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Abstract: Recent advancements in mobile health (mHealth) technology and the ubiquity of wearable
devices and smartphones have expanded a market for digital health and have emerged as innovative
tools for data collection on individualized behavior. Heterogeneous levels of device usage across
users and across days within a single user may result in different degrees of underestimation in
passive sensing data, subsequently introducing biases if analyzed without addressing this issue.
In this work, we propose an unsupervised 2-Stage Pre-processing Algorithm for Passively Sensed
mHealth Data (2SpamH) algorithm that uses device usage variables to infer the quality of passive
sensing data from mobile devices. This article provides a series of simulation studies to show the
utility of the proposed algorithm compared to existing methods. Application to a real clinical dataset
is also illustrated.
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1. Introduction
1.1. Background

The market for digital health technologies has expanded due to recent advancements
in mobile health (mHealth) technology and the ubiquity of smartphones. mHealth devices
can be classified into two broad classes based on their intended use, i.e., research-grade
devices and commercially available devices. Research-grade devices typically have sensors
designed to collect uninterrupted measurements under the supervision of researchers,
often in a laboratory setting. In contrast, commercially available wearable devices and
smartphones, with sensors designed to collect measurements intermittently, are commonly
used in everyday life in users’ natural environments without supervision. Because com-
mercially available devices are used in the users’ natural environment (as opposed to a
laboratory setting), data from smartphones and wearables have potential for assessing and
monitoring mental and behavioral health. In addition, digital interventions delivered via
commercial devices have broader reach due to the ubiquity of these devices. Consequently,
these commercially available devices have emerged as innovative tools for monitoring
disease status and early detection of symptoms of a disease, as well as delivering digital
interventions [1].

Commercial mHealth devices (e.g., smartphones, wearables) passively record data
from their sensors such as GPS (location coordinates i.e., longitudes, latitudes), microphone,
and accelerometer (e.g., three-dimensional accelerations), without any user input. These
“raw” data from the sensors are used to derive or infer behavioral features, such as physical
activity level [2], the number of places visited [3], the amount of time spent in conversa-
tion [2], and the quality and duration of sleep [4,5]. They provide insight on users’ physical
activity, sleep patterns, and sociability. The focus of this paper is on passive data collected
from commercial mHealth devices, and from here on mobile devices or devices refer to
commercial mHealth devices unless mentioned otherwise.
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1.2. Downward Bias in Passive Sensing Data

Due to multiple reasons, including privacy and the optimization of CPU usage and
battery life, mobile devices employ strategies to record passive data periodically rather
than continuously [3]. For example, real-time audio samples (non-speech content) from
the smartphone’s microphone are recorded only at regular intervals [6]. Similarly, GPS
tracking platforms use adaptive duty-cycling algorithms designed to conserve energy
that periodically turn sensors on (active phase) and off (sleep or idle phase) [7]. The
duration of sleep or an idle phase is adapted based on the events detected during the
active phase. For example, for a microphone, if the active phase detects voice, then
the consequent pre-programmed duration of the sensor’s sleep phase is reduced or vice
versa [8,9]. The recorded data are only uploaded or synced with the cloud occasionally
after being aggregated over a time interval (e.g., hourly, daily) [10]. The frequency of these
uploads/syncs is adjusted in real-time based on factors such as the storage capacity of
the device, battery level, and network connectivity. However, the algorithms governing
these decisions to activate sensors and upload data are often black-box and proprietary for
commercial devices; thus, we cannot infer any systematic relationship between individual
device usage and sensor activity. These strategies are designed to optimize battery life and
manage demand on network resources since data are stored locally on the device for a
certain period before being transmitted to the cloud in batches.

Although these strategies help to optimize battery life and minimize CPU usage,
thereby improving device performance and allowing realistically sustainable data collection,
they intrinsically introduce a downward bias to the passive sensing data. For example,
among all voice events in a day (i.e., phone conversations as a measure of sociability), some
may be missed because they occurred during an off cycle of the microphone sensor, i.e., the
sensor was turned off due to the duty-cycling. Therefore, a systematic downward bias is
introduced in the recording of passive measures [6]. However, a reasonable assumption
can be made that the degree of downward bias does not vary with time for a user, as long
as the user uses the same device. To illustrate the downward bias introduced by duty-
cycling algorithms on passive sensing data collection, a simulated example is presented in
Figure 1. In this hypothetical example, the ground truth trajectory of step count, unknown
in real-world scenarios, is the dashed line and the trajectory of the step count captured by
the device is the solid black line; the parallel downward shift of the captured trajectory
relative to the ground truth trajectory demonstrates that the user-specific trend over time is
preserved despite the downward bias present in passive measures. While “true” values
of the passive measures may be underestimated due to this downward bias based on this
assumption, within-person trends over time may still provide meaningful insights into
user behavior for research purposes [6].

