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Abstract: Automating pruning tasks entails overcoming several challenges, encompassing not only
robotic manipulation but also environment perception and detection. To achieve efficient pruning,
robotic systems must accurately identify the correct cutting points. A possible method to define these
points is to choose the cutting location based on the number of nodes present on the targeted cane.
For this purpose, in grapevine pruning, it is required to correctly identify the nodes present on the
primary canes of the grapevines. In this paper, a novel method of node detection in grapevines is
proposed with four distinct state-of-the-art versions of the YOLO detection model: YOLOv7, YOLOv8,
YOLOv9 and YOLOv10. These models were trained on a public dataset with images containing
artificial backgrounds and afterwards validated on different cultivars of grapevines from two distinct
Portuguese viticulture regions with cluttered backgrounds. This allowed us to evaluate the robustness
of the algorithms on the detection of nodes in diverse environments, compare the performance of
the YOLO models used, as well as create a publicly available dataset of grapevines obtained in
Portuguese vineyards for node detection. Overall, all used models were capable of achieving correct
node detection in images of grapevines from the three distinct datasets. Considering the trade-off
between accuracy and inference speed, the YOLOv7 model demonstrated to be the most robust in
detecting nodes in 2D images of grapevines, achieving F1-Score values between 70% and 86.5% with
inference times of around 89 ms for an input size of 1280 × 1280 px. Considering these results, this
work contributes with an efficient approach for real-time node detection for further implementation
on an autonomous robotic pruning system.

Keywords: deep learning; precision agriculture; pruning; robotic systems; YOLO

1. Introduction

Pruning is a labour-intensive and costly agricultural task, which is mainly dependable
on manual labour [1] and requires approximately between 70 and 90 h of work per ha
according to the training system [2]. However, this task is highly relevant for certain
species of plants, such as grapevines. Beyond mere aesthetics, pruning plays a crucial role
in shaping plant health and growth by trimming branches [3]. Performing pruning on
grapevines promotes the growth of healthier and stronger shoots, allowing for adjustments
in crop-load while maintaining the vine’s balance [4]. This task is essentially performed
in the winter, when the grapevines are dormant and leafless [5]. Due to the difficulty in
having enough labour available to perform seasonal agricultural tasks, such as pruning,
research on automating these tasks is increasingly becoming a topic of interest [6]. In the
automation field, robotic pruning is a process that usually involves selective pruning of
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specific branches, similar to the method used manually [7]. To effectively deploy a robotic
system capable of autonomously conducting pruning tasks, the system must possess
comprehensive information on task completion procedures. This entails more than just
providing the robot with visual guidance to navigate to the cutting point on the branch; it
also requires endowing it with the ability to accurately select the appropriate location for
the cut. In pruning, there are several rules and methods that can be followed to complete
the procedure. Despite the pruning method employed, it is crucial to consider the canes’
nodes location when making the cutting decisions, since it is from those nodes that buds
will grow new branches. Consequently, the number of buds left after pruning will influence
the grapevine’s yield [8].

1.1. Related Work

Recently, there have been a few works focusing on algorithms both for branch and
node detection to support agricultural task decisions, such as for pruning. Cuevas-
Velasquez et al. [9] developed a cutting location algorithm focusing on completing pruning
tasks on rose bushes. The authors’ approach was based on stem detection, making use of a
Convolutional Neural Network (CNN) to segment the branches from the background of
the image. The cutting point location was then selected according to the segmented stem’s
height. Marset et al. [10] proposed the use of computer vision algorithms to detect buds
in grapevine branches. For this purpose, the authors implemented a Fully Convolutional
Network (FCN) with a MobileNet, which segmented pixels in the image corresponding to
buds. Gentilhomme et al. [11] proposed a novel method for grapevine structure estimation
to assist in pruning activities. The authors analysed the grapevines’ structure considering
the similarities with the problem of human pose estimation, with the plant’s nodes as the
landmarks and the branches as the spatial dependencies. Gentilhomme et al.’s method [11]
consists essentially of a Stacked Hourglass Network (SHG), which outputs both the nodes
and vector fields of the branches out of two-dimensional (2D) images of the grapevines.
Afterwards, these features are associated according to the points’ coordinates, resulting in
a complete vine structure.

1.2. Contributions

This paper aims to present efficient light-computing deep learning models for node
detection on 2D images of grapevines. Despite the fact that recent works have been able
to use 2D images to compute cutting locations for pruning tasks, they present constraints.
In the work of Cuevas-Velasquez et al. [9], the cutting decision was based on the stems’
heights, not providing data on the detection of small objects such as nodes. The authors
acknowledged that, in future work, the pruning criteria should be updated to consider
more phenotypic traits. Meanwhile, in the research of Marset et al. [10], although a
detection algorithm was implemented for bud detection in grapevines, the images used
were close-ups of the branch, not allowing for visibility over the whole grapevine. The
work of Gentilhomme et al. [11] successfully detected nodes in grapevines. However,
the proposed network was trained with images containing an artificial background, and the
authors considered that the algorithm was not robust enough to successfully perform on
environments where the artificial background was removed from behind the grapevines.

