

Utilizing storage protein gene sequences, Sáenz de Miera et al. [125] demonstrated
that species from the section Lathyrus (L. sativus, L. annuus, L. cicera, and L. tingitanus)
form a monophyletic group, whereas species from the section Clymenum (L. clymenum and
L. ochrus) along with L. latifolius from the section Lathyrus form another distinct group.
Kenicer et al. [39] examined the systematics and biogeography of 53 Lathyrus species via
their nuclear ribosomal and chloroplast DNA. Their results elucidated clades between
Lathyrus and Lathyrostylis sections and generally confirmed the current categorization based
on morphological traits. However, they also raised doubts regarding the monophyly of
the section Orobus sensu Kupicha [37]. Ceccarelli et al. [126] used satellite DNA to confirm
the close phylogenetic relationship between L. sylvestris and L. latifolius first reported by
Asmussen and Liston [38] based on chloroplast DNA. Oskoueiyan et al. [120] used matK
as a selected barcode to construct the phylogeny of 60 species of Lathyrus. Their findings
also concurred with Asmussen and Liston [38], confirming that the sections Orobon and
Lathyrus should be combined. They also reported that L. clymenum and L. ochrus (section
Clymenum) are closely related to taxa.
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The existing taxonomic categorization of Lathyrus has been supported by ITS, nuclear
ribosomal, and chloroplast (cp) sequence-specific DNA markers [39]. Among the most
frequently utilized nuclear markers in plants are those from the ITS region of nrDNA,
particularly ITS2. Marghali et al. [97] used ITS2 sequence data to study the molecular
evolution of Lathyrus spp., revealing that L. aphaca had the largest genetic distances from
all other species, with the greatest genetic divergence observed between L. angulatus and
L. aphaca. Similarly, Asmussen and Liston [38] noted that the Linearicarpus section, as
represented by L. sphaericus and L. angulatus, is clearly distinct from the section Aphaca.
Lathyrus species pairs with high similarity in ITS2 sequences include pairs such as L. setifolius
and L. tuberosus, L. gorgoni and L. tuberosus, L. setifolius and L. gorgoni, and L. latifolius and
L. tuberosus. Levels of sequence divergence among Lathyrus species seem to be linked to
their high rate of evolutionary change. Marghali et al. [123] used Maximum Parsimony
(MP) and Neighbor-Joining (NJ) methods to explore genetic relationships among Lathyrus
species by building phylogenetic trees. The MP analysis of ITS2-nrDNA revealed a range
of genetic variation among Lathyrus species and supported lineages within the Vicieae
clade. The NJ method grouped the species into two clusters: Cluster 1, which included
L. sylvestris and L. aphaca from two different sections (Lathyrus and Aphaca), and Cluster
2, which comprised all other species. However, Marghali et al. [123] found that the ITS2
phylogeny does not fully align with Kupicha’s classification and does not support the
close relationship between the Pratensis and Aphaca sections proposed by Kupicha [37].
Additionally, their ITS2 tree indicated a close relationship between L. sativus and L. cicera,
corroborating previous analyses based on morphology and plastid DNA or nuclear markers,
and suggests successful interspecific hybridization between these two species [102].

10.2. Molecular Markers and Genetic Diversity

The availability of molecular markers in grasspea is currently quite limited, highlight-
ing the need to address this gap to successfully develop molecular breeding strategies. An
effort has been made to use EST-SSR markers (expressed sequence tags–simple sequence re-
peats) from closely associated legume species to overcome the limitation. The development
of genic SSRs (EST-SSRs) in L. sativus and L. cicera has been facilitated by the availability of
cross-species amplified markers and computational searches of the nucleotide sequence
database of ESTs available at NCBI GenBank [127,128]. Additionally, by analyzing the RIL
population of L. cicera and sequencing the monomorphic simple sequence repeat (SSR)
segments, cleaved amplified polymorphic sequences (CAPS) and derived CAPS (dCAPS)
were also developed [129]. Recently, a panel of SNP-derived kompetitive allele-specific PCR
(KASP) markers and a set of polymorphic EST-SSRs were developed by RNA-sequencing-
based transcriptome analysis using the Illumina NextSeqTM500 platform [130]. The devel-
opment of rapid genome-wide SSRs and single-nucleotide polymorphism (SNP) detection,
which should facilitate positional cloning and QTL mapping, has been made possible by the
advancement of next-generation DNA sequencing technology in the absence of a reference
genome for grasspea (Table 4) [131]. There are only a few reports on the development of
genomic SSR markers for Lathyrus [132–135]. Yang et al. [134] developed 50,144 unique
SSRs, of which 288 were randomly selected to validate 24 accessions of Lathyrus (including
23 L. sativus and 1 L. cicera). The development of this large number of SSR markers is a
significant advancement for the genomics-enabled improvement of grasspea.

