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Abstract: Estimating canopy volumes of strawberry plants can be useful for predicting yields and
establishing advanced management plans. Therefore, this study evaluated the spatial variability of
strawberry canopy volumes using a ResNet50V2-based convolutional neural network (CNN) model
trained with RGB images acquired through manual unmanned aerial vehicle (UAV) flights equipped
with a digital color camera. A preprocessing method based on the You Only Look Once v8 Nano
(YOLOv8n) object detection model was applied to correct image distortions influenced by fluctuating
flight altitude under a manual maneuver. The CNN model was trained using actual canopy volumes
measured using a cylindrical case and small expanded polystyrene (EPS) balls to account for internal
plant spaces. Estimated canopy volumes using the CNN with flight altitude compensation closely
matched the canopy volumes measured with EPS balls (nearly 1:1 relationship). The model achieved
a slope, coefficient of determination (R2), and root mean squared error (RMSE) of 0.98, 0.98, and
74.3 cm3, respectively, corresponding to an 84% improvement over the conventional paraboloid shape
approximation. In the application tests, the canopy volume map of the entire strawberry field was
generated, highlighting the spatial variability of the plant’s canopy volumes, which is crucial for
implementing site-specific management of strawberry crops.

Keywords: canopy volume; growth estimation; UAV; YOLO; RGB images

1. Introduction

Strawberries are among the most valuable crops worldwide. However, early schedul-
ing of labor is challenging as a result of weekly harvest variations influenced by various
factors, including photoperiod and temperature fluctuations [1]. Furthermore, failure to
harvest ripe strawberry fruits, on time due to labor shortages can lead to severe economic
losses. In order to avoid such wastage, reliable yield prediction and planning of labor needs
are required in advance for harvesting [2,3].

Traditional yield estimation methods, which involve manual crop sampling, are time-
consuming and labor-intensive. Phenotypic characteristics, such as canopy volume, crown
area, and canopy surface area, can facilitate yield prediction and field management. Accu-
rate measurement of canopy volume is particularly crucial for monitoring crop growth and
estimating the potential yield in horticulture [4–8]. Since canopy volume serves as an early
indicator of drought and fertilization stress in plants, yield fluctuations caused by these
factors can be identified in advance [9].

Zhu et al. [10] assessed various techniques for measuring the crown volume, in-
cluding simple geometric shape approximations, computational geometry approaches,
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and voxelization methods. The differences between crown and canopy volumes may be
less significant in widely spaced plants [11,12], and the term ‘crown volume’ has been
often replaced by ‘canopy volume’ [10]. Conventionally, canopy volume is determined
by measuring the canopy diameter and canopy height manually and approximating the
shape with solid geometric objects, such as elliptical cylinders, cuboids, cones, and ellip-
soids [13–16]. To reduce acquisition time, some studies have introduced ultrasonic, laser,
and light detection and ranging (LIDAR) sensors for automatic canopy diameter and height
measurement [17–20]. Computational geometric approaches utilize digital data, such as
three-dimensional (3D) point clouds, RGB-D imagery, and data fusion [10], to estimate crop
growth. These data can be acquired using ground or airborne LIDAR- and camera-based
techniques. Canopy volume can be represented as a 3D convex hull [21] enclosing the entire
canopy as a convex polygon [22–24]. Several studies [23,25] have also estimated canopy
volumes using alpha shapes [26] based on Delaunay triangulation or using canopy height
models from raster data, where the volume is obtained by multiplying the area and height
of each grid cell and summing them [7]. Meanwhile, the voxelization technique divides
the 3D space occupied by the canopy into small volumetric pixels [27] and estimates the
canopy volume by summing these voxels [5,24,28,29].

Despite such advancements, canopy volume estimation based on geometric object
approximation, computational geometry, and voxelization remains time-consuming and
involves complex calculations, costly equipment, or powerful computers to process and
analyze canopy structure data, especially 3D information. Moreover, intense research is still
needed to estimate canopy volumes accurately while excluding internal voids. The complex
structures and irregular canopy shapes make precise canopy volume measurements using
simple geometric methods challenging. Furthermore, 3D convex hulls are limited in
reconstructing irregular cross sections, while alpha shapes are known to represent internal
empty spaces poorly. Apart from that, grid cell-based volume calculations can be inaccurate
when processing complex 3D structures or non-convex shapes. Voxel techniques may also
struggle to accurately estimate internal volumes without measuring points inside densely
packed leaves [30,31]. Additionally, the use of ranging sensors is more difficult for low-
height crops, such as strawberries, due to constraints on measurement angles, interference
from environmental obstacles, and difficulties with sensor placement.