An additional source of downward bias in passively sensed data is introduced due to
the unknown device use by the user. Unlike research-grade devices which record data in a
laboratory or supervised setting where the device use or wear status is known, passive data
from commercial devices record data in the wild where the device use or wear status is
unknown. Passive data are only recorded if the user carries their smartphone or wears the
wearable device, but it is not known when they are not using or wearing the device [1,11].
This unknown device non-use or non-wear status may not be consistent for a user over
time. Therefore, it is necessary to adequately correct for device non-use or non-wear before
using passive data from commercial devices to gain meaningful within-person changes
over time [12]. This paper focuses on the development of a pre-processing algorithm that
addresses the downward bias introduced from unknown device non-use or non-wear by
identifying observations we infer to have significant non-use or non-wear (i.e., missing).
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Figure 1. A simulated example of downward bias introduced by duty-cycling algorithm. The verti-
cal black and red lines represent the captured and uncaptured uploads of the true raw sensor data, 
respectively. The uncaptured uploads represent activity that is uncaptured by the sensor either be-
cause the sensor is off (due to duty-cycling) or the device is not being used or worn by the user. Each 
point, a daily aggregated step count, is derived as the sum of all uploads of raw sensor data from 
that day (black vertical lines), while the daily hypothetical upload is the sum of both the captured 
uploads (black vertical lines) and uncaptured uploads (red vertical lines) from that day. The upper 
trajectory of the dashed black line represents the trajectory of the true step count uploads while the 
lower trajectory of the solid line is the observed trajectory of captured step count uploads, an un-
derestimation of the ground truth trajectory. 

1.3. Existing Methods for Evaluating Sensor Data Validity 
In the literature, the problem of downward bias in raw sensor data is referred to as 

“sensor data validation” and has been studied outside of the field of mobile health. Previ-
ous data validation methods include simple numerical checks to examine minimum and 
maximum values [1] and physical and logical data ranges [5]. Other studies define the 
sensors as a measurement system in the presence of noise and aim to declare the sensor 
faulty when it has unreliable data [13]. In another study, the authors create training data 
with validity labels obtained from reported wear time and train a support vector machine 
classifier with engineered features representing activity measures [14]. However, such 
training data may not be available to every study involving an mHealth device. Except for 
simple numeric checks, other methods typically require supervision (i.e., known device 
use or wear status) to a certain degree (i.e., either entirely supervised or at least a super-
vised training data are available), whereas commercially available devices, unlike re-
search-grade devices, are typically unsupervised (i.e., unknown device use or wear sta-
tus). In mobile health, researchers typically perform ad-hoc analysis and apply arbitrary 

Figure 1. A simulated example of downward bias introduced by duty-cycling algorithm. The vertical
black and red lines represent the captured and uncaptured uploads of the true raw sensor data,
respectively. The uncaptured uploads represent activity that is uncaptured by the sensor either
because the sensor is off (due to duty-cycling) or the device is not being used or worn by the user.
Each point, a daily aggregated step count, is derived as the sum of all uploads of raw sensor data from
that day (black vertical lines), while the daily hypothetical upload is the sum of both the captured
uploads (black vertical lines) and uncaptured uploads (red vertical lines) from that day. The upper
trajectory of the dashed black line represents the trajectory of the true step count uploads while
the lower trajectory of the solid line is the observed trajectory of captured step count uploads, an
underestimation of the ground truth trajectory.

1.3. Existing Methods for Evaluating Sensor Data Validity

In the literature, the problem of downward bias in raw sensor data is referred to
as “sensor data validation” and has been studied outside of the field of mobile health.
Previous data validation methods include simple numerical checks to examine minimum
and maximum values [1] and physical and logical data ranges [5]. Other studies define
the sensors as a measurement system in the presence of noise and aim to declare the
sensor faulty when it has unreliable data [13]. In another study, the authors create training
data with validity labels obtained from reported wear time and train a support vector
machine classifier with engineered features representing activity measures [14]. However,
such training data may not be available to every study involving an mHealth device.
Except for simple numeric checks, other methods typically require supervision (i.e., known
device use or wear status) to a certain degree (i.e., either entirely supervised or at least a
supervised training data are available), whereas commercially available devices, unlike
research-grade devices, are typically unsupervised (i.e., unknown device use or wear
status). In mobile health, researchers typically perform ad-hoc analysis and apply arbitrary
thresholds to the data recorded by the mobile device on a specific time interval (e.g., a
day) to determine non-use or non-wear. These thresholds, which are constant across users,
are not personalized and therefore unsuitable even for a group of relatively homogeneous
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individuals in a clinical study [14,15]. For example, a threshold of 500 step-counts or
below in day used to determine device non-use or non-wear may be appropriate for an
older adult with functional impairment but may not be appropriate for a younger active
individual (e.g., a runner). One more recent approach, proposed by Kraft et al. integrates
Ecological Momentary Assessments (EMAs) and Principal Components Analysis (PCA) to
detect sensor anomalies in environmental sound levels with a mobile health crowdsensing
platform [16]. The algorithm uses EMA data to inform its analytic approach to correct
sensor errors. However, this method requires supervision from the user in the form of
concurrent EMA, which may not always be available. Our method is designed to be more
widely applicable as it only requires passively sensed data collected by devices such as
smartphones and wearables.