The genetic diversity of the genus Lathyrus has been assessed with morphological
markers [136,137], isozyme polymorphisms [138], and DNA-based markers such as ran-
dom amplified polymorphic DNA (RAPD), restriction fragment length polymorphisms
(RFLPs), amplified fragment length polymorphism (AFLP), inter simple sequence repeat
(ISSR), and microsatellites or SSRs [139] (Table 5). ISSR analysis revealed that L. sativus
is more closely related to L. cicera than it is to L. ochrus [140]. Such findings support the
classification of L. ochrus into the section Clymenum, as proposed by Kupicha [37]. Addition-
ally, results from RFLP and RAPD analyses indicate a close genetic relationship between
L. sativus and L. cicera and L. sylvestris and L. latifolius [141]. Eleven ISSR markers were
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employed to assess the phylogenetic relationships and genetic diversity of four sections
of the genus, Lathyrus, Clymenum, Nissolia, and Aphaca, revealing close genetic similarity
between L. sativus and L. cicera [142]. In contrast, L. ochrus showed greater similarity to
L. aphaca and L. nissolia. AFLP has also been used to assess the genetic diversity of L. sativus
and its relatives [132,142].

Subsequently, 30 SSRs were used to analyze 266 Lathyrus accessions and 17 related
species from Africa, Europe, Asia, and the ICARDA [135]. Clustering analysis based on
Nei’s genetic distance divided species into two clusters: cluster I comprised all annual
species (L. sativus, L. cicera, L. tingitanus, L. aphaca, and L. hirsutus), and cluster II comprised
annual (L. clymenum and L. ochrus) and perennial species (L. pratensis, L. sylvestris, and
L. latifolius). Population structure analysis of the studied accessions indicated potential
gene flow between European and African accessions, which was further supported by
UPGMA-based cluster analysis and principal component analysis (PCA).

The genetic diversity of three Lathyrus species (L. sativus, L. cicera, and L. ochrus) was
also evaluated by using ten SSR markers [143]. Population structure analysis revealed that
Lathyrus accessions were grouped into three distinct clusters, independent of geographic
origin, with significant genetic differentiation observed between L. ochrus and the two
species. These findings have been supported by other DNA-marker-based studies that
employed RFLP [141], ISSR [140], and SSR markers [135]. Rahman et al. [144] studied
the genetic diversity of L. sativus from different geographic regions using 56 SSR markers.
Cluster analysis divided the germplasm into two main groups and one subgroup, while
the model-based population structure analysis identified three populations.

EST-SSRs are highly conserved and can often be transferred among species [145].
While only 178 ESTs are available for L. sativus and 126 for L. cicera at NCBI, the number
is much higher for L. odoratus (8702 ESTs) [11,139]. An SSR genomic enriched library was
developed for L. sativus and tested for transferability among Lathyrus species. Seven SSR
markers showed high transferability among three related species of Lathyrus, L. cicera,
L. ochrus, and L. tingitanus, as well as to Pisum sativum [146]. Over the last two decades, EST-
SSRs have been used repeatedly for diversity analysis of Lathyrus genotypes [135,147–149].
Numerous molecular markers from Medicago truncatula, garden pea, lentil, lupin, and
faba bean have also been shown to be transferable to L. cicera and L. sativus for future
application in mapping and diversity studies [150,151]. These results indicate that the
novel SSR markers are informative and will be useful and convenient for genetic analysis in
grasspea and related species. CAPS and derived CAPS (dCAPS) have also been developed
for use in Lathyrus [128,151]. In silico mining of nucleotide sequences identified 203 SSRs,
of which 150 were used for marker–trait association in 50 geographically diverse accessions
of Lathyrus spp. from India, Syria, Ethiopia, France, Italy, Bangladesh, and Korea [152]. By
using a mixed linear model, six significant marker–trait associations were identified for
phenological and yield-related traits [152]. New genomic resources have enabled the use of
Lathyrus as a valuable source of traits for related species and vice versa.

