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Abstract: Respiratory disorders are commonly regarded as complex disorders to diagnose due to
their multi-factorial nature, encompassing the interplay between hereditary variables, comorbidities,
environmental exposures, and therapies, among other contributing factors. This study presents a
Clinical Decision Support System (CDSS) for the early detection of respiratory disorders using a
one-dimensional convolutional neural network (1D-CNN) model. The ICBHI 2017 Breathing Sound
Database, which contains samples of different breathing sounds, was used in this research. During
pre-processing, audio clips were resampled to a uniform rate, and breathing cycles were segmented
into individual instances of the lung sound. A One-Dimensional Convolutional Neural Network
(1D-CNN) consisting of convolutional layers, max pooling layers, dropout layers, and fully connected
layers, was designed to classify the processed clips into four categories: normal, crackles, wheezes,
and combined crackles and wheezes. To address class imbalance, the Synthetic Minority Over-
sampling Technique (SMOTE) was applied to the training data. Hyperparameters were optimized
using grid search with k−fold cross-validation. The model achieved an overall accuracy of 0.95,
outperforming state-of-the-art methods. Particularly, the normal and crackles categories attained the
highest F1-scores of 0.97 and 0.95, respectively. The model’s robustness was further validated through
5−fold and 10−fold cross-validation experiments. This research highlighted an essential aspect
of diagnosing lung sounds through artificial intelligence and utilized the 1D-CNN to classify lung
sounds accurately. The proposed advancement of technology shall enable medical care practitioners
to diagnose lung disorders in an improved manner, leading to better patient care.

Keywords: CDSS; respiratory disease; CNN; lung sound analysis; crackle and wheeze

1. Introduction

Respiratory disorders are commonly regarded as complex disorders to diagnose
because of their multi-factorial nature, encompassing the interplay between hereditary
variables, comorbidities, environmental exposures, and therapies, among other contribut-
ing factors [1]. Numerous respiratory ailments, including chronic obstructive pulmonary
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disease (COPD), asthma, cystic fibrosis (CF), and sleep apnea, as well as malignant disor-
ders such as lung cancer and respiratory infections such as influenza or COVID-19, have a
significant impact on persons across all age cohorts [2,3]. In addition to providing acute
respiratory treatment, these disorders, as mentioned earlier, provide a formidable barrier
to allocating health system resources, necessitating meticulous and effective management.

One way to analyze respiratory disorders is through the auditory evaluation of ab-
normal lung sounds through a non-invasive diagnostic approach using a stethoscope or
microphone [4]. The sounds produced by the pulmonary system have the potential to
provide valuable information on the presence and severity of respiratory disorders. How-
ever, examining lung sounds is a specialised and subjective task that requires considerable
expertise and experience to analyze the acoustic signal effectively. Asthma and chronic
obstructive lung illnesses often cause wheezing, as this symptom indicates persistent
aberrant respiratory sounds. Meanwhile, medical professionals clinically correlate pneu-
monia, bronchitis, and other medical problems with intermittent adventitious crackling
sounds. In recent decades, extensive research efforts have been dedicated to investigate
the detection and classification of these entities. The categorization of wheeze, crackle,
and normal sounds necessitates significant refinement due to the presence of artifacts and
the constraints of feature extraction techniques [5]. Trainees, such as interns and residents,
may encounter challenges in accurately identifying respiratory sounds. Therefore, digital
respiratory sounds provide very useful data for disease detection, making them particularly
relevant for intelligent diagnostics.

In recent years, significant efforts have been made in the research on the automated
classification of lung sounds. Mazić et al. [6] utilized a feature vector composed of Mel-
frequency cepstral coefficients (MFCC), entropy, and kurtosis features. These were incor-
porated into a Support Vector Machine (SVM) framework with two parallel SVMs, which
were each assigned gamma values of 2.0 and 5.0. The fusion of predictions from these
SVMs was used to distinguish between respiratory sounds with wheezes and those without.
Conversely, Matsutake et al. [7] applied hidden Markov models (HMMs) and maximum
likelihood estimation techniques to classify respiratory sounds as either normal or patho-
logical. Sen et al. [8] compared the performance of a Gaussian mixture model and SVM in
distinguishing normal from abnormal lung sounds. Recently, there has been considerable
research in developing deep learning-based models and algorithms for detecting and classi-
fying lung sounds [9,10]. These advancements hold significant promise in the medical field,
as deep learning algorithms can capture complex data patterns, enhancing the accuracy
when diagnosing respiratory conditions in noisy healthcare environments [10].

One of the pioneering efforts in this field was conducted by Acharya and Basu [11],
who introduced a deep Convolutional Neural Network–Recurrent Neural Network (CNN-
RNN) architecture for classifying respiratory sounds using Mel spectrograms. Following
this, Amose et al. illustrated the use of deep learning methods for classifying the lung
sounds [11,12]. Expanding on this foundation, [12,13] explored the implementation of both
machine learning and deep learning strategies to categorize different lung sound types,
including crackles, wheezes, and normal breath sounds. Furthermore, another study [11]
emphasized the utilization of deep learning models for lung sound classification using
Mel spectrograms.