1.4. Our Solution

We view the unknown device non-use or non-wear as a statistical missing data prob-
lem, where the missing data labels are also unknown. To this end, we propose an unsu-
pervised algorithm called 2-Stage Pre-processing Algorithm for Passively Sensed mHealth
Data (2SpamH) that predicts these missing data labels using auxiliary device usage data
and some reasonable assumptions. We begin by discretizing summaries of a passive mea-
sure for a particular user based on pre-defined time intervals, e.g., total step count in a
day. Then, 2SpamH follows two stages—in the first stage, it converts an unsupervised
problem (unknown device use or wear) to a semi-supervised problem by using auxiliary
information about engagement with the device (e.g., screen unlock events, battery use,
etc.) as a proxy for device use to define prototypes where device use or wear status can
be assumed to be known with some confidence; in the second stage, using the prototypes
in the first stage, the device use or wear status is inferred on observations where there is
uncertainty of their use or wear status.

2SpamH is applicable to any passive measure (e.g., step counts, hours of sleep, etc.);
however, we focus on the daily step count as an example in this paper. We conducted a series
of simulation studies to demonstrate the performance of 2SpamH. We also apply 2SpamH
to the smartphone data collected from elderly patients with major depressive disorder by
Weill Cornell Advanced Laboratory for Accelerating the Reach and Impact of Treatment for
Mid- and Late-Life Depression (ALACRITY) Research Center (P50MH113838). We conclude
by demonstrating statistical imputation strategies to impute data deemed as “missing” data
by 2SpamH due to device non-use or non-wear. The imputed dataset can subsequently be
used for downstream analysis of user behavior in various healthcare applications.

2. Materials and Methods

The goal of 2SpamH is to address the downward bias (described in Section 1.2)
introduced by unknown device non-use or non-wear. Since device use or wear behavior
over time is user-specific, 2SpamH is performed one user at a time. Also, passive measures
(e.g., step counts, hours of sleep, etc.) can be derived from one or multiple sensors and
2SpamH is applied separately for each passive measure. The central idea of the 2SpamH
algorithm is to utilize readily available auxiliary device engagement information (e.g.,
number of screen unlocks, battery variance, etc.) as a proxy of device use and combine it
with sensor activity (as a proxy of data from a sensor being recorded) to estimate the device
non-use status. Below, we define the data, algorithm, and its key assumptions.

2.1. Notation and Specifications

The data on passive measures collected from a user’s device are first discretized into
pre-determined time intervals (e.g., daily summaries) and these summaries (e.g., total step
counts in a day) are stored in a matrix Xi of passive variables, where each column represents
a passive variable (e.g., step count) and the superscript i represents each user. The number
of rows represents the number of time intervals (e.g., number of days) observed for a
particular user and may vary across users, but the number of columns, representing the
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passive variables, is constant as we assume that devices collect the same variables across
users. The sensor activity corresponding to a passive variable of user i is stored in matrix
Wi. Sensor activity is a proxy of the data being recorded by the sensors that are used
to infer a particular passive variable and are operationalized by the number of uploads
(more details in Section 2.2). In Figure 1, these are the number of uploads (black vertical
ticks) for a specific day. Of note, the matrices Xi and Wi have the same number of rows
since for a specific day, an aggregated step count measure and the total number of uploads
are uploaded to the server. The matrix Zi stores all variables related to device usage; the
number of rows of Zi is also the same as that of Xi and Wi. Finally, the output of the
2SpamH algorithm is a matrix Mi, of the same dimension as that of Xi, that has a binary
label (“missing” or “non-missing”) indicating whether a particular cell of the matrix (i.e., a
passive variable for a day) should be considered “missing” for downstream analysis. For
easier readability, we ignore superscript i from here on and assume that all data structures
are user-specific.

2.2. Stage 1 of 2SpamH: Feature Space Construction via Principal Component Analysis and
Prototype Selection

To estimate the matrix M of the missing status, 2SpamH, in its first stage, utilizes
auxiliary information readily available from commercial devices (i.e., Z and W) that pro-
vides implicit information on device-use status and informs a more personalized data
pre-processing algorithm. For example, if a device has not been unlocked or moved for a
prolonged period, the data it collected during that period are unlikely to be representative
of the user’s actual step counts; if the battery variance is low, it is likely that the device is
constantly being charged or out of charge and device use is low. The number of screen
unlock events and battery variance are typically available from smartphone apps. Wearable
devices also have similar auxiliary information (e.g., wear time) which can be used for this
purpose. The key concept here is to identify auxiliary variables that correlate with device
use (e.g., screen unlocks and battery variance for smartphones and wear time for wearables).
In the event there are multiple variables, such as in typical smartphone apps, that correlate
with device usage, we recommend conducting a principal component analysis or PCA on
these variables and using the first principal component as a device use measure. Of note, if
there are multiple variables for device use, they may need to be recoded in a way that the
first principal component indicates high device use. Next, a feature space is constructed
that represents device usage (or PCA of device usage) in one dimension and sensor activity
in another dimension. This is illustrated in Figure 2a, a scatter plot of a passive variable
(one column of the matrix X), where the size of each observation is proportional to the
daily step count. Sensory activity is operationalized as the number of uploads to the server.
Note that the number of uploads is a proxy of sensor activity assuming that when a sensor
is active and data are recorded, data are more frequently uploaded to the server (e.g., see
Figure 3 and Section 1.2). Figure 3 shows the recorded step count of a user for three weeks
and demonstrates that the number of uploads (spikes in the data) varies widely across
different days and weeks, highlighting possible variations in the sensor activity of a user.