This work aims to surpass the constraints present in the previous approaches for node
detection by providing a solution that guarantees the following:

• Nodes are detected with the further objective of being considered for pruning rules;
• Node detection is achieved by the algorithm even when visualizing the entire grapevine;
• Elimination of artificial background requirement for the implementation of the de-

tection model ensures acceptable accuracy, practicality, and versatility in real-world
vineyard environments, where natural backgrounds vary widely;

• Further implementation on a real-time system is possible, not producing inference
times that compromise the pruning task execution.
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In order to achieve these requirements, this paper studies the adaptability of four
distinct You Only Look Once (YOLO) [12] models (YOLOv7 [13], YOLOv8 [14], YOLOv9 [15]
and YOLOv10 [16]) on performing node detection on grapevines. These models were
trained with a public grapevine dataset containing images with artificial backgrounds and
were further tested on detecting nodes of grapevines with distinct configurations on natural
environments without artificial backgrounds, as detailed in Section 2.1.

Furthermore, this allowed us to understand the requirements to correctly detect the
grapevine’s nodes on two distinct and highly relevant viticulture regions in Portugal,
in which the grapevines’ configurations differ significantly, as well as the backgrounds
created by the region’s landscapes and climate [17]. The work developed also resulted on
the creation of a publicly available dataset of Portuguese grapevines for node detection [18],
contributing as a first approach towards the development of a perception module for an
autonomous robotic system capable of performing pruning tasks with equivalent or higher
performance than the same type of task performed by human labour.

2. Materials and Methods
2.1. Datasets

In order to train the models, we used the publicly available 3D2cut Single Guyot
dataset [11], whose respective authors created to develop a method for pruning task
assistance. This choice was made mainly due to three reasons: the images captured
contained the entire grapevine on each frame, making it possible to visually distinguish
each constituent and to simultaneously perform the detection of the same plant on all
the canes; a single grapevine was captured per frame in most of the images, avoiding the
presence of additional unwanted information; the dataset was collected with an artificial
background behind the grapevines, which resulted in a more intuitive annotation procedure,
validation of the bounding boxes’ location and distinction of the different constituents of
the plant.

New annotations to the existing dataset have been performed to consider only the
nodes on the primary canes of the grapevine in the centre of each image, which are the main
detection goals since pruning will be conducted on these primary canes by considering the
number of nodes present as a criterion. This step was performed to guarantee that it would
achieve lightweight models for node detection by removing non-relevant information on
the detection framework, such as nodes in areas of the grapevine not corresponding to
primary canes. These annotations were performed using the Computer Vision Annota-
tion Tool (CVAT) (CVAT. https://www.cvat.ai/ (accessed on 17 October 2024)) platform,
with bounding boxes surrounding the portions of the canes containing the nodes, as seen
in Figure 1.

To comprehensively assess the resilience of the deep learning models proposed in this
study to varying grapevine conditions, particularly those with cluttered backgrounds, it
became imperative to curate new datasets distinct from the 3D2cut Single Guyot dataset [11],
mainly containing images without artificial backgrounds. Thus, images from two distinct
Portuguese viticulture regions were used to improve this evaluation.

The first set of images was collected at Centro de Estudos Vitivinícolas do Dão, located
in the Dão region (40°31′31.5′′ N 7°51′22.7′′ W), while the second dataset was obtained
from Quinta do Seixo in the Douro region (41°10′05.4′′ N 7°33′17.5′′ W). The performance of
the trained YOLO models on images from these two locations was considered relevant to
this study because the grapevine configuration is different from the 3D2cut Single Guyot
dataset [11]. Additionally, these images were captured without using artificial backgrounds
on regions with distinct background environment information due to natural light sources
and landscape, which might have influenced the outcome of the detection. Both datasets
were acquired during the winter months, between December and January. The Dão dataset
was captured on a clear afternoon with abundant light, whereas the Douro dataset was
captured on a cloudy afternoon, where, despite sufficient lighting, the sunlight was less
intense when compared to the Dão location.

https://www.cvat.ai/
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Figure 1. Manually annotated image from the 3D2cut Single Guyot dataset [11] containing only the
nodes on the primary canes of the grapevine.

For both datasets, two camera perspective variations in relation to the grapevine were
employed for further performance comparison. The first was a horizontal perspective,
which allowed the background of the image to have more objects in sight, such as adjacent
vineyard rows and hills. The second was a bottom-to-top perspective using the sky as a
more uniform background of the image, as illustrated in Figure 2. The images were acquired
using a digital OM System camera (OM System. https://explore.omsystem.com/us/en/
(accessed on 17 October 2024)) at a distance of approximately 80 cm of the captured
grapevine with a resolution of 4608 × 3456 pixels (px).