Demir et al. [14] integrated the deep features obtained through a CNN model using
the linear discriminant analysis–random subspace ensembles (LDA-RSE) to distinguish
various lung sounds. This approached significantly improved the diagnostic precision.
T. Nguyen et al. [15] utilized the pre-trained ResNet model as the main framework to
differentiate between lung sounds and respiratory diseases. They highlighted the promising
role of deep learning in healthcare, especially in enhancing the diagnostic and treatment
methods. Pham et al. [16] utilized the improved CNN architecture by integrating a mix
of experts blocks. This approach enhanced the model’s ability to identify the complex
patterns in lung sounds. They employed a variety of features that include Mel spectrograms,



Sensors 2024, 24, 6887 3 of 16

gamma-tone-based spectrograms, and rectangular constant Q transform features, which
led to exceptional accuracy in classifying respiratory sounds.

Current Research Status of 1D-CNN in Lung Sound Classification

1D-CNN has become increasingly important in sound classification. These networks
are uniquely suited to process sequential data, such as time series or signal data, making
them particularly useful for analyzing respiratory sounds [17–19].

A significant benefit of using 1D-CNNs for classifying lung sounds is their capacity
to automatically extract features from raw audio signals, reducing the time needed for
feature engineering. The 1D convolution operation allows for the detection of patterns and
time domain features, which is essential for distinguishing various lung sound types [20].
Additionally, 1D-CNNs offer computational efficiency advantages, making them suitable
for real-time applications and deployment on resource-constrained devices. This efficiency
is especially important in clinical environments, where rapid analysis and decision-making
are essential.

Recent studies have shown the benefits and potential applications of 1D-CNNs in the
classification of sounds. For instance, Kim et al. [21] utilized a 1D-CNN model to classify
snoring sounds, achieving high accuracy and efficient feature extraction. By using the multi-
feature extraction techniques within a 1D-CNN framework, they successfully captured
the temporal characteristics of snoring sounds. Furthermore, 1D-CNNs excel at analyzing
acoustic or time-domain features, such as frequency spectrum, intensity, and duration. This
makes them particularly valuable for the automated evaluation of lung sounds and the
development of clinical decision support systems (CDSS) [22].

Petmezas et al. [9] developed a hybrid CNN-LSTM network that incorporated a focal
loss function for the automated classification of lung sounds. This approach combined the
1D-CNN’s ability to identify spatial patterns with the LSTM network’s capacity to model
long-term dependencies. The focal loss function was specifically designed to address class
imbalance issues that are common in lung sound datasets.

Recent studies have demonstrated the promising applications of 1D-CNNs in lung
sound classification across different domains [23–26]. Researchers have utilized 1D-CNNs
to effectively classify respiratory sounds such as wheezes, crackles, and normal breathing,
contributing to the diagnosis of respiratory diseases like asthma and COPD [9,19,22–26].

In summary, the field of lung sound classification using deep learning has made signif-
icant strides in recent years. Researchers have explored diverse architectures, techniques,
and feature representations to improve diagnostic accuracy and efficiency.

From the state-of-the-art CNN-RNN hybrid to the modern mixture of experts, the breadth
of methods used indicates the multifaceted nature of this research domain. Moving forward,
this research aims to develop an automated system for classifying respiratory sounds, focusing
on wheezing and crackling, using 1D-CNN to help diagnose and monitor respiratory diseases.

The main novelties of this work are detailed below:

• The data set was cleaned, pre-processed and segmented into wheezes and crackles.
• For the first time, the classification of wheeze and crackle signals was achieved using

1D-CNN.
• The class imbalance issue in the lung sound was overcome using the Synthetic Minority

Over-sampling Technique (SMOTE).
• The analysis was performed on 1D-CNN, which significantly reduced the computa-

tional requirements, which allowed for its implementation in smaller hardware.

The rest of the paper is organised as follows: Section 2 discusses the materials and
methods used in this study, including the ICBHI 2017 breathing sound database, the prepro-
cessing steps applied to the dataset, and the proposed 1D-CNN architecture for lung sound
classification. This section also covers the techniques used to address class imbalance,
hyperparameter tuning using grid search with k−fold cross-validation, and the overall
research methodology. Section 3 presents the results of the study, including the classi-
fication performance of the 1D-CNN model on four different categories of lung sounds
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(normal, crackles, wheezing, and combined crackles and wheezing). It also provides a
comparison of the proposed model with state-of-the-art research in the field and discusses
the results of k−fold cross-validation experiments. This section discusses the significance
and implications of the findings. Finally, Section 4 summarizes the main contributions of
the research, highlights the strengths and limitations of the proposed approach, and calls
for further investigation and improvement of the developed Clinical Decision Support
System (CDSS) for the diagnosis of respiratory disorders.