It should be noted that the output of 2SpamH is the matrix M that determines the
device non-use or non-wear status (i.e., considered “missing” for downstream analysis) for
each day and passive variable for a user. In that sense, Stage 1 is an unsupervised problem
as the “missing” labels are absent. Next, we assume that certain regions in this feature
space (Figure 2) can be considered as “missing” or “non-missing” with some confidence
and consider data points falling in these regions as prototypes for inferring the missing
status of data points outside this region. “Data point” refers to coordinates on the feature
space of the principal component of device usage (x-axis) and number of uploads (y-axis)
of Figure 2, corresponding to the tth observation in Zi and Wi. This is denoted as ft in the
pseudocode (Algorithm 1). This assumption is a key step as the unsupervised problem
of unknown “missing” labels is transformed to a semi-supervised problem where the
“missing” labels are partially observed in Stage 2 via this assumption. Table 1 illustrates
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the conceptual framework behind this assumption. A lower (θ lower) and upper ( θupper
)

threshold is assumed in each dimension of the feature space to define “low” and “high”
levels in each dimension of device usage and sensor activity. When both device usage and
sensory activity are “low”, we assume device use or wear is low and label the data point as
“missing”. Similarly, when both device usage and sensory activity are “high” we assume
that device use or wear is high and therefore label the data point as “non-missing”. This
is illustrated in Figure 2b where the data points in the red colored region are considered
“missing” prototypes and those in the blue colored region are considered “non-missing”
prototypes. On the other hand, data points with high device usage with low sensor activity
and low device usage with high sensor activity are more challenging to label. For example,
when device usage levels are high but sensor activity is low, the user frequently unlocks
and interacts with their phone throughout the day, but the sensor activity or number of
uploads are infrequent; it is uncertain whether a low number of uploads accurately reflects
the user’s true activity level (which may be high and not captured because the device usage
period was distinct from the activity period when the device was not carried/worn) or
if they were simply inactive. On the other hand, when device usage levels are low, but
the number of uploads is high, the user rarely interacts with his or her phone, but the
sensor data uploads are frequent showing high sensor activity due to sensor errors. As
an example, a microphone sensor inferring time spent in interpersonal conversation as a
passive measure may erroneously misclassify a television conversation as an interpersonal
conversation [17].
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Algorithm 1. Pseudocode of the 2SpamH algorithm which has two stages: (1) prototype
selection in the feature space of device use and sensor activity levels to label data points as
“missing” or “non-missing” with some confidence based on a threshold, and (2) a
k-nearest neighbors (KNN) approach to label non-prototype data points in the feature
space based on their proximity to the labeled prototypes. The algorithm returns “missing”
labels for all data points.

2SpamH Algorithm

Input: Sensor activity matrix W, Device usage matrix Z, Prototype selection percentiles{
θlower, θupper

}
, Number of nearest neighbors k

Output: Missing label matrix M
Stage 1: Prototype Selection
1. Perform PCA on Z and W to obtain the principal components:

CZ = PCA(Z), CW = PCA(W)
where CZ and CW are vectors of length T of the first principal components of Z and W. If
ncol(Z) = 1, then CZ = Z; if ncol(W) = 1, then CW= W.

2. Construct the feature space F as the set of points ft =
(
CZ

t , CW
t
)

for each t:
F = { ft|t = 1, . . . , T}

where ft =
(
CZ

t , CW
t
)

represents the coordinates of the tth data point in the constructed
feature space.

3. Compute the lower and upper quantiles for CZ and CW :
qZ

lower, qZ
upper = Q

(
CZ, θlower

)
, Q

(
CZ, θupper

)
qW

lower, qW
upper = Q

(
CW , θlower

)
, Q

(
CW , θupper

)
4. Identify the set of missing prototypes in the feature space F:

Pmissing =
{

ft ∈ F
∣∣CZ

t < qZ
lower and CW

t < qW
lower

}
5. Identify the set of non-missing prototypes in the feature space F:

Pnon-missing =
{

ft ∈ F
∣∣∣CZ

t > qZ
upper and CW

t < qW
upper

}
6. For each data point ft ∈ F:
7. Assign labels to rows of M based on whether data points fall within the prototype regions:

Mt,: =


Missing if ft ∈ Pmissing

Non-missing if ft ∈ Pnon-missing
NA otherwise

Stage 2: Labeling Unlabeled Data Using KNN
8. For each unlabeled data point ft′ ∈ F that was not assigned a label in Stage 1:
9. Implement KNN with K = k and Euclidean distance function

d( ft, ft′ ) =

√((
CZ

t − CZ
t
′)2

+
(

CW
t − CW

t
′)2

)
to label the remaining unlabeled data points:

Mt′ ,: := KNN
(

ft′
∣∣∣Pmissing, Pnon-missing, k

)
Return: Missing label matrix M.

