Skip to main content
. 2024 Oct 31;24(21):7042. doi: 10.3390/s24217042

Table 3.

Summary of studies using MNPs as the DS in the FO process.

Particles and
Coating/Functionalization
MNP Synthesis Method Particle Size (nm) FO Membrane Draw
Solution
Osmotic
Pressure
(bars)
Feed
Solution
Water
Flux
(LMH)
Reverse
Solute Flux
(gMH)
MNP Recovery Method Saturated Mass
Magnetization (emu·g−1)
Recovery Ref.
MNPs coated/functionalized with organic acids and their derivatives
Citric acid-coated MNPs Co-precipitation 3–7 AIM™ HFFO membrane
(Aquaporin A/S, Kongens Lyngby, Denmark); A = 180.0 cm2
3.70% (w/w) 18.7 Deionized
water
9.2 0.08 - 44.0 - [67]
40 Polyethersulfone thin film
composite FO membranes
600.00 g·L−1 80.0 3.5% (w/w) NaCl 8.5 >0.10 Magnetic field and
nanofiltration
60.0 ≈100.0%
t = 10 min
[68]
Dehydroascorbic acid-coated MNPs 20 Cellulose triacetate/
cellulose acetate FO
membrane; A = 40.0 cm2
0.06 g·L−1 - Deionized
water
6.0 - Magnetic field 77.7 ≈100.0% [69]
Multicoated MNPs with polyacrylic acid as a
terminal hydrophilic
ligand
12 AIM™ HFFO
(Aquaporin A/S, Kongens Lyngby, Denmark); A = 180.0 cm2
0.60% 8.9 4.1 - - 67.6% [58]
Polyacrylic acid-coated MNPs Microwave
irradiation and co-precipitation
7 AIM™ HFFO module
(Aquaporin A/S, Kongens Lyngby, Denmark); A = 180.0 cm2
0.70% 12.8 8.1 - 19.4 ≈100.0% [56]
Thermal
decomposition
8–30 Cellulose triacetate FO
membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 20.0 cm2
0.08 M - 13.9 - - ≈100.0% [70]
35 g·L−1 NaCl 6.3
5 Commercial FO membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 8.0 cm2
0.08 M 70.9 Deionized
water
12.0 - Ultrafiltration - ≈100.0% [71]
3.5% (w/w) NaCl 3.0
20–30 0.05 M - Deionized
water
7.7 - Magnetic field - ≈100.0% [72]
Polyethylene glycol
dicarboxylic acid-
functionalized SiO2-coated MNPs
- FO membrane
(Aquaporin A/S, Kongens Lyngby, Denmark); A = 31.0 cm2
8.00 g·L−1 - 40 mg·L−1 NaCl 12.2 - 5.0 63.4% [15]
Poly-sodium acrylate-coated MNPs Co-precipitation 520 AIMTM membrane
(Aquaporin A/S, Kongens Lyngby, Denmark); A = 33.2 cm2
7.00% 9 Deionized
water
3.8 0.05 - 25.0 - [73]
77–166 Cellulose triacetate FO
membrane; A = 98.0 cm2
1.00% (w/w) 1.3 - - - - - [74]
Poly-sodium acrylate-coated MNPs Thermal
decomposition
7 Specialized carbon nanotube FO membrane
(Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2
0.07% (w/v) 25.3 Deionized
water
11.7 - Magnetic field and heating - ≈100.0%
t = 1–5 min
[75]
9 0.13% (w/w) 11.4 5.3 - Magnetic field - ≈100.0%
t = 5 min
[76]
Sodium oleate-coated MNPs Co-precipitation 32 Cellulose triacetate magnetic
composite FO membrane;
A = 23.7 cm2
0.1 g·L−1 - 1.0 M NaCl 11.4 - - 84.4% [77]
Tri-sodium citrate-
functionalized SiO2-coated MNPs
20–40 Cellulose triacetate FO
membrane; A = 14.0 cm2
80.00 g·L−1 125.6 Deionized
water
17.1 1.50 32.7 ≈100.0% [66]
0.5 M NaCl 2.7 -
Tri-sodium citrate-coated MNPs 66–69 Cellulose triacetate FO
membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 140.0 cm2
2.00 g·L−1 - Deionized
water
34.7 - - - - [78]
3–8 Cellulose triacetate FO
membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 20.0 cm2
0.02 g·L−1 - 17.3 - - - - [79]
MNPs coated/functionalized with organic polymers
Chitosan-coated MNPs Co-precipitation 20 Cellulose triacetate/
cellulose acetate FO
membrane; A = 40.0 cm2
0.06 g·L−1 - Deionized
water
5.0 - Magnetic field 70.3 ≈100.0% [69]
Hyperbranched
polyglycerol carboxylate-coated MNPs
Thermal
decomposition
29 OsMem™
(Hydration Tech. Innovations,
Albany, OR, USA); A = 50.0 cm2
500.00 g·L−1 15.8 7.2 - Ultrafiltration 18.7 ≈100.0% [80]
Hyperbranched
polyglycerol-coated MNPs
21 300.00 g·L−1 15.2 6.2 - - 20.7 - [81]
Hyperbranched
polyglycerol-coated MNPs functionalized with succinic anhydride moieties
24 OsMem™
(Hydration Tech. Innovations,
Albany, OR, USA); A = 2.4 cm2
400.00 g·L−1 9.7 3.0 - Ultrafiltration 19.3 ≈100.0% [82]
Magnetic poly
(N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropane
sulfonate) nanogels