2. Materials and Methods
2.1. Database

In this research paper, we used the ICBHI 2017 Breathing Sound Database as a source
for the respiratory sounds analysis. This widely recognized and publicly accessible lung
sound dataset serves as a benchmark for researchers in the field [27]. The database is
frequently cited in the literature and comprises a total of 5.5 h of recordings, further
categorised into 920 audio samples originating from 128 individuals, as shown in Table 1.
The annotation process for these audio samples was conducted manually by medical
professionals. The cumulative number of respiratory cycles amounts to 6898, comprising
3642 instances of normal breathing, 1864 instances of crackles, 886 cases of wheezes,
and 506 instances of combined crackles and wheezes. In this study, we include normal,
crackles, wheezes, and combined crackles and wheezes as lung sound categories to provide
a comprehensive evaluation of the proposed 1D-CNN model.

Table 1. Details of the distribution of the lung sounds in the ICBHI 2017 Database [27].

Participants 128

Recordings 920

Normal 3642

Crackle 1864

Wheeze 886

Combined (crackles and wheezes) 506

Respiratory cycles 6898

2.2. Pre-Processing

Figure 1 shows the preprocessing steps applied to the ICBHI 2017 Respiratory Sound
Database. The recorded dataset of the ICBHI 2017 Respiratory Sound Database was
used in the research work, recorded at sample rates that varied from 4 KHz to 44.1 KHz.
Resampling all recordings at a sampling rate of 4 KHz was deemed a safe approach because
the frequency range of the signal of interest remained below 2 KHz. The resampled dataset
was subsequently divided into segregated respiratory cycles and annotated. The overall
duration of the respiratory cycles in a dataset ranges from 0.2 to 16 s, with a mean value
of 2.7 s. The methodology reported by [15] was deployed to extract respiratory cycles of
consistent duration. Specifically, cycles exceeding 2.7 s were truncated, retaining only the
initial 2.7 s.

Figure 1. Preprocessing steps applied to the ICBHI 2017 Respiratory Sound Database.
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In addition, the segmentation process was used to extract the necessary wheeze and
crackling information from the audio signal. During the model’s training, the signals
were divided into different samples to enhance their accuracy, with each sample having a
duration of 20 to 25 milliseconds. Each of these samples contained either a crackle or wheeze
sound. The purpose of this segmentation was to facilitate a more accurate detailed analysis
and description to confirm the high accuracy of the sound signals. To further validate the
quality of the signals, spectrograms of each signal were generated. Any audio segments
deemed invalid—those lacking wheezing or crackling, as confirmed by the spectrogram—
were discarded. This process ensures the integrity and reliability of the data. This step is
shown in Figure 2. The absence of wheezing or crackling sounds in typical respiratory
patterns was confirmed through waveform analysis. A continuous and periodic signal,
symbolized by the wave, indicated normal respiratory cycles. The consistent recurrence
of smooth waveforms served as an indicator of a normal respiratory cycle. To handle the
combined crackles and wheezes category, we extracted relevant segments containing both
crackles and wheezes from the audio samples. These segments were then included in the
training and testing datasets alongside the other categories.

Figure 2. Spectrogram of lung sound that does not contain any crackles or wheezes.

This comprehensive approach to segmentation and validation not only optimized the
model performance but also ensured the integrity of the dataset for subsequent analyses
and interpretations.

The crackle signal, characterized by bubbling, rattling, or clicking sounds, is shown in
Figure 3. Figure 4 shows wheezes within a respiratory cycle during both inhalation and
exhalation. The wave plots and spectrograms of these two categories exhibit distinct char-
acteristics. Figure 5 shows the wave plot for an audio segment along with its spectrogram,
containing both wheezes and crackles.

After segmentation and validation, the audio segments were split into two distinct
sets: a training set (70%), used to train the 1D-CNN model, and a testing set (30%), reserved
for evaluating its performance on unseen data. To further assess the robustness and
generalization capability of our model, we utilized the k−fold cross-validation technique.
This involves segmenting the training data into k subsets (folds), training the model on k−1
folds, and evaluating it on the remaining fold. The process is repeated k times, with each
fold serving as the evaluation set once.
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Figure 3. Wave plot of the audio segment containing crackle and its spectrogram.

Figure 4. Wave plot for audio segment containing wheeze and its spectrogram.

Figure 5. Wave plot for audio segment containing both wheeze and crackle and its spectrogram.
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2.3. Convolution Neural Network (CNN)

The CNN algorithm has become a widely recognised and extensively utilized method
in the domain of Deep Learning (DL). Compared to its predecessors, one notable feature
of CNN is its autonomous ability to identify relevant components or features within the
data without human intervention [28]. While traditional Convolutional Neural Networks
(CNNs) are widely used and perform well in many deep learning tasks, their inherently two-
dimensional (2D) nature can make them computationally demanding in certain applications.
However, 1D-CNNs emerge as a powerful alternative, with improved computational
efficiency and an enhanced performance in processing sequential data [20,23–26].

The mathematical representation of a CNN for every given signal is expressed as
Equation (1).