Table 1. Suggested labels given phone-usage level and activity level and their real-life implications.

Device Usage Number of
Uploads Implication Prototype Label

High High Engaging with the device Non-Missing

High Low Using the device but inactive N/A

Low High Active, carrying/wearing the device
but not engaging N/A

Low Low Not engaged and
not carrying/wearing the device Missing

2.3. Stage 2 of 2SpamH: K-Nearest Neighbors Algorithm

Once the prototypes are selected, they serve as a set of labeled training data with which the
k-nearest neighbors (KNN) or any standard supervised learning procedure can be applied [18].
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A user-specific classifier is trained on the prototypes (colored points in Figure 2b) and is used to
predict the remaining unlabeled data points (black points in Figure 2b) using the majority vote
of the labels of the nearest k prototypes, i.e., k is the number of neighbors. This completes the
2SpamH algorithm where the missing label matrix M is estimated for each data point (Figure 2c).
For all users, we perform the steps described above in Section 2.2 (Stage 1) and Section 2.3
(Stage 2) and outlined in Algorithm 1 below.

2.4. Remarks on Parameter Tuning

The thresholds used in the prototype selection step (i.e., θlower and θupper) and the
number of neighbors (k) are left undetermined. In addition, the KNN algorithm in Stage 2
of 2SpamH can be implemented with different distance functions and classification rules.
As the true missing labels are unknown, common methods for parameter tuning such as
cross-validation cannot be applied.

The choice of the thresholds
(
θlower, θupper

)
is dependent on the context and the data.

We used the 30th and 70th quantile as the lower and upper thresholds in our simulation
study and real-data application. We also demonstrate the effect of different choices in our
simulation study (Supplementary Figure S1) and in real data (Supplementary Figure S2). A
practitioner may choose these thresholds based on the number of prototypes selected for
each of the two labels, i.e., “missing” and “non-missing” since using quantiles as thresholds
in each dimension of the feature space (Figure 2) separately does not guarantee enough
prototypes in the two-dimensional feature space. As an alternative, one may also consider
bivariate quantiles or contours [19,20].

The neighborhood size k of the KNN depends on the number of observations per
user (i.e., the number of rows of X) and should not exceed half of this neighborhood
size, i.e., k/2 should not exceed the number of prototypes labeled as “non-missing” or
“missing” (to maintain class balance in the neighborhood). If this condition is not met, there
would not be enough labeled prototypes to form a reliable basis for classification and all
non-prototype observations would be labeled by the majority class of the prototypes. For
example, consider a dataset with 20 prototypes, where 16 are labeled as “non-missing” and
4 as “missing”. If k is set to 18, k/2 (9) exceeds the number of “missing” prototypes (4). In
this case, the neighborhood would always contain more “non-missing” prototypes, biasing
the classification towards the majority class.

We used the Euclidian distance function in our KNN implementation. Alternative
distance functions, such as Mahalanobis distance or density-based methods, can also
be used, but require additional parameters that would need to be tuned. Tuning such
parameters may be challenging in the real-world application of this unsupervised algorithm.
Other methods, such as correlation as a distance function, may not be suitable since a pair
of observations that have high correlation will be close to each other and thus assigned
the same label, when in fact, data points that are close to each other can belong to either
class—missing or non-missing. For example, in Figure 2, all points on the 45-degree line
are close to each other but include labeled observations in both classes.

As an alternative to the majority voting as the classification rule in the KNN algorithm,
the frequency of prototype labels could be a prior distribution to obtain the posterior
probability of new unlabeled data points and an alternative voting rule as defined in
Coomans and Massart [21].

2.5. Simulation Studies

To evaluate the performance of the proposed algorithm, we conducted a simulation
study using step count data. Data are simulated for 36 users, with each user assigned a
ground truth (known) label of “missing” or “non-missing” to reflect his or her device use
for 100 days. The ground truth labels are controlled by two parameters—the continuous
activity level LA and the continuous device usage level LU. These parameters (LA and LU)
are then used to simulate the sensory activity matrix W and the device usage matrix Z.
Details of this simulation strategy is provided in the Supplementary Materials. Briefly,
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the hourly activity and device usage status are determined with LA and LU and generate
hourly data on sensor activity and device usage (screen unlocks, battery variance, device
notification) that match the time of the day (e.g., morning, afternoon, evening, and night).
Finally, hourly data are aggregated to provide daily summaries.