Recently, several advanced studies have revealed the effective use of deep learning
regression models for estimating crop growth indicators. Deep neural networks offer an
edge in solving nonlinear problems and provide relatively faster inference speeds over
traditional computer-vision methods. Specifically, convolutional neural networks (CNNs)
are effective in learning complex and abstract image features through a two-dimensional
(2D) array of kernels. These kernels identify various patterns and textures, extracting
valuable information from the images [32]. For example, Ma et al. employed a CNN to
predict the above-ground biomass of winter wheat during early growth stages, with a
strong coefficient of determination (R2) of 0.8 [33]. In another study, Gang et al. developed a
two-stage CNN model for RGB-D images of greenhouse lettuce with concurrent estimation
of fresh weight, dry weight, height, diameter, and leaf area as the growth indices. The
findings recorded high R2 values of 0.95, 0.95, 0.95, 0.88, and 0.96, respectively [34].

The advantages of deep learning regression models can be further boosted by inte-
gration with unmanned aerial vehicle (UAV) imagery. UAV images have been extensively
employed in the agricultural sector for monitoring and estimating crop growth metrics,
including crop volume [3,13,22,35–38]. UAVs can also be used to survey large agricultural
areas effectively and provide growers with essential data in a timely manner. In addition,
UAVs can be equipped with high-resolution cameras and fly at low altitudes to capture
detailed characteristics of plants, enabling precise individualized monitoring and crop
management [39]. Previously, Castro et al. utilized a CNN model with UAV RGB images
for forage biomass estimation and achieved an R2 of 0.88 [40]. Liu et al. combined UAV
RGB images with thermal-infrared (TIR) images using a deep neural network (DNN) to
estimate the leaf area index (LAI) of maize, which also recorded a high R2 value of 0.89 [41].
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Likewise, Zheng et al. estimated the canopy leaf area and dry biomass of strawberry
plants by measuring the plant’s canopy area, volume, and height using a CNN with RGB,
near-infrared (NIR), a digital surface model (DSM), and mask images extracted from UAV
images, yielding robust R2 values of 0.986, 0.927, and 0.847, respectively [7,42]. Neverthe-
less, the target volume used for training was obtained from a grid cell-based calculation,
which may vary from the actual canopy volume. In addition, canopy volume was estimated
only for specific segments of the field. Therefore, canopy volume estimation using deep
learning models, such as CNNs, still remains a challenge. Reducing the number of sensors
is also vital to ensure cost-effectiveness and increase their applicability to agricultural tasks.

Furthermore, the use of autonomous flight systems based on Global Navigation
Satellite System (GNSS) information requires strict regulations and certification procedures,
which pose a significant hurdle in UAV research. The successful completion of UAV
missions can be hampered by GNSS signal interference and obstacles. Moreover, the
sensors and software related to autonomous flight systems are costly [43].

While UAV image registration methods based on feature points and cross-correlation
of images are applicable to adjusting altitude and position in manual flights [44–46], such
approaches are computationally intensive. In addition, feature-based registration may
struggle to extract valid points in complex vegetation scenes, and area-based registration
may be sensitive to geometric distortions and noise, leading to incorrect alignment. In view
of this, a faster and more fail-safe method for image correction and field image synthesis
method is needed for agricultural applications using manually flown UAVs.

Therefore, this study developed a CNN model based on only RGB images obtained
with a UAV operated in manual mode for rapid and accurate prediction of strawberry
canopy volumes. The accuracy of the CNN model was compared to a linear regression
model based on conventional simple geometry using a paraboloid. Image preprocessing
and image synthesis methods based on object detection were designed using the You Only
Look Once (YOLO) algorithm to compensate for the changes in altitude during manual
flight and to match RGB images without the GNSS information to generate entire row
images. Finally, the developed CNN model was applied to the row images to construct a
map displaying spatial variability in canopy volumes at varying locations in a field.

2. Materials and Methods
2.1. Setup of Strawberry Field Experiment

A strawberry experimental field was prepared in the Plant Science Research and
Education Unit (PSREU) at the University of Florida in Citra, Florida, USA, during the
2023–2024 growing season. The field comprised eight rows of strawberry plants and two
rows of sprinklers, with an approximate total size of 61 m long and 20.7 m wide. Four
rows of the ‘Brilliance’ cultivar were planted in the northern half of the field, while the
other four rows in the southern half consisted of the ‘Medallion’ cultivar. The ‘Brilliance’
cultivar is characterized by its broad-spread leaves [47], in contrast to the more compact
and upright structure of the ‘Medallion’ cultivar [48]. Each row contained two alternating
lines of strawberry plants. The overripe fruits, runners, dead leaves, and weeds were
removed regularly.