X(t) =
∞

∑
τ=−∞

x(τ)δ(t − τ) (1)

where δ(t) is the sequence, such that δ(0) = 1 and for t ̸= (0), δ(t) = 0.
The generic architecture of a CNN is shown in Figure 6. The CNN’s convolutional

layers are the basic structural elements responsible for extracting features from the time
series or uni-dimensional signals. A series of filters, commonly known as kernels, are used
to accomplish this task. These kernels, whose values are obtained through the training
process, act as the impulse response of the filters [18], effectively capturing the salient
characteristics of the input signal. In the proposed 1D-CNN architecture, we employ
multiple convolutional layers with increasing filter sizes to capture both local and global
patterns in the lung sound signals. The first convolutional layers uses a a smaller filter size
to learn local features, while subsequent layers gradually increase the filter size to capture
more global patterns [29]. This hierarchical approach allows for the network to learn a
robust representation of the lung sounds at different scales.

Figure 6. One-Dimensional Convolutional Neural Network (1D-CNN) architecture.

To further enhance the performance of our 1D-CNN, residual connections inspired by
the ResNet architecture are incorporated [9,30]. Residual connections allow the network to
learn residual functions with reference to the layer inputs, enabling the training of deeper
networks without degradation. By adding skip connections between convolutional layers,
we facilitate the flow of information and gradients throughout the network, improving its
ability to learn complex patterns in the lung sound data.

The pooling layers serve as an additional element placed directly after each convo-
lutional layer. Pooling layers perform nonlinear down-sampling on the extracted feature
maps while reducing their spatial dimension while preserving the essential information.
This process helps reduce the network’s computational complexity, making it more effi-
cient in sequential data processing. In our 1D-CNN, we employ max pooling layers to
down-sample the feature maps and retain the most prominent features.

Furthermore, dropout layers are used to reduce over-fitting in the network by deacti-
vating a subset of its neurons during training. This promotes better generalization. On the
other hand, batch normalization layers are also used to enhance the performance of the
training procedure by normalizing the activation of the previous layer, reducing internal
covariate shift.

Finally, it is important to note that fully connected layers are a type of feedforward
neural network (FNN) that is usually connected at the end of a network. These layers
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establish weighted connections between the overall functionality of the previous layers and
the distribution of class probabilities, simplifying the network’s ability to make predictions.
In our 1D-CNN, we utilize fully connected layers to map the learned features to the desired
output classes (normal, crackles, wheezes, and a combination of both crackles and wheezes).

To address the class imbalance present in the lung sound dataset, the Synthetic Mi-
nority Over-sampling Technique (SMOTE) was applied to the training data [31]. SMOTE
generates synthetic examples of the minority classes by interpolating between existing
examples, effectively balancing the class distribution. The SMOTE algorithm can be mathe-
matically represented as follows:

• For an individual minority class sample xi, select one of its k-nearest neighbors xj.
• Generate a new synthetic sample xnew using the following equation:

xnew = xi + r ∗ (xj − xi) (2)

where r is a random number between 0 and 1.
• Repeat steps 1 and 2 until the desired balance between the minority and majority

classes is achieved.

By applying SMOTE to the training data, we ensured that the 1D-CNN model was
exposed to a balanced distribution of samples from each class, mitigating the bias towards
the majority class.

To find the optimal hyperparameters for our 1D-CNN model, we used a grid search
with k−fold cross-validation. Grid search is an exhaustive search technique that evaluates
model performance for different combinations of hyperparameters. The hyperparameter
grid is defined in Table 2.

Table 2. Hyperparameter grid for the 1D-CNN model.

Hyperparameter Values

Number of Filters: 32 64 128

Kernel Size: 3 5 7

Dropout Rate: 0.2 0.3 0.4

Num units: 64 128 256

Learning Rate: 0.0001 0.001 0.01

The k−fold cross-validation technique segments the training data into k. subsets
or folds, trains the model on k−1 folds, and evaluates it on the remaining fold. This
process is repeated k times, with each fold serving as the validation set once. The average
performance across all folds provides a robust estimate of the model’s generalization ability.
For k−fold cross-validation, the training data are divided X into k disjoint subsets X1, X2,
. . . , Xk of approximately equal size. For each fold i = 1, 2, . . . , k:

(a) Train the model on X \ Xi (all subsets except Xi).
(b) Evaluate the model on Xi and compute the performance metric.

Afterward, the average performance across all k folds is calculated. By combining
grid search with k−fold cross-validation, we can identify the optimal hyperparameters
that yield the best performance on unseen data, ensuring the robustness and generalization
capability of our 1D-CNN model.

The modelled 1D-CNN architecture comprises 1,610,466 parameters. The model
summary of the 1D-CNN is depicted in Table 3.
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Table 3. The model summary of the 1D-CNN.