We compare the 2SpamH algorithm with two existing methods: the zero-removal
algorithm and one-class SVM, using sensitivity (proportion of correctly identified “non-
missing” labels) and specificity (proportion of correctly identified “missing” labels). The
zero-removal algorithm directly replaces zero values in the simulated passively sensed
variable matrix X with “missing”. This method mimics the usual practice of using an
arbitrary cutoff across all users to exclude the observations (e.g., step counts) that are less
than the cutoff from downstream analysis. Although intuitive, this practice disregards the
heterogeneity in activity levels and phone usage behaviors across users.

The one-class Support Vector Machine (SVM) is trained on data known to be “non-
missing” [22], using the feature in both W and Z. The algorithm learns the typical dis-
tributions of the input features for the “non-missing” days, and it estimates a spherical
boundary encompassing the “non-missing” days. New data points are then classified as
“non-missing” if they lie inside the boundary and “missing” otherwise. In our simula-
tion, we sample 300 observations (out of 3600 observations of 36 users for 100 days) with
“non-missing” labels to train the one-class SVM. The trained model is then used to predict
the label of all remaining observations. However, one-class SVM requires labeled “non-
missing” data, which are typically not available in real-life mHealth data. For consistency,
we employ the same tuning parameters for all simulated subjects.

2.6. Imputation Techniques

After applying 2SpamH on each passive variable, i.e., each column of X, the out-
put missing label matrix M is complete. The next step is to convert the cells in X with
corresponding cells in M as “missing” to missing. Then, standard off-the-shelf missing
data imputation techniques can be used to impute the missing data in X. Of note, the
imputation should be performed on the entire passive variable matrix X even though
2SpamH is applied on each column of X one at a time because imputation will be better
informed from all passive measures that represent the complete behavioral profile of a
user. Furthermore, imputation can be carried out by combing the passive measure matrices
across users (i.e.,

{
Xi : i = 1, . . . , n

}
) to borrow information across users. To this end, we

implement a missForest [23] algorithm for imputation in two ways: within-user and across
users. Another aspect of mHealth data is that passive measures are recorded over time for a
user (i.e., each column of X) and hence are correlated. To this end, we adopt a methodology
called jomoImpute [24] that takes the correlation induced by the time-dependent nature of
the data into account.

MissForest is an algorithm that uses random forests to impute missing values in
mixed-type data (continuous or categorical). It starts with mean imputation, then trains a
random forest with observed data on a passive variable (e.g., step count) with other passive
variables as predictors and uses this trained model to predict the missing step counts. This
is iterated over all passive variables until the newly imputed data do not substantially
improve over the imputed data in the previous iteration. We performed both within-
user missForest, where imputation is carried out in a user-specific way, and across-user
missForest, where all users are included in the same imputation model. JomoImpute is a
method based on mixed-effects modeling, designed for handling hierarchical or multilevel
data with missing values. It works in two steps: first, it fits a regression model using the
“non-missing” data, treating the incomplete variables as dependent on complete variables
or just an intercept. Then, it applies a Gibbs sampling technique to generate estimates for
the missing values based on the relationships found in the first step.

To evaluate the performance of imputation using missForest and jomoImpute, we
used real-life smartphone data (see Section 3.2). Since the “missing” label is unknown
in real data, we carried out the evaluation in four steps—(1) we applied 2SpamH across
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11 passive variables; (2) we assumed data deemed as “non-missing” by 2SpamH as “true”
non-missing data or the ground truth; (3) we simulated missing values in the data from
Step 2, i.e., those determined “non-missing” by 2SpamH, by turning observed values to
missing under two different missing data mechanisms, missing at random (MAR) and
missing completely at random (MCAR) [25]; and (4) we compared the imputed values to
the ground truth using NMRSE (see below). Of note, in Step 3, MCAR assumes that the
probability of missing data is unrelated to both observed and unobserved data, representing
a completely random process of data missingness, and MAR assumes that the probability
of missing depends only on observed data. We generated about 20% to 25% missing data
for each variable under both MAR and MCAR assumptions. It is important to note that
these simulated missing data are used only for the purpose of evaluating the performance
of imputation on real data.

We then applied jomoImpute using a mixed model, selecting one passive variable at a
time as the outcome, and including a user-level random intercept with fixed effects for the
other passive, EMA, and demographic variables (see Section 3.2). Imputation accuracy was
measured using the normalized rooted mean squared error (NRMSE), with smaller values
indicating a better performance. Since the missing values were simulated, we can compute
the NRMSE which measures the error between the imputed value and the observed value.
The formula for computing the NRMSE from the RMSE (root mean squared error) is

NRMSE =

√√√√mean
(
Xobs − Ximp

)2

var(Xobs)
(1)

where Xobs and Ximp are the observed and imputed passive measures, respectively.