2.2. Acquisition of UAV-Based RGB Images

This study employed a SIRAS drone (Teledyne FLIR LLC., Wilsonville, OR, USA) to
capture RGB MOV videos of each strawberry row (Figure 1a). The SIRAS weighs 3.1 kg and
exhibits a flight time of 31 min. It was equipped with a 16-megapixel RGB camera featuring
an aperture with a F-number of 2.3, a 4.8 mm focal length lens providing a 67◦ Field of
View (FOV), and a maximum video resolution of 4K at 30 frames per second. The video
in this study was recorded in 3840 × 2160 pixels. Video snapshots were extracted every
10 frames to construct a dataset for the CNN and resized to 1920 × 1080 pixels, as shown in
Figure 1b for use in the object detection model. The images were captured once per week
over four weeks from 2 to 23 February 2024, during the harvest season, which runs from
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December through March in Florida [3]. The drone was flown manually at an approximate
speed of 1 m/s within a flight altitude range of 2.5–4 m without GNSS assistance.
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Figure 1. (a) Manual UAV flight over the strawberry experimental field. (b) RGB images at a
resolution of 1920 × 1080 pixels were extracted and resized from the UAV video frames captured
during manual UAV flight.

Five strawberry plants per row were selected from a total of eight rows for manual
investigation of the canopy volumes, plant widths, lengths, and heights, which totaled
40 plants. The sample plants were marked with red and yellow tapes to distinguish
between the Brilliance and Medallion varieties, respectively, for easy identification for
weekly measurement. Afterward, approximately 984 images containing the sampled plants
were selected for the CNN model training, where six to seven images were taken for each
sample plant at different angles by adjusting the video frames. The diverse images were
expected to expand the dataset size and enhance the estimation accuracy of the CNN.

2.3. Image Preprocessing for the Development of CNN Model
2.3.1. Resizing UAV Images Using YOLOv8n to Correct Flight Altitude Deviations from
Manual Flight

Image preprocessing was performed using OpenCV and Python to build a dataset for
training the model in estimating the canopy volumes of individual strawberry plants. To
compensate for the changes in flight height due to manual flight control, the images were
resized according to the number of visible plants and missing plants in each UAV image.

First, the number of plants and missing plants in each image were detected and
counted using the YOLO v8 Nano (YOLOv8n) object detection deep learning model. YOLO
has been extensively applied for effective and efficient object detection in various appli-
cations, including agriculture, due to its real-time processing, exceptional accuracy, and
ease of implementation [49]. YOLOv8 effectively balances detection speed and perfor-
mance, and YOLOv8n is the most compact model in the YOLOv8 series. Furthermore,
YOLOv8n reduces the level of computation compared to other models, rendering it suitable
for detection tasks involving fewer categories and simpler functions [50].

Prior to the YOLOv8n model training, the LabelImg Python open-source tool was
utilized to manually label strawberry plants, missing plants, missing plants with weeds,
and dead plants in each 1920 × 1080-pixel image (approximately 2549.76 megabytes).
Then, the model was pre-trained using the COCO128 dataset [51,52]. Hyperparameters
were set to the same preset values as those used for the pre-trained model, including an
AdamW optimizer [53] with a learning rate of 0.001111, momentum of 0.9, and decay
of 0.0005 for 64 weights. Training was conducted for 50 epochs on a desktop computer
running Windows 10 (Microsoft, Redmond, WA, USA) installed with an Intel i7-11700
Central Processing Unit (CPU) (Intel, Santa Clara, CA, USA), a GeForce RTX 3090 Graphics
Processing Unit (GPU) (NVIDIA, Santa Clara, CA, USA), and 128 GB of RAM. The model
was implemented using the PyTorch 2.0.1 framework and Python 3.9. The YOLOv8n
dataset consisted of snapshots including the sampled plants and the dataset contained 984
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images comprising 689 images (70%) for training and 295 images for testing. The total
number of parameters in the object detection model was 3,157,200, and the estimated size of
the model based on the number of parameters was 12.63 megabytes. Once YOLOv8n was
applied to the images, the ratio of the number of counted plants and missing plants to the
average number of plants and missing plants across all images was calculated (Equation (1))
to determine the relative difference in shooting height. The image size was then multiplied
by the resizing ratio (Equations (2) and (3)) to ensure consistent plant size, regardless of the
flight altitude. Figure 2 describes the process of the presented image preprocessing.

Resizing ratio =
Number o f plants and missing plants in each image

Average number o f plants and missing plants
(1)

Compensated image width = Resizing ratio × Image width (2)

Compensated image height = Resizing ratio × Image height (3)
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Figure 2. A flowchart of the object detection-based image preprocessing to resize the images using
the ratio of the number of counted plants and missing plants to the average number of plants and
missing plants across all images (Equations (1)–(3)).