Table 4. Application of NGS techniques in grasspea.

Genotype Used Trait Sequencing Platform No. of Primers
Detected

No. of
Genes Annotated References

Eight grasspea accessions
consisted of two Chinese,

two Asian, one African, and
three European accessions

- Roche 454 GS FLX
Titanium platform 651,827 - [134]

BGE015746, BGE024709 Rust resistance
Illumina

(San Diego, CA, USA)
Hiseq2000

2634 SNPs
200 EST-SSR

50,937 (60.4% into
functional categories) [128]

BGE015746 Aschochyta
blight resistance

Illumina Genome
Analyser IIx - 13,773 [153]

Rewa-2 - Illumina HiSeq 2500 1139 SSRs - [154]
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Table 4. Cont.

Genotype Used Trait Sequencing Platform No. of Primers
Detected

No. of
Genes Annotated References

RQ23 and RQ36 - Illumina NextSeq™ 500 3204 EST-SSR,
146,406 SNP - [130]

LZ β-ODAP Illumina HiSeq 3000 - 27,032 [131]

LP-24 Drought Illumina HiSeq 2500 8079 SSRs 31,368 [155]

Table 5. Diversity analysis in Lathyrus spp. by molecular markers.

Species Marker Type Reference

L. sativus

SSR [144,156–159]

EST-SSR [147,149]

RAPD [160]

AFLP [132]

CAPS [129]

ISSR [142]

L. sativus, L. cicera SSR [134]

L. sativus, L cicera, L. ochrus
SSR [143]

ISSR [140]

L. sativus, L. cicera, L. latifolius, L. ochrus RAPD [141]

L. sativus, L. cicera, L. aphaca, L. clymenum,
L. hirsutus, L. ochrus, L. tingitanus, L. latifolius,

L. pratensis, L. sylvestris
SSR [135]

Cross transferable

L. sativus
L. sativus- and Lotus japonicus-derived EST-SSR [132]

M. truncatula- and L. sativus-derived EST-SSR [133]

L. sativus, L. cicera P. sativum- and M. truncatula-derived ITAP and
P. sativum-derived gSSR and EST-SSR [151]

10.3. Genetic Linkage Maps

Molecular mapping is crucial for identifying and locating specific genes associated
with desirable traits in crops. It enhances the precision and efficiency of breeding programs
by enabling marker-assisted selection (MAS), accelerating the development of improved
crop varieties. Over time, various genetic maps have been developed for grasspea, based
on various marker types. The first linkage map was developed by using 11 RAPD mark-
ers, 1 isozyme marker, and flower color [140]. Skiba et al. [77] developed a genetic map
using 47 RAPD markers, 7 cross transferable markers from pea, and 13 CAPS markers
for QTL analysis of Ascochyta blight resistance in a backcross population. While QTLs
linked to resistance were identified, no candidate genes were found, limiting their use in
precision breeding [7]. However, neither of these linkage maps was densely populated
with markers, resulting in gaps and short linkage groups (LGs). Consequently, they could
not be aligned or compared effectively with linkage maps for other legumes. Fortunately,
high-resolution genetic maps, crucial for modern selective breeding, have recently been
developed for L. sativus and L. cicera [161,162]. Santos et al. [161] mapped 1468 markers
(silicoDArT, SNPs, ESSR, and ITAP) across 9 LGs with a total length of 712.35 cM and
an average interval distance of 0.65 cM. They identified three QTLs (EpDSI, EpDSII, and
EpDSIV) for Erysiphe pisi resistance, exhibiting phenotypic variation from 8.2 to 13%, and
one QTL (EtDSVIII) for E. trifolii reaction, explaining 16% of phenotypic variation. More
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recently, 2149 DArT-Seq markers were assigned to 10 LGs (7 major and 3 minor), with a
total genetic distance of 674.4 cM and an average interval distance of 0.41 cM [162]. An SNP
associated with LsMLO1, which regulates powdery mildew susceptibility, was identified
on LG 1 at position 18.246 cM [162]. Association mapping studies in L. sativus collections
have highlighted the oligogenic nature of resistance to fusarium wilt and rust [163,164].
Advancing grasspea research will require the rapid development of an even more detailed
genetic map to identify valuable genes and QTLs for MAS. Comparative mapping with
related species could further enhance this effort by aligning their genetic data. Creating
comprehensive linkage maps, combined with gene cloning techniques and MAS, can expe-
dite the incorporation of novel genes associated with key traits such as disease resistance
and reduced ODAP content.