Layer (Type) Output Shape Param#

input_1(Input layer) (None, 8000, 1) 0

conv1d (CONV1D) (None, 7988, 8) 112

max_pooling1d {MaxPoolling1D} (None, 2662, 8) 0

dropout (Dropout) (None, 2662, 8) 0

conv1d_(CONV1D) (None, 2652, 16) 1424

max_pooling1d_1 (MaxPooling1D) (None, 884, 16) 0

dropout_1 (Dropout) (None, 884, 16) 0

conv1d_2 (Conv1D) (None, 876, 32) 4640

max_pooling1d_2 (MaxPooling1D) (None, 292, 32) 0

dropout_2 (Dropout) (None, 292, 32) 0

conv1d_3 (Conv1D) (None, 286, 64) 14,400

max_pooling1d_3 {MaxPooling1D} (None, 95, 64) 0

dropout_3 (Dropout) (None, 95, 64) 0

flatten (Flatten) (None, 6080) 0

dense (Dense) (None, 256) 1,556,736

dropout_4 (Dropout) (None, 256) 0

dense_1 (Dense) (None, 128) 32,896

dropout_5 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 64) 8256

dropout_6 (Dropout) (None, 64) 0

dense_3 (Dense) (None, 4) 260

The 1D-CNN model effectively categorizes the signals into the four classes (normal,
crackles, wheezes, and combined crackles and wheezes) and yields a classification accuracy
of 0.95. The identification of wheezing and crackles in lung sounds is typically performed
by pulmonologists, who distinguish them from extraneous environmental noises such
as chairs being dragged, fans in motion, or rustling paper, among others. Subsequently,
a meticulously organized repository of categorized lung sound samples is generated.
The classification method based on CNN is employed to discern the lung sounds and
categorize them into their respective classes.

In summary, our proposed 1D-CNN architecture leverages the strengths of convo-
lutional neural networks in capturing local and global patterns, residual connections for
improved information flow, and focal loss to address class imbalance. This combination of
techniques enables the network to learn robust representations of lung sounds and accu-
rately classify them into the four categories of normal, crackles, wheezes, and combined
crackles and wheezes.

In this method, the initial step involves classifying data into the following categories:
normal, cracking, wheezing, and combined crackles and wheezes. This classification
was performed by pulmonologists using the existing data set. Environmental artifact
noises were removed from the data set due to the presence of wheezing and crackles,
which were the sounds of interest. Subsequently, the model underwent training using the
processed classified data set. Using a 1D-CNN demonstrated encouraging outcomes in
distinguishing between crackle and wheeze respiratory sounds and discerning between
crackle and wheeze sounds. The classification method based on deep learning achieved a
high accuracy of 0.95 in detecting lung sounds. The categorization of abnormal sounds into
distinct subtypes, such as crackles and wheezes, yielded similar results. These findings
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are noteworthy, particularly considering the diverse range of auditory stimuli utilized for
analysis. In the context of screening and subsequent testing for respiratory infections, it
is deemed satisfactory to achieve accuracies of 0.95. This research’s main contribution
is utilizing a 1D-CNN prediction model to categorize respiratory sounds. The modelled
1D-CNN comprises 1,610,466 parameters resulting from the training of the 1D-CNN model.
A model summary of the 1D-CNN is depicted in Table 3.

The 1D-CNN model effectively categorized the signals into the four classes—normal,
wheezes, crackles, and combined crackles and wheezes—yielding a classification accuracy
of 0.95. The identification of wheezing and crackles in lung sounds is typically performed
by pulmonologists, who distinguish them from extraneous environmental noises such
as chairs being dragged, fans in motion, or rustling paper, among others. Subsequently,
a meticulously organized repository of categorized lung sound samples was generated.
The classification method based on CNN was employed to discern and categorize the lung
sounds into the respective classes.

In summary, our proposed 1D-CNN architecture leverages the strengths of convo-
lutional neural networks in capturing local and global patterns, residual connections for
improved information flow, and focal loss to address class imbalance. This combination of
techniques enables the network to learn robust representations of lung sounds and accu-
rately classify them into the four categories of normal, wheezes, crackles, and combined
crackles and wheezes.

3. Results and Discussion

The 1D-CNN model proposed in this study was trained on the extended dataset,
including all four categories of lung sounds. The model performance was assessed us-
ing accuracy, precision, recall, and F1-score metrics for each class. Table 4 displays the
classification outcomes for the four categories.

Table 4. Classification Results for Four Lung Sound Categories.

Category Accuracy Precision Recall F1 Score

Normal 0.97 0.97 0.98 0.97

Crackles 0.95 0.92 0.95 0.95

Wheezes 0.95 0.96 0.91 0.94

Combined 0.93 0.90 0.89 0.89

The proposed model achieved an overall accuracy of 0.95, indicating its effectiveness in
categorizing lung sounds across the four classes. The normal and crackles categories attained
the highest F1 scores of 0.97 and 0.95, respectively. The crackles and wheezes categories also
showed a strong performance, achieving F1 scores of 0.95 and 0.94 respectively. However,
the combined category of crackles and wheezes posed a greater challenge, resulting in a slightly
lower F1 score of 0.89. This can be attributed to the complexity of accurately identifying both
crackles and wheezes within the same audio segment.

Figure 7 presents the confusion matrix for the four-class classification task. The
matrix provides insight into the model performance, highlighting correct classifications
along the diagonal and misclassifications in off-diagonal entries. The normal category
exhibits the highest number of corrected classifications (3588), followed by crackles (1795),
wheezes (826), and combined (464). The confusion matrix also shows misclassifications,
especially in the crackles, wheezes, and combined categories. This indicates the difficulty
in distinguishing between these overlapping sounds.
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Figure 7. Confusion matrix for the four-class classification task.