Subsequently, regions of interest (ROIs) were cropped manually from the images to
focus on the sampled individual plants. The final dataset comprised resized sample plant
images, each centered on a 512 × 512-pixel background for CNN processing (Figure 3). The
background was generated using a randomly selected mulch texture.
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2.3.2. Evaluation of the YOLOv8n Object Detection Model

The performance of the object detection model was evaluated by examining key
metrics, including precision, recall, F1-score, mean average precision at the intersection
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over union (IoU) 50% (mAP50), and average frames per second (AVGFPS), similar to the
methods employed in previous YOLO studies [54]. The target confidence threshold was
set at 0.65, and the intersection over union (IoU) value during the test was fixed at 0.7.
The precision, recall, and F1-scores were computed using Equations (4)–(6), respectively.
The frames per second and mAP50 values were measured using the validation functions
integrated into YOLOv8n.

Precison (%) =
TP

TP + FP
× 100 (4)

Recall (%) =
TP

TP + FN
× 100 (5)

F1 score =
2 × Precison × Recall

Precison + Recall
(6)

where TP, FP, and FN refer to the number of true positive, false positive, and false negative
cases, respectively.

2.4. Development of CNN Model for Canopy Volume Estimation
2.4.1. Construction and Training of CNN Model

The CNN model was developed to estimate canopy volumes from input RGB images
with a resolution of 512 × 512 pixels. As shown in Figure 4, the CNN structure was designed
to accept only RGB images as inputs and generate single volume outputs, differing from
the two-stage CNN model used for growth index estimation with RGB-D images, as
presented by Gang et al. [34]. The model architecture was developed using the TensorFlow
2.5.1 framework and Python 3.8.
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Figure 4. Description of the CNN model for estimating canopy volume, adopted from Gang et al. [34]
with modifications. The model utilizes a pre-trained ResNet50V2 [55] with ImageNet [56] as the
backbone, with two convolutional layers used for preprocessing, followed by a fully connected layer
for regression.

ResNet50V2 [55], an improved version of ResNet50 [57] and pre-trained using the
ImageNet dataset [56], was utilized as the backbone. Basically, ResNet is able to solve the
gradient vanishing problem by adding residual blocks and a skip connection. It is also
equipped with the activation function before the convolutional layer in the residual block,
which further improves its performance [55,57].

As in the training of the object detection model, the dataset consisted of 984 images,
with 689 images (approximately 70%) for training and 295 images for testing. The model
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was trained on a desktop computer, and the same one was used to train the YOLOv8n
object detection model. The hyperparameter settings were set similar to those applied in a
previous study [34]. The initial learning rate was fixed at 0.001, and training was conducted
over 200 epochs. A learning rate scheduler was used to halve the learning rate if validation
loss did not decrease after eight iterations. Early stopping was applied to minimize
unnecessary training time if validation loss remained unchanged after 30 iterations. The
input batch size was set at 32, and the model weights were retained when validation loss
reached its lowest value. Furthermore, five-fold cross-validation was applied to prevent
overfitting due to fixation to the validation dataset [58]. The total number of parameters
in the developed model was 24,099,844, and the estimated size of the model based on the
number of parameters was 91.93 megabytes.

2.4.2. Manual Measurement of Canopy Volume Used as Target Values for CNN

The actual canopy volumes for each strawberry plant grown in a field were measured
through several steps. First, an acrylic cylindrical case (internal diameter of 19.4 cm and a
height of 10.1 cm) was placed on a flat surface over the plastic mulch without the plant.
The case was filled with small expanded polystyrene (EPS) balls (diameter of 2 cm), and
the number of balls was manually counted (Table 1). Next, the case was placed over a
strawberry plant, excluding the fruit and dry leaves, before being filled with EPS balls
up to the top of the cylinder. The number of balls was again counted (Figure 5). The
difference in the number of balls between the empty case and the case filled with the plant
was used to measure the canopy volume (Equations (7) and (8)). Extra care was given when
placing the balls into the case to avoid damaging the plant leaves and to ensure that the
maximum height of the EPS balls did not exceed the height of the case. The offset per ball
was calculated (Equation (8)) by dividing the gap between the case and the balls by the
total number of EPS balls (240 pieces), as shown in Table 1.

Canopy volume = (Volume o f a ball + O f f set per ball)× Di f f erence in the number o f balls (7)

O f f set per ball =
Case volume − (Volume o f a ball × Total number o f balls)

Total number o f balls
(8)

Table 1. Detailed specifications of the acrylic cylindrical case, EPS balls, and the resulting volume
measurements using this method.