10.4. Genome Sequencing

Leveraging the extensive array of germplasm and genetic resources within Lathyrus
critically depends on the availability of top-tier genome sequence information, which holds
great promise for identifying genes in the β-ODAP biosynthetic pathway and selecting
desirable traits for agronomic improvement. One notable achievement in this regard is the
genome sequencing of the European grasspea cv. “LS007”. Emmrich et al. [165] produced a
draft genome sequence for this cultivar with a draft genome assembly of approximately
6.3 Gbp, with an N50 of about 59.7 kbp [165], and estimated the grasspea genome to be
within the range of 5.456–8.471 Gbp. Such genomic data are essential for understanding the
intricate biosynthetic pathway responsible for producing β-L-ODAP. Edwards et al. [166]
further presented a comprehensive, annotated, long-read-based assembly of a 6.5 Gbp
L. sativus genome which decoded the biosynthetic pathway for formation of β-L-ODAP.
Additionally, Rajarammohan et al. [167] reported a high-quality reference assembly of
L. sativus cv. ‘Pusa-24’. Their assembled genome, approximately 3.80 Gb in length, boasted
a scaffold N50 of 421.39 Mb, indicating excellent contiguity. Furthermore, the assessment
of highly conserved Viridiplantae genes revealed an impressive 98.3% presence in the
assembly. The identification of 3.17 Gb (83.31%) of repetitive sequences and 50,106 protein-
coding genes in the Lathyrus assembly further enriches our understanding of its genomic
composition. A draft genome assembly also has been developed for L. tuberosus, based
on Pacific Biosciences sequence reads [168]. Overall, these groundbreaking achievements
in genome sequencing offer great potential for harnessing the diverse genetic resources
within Lathyrus spp., developing marker sets for use in breeding programs, and assessing
the genomic effects of domestication, and identifying key loci that differentiate wild and
cultivated taxa.

10.5. Omics Approaches

Transcriptome studies have primarily aimed to generate a vast array of genome-wide
SSRs and SNPs for applications in molecular mapping and map-based cloning research.
Recent research in grasspea has focused on transcriptomics [128,130,134,154,169]. A few
studies have focused on identifying genes and mechanisms regulating biotic and abiotic
stresses, as well as the metabolic pathway that controls β-ODAP in grasspea [131]. Also,
transcriptome studies have been carried out to find the genes and regulatory pathways
that control the β-ODAP flux in grasspea at various developmental stages [155]. To deter-
mine differential proteomes in response to salt and low-temperature stress, a comparative
proteomics analysis was carried out in grasspea that identified 67 differentially regulated
proteins [58,170].