The training and testing accuracy curves for the 1D-CNN model are depicted in
Figure 8. The blue line represents the training accuracy, which steadily increases as the
model learns from the data. The red line represents the testing accuracy, which closely tracks
the training accuracy, showing minimal overfitting. The model achieves high accuracy
on both training and testing datasets, showing its ability to generalize effectively to new
data. The training and testing loss curves of the 1D-CNN model are shown in Figure 9.
The training loss is represented by the blue line, whereas the red line corresponds to the
testing loss. Both curves exhibit a decreasing trend, suggesting the model effectively learns
from the data and reduces classification errors. The convergence of these curves further
validates the model’s robustness and ability to avoid overfitting.

Figure 8. Training and testing accuracy curves.
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Figure 9. Training and testing loss curves.

3.1. Comparison with the State-of-the-Art Research

Table 5 shows the performance of the proposed 1D-CNN model in other studies that
have classified all four categories of lung sounds from the ICBHI 2017 dataset. The proposed
1D-CNN model outperforms the state-of-the-art methods in classifying all four categories
of lung sounds, achieving an accuracy of 0.95. Pham et al.’s [16] study using the CNN-MoE
framework and the work by Nguyen and Pernkopf [15] using co-tuning and stochastic
normalization techniques achieved accuracies of 0.93 and 0.94, respectively. The studies
conducted by the Demir et al. [14] and Cinyol et al. [32] used the CNN model for lung
sound detection and obtained accuracies of 0.92 and 0.94, respectively. The lightweight
CNN model proposed by Wanasinghe et al. [10] also shows a comparable performance,
with an accuracy of 0.94.

Table 5. Comparison with state-of-the-art research (four-class classification).

Study Method Accuracy

Proposed study 1D-CNN 0.95

Pham et al. [16] CNN-MoE 0.93

Demir et al. [14] CNN 0.92

Cinyol et al. [32] CNN 0.94

Nguyen and Pernkopf [15] Co-tuning + SN 0.94

Petmezas et al. [9] CNN − LSTM 0.93

Acharya and Basu [11] CNN + LSTM 0.94

Wanasinghe et al. [10] Lightweight CNN 0.94

The strengths of the proposed 1D-CNN approach lie in its ability to effectively capture
temporal patterns and distinguish between different lung sound categories. The 1D con-
volutions enable the model to learn discriminative features directly from the raw audio
signals, reducing the need for manual feature engineering. However, the limitations of the
study include the challenges in accurately classifying the combined crackles and wheezes
category, which exhibits some overlap with the individual crackles and wheezes categories.

3.2. K−Fold Cross-Validation

To further evaluate the robustness and generalization capability of the 1D-CNN model,
a k−fold cross-validation was performed. Table 6 presents the results of the 5−fold and
10−fold cross-validation experiments.
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Table 6. K−fold cross-validation results.

Metric 5−Fold Cross-Validation 10−Fold Cross-Validation

Accuracy 0.9710 0.9730

Sensitivity 0.9820 0.9840

Specificity 0.9570 0.9600

Precision 0.9570 0.9600

F1 Score 0.9820 0.9840

The results of the cross-validation experiments demonstrate the model’s robustness
and ability to generalize well across different data partitions. The 5−fold cross-validation
achieved an accuracy of 0.9710, while the 10−fold cross-validation achieved an accuracy of
0.9730. The sensitivity, specificity, precision, and F1 scores also remained consistently high,
further validating the model’s performance.

The proposed research represents an important contribution to the field of respiratory
sound analysis, as it successfully applies 1D-CNN for the classification of lung sounds into
four clinically relevant categories. The achieved accuracy of 0.95 shows promising results
for the automatic diagnosis of respiratory diseases. The proposed approach has the potential
to increase the accuracy and efficiency of respiratory disease diagnosis by accurately
distinguishing between normal sounds, crackles, wheezes, and their combination.

From a therapeutic perspective, the accurate categorization of respiratory sounds has
the potential to identify respiratory diseases, allowing for prompt treatment and better
patient care. The proposed research highlights the potential for the automated analysis
of respiratory sounds, which could be an important asset in healthcare, assisting medical
professionals in making informed decisions and improving patient outcomes.

4. Conclusions and Future Work

This study focused on designing a Clinical Decision Support System (CDSS) for the
early detection of respiratory disorders by analyzing lung sounds using a one-dimensional
convolutional neural network (1D-CNN) model. The proposed system demonstrated an
accurate and reliable classification of lung sounds into four categories: normal, crackles,
wheezes, and combined crackles and wheezes. The 1D-CNN model achieved an overall
accuracy of 0.95, outperforming state-of-the-art methods.