Specifications Values

Inner diameter of the cylindrical case 19.4 cm
Height of the cylindrical case 10.1 cm
Volume of the cylindrical case 2985.5 cm2

Diameter of an EPS ball 2 cm
Volume of an EPS ball 4.19 cm3

Total number of EPS balls filling the case 240 pieces
Total volume of 240 EPS balls 1005.6 cm3

Space not filled by EPS balls (offset) 1979.9 cm3

Offset per ball 8.25 cm3

2.4.3. Manual Measurement of Canopy Fullness Level Used as Target Values for CNN

Typically, canopy fullness refers to the percentage of canopy area occupied by leaves [59,60]
and is closely associated with canopy volume. In this study, canopy fullness was assessed
as an alternative variable to the target values for training the canopy volume estimation
model. Canopy fullness of the sample plants was measured on a scale from zero to ten
based on manual observation, with an average observation time of roughly 15 min for
40 samples.
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A maximum canopy fullness level denotes the condition when the acrylic case used for
the EPS ball-based canopy volume measurement is 100% filled with canopy, matching the
volume of the acrylic case. Hence, this fullness level can be converted to an approximate
canopy volume (Equation (9)) and was used as the target value for training the CNN model.

Canopy volume converted f rom canopy f ullness level = Volume o f the acrylic case ×
(

Canopy f ullness level × Maximum level
100

)
(9)

2.4.4. Mixture of Manually Measured Canopy Fullness and Canopy Volume Used as Target
Values for CNN

Three models were trained to assess the effectiveness of fine-tuning the models by
canopy fullness level with canopy volumes converted from the canopy fullness level. The
first model was trained with 100% of the canopy volume measured using the EPS balls,
while the second model was trained with 100% of the canopy volume converted from the
canopy fullness level. The third model was trained by mixing 50% of the canopy volume
converted from canopy fullness level with 50% of the canopy volume based on EPS balls.

2.4.5. Evaluation of the Developed Estimation Model

The canopy volumes were estimated using a test dataset that was not used for training.
The following procedures describe the estimation accuracy evaluation of the developed
model over four weeks through the R2 and root mean squared error (RMSE) analysis.

(1) The performance of the developed CNN model was evaluated by comparing
the R2 and RMSE values from a linear regression model based on a geometric shape
approximation. The paraboloid shape, which is the conventional geometric shape used
in canopy volume estimations, was used in this study for canopy volume estimation [10].
The linear regression model was established between the measured canopy volumes using
EPS balls and the volumes of paraboloids, calculated based on the widths, lengths, and
heights of the strawberry plants, using the same dataset as the CNN model. The formula
for calculating the volume of a paraboloid is expressed in Equation (10). Subsequently, the
regression model was applied to the test set.

Paraboloid : Vp =
π·d2·h

8
(10)

where Vp refers to the canopy volume, d represents the plant diameter, and h denotes the
plant height.

(2) The impact of the proposed image preprocessing method for correcting flight
altitude deviations in the manual flight was examined by comparing the R2 and RMSE
values of the canopy volumes estimated from the developed CNN model with those
measured using EPS balls, both before and after image preprocessing.
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(3) The performance of the CNN model for canopy volume estimation based on
varying target values was assessed by comparing the following: (i) canopy volumes
measured using EPS balls, (ii) canopy volumes converted from canopy fullness level, and
(iii) canopy volumes by mixing 50% of converted canopy volume with 50% of canopy
volume based on EPS balls as target values.

2.5. Generation of Canopy Volume Distribution Maps

The practical application of the developed CNN model was assessed by constructing
maps to obtain an approximate spatial distribution of canopy volume over the entire field
without GNSS information. Images of each crop row were first synthesized, followed by
extraction of individual plant images using YOLOv8n, processing these images with the
CNN to estimate canopy volumes, and finally interpolating the results.

Video snapshots of 1920 × 1080 pixels for each frame from the weekly RGB video
recorded by the UAV without GNSS information were extracted. Then, images of an entire
row were automatically assembled by cutting overlapped areas between the snapshots
and pasting the cropped snapshots in frame sequences. The size of each cropped snapshot
was determined using values derived from the average optical flow magnitudes, which
were calculated using OpenCV between binary images marking the center of the bounding
boxes detected using the YOLOv8n object detection model, as described in Section 2.3.

Afterward, the synthesized row images were once again divided into 1920 × 1080-pixel
sections, and fed into the object detection model for individual plant extraction. Next, the
extracted plant images were preprocessed and input into the developed CNN model for
further analysis.