Co-precipitation 271 Cellulose triacetate with an embedded polyester screen mesh FO membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 23.0 cm2
100.00 g·L−1 3.3 0.6 - Magnetic field and heating 25.3 ≈100.0%
t = 20 min
[83]
Poly
(N-isopropylacrylamide)-coated MNPs
Thermal
decomposition
7 Specialized carbon nanotube FO membrane
(Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2
0.07%
(w/v)
25.3 11.7 - - ≈100.0%
t = 1–5 min
[75]
Polyethylene glycol 4000- coated MNPs Co-precipitation - Cellulose triacetate FO
membrane
(Fluid Tech. Solutions, Inc.,
San José, CA, USA); A = 49.0 cm2
10.00 g·L−1 - Deionized
water
14.9 - Magnetic field - ≈100.0%
t = 2 min
[65]
Polyethylene glycol-coated MNPs Polyol process 9–32 Cellulose triacetate FO
membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 20.0 cm2
0.08 M - 11.3 - - ≈100.0% [70]
35 g·L−1 NaCl 5.2
Polyethylene glycol
dicarboxylic -coated MNPs
Thermal
decomposition
13 Flat sheet FO membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 12.0 cm2
0.07 M 73.9 Deionized
water
9.1 - 35.5 ≈100.0% [84]
Poly(amidoamine)
dendrimer-coated MNPs
Co-precipitation 17 Thin film composite FO
membrane
(Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2
30.00 g·L−1 - 12.9 - 48.0 100.0%
t = 2 min
[14]
Poly(sodium styrene-4-sulfonate)-co-poly
(N-isopropylacrylamide)-coated MNPs
Thermal
decomposition
5 Thin film composite FO
membrane
(Hydration Tech. Innovations,
Albany, OR, USA)
33.00% (w/w) 55.7 Deionized
water
14.9 - Magnetic field, ultrafiltration, and heating 11.1 ≈100.0% [85]
3.5% (w/w) NaCl 2.7
Sodium alginate sulfate-functionalized SiO2-coated MNPs Co-precipitation 63–76 Cellulose triacetate
A = 14.0 cm2
60.00 g·L−1 118.8 Deionized
water
8.5 0.23 Magnetic field 50.6 100.0% [86]
Triethylene glycol-coated MNPS Thermal
decomposition
20 Commercially FO membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 8.0 cm2
0.20 M - 6.0 - - 20.0 - [71]
MNPs coated/functionalized with polysaccharides
Dextran-coated MNPs Co-precipitation 10 Commercially FO membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 48.0 cm2
0.50 M - Deionized
water
4.0 - Magnetic field 32.4 ≈100.0%
t = 10–15 min
[87]
2 g·L−1 MgSO4 3.0
D-Xylose-coated MNPs Hydrothermal method - Commercial FO membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 1.8 cm2
6.50% (w/v) 1.5 Deionized
water
2.9 - 30.0 ≈100.0% [88]
0.01 M NaCl 1.3
Pectin-coated MNPs Co-precipitation 390 Polyamide FO membrane
(Porifera Inc., San Leandro, CA, USA); A = 12.6 cm2
0.50% - Deionized
water
26.6 - 18.6 ≈100.0%
t = 12–16 min
[89]
1% (w/w) NaCl 6.6
MNPs coated/functionalized with other organic compounds
3-(Trimethoxysilyl) propyl methacrylate-functionalized SiO2-coated MNPs Co-precipitation and sol-gel method 80 Thin film composite FO
membrane; A = 4.9 cm2
- - Deionized
water
10.2 - Magnetic field 44.2 ≈100.0% [90]
Poly (deep eutectic
solvent)-coated MNPs
Solvothermal
procedure
15–25 Cellulose triacetate FO
membrane
(Hydration Tech. Innovations,
Albany, OR, USA); A = 15.0 cm2
3.50 g·L−1 68.9 17.9 0.12 60.4 ≈100.0% [91]
Bare MNPs and MNPs coated/functionalized with inorganic compounds
Bare MNPs Co-precipitation 10–20 FTSH2O
(Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2
- - - 1.9 - - - - [16]
127 Polyamide FO membrane
(Porifera Inc., San Leandro, CA, USA); A = 12.6 cm2
5.00% (w/w) - Deionized
water
35.7 - Magnetic field 3.8 ≈100.0%
t = 7 min
[92]
20 g·L−1 NaCl 2.5
EDTA-functionalized SiO2-coated MNPs Hydrothermal method 280 Polyamide thin film composite FO membrane
(Porifera Inc., San Leandro, CA, USA); A = 20.0 cm2
60.00 g·L−1 - 0.5 g·L−1
octanoic acid
9.6 - 18.7 >90.0% [59]
Potassium-functionalized iron oxide-doped carbon nanofiber MNPs Co-precipitation 4500 FTSH2O™
(Sterlitech Corporation, Auburn, WA, USA);
A = 42.0 cm2
0.10%
(w/v)
86.1 Deionized
water
3.4 0.10 - 22.3 - [20]
1.0 M NaCl 2.1
SiO2-coated MNPs Thermal
decomposition
- FO membrane
(Aquaporin A/S, Kongens Lyngby, Denmark); A = 31.0 cm2
8.00 g·L−1 - 40 mg·L−1 NaCl 11.0 - Magnetic field 5.0 83.9% [15]