The main contributions of this study is in the effective use of 1D-CNN for classifying
lung sounds into clinically relevant categories, a comprehensive evaluation of the model
performance using different metrics, and a comparison with existing studies in the field. The
proposed approach has the potential to significantly enhance the accuracy and efficiency
of diagnosing respiratory diseases by accurately identifying normal and abnormal lung
sounds, as well as differentiating between specific types of abnormalities (crackles, wheezes,
and their combination).

The application of deep learning algorithms, particularly 1D-CNN, in analyzing lung
sounds has yielded promising results for the automated diagnosis of respiratory diseases.
The high accuracy achieved by the proposed system, as evidenced by the results and
cross-validation experiments, underscores its potential for real-world clinical applications.

To address the issue of class imbalances in the lung sound dataset, the Synthetic
Minority Over-sampling Technique (SMOTE) is used on the training data. This technique
balanced the class distribution, enabling the 1D-CNN model to learn from a more rep-
resentative set of samples. Furthermore, a grid search with k−fold cross-validation was
utilized to identify the optimal hyperparameters for the model, ensuring its robustness and
generalization capability, as demonstrated by the high accuracy of 0.95 on the test set.

In future work, we plan to conduct comprehensive ablation studies to quantify the
impact of residual connections and other key components of our model. We believe this
will provide valuable insights into the contribution of each architectural element to the
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overall performance of our 1D-CNN model in lung sound classification. Additionally, we
are planning to explore the integration of advanced data augmentation techniques, such as
generative adversarial networks (GANs), to further enhance the diversity and quality of
the training data.

Future studies should also focus on validating the performance of the proposed model
using larger and more diverse datasets, taking into account factors such as patient demo-
graphics, recording equipment, and environmental noise. Additionally, we are planning to
integrate the proposed CDSS into existing clinical workflows through prospective studies
and clinical trials. This will help us assess its impact on patient outcomes in real-world
healthcare settings.

In conclusion, this study presented a novel approach to respiratory disease diagno-
sis using a 1D-CNN-based model for lung sound classification. The proposed system
demonstrates high accuracy in categorizing lung sounds into normal, crackles, wheezes,
and combined crackles and wheezes, outperforming state-of-the-art methods. The integra-
tion of this technology into clinical practice has the potential to revolutionize the diagnosis
and management of respiratory disorders, ultimately improving patient outcomes and
enhancing the efficiency of healthcare systems. However, further research and validation in
real-world settings, as well as the development of user-friendly interfaces and guidelines,
are necessary to fully realize the potential of this approach. As the field of digital health
continues to evolve, the integration of advanced machine learning techniques, such as
the proposed 1D-CNN model, into clinical decision support systems holds great promise
for transforming respiratory care and advancing the early detection and treatment of
respiratory diseases.
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6. Mazić, I.; Bonković, M.; Džaja, B. Two-level coarse-to-fine classification algorithm for asthma wheezing recognition in children’s
respiratory sounds. Biomed. Signal Process. Control 2015, 21, 105–118. [CrossRef]

7. Matsutake, S.; Yamashita, M.; Matsunaga, S. Abnormal-respiration detection by considering correlation of observation of
adventitious sounds. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France,
31 August–4 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 634–638.

8. Sen, I.; Saraclar, M.; Kahya, Y.P. A comparison of SVM and GMM-based classifier configurations for diagnostic classification of
pulmonary sounds. IEEE Trans. Biomed. Eng. 2015, 62, 1768–1776. [CrossRef]

9. Petmezas, G.; Cheimariotis, G.A.; Stefanopoulos, L.; Rocha, B.; Paiva, R.P.; Katsaggelos, A.K.; Maglaveras, N. Automated lung
sound classification using a hybrid CNN-LSTM network and focal loss function. Sensors 2022, 22, 1232. [CrossRef]

10. Wanasinghe, T.; Bandara, S.; Madusanka, S.; Meedeniya, D.; Bandara, M.; de la Torre Díez, I. Lung Sound Classification with
Multi-Feature Integration Utilizing Lightweight CNN Model. IEEE Access 2024, 12, 21262–21276. [CrossRef]

11. Acharya, J.; Basu, A. Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific
Model Tuning. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 535–544. [CrossRef]

12. Amose, J.; Manimegalai, P. Classification of Adventitious Lung Sounds: Wheeze, Crackle using Machine Learning Techniques.
Int. J. Intell. Syst. Appl. Eng. 2023, 11, 1143–1152.

13. Amose, J.; Manimegalai, P.; Priyanga, S.; Pavithra, S.; Susmitha, B.; Ruth, S. Wheeze and Crackle Analysis Using Deep Learning.
In Proceedings of the 2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA),
Coimbatore, India, 22–24 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1097–1103.