10.6. Genome Editing

Genome editing has been used in model plants, crops, and fruits [171,172]. It en-
ables precise, targeted modifications in a plant’s DNA. The toolbox for CRISPR/Cas9 can
be used to modify the genome in ways that can broaden the gene pool and allow the
rapid generation of new varieties. The concentration of sulfur-containing amino acids like
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methionine and cysteine has been successfully increased using CRISPR/Cas9 [173]. The
amount of β-ODAP in grasspea can be reduced through a change in the concentration of
methionine [56]. The successful use of this cutting-edge technique has been hampered by
the fact that grasspea is known to be resistant to the absorption and integration of foreign
DNA and to regeneration. However, researchers are working to broaden the CRISPR/Cas9
system in the grasspea improvement program for the engineering of signaling pathways or
regulatory mechanisms engaged in environmental stresses and ODAP biosynthesis [174].
Bekele-Alemu et al. [175] proposed four strategies to reduce or eliminate the biosynthesis of
β-ODAP in grasspea. The first approach focuses on targeting the β-ODAP synthase (BOS)
gene alone, while the second involves targeting the cyanoalanine synthase (CAS) gene
independently. The third strategy suggests simultaneously targeting both BOS and CAS
genes. Lastly, the fourth approach involves modifying specific amino acids in either the
BOS or CAS genes, or both, to partially reduce β-ODAP production. This final strategy is
recommended if a complete or partial knockout of β-ODAP biosynthesis results in undesir-
able effects, such as increased sensitivity to abiotic stresses like drought. In the first strategy,
which focuses on targeting the BOS gene, it is also essential to account for the potential
accumulation of the precursor L-DAPA and monitor levels of any toxic intermediates. The
in vitro toxicological effects of isoxazoline amino acids found in L. sativus were previously
studied by [176,177]. Additionally, Verma et al. [178] demonstrated the gene editing of the
LsOCS gene involved in oxalylation in ODAP biosynthesis and established a hairy root
transformation system for Lathyrus. Through their groundbreaking and functional analysis
of this gene, there is hope that variants from CWRs can be transformed into ideal future
crops by using precise gene-editing technologies in combination with developing sequence
data from wild genomes.

11. Conclusions

The improvement of L. sativus through the incorporation of CWRs offers a promising
pathway to address critical challenges such as reducing ODAP toxicity, enhancing resistance
to biotic and abiotic stresses, and improving agronomic traits. The origin, domestication,
and geographic distribution of grasspea reveal a rich genetic diversity within this species,
and particularly within its wild relatives. Taxonomically, the gene pool of Lathyrus species
provides a wealth of untapped alleles that could significantly contribute to crop improve-
ment. To fully harness these genetic resources, it is essential to focus on addressing critical
gaps in genebank collections and improving seed conservation strategies, particularly for
CWRs. These efforts will not only ensure the preservation and enrichment of valuable
genetic material but also guide future germplasm collection and expedition strategies.
Additionally, they will support long-term initiatives like the CWR Project, which aim to
prevent genetic erosion and maintain biodiversity for future breeding efforts. Conservation
efforts focused on CWRs are crucial, as they provide a reservoir of novel alleles that can
be accessed through pre-breeding efforts. These alleles are key to enhancing traits such
as low ODAP content, stress resistance, and yield stability. However, the utilization of
CWRs is often hampered by reproductive barriers, which limit the success of interspecific
hybridization. Despite these challenges, modern tools such as embryo rescue, somaclonal
variation, and protoplast fusion have shown promise in overcoming these barriers and
facilitating gene flow between species. Moreover, when combined with advanced genomics
tools and modern breeding technologies, these approaches offer a comprehensive strategy
for grasspea improvement, enhancing the efficiency of incorporating beneficial traits from
crop wild relatives. Genomic approaches, such as the identification of key genes and QTLs
through linkage mapping and MAS, have the potential to accelerate the incorporation of
novel alleles from CWRs into cultivated varieties. The rapid advancements in omics can
offer detailed insights into genetic, biochemical, and physiological diversity across growth
stages. Furthermore, cutting-edge genome-editing technologies, such as CRISPR/Cas9,
offer transformative possibilities by targeting genes responsible for undesirable traits like
ODAP synthesis, paving the way for safer and more productive grasspea varieties. By lever-
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aging these innovations alongside traditional breeding methods, the potential of CWRs
can be fully realized, contributing to the development of grasspea varieties with enhanced
resistance, reduced ODAP levels, and improved agronomic traits.
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