3. Results
3.1. Simulation Results

We examine the performance of the 2SpamH algorithm in our simulated data using
the 30th and 70th quantiles as lower and upper thresholds (i.e., θlower and θupper in Stage 1
of 2SpamH), respectively, on users with a grid of phone usage and activity levels. The
simulation parameters LA and LC vary from 0.3 to 0.8 with a step size of 0.1. We define two
performance measures, sensitivity, that is, the proportion of correctly identified missing
observations, and specificity, that is, the proportion of correctly identified non-missing ob-
servations. For each user, 1000 datasets each with 100 observations, where each observation
is composed of the variables number of uploads (UP), number of screen unlocks (SU), num-
ber of device notifications (DN), and battery variance or BV are simulated as described in
Section 2.5 and the Supplementary Materials. The heatmaps in Figure 4 display sensitivity
and specificity results for the three methods, zero-removal, one-class SVM, and 2SpamH,
across different activity levels and phone-usage levels. Each heatmap represents a different
method, with rows indicating activity levels (LA) and columns indicating phone-usage
levels (LC). The sensitivity and the specificity are calculated on the 1000 measurement
matrices of the user for the specific LA and LC using the labels inferred by 2SpamH and the
true labels.

2SpamH exhibits a consistently high sensitivity across various phone-usage and activ-
ity levels, ranging from 0.66 to 0.77. This robustness in identifying missing observations,
regardless of user behavior patterns, is likely due to its user-level training. On the other
hand, the one-class SVM shows a wide range of sensitivity values, from as low as 0.14 to as
high as 0.90, suggesting that the method’s ability to detect missing observations is highly de-
pendent on the specific combination of phone-usage and activity levels, performing best at
higher activity levels. Zero-removal demonstrates intermediate sensitivity, generally higher
than one-class SVM but still lower and more variable than 2SpamH, with values between
0.05 and 0.73. Its performance improves with increased activity and phone-usage levels.
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While one-class SVM and zero-removal excel in detecting non-missing observations,
showing improving specificity with higher phone-usage and activity levels, respectively,
their performances come at the cost of highly variable sensitivity. 2SpamH’s occasional
poor specificity, where “non-missing” observations are misclassified as “missing”, can
be addressed by adjusting the threshold for prototype selection. This adaptability is an
advantage over methods like one-class SVM, which cannot be applied to real data since
the model is trained on data known to be “non-missing”, as this is unknown in real life.
Notably, in the context of our problem, high sensitivity is particularly crucial because it
ensures that most unreliable and missing observations are correctly identified, thereby
maintaining the integrity and completeness of passive data. In Supplementary Figure
S1, we present the sensitivities and specificities for 2SpamH using different values of the
thresholds (i.e., θlower = (0.20, 0.40) and θupper = (0.60, 0.80)). This figure demonstrates
that the threshold can be used to increase sensitivity at the cost of specificity (e.g., when
using a (0.20, 0.80) threshold) or increase specificity at the cost of sensitivity (e.g., when
using a (0.40, 0.60) threshold).

3.2. Real-Life mHealth Dataset Results

To demonstrate the performance of 2SpamH, we utilized smartphone data collected in
research studies conducted at the Weill Cornell ALACRITY Center. The Center’s studies
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involved adults aged 55 and older with major depressive disorder undergoing psychother-
apeutic interventions. A smartphone app collected various passive sensing data, phone
usage metrics, and sensor activity measures. In Figure 5 below, we present the example of
one user illustrating that 2SpamH can potentially address the problem of downward bias
in passive measures. A smoothed trajectory (blue curve) of the post-processed step counts
after applying 2SpamH and imputation lies above the trajectory fit on the un-processed
step counts (red curve), indicating there is likely an underestimation in the unprocessed
data, which if ignored can lead to incorrect conclusions about trajectories and trends in
the passive data. As noted earlier, this is important because trajectories and trends are
the only meaningful information that can be obtained from passive data recorded on
commercial devices.
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Figure 5. Trajectory of step count data before and after applying 2SpamH and imputation. Data
points are color-coded to differentiate their types: black (Point Type: Non-Missing after 2SpamH
(Observed) dots represent the values of step counts of good quality observations identified by the
2SpamH algorithm; turquoise (Point Type: Missing after 2SpamH and Imputed) dots represent the
values of step counts of poor-quality observations identified by the 2SpamH algorithm, which were
then imputed using missForest; orange (Point Type: Missing from Technical Cause and Imputed)
dots represent missing data points in the original data and then imputed using missForest; and gray
(Point Type: Missing after 2SpamH (Observed)) dots represent the values of the observed step counts
in the original data of poor-quality observations identified by 2SpamH. Note that each gray dot is
connected to a turquoise dot by a dashed line since these are identified as missing by the 2SpamH
algorithm and imputed. The blue curve shows the trend of the step counts after applying the 2SpamH
algorithm and imputing missing data, while the red curve shows the trend before applying the
algorithm. The figure demonstrates the effectiveness of 2SpamH in addressing the underestimation
problem in passive measures.