The Cartesian coordinates of each detected strawberry image’s volume data were
automatically aligned using the center coordinates of the bounding box. These coordinates
were normalized based on the actual row spacing and inter-crop spacing. Finally, a virtual
growth map was constructed using the QGIS open-source tool based on the Universal
Transverse Mercator. Ordinary kriging built into QGIS was applied to estimate the overall
growth distribution and interpolate canopy volumes in areas where object detection failed.
The cell size was set to half the average distance between data points, with the number of
lag distance classes set to 15% of the maximum field experiment distance. The block size
was set to approximately 1.5 times the cell size. Figure 6 briefly outlines the overall process
of this study.
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3. Results
3.1. Performance of Object Detection Model

Table 2 summarizes the model performance of the object detection model. Accordingly,
the detection accuracy for missing plants with dead plants and weeds was slightly lower,
possibly due to the unbalanced number of ROI images for strawberries and missing plants.
Given the 94.3% detection rate of labeled bounding boxes, regardless of true or false,
the object detection model indicated satisfactory performance for applying flight height
correction to the images.

Table 2. Object detection performance of the trained YOLOv8n model.

Object mAP50 Precision (%) Recall (%) F1-Score Average Frames per Second

All 0.78 89.7 88.7 0.89 18.6

Strawberry 0.98 94.4 97.9 0.96 -

Dead plant 0.74 62.2 74.2 0.68 -

Hole (missing plant) 0.90 86.9 96.3 0.91 -

Weed 0.63 47.6 50.0 0.49 -

3.2. Canopy Volume Estimation Using CNN

3.2.1. Comparison of R2 and RMSE Values Between Linear Regression Model Using
Paraboloid Shape and CNN Model

Figure 7a presents the comparison of the canopy volumes estimated from the paraboloid
shape using the linear regression model and the actual volume measured using EPS balls.
The linear regression model revealed a coefficient of the input variable and the y-intercept
of the paraboloid volume of approximately 0.2 and 321.1, respectively. The R2 and RMSE
between the estimated canopy volume and the actual measured volume were 0.5 and
462.2 cm3, respectively. Meanwhile, Figure 7b shows the canopy volume estimation con-
ducted using the CNN model with image preprocessing based on the object detection
model. The R2 was 0.98, with an RMSE of 74.4 cm3, which was 4.2 cm when converted to
cubic root dimensions. This corresponds to the volume of a small golf ball-sized cube.

Sensors 2024, 24, 6920 11 of 19 
 

 

The R2 and RMSE of the Brilliance variety were 0.98 and 68.5 cm3, and those of the 
Medallion variety were 0.98 and 73.7 cm3, respectively. Because the maximum Brilliance 
canopy volume for the test dataset was smaller than that of Medallion, the RMSE of Bril-
liance was slightly lower. Nevertheless, the overall volume prediction performance of the 
developed model was similar for both varieties and deemed acceptable considering the 
underlying factors, such as variations in altitude and shooting angles resulting from the 
manual UAV flight, the presence of weeds in the field, occlusion between plants, and po-
tential errors in counting the EPS balls. In short, the developed model displayed signifi-
cantly improved performance compared to the volume prediction using the paraboloid. 
In addition, the prediction speed of the developed CNN model was 0.05 s per image in 
the environment described in Section 2.3. 

(a) (b) 

Figure 7. (a) Comparison of canopy volumes estimated from the linear regression model using a 
paraboloid shape and the actual canopy volumes measured using EPS balls. (b) Comparison of 
canopy volumes estimated from the developed model using RGB test dataset images and meas-
ured canopy volumes with height compensation using the object detection model. The color sym-
bols represent the values for each strawberry variety. The dashed line shows the regression line. 

3.2.2. Canopy Volume Estimation Using EPS Ball-Based Target Values Before and After 
Correction of Flight Altitude Deviations 

Figure 8 shows the canopy volume estimation conducted using the CNN model without 
image preprocessing based on the object detection model. Upon application of the CNN 
model to the test image set, the R2 and RMSE were 0.92 and 167.6 cm3, respectively. In contrast, 
when the proposed image preprocessing was applied to the CNN model, the R2 showed a 
higher linearity, as shown in Figure 7b, and RMSE decreased by 55.6%. This result demon-
strates that the proposed image preprocessing method effectively compensated for the differ-
ence in image capture height due to altitude deviations in the manual flight. 

 
Figure 8. Canopy volumes estimated from the developed model using RGB test dataset images 
and measured canopy volumes without height compensation using the object detection model. 

Figure 7. (a) Comparison of canopy volumes estimated from the linear regression model using a
paraboloid shape and the actual canopy volumes measured using EPS balls. (b) Comparison of
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The R2 and RMSE of the Brilliance variety were 0.98 and 68.5 cm3, and those of the
Medallion variety were 0.98 and 73.7 cm3, respectively. Because the maximum Brilliance
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canopy volume for the test dataset was smaller than that of Medallion, the RMSE of Bril-
liance was slightly lower. Nevertheless, the overall volume prediction performance of
the developed model was similar for both varieties and deemed acceptable considering
the underlying factors, such as variations in altitude and shooting angles resulting from
the manual UAV flight, the presence of weeds in the field, occlusion between plants, and
potential errors in counting the EPS balls. In short, the developed model displayed signifi-
cantly improved performance compared to the volume prediction using the paraboloid. In
addition, the prediction speed of the developed CNN model was 0.05 s per image in the
environment described in Section 2.3.