14. Demir, F.; Ismael, A.M.; Sengur, A. Classification of lung sounds with CNN model using parallel pooling structure. IEEE Access
2020, 8, 105376–105383. [CrossRef]

15. Nguyen, T.; Pernkopf, F. Lung sound classification using co-tuning and stochastic normalization. IEEE Trans. Biomed. Eng. 2022,
69, 2872–2882. [CrossRef]

16. Pham, L.; Phan, H.; Palaniappan, R.; Mertins, A.; McLoughlin, I. CNN-MoE based framework for classification of respiratory
anomalies and lung disease detection. IEEE J. Biomed. Health Inform. 2021, 25, 2938–2947. [CrossRef]

17. Nanthini, K.; Tamilarasi, A.; Sivabalaselvamani, D.; Harini, V.; Janaki, R.; Madhan, V. EEG signal classification using 1D-CNN and
BILSTM. In Artificial Intelligence, Blockchain, Computing and Security Volume 2; CRC Press: Boca Raton, FL, USA, 2024; pp. 453–457.

18. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

19. Ahmed, A.A.; Ali, W.; Abdullah, T.A.; Malebary, S.J. Classifying cardiac arrhythmia from ECG signal using 1D CNN deep
learning model. Mathematics 2023, 11, 562. [CrossRef]

20. Tang, W.; Long, G.; Liu, L.; Zhou, T.; Jiang, J.; Blumenstein, M. Rethinking 1d-cnn for time series classification: A stronger baseline.
arXiv 2020, arXiv:2002.10061.

21. Adesuyi, T.A.; Kim, B.M.; Kim, J. Snoring sound classification using 1D-CNN model based on multi-feature extraction. Int. J.
Fuzzy Log. Intell. Syst. 2022, 22, 1–10. [CrossRef]

22. Ali, S.W.; Asif, M.; Zia, M.Y.I.; Rashid, M.; Syed, S.A.; Nava, E. CDSS for Early Recognition of Respiratory Diseases based on AI
Techniques: A Systematic Review. Wirel. Pers. Commun. 2023, 131, 739–761. [CrossRef]

23. Choi, J.; Kim, J.; Jung, K. Air quality prediction with 1-dimensional convolution and attention on multi-modal features. In
Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of
Korea, 17–20 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 196–202.

24. Pahar, M.; Theron, G.; Niesler, T. Automatic Tuberculosis detection in cough patterns using NLP-style cough embeddings. In
Proceedings of the 2022 International Conference on Engineering and Emerging Technologies (ICEET), Kuala Lumpur, Malaysia,
27–28 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

25. Moeyersons, J.; Morales, J.; Seeuws, N.; Van Hoof, C.; Hermeling, E.; Groenendaal, W.; Willems, R.; Van Huffel, S.; Varon, C.
Artefact detection in impedance pneumography signals: A machine learning approach. Sensors 2021, 21, 2613. [CrossRef]

26. McClure, K.; Erdreich, B.; Bates, J.H.; McGinnis, R.S.; Masquelin, A.; Wshah, S. Classification and detection of breathing patterns
with wearable sensors and deep learning. Sensors 2020, 20, 6481. [CrossRef] [PubMed]

27. Available online: https://bhichallenge.med.auth.gr/ICBHI_2017_Challenge (accessed on 15 February 2024).
28. Vaillant, R.; Monrocq, C.; Le Cun, Y. Original approach for the localisation of objects in images. IEE Proc.-Vis. Image Signal Process.

1994, 141, 245–250. [CrossRef]
29. Li, R.; Li, W.; Yue, K.; Zhang, R.; Li, Y. Automatic snoring detection using a hybrid 1D–2D convolutional neural network. Sci. Rep.

2023, 13, 14009. [CrossRef] [PubMed]
30. Ma, Y.; Xu, X.; Yu, Q.; Zhang, Y.; Li, Y.; Zhao, J.; Wang, G. Lungbrn: A smart digital stethoscope for detecting respiratory disease

using bi-resnet deep learning algorithm. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS),
Nara, Japan, 17–19 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.

http://dx.doi.org/10.1016/j.rmed.2011.05.007
http://dx.doi.org/10.1186/s13012-022-01199-3
http://www.ncbi.nlm.nih.gov/pubmed/35272667
http://dx.doi.org/10.1016/j.bspc.2015.05.002
http://dx.doi.org/10.1109/TBME.2015.2403616
http://dx.doi.org/10.3390/s22031232
http://dx.doi.org/10.1109/ACCESS.2024.3361943
http://dx.doi.org/10.1109/TBCAS.2020.2981172
http://dx.doi.org/10.1109/ACCESS.2020.3000111
http://dx.doi.org/10.1109/TBME.2022.3156293
http://dx.doi.org/10.1109/JBHI.2021.3064237
http://dx.doi.org/10.1016/j.ymssp.2020.107398
http://dx.doi.org/10.3390/math11030562
http://dx.doi.org/10.5391/IJFIS.2022.22.1.1
http://dx.doi.org/10.1007/s11277-023-10432-1
http://dx.doi.org/10.3390/s21082613
http://dx.doi.org/10.3390/s20226481
http://www.ncbi.nlm.nih.gov/pubmed/33202857
https://bhichallenge.med.auth.gr/ICBHI_2017_Challenge
http://dx.doi.org/10.1049/ip-vis:19941301
http://dx.doi.org/10.1038/s41598-023-41170-w
http://www.ncbi.nlm.nih.gov/pubmed/37640790


Sensors 2024, 24, 6887 16 of 16

31. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]
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