Figure 6 below demonstrates the labeling of step count observations for three users
after applying the 2SpamH algorithm. Figure 6 demonstrates how the thresholds can
select a different number of prototypes for each user. Depending on the distributions of a
participant’s device use and sensor activity, different quantities of a passive variable will be
labeled as “missing”.
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Figure 6. 2SpamH algorithm for three users. Each point represents a daily observation of step
count, the x-axis represents the first principal component of phone usage measures, and the y-axis
represents the normalized number of uploads. The red-shaded areas in the lower left corners and
blue-shaded areas in the upper right corners of each subplot represent prototypes with missing and
non-missing labels, respectively. The size of the dots corresponds to the number of steps, with larger
dots indicating higher step counts.

3.3. Imputation Results

Table 2 presents the normalized root mean squared error (NRMSE) between the
observed and imputed data in our imputation simulation for several passive variables.
Across all passive variables except for conversation percentage, both versions of missForest
had a lower NRMSE compared to jomoImpute (Table 2). Moreover, missForest applied on
all 106 users jointly had a lower NRMSE compared to the same when applied to each user
separately except for the conversation percentage and total activity duration. This suggests
that the imputation model learns patterns across users. Therefore, missForest applied on
all users jointly is our recommended method for imputing 2SpamH-labeled missing data.

Table 2. NRMSE results for the passive measures for each imputation technique.

Measure MissForest
(Within-User) JomoImpute MissForest

(Across Users)

Step Count 0.44 0.44 0.31

Time at Home 0.39 0.54 0.32

Conversation Percentage 0.14 0.18 0.19

Time in Conversation 0.24 0.30 0.24

Sleep Duration 0.43 0.57 0.37

Travel Diameter 0.59 0.88 0.44

Active Time 0.37 0.52 0.27

Sleep Interruptions 0.53 0.68 0.23

Radius of Gyration 0.46 0.83 0.33

Total Activity Duration 0.36 4.46 0.41

Total Location Duration 0.42 0.52 0.26

4. Discussion and Conclusions

In this study, we proposed the 2SpamH algorithm, an unsupervised two-stage algo-
rithm designed to address the downward bias introduced by the non-use or non-wear of
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mHealth devices. As the device use or wear is unknown to the data analyst, 2SpamH infers
device use for each user-day (or any other time interval) in two stages: first, it selects proto-
types where device use can be assumed to be known with some confidence; and second, it
infers device-use status for non-prototypes with KNN. Device non-use or non-wear are
then treated as missing data which are then imputed using various off-the-shelf methods
like missForest and jomoImpute. Consequently, this pipeline of pre-processing yields a
clean passive sensing dataset that can be used for downstream analysis of within-user
behavioral trajectories and that has accounted for the downward bias introduced due to
device non-use or non-wear. Our simulations demonstrate that 2SpamH has a superior
performance in correctly identifying “non-missing” labels compared to zero-removal or
one-class SVM. Real-life data from a clinical study further validate the algorithm’s ability
to handle passive data effectively by correcting the downward bias, ensuring data integrity
for downstream analysis.

Despite the promise of 2SpamH, it is not without limitations, particularly regarding
parameter tuning. The selection of thresholds for prototype selection in Stage 1 and the
number of nearest neighbors (k) in Stage 2 are subjective. As noted, while the algorithm
performs well with the 30th and 70th percentiles for threshold selection, these thresholds
may need to be adjusted based on the specific dataset. The need for manual tuning of these
parameters introduces subjectivity and limits the algorithm’s scalability. Although we rec-
ommended strategies to choose these parameters based on the dataset size and distribution,
future iterations of the algorithm could benefit from an automated tuning mechanism. We
have shown in our simulations that modifying the thresholds such that there are fewer
prototypes selected will improve sensitivity (correctly identifying non-missing data) and
reduce specificity (correctly identifying missing data), while modifying the thresholds such
that there are more prototypes selected will increase specificity while reducing sensitivity.
Therefore, tuning adjustments need to be made for each user depending on the context.
Another limitation of 2SpamH is that it evaluates device usage and sensor activity one user
at a time to personalize the pre-processing pipeline; however, relationships between device
usage and sensor activity can be learned across users which could potentially improve the
detection of device non-use. We recommend future work to improve the performance of
2SpamH that borrows information across users.

In conclusion, the 2SpamH algorithm addresses a critical gap in the pre-processing
of passive sensing data by identifying device non-use or non-wear. The downward bias
in passive data introduced by the device non-use or non-wear of commercial devices
can significantly distort user-specific patterns of passive measures over time. 2SpamH’s
personalized approach to identify device non-use or non-wear in each user as missing data
and to impute missing data enables downstream analysis and makes passive data from
commercial devices usable. This is particularly important in healthcare applications where
missing or unreliable data can obscure user behavior and health outcomes. Without such
pre-processing, studies may under-utilize the potential of passive sensing data. We have
also developed a freely available software, implemented in R, that can help scientists to
use and analyze passive sensing data [26]. As passive sensing becomes more prevalent in
healthcare, algorithms like 2SpamH will be essential for ensuring data quality and enabling
the use of passive measures to their fullest potential.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s24217053/s1, Figure S1: Simulation results under different
thresholds; Figure S2: Real data results under different thresholds.
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