3.2.2. Canopy Volume Estimation Using EPS Ball-Based Target Values Before and After
Correction of Flight Altitude Deviations

Figure 8 shows the canopy volume estimation conducted using the CNN model
without image preprocessing based on the object detection model. Upon application of the
CNN model to the test image set, the R2 and RMSE were 0.92 and 167.6 cm3, respectively.
In contrast, when the proposed image preprocessing was applied to the CNN model, the R2

showed a higher linearity, as shown in Figure 7b, and RMSE decreased by 55.6%. This result
demonstrates that the proposed image preprocessing method effectively compensated for
the difference in image capture height due to altitude deviations in the manual flight.
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3.2.3. Canopy Volume Estimation Using Target Values Converted from Canopy
Fullness Levels

Figure 9a shows the outcome of the CNN model trained with canopy volume con-
verted from the canopy fullness level compared to the actual canopy volume measured
using EPS balls. A linear relationship was observed, with an R2 and RMSE value of 0.64
and 421.2 cm3, respectively. Despite the decreased estimation performance, the model
showed improved results compared to the linear regression model using the paraboloid.
The effectiveness of fine-tuning the developed model using canopy fullness level was
assessed with the model trained with a 50/50 mix of the measured canopy volumes using
EPS balls and canopy volume converted from the canopy fullness level. In this case, the
model achieved enhanced estimation results, as illustrated in Figure 9b, with an R2 of
0.94 and RMSE of 141.3 cm3. Although the result recorded a slight increase in RMSE, the
performance was insignificantly degraded compared to the model trained through canopy
volume measured using EPS balls only.
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Figure 9. Comparison of canopy volumes estimated from the developed model and the actual canopy
volumes measured using EPS balls, (a) when 100% of canopy volume converted from canopy fullness
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3.3. Distributions of Estimated Canopy Volume Using CNN

A continuous combination of images from the UAV was achieved despite image dis-
tortions caused by left and right biases during manual drone flight over some sections of
the field. The row images were divided and processed again into the YOLOv8n model to
extract individual plants. Finally, canopy volume for these cropped plants was estimated
using the CNN model, and the results were interpolated using regular kriging to gener-
ate approximate canopy volume distributions, as presented in Figures 10–12. Figure 10
portrays a part of the canopy volume distribution on 2 February. Contour maps were also
added in Figures 11 and 12 to easily identify spatial differences in canopy volume, which
highlighted the actual canopy volume sizes. These results indicate the potential use of the
developed models for growth monitoring and canopy volume estimation across the entire
strawberry field.
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The canopy volume of the Brilliance variety in the east of the field increased over time.
However, the canopy volume of the Medallion variety in the east of the field remained
at a similar level over the same period. This result indicates that the canopy volume
distributions of the two cultivars are different and should be managed individually. The
canopy volume in both varieties increased by the second week. The Brilliance variety
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showed a noticeable decline in canopy volume on 16 February, while the Medallion variety
recorded a slight reduction on the same day. By 23 February, both varieties exhibited
fluctuating growth trends. Canopy volumes increased until the second week and then
decreased, as illustrated in Figures 11 and 12. These changes in canopy volume observed in
the distribution maps correspond to those measured using EPS balls for 40 sampled plants,
as shown in Figure 13. These similarities suggest that the distribution maps based on the
models developed in this study can effectively provide an overview of canopy volumes
across the entire strawberry field.
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4. Discussion

Numerous studies have employed simple geometry for easy canopy volume estima-
tions [10,13–16]. Notably, the CNN model developed in this present study significantly
improved estimation performance compared to linear regression using the paraboloid.
Moreover, the proposed model applied simple image acquisition devices and affordable
computational processes compared to past methods that relied on complex computational
geometry and voxelization [5,10,22,24,25,28,29]. The CNN-based model also exhibited high
accuracy and fast inference speeds, which can be operated using embedded boards, as
described in earlier research [34].

CNNs use small filters to extract local features from images, enabling the model to
focus on essential regions. CNNs are effective at identifying crucial details by learning
from basic features, such as edges, or more complex features, for example, shapes. These
capabilities allow CNNs to accurately estimate canopy volume from the morphological
features of crops, even when processing complex and nonlinear relationships [61].

With appropriate target values, CNNs can potentially estimate the internal space of
a strawberry canopy based on RGB image features. Previously, Zheng et al. used a CNN
model to estimate canopy volume from RGB, NIR, DSM, and mask images from UAV
images. Despite a high R2 value of 0.927, the model was trained using target values ob-
tained from grid cell-based calculations via Spatial Analyst in ArcMap 10.7 software (ESRI,
Redlands, CA, USA), which may introduce inaccurate volume estimation. In addition,
canopy volume distribution was not constructed for the entire field [7,42]. Reducing the
number of sensors is also essential to enhance the model’s applicability to agricultural tasks.

Canopy volume estimation performance can be improved by measuring the target
canopy volumes accurately. Volume measurement can be obtained by calculating the
difference between the volume of the space containing the object and the volume of the
space without the object. In one study, Andújar et al. used a water displacement method to
measure fruit volumes [62], similar to the approach used in this study. The generation of
3D models of cauliflower fruits was achieved using a depth camera for volume estimation,
which recorded an R2 and RMSE of 0.87 and 19.57 cm3, respectively. Unlike strawberry
plants, cauliflower fruits do not require internal structure consideration, so the error can
be minimal. Meanwhile, constructing their 3D model requires a 360◦ sensor rotation and
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complex processing. In contrast, the model developed in this study achieved high accuracy
and low RMSE for canopy volume estimation using only top-view RGB images despite
accounting for the internal space of the strawberry canopy.

Image augmentation could further enhance the CNN model accuracy using multiple
images per plant extracted from video snapshots during training. The application of the
YOLOv8n object detection model to adjust for image size due to manual UAV flight altitude
variations also reduced errors associated with canopy volume estimation. Although image
registration algorithms can minimize image scale variations due to altitude changes during
manual UAV flight [44–46], they require massive computational resources and can lead to
misaligned composite images in complex vegetation scenes without GNSS information.
Conversely, object detection-based image synthesis simplified the image-combining process
and prevented aligning failures.

The estimation errors increased as the strawberry plant grew in size, leading to a
higher overall RMSE in later growth stages. These errors may be due to the sole reliance
on RGB images during estimation without any vertical orientation information of the
plants [34], as well as a relatively small number of large-canopy plant samples. However, a
management plan can be established by focusing on plants that exceed a certain canopy
size threshold, where the accuracy of canopy volume estimation above the threshold may
be less critical.

Furthermore, using canopy volume converted from canopy fullness level as a target
value for the CNN model proved effective for canopy volume estimation, particularly when
combined with canopy volume measured using EPS balls. The 50/50 mixture enhanced
performance by enabling the CNN to learn both general patterns and detailed information.
While converted canopy volume data can lead to some information loss, continuous data
can mitigate the loss and reduce performance degradation. Therefore, canopy fullness data
may be used to significantly shorten the time needed to acquire canopy volume estimation
and improve model fine-tuning under varying environments in the future.

Deep learning and UAV technologies have been effective in precision agriculture,
particularly for monitoring and managing individual plants [33,39–42,63]. Combining
both in this study, the developed CNN model showed its ability to assess UAV images
of the entire strawberry field with object detection for canopy volume distribution. The
results may facilitate enhancing the allocation of labor and resource management, including
during harvesting [64–66]. UAVs equipped with RGB cameras and without GNSS offer
an economical and easy-to-operate approach for virtual growth monitoring, providing a
valuable alternative solution for estimating field images and crop growth.

Although improving the accuracy of object detection and minimizing detection failures
remain critical challenges that warrant further assessment, the detection metrics for both
strawberries and missing plants were high in this study, consistent with previous research
on strawberries [67,68] and the use of YOLOv8n [50]. For labels other than strawberries, no
plants were present in all instances. Consequently, any detection, regardless of label, could
be used to construct a virtual growth map.

5. Conclusions

This study successfully developed and evaluated a CNN model to estimate canopy
volumes of field-grown strawberries in Florida using UAV-acquired RGB images. Object
detection-based image processing methods were introduced to correct for changes in
manual UAV flight altitudes and generate row-wide images without relying on GNSS
information. Canopy measurement data were obtained using EPS balls and an acrylic case
to determine the internal structure of the plants. Furthermore, training with canopy volume
data converted from canopy fullness was effective, confirming the potential to fine-tune
with canopy fullness levels. Since canopy volumes may be related to crop yield, harvest
timing, and various management practices, such as irrigation, disease, and pest control, the
developed method offers farmers a practical field monitoring approach and aids in efficient
labor and resource allocation without wasting essential time and vital resources. Finally,
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the proposed model may contribute to improving strawberry productivity, with potential
application extended to other various low-height crops. This method can also be useful
in monitoring the health and growth of forestry and horticultural pants, and for wildfire
risk management. It is noteworthy that future studies should focus on developing models
based on the results from this study and canopy volume to predict actual strawberry yield.
In addition, this estimation model will be installed in an embedded system for real-time
growth predictions to improve the convenience of image-based growth measurements.
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