(a) Dão region—Horizontal (b) Dão region—Bottom-to-top

(c) Douro region—Horizontal (d) Douro region—Bottom-to-top

Figure 2. Examples of different perspectives of the captured images.

https://explore.omsystem.com/us/en/
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2.2. Deep Learning Models

YOLO deep learning models have been widely used in real-time object detection and
applied in various fields, including robotics [19]. These models are single-stage objective
detection algorithms, granting them high speed combined with precision [20]. Due to the
detection performance reported by their respective authors on the Microsoft Common
Objects in Context (MS COCO) dataset [21], the following state-of-the-art YOLO versions
were selected for this work.

YOLOv7 was published in 2022 and at the time surpassed the previously developed
object detectors in terms of speed and accuracy. This accuracy was improved without
incrementing the inference speed at the cost of increased training time [22]. The authors
also designed a version of this model to be run in edge devices—the YOLOv7-tiny [13]—
and since the goal of this work was to study detection algorithms capable of real-time
inference on an autonomous robotic system, this version was chosen as one of the models
for this purpose.

The YOLOv8 is one of the most recent object detection models, released in 2023. It
has a backbone similar to the one used on YOLOv5 [23] with modifications that allow
for improvements on detection accuracy [22]. Moreover, the YOLOv8 uses Distribution
Focal Loss (DFL) [24] and Complete Intersection over Union (CIoU) [25] loss functions for
the bounding-box loss, which is expected to contribute to improving the object detection
performance in smaller objects [22], as it is relevant for node detection scenarios due to the
size of the nodes when compared to the full image of a grapevine. In order to guarantee that
the model used could compute light and was capable of being implemented on a real-time
object detection system, the model selected was the YOLOv8 Small (YOLOv8s), which
is the second-smallest scaled version of the model provided by Ultralytics (Ultralytics.
https://www.ultralytics.com/ (accessed on 17 October 2024)). Furthermore, previous
works have already developed on bud detection based on this version of the YOLOv8
model. Xie et al. [20] implemented the YOLOv8s to detect buds on tea trees, achieving a
Mean Average Precision (mAP) of 88.27% and an inference time of 37.1 ms.

In 2024, the YOLOv9 was published by the same authors of the YOLOv7. The authors
designed a novel lightweight network architecture called the Generalized Efficient Layer
Aggregation Network (GELAN), which, when combined with the concept of Programmable
Gradient Information (PGI), also developed by the same authors, allowed it to surpass
the performance of the existing object detectors. The PGI framework on the GELAN
architecture helped to reduce information bottleneck during the feedforward process,
which resulted in more retained complete information when compared to architectures
such as PlainNet, ResNet and CSPNet [15]. In order to compare the performance of this
novel YOLO model in grapevine node detection with the previously presented ones, we
used the light-computing YOLOv9 Small (YOLOv9-S).

Also in 2024, YOLOv10 was announced with a novel approach for real-time object
detection, eliminating the use of non-maximum suppression (NMS). The model is based on
the YOLOv8 from Ultralytics, which the authors have chosen due to the efficient balance
achieved between latency and accuracy. Despite being based on the YOLOv8, according
to the authors, the YOLOv10 achieves higher average precision (AP) while requiring less
parameters and fewer calculations and also achieving lower latencies. The YOLOv10 was
developed containing dual-label assignments, which, during the training phases, recurs to
two heads to optimize the model. However, during inference, only one head is maintained
(one-to-one) to make predictions, avoiding using NMS in post-processing. Similarly to the
previous ones, the model used was the small variant: the YOLOv10 Small (YOLOv10-S).

2.3. Training Configuration and Augmentations

The four distinct YOLO models presented were trained on a total of 13,539 images of
grapevines, whereby 759 of the images were from the 3D2cut Single Guyot dataset [11] and
the remaining 12,780 images were from augmentations of these original images.

https://www.ultralytics.com/
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The 3D2cut Single Guyot dataset [11] contained varied images of grapevines with
significant differences between vines not only on their main structure, but also on cane
orientation and size. However, this dataset is not a complete representation of possible
environments and scenarios in a real-life application, lacking variations in the image capture
perspective as well as external elements that might be present in the field. To address the
lack of variability in this dataset, the following augmentations presented in Table 1 were
implemented. These augmentations used to improve the training image set presented
geometric modifications to the existing dataset (image flip, scaling, and angle change),
and also inserted some external elements that can be present in real-life applications on the
field, such as rain, mud, fog, blur, variations in hue and saturation, ISO noise, and optical
distortion, as can be seen in Figure 3. These altered images allowed us to transform the
dataset to a more reliable approximation of the agricultural work environment, which is
often unpredictable and subjected to harsh and variable climatic conditions [26,27].

Table 1. Augmentation operations implemented.

Augmentation Operation Values Description

Horizontal Flip - Flips the image horizontally

Scale
0.7× Scales down the image by 30%

1.3× Scales up the image by 30%

Rotation
−15º Rotates the image −15º

+15º Rotates the image 15º

Hue, Saturation and Value
−15 ≤ hue ≤ 1

Changes the image’s hue, saturation and value levels−20 ≤ saturation ≤ 20
−30 ≤ value ≤ 30

CLAHE contrast limit = 4 Applies Contrast Limited Adaptive Histogram Equalization to the imagegrid size = 8 × 8

Emboss 0.4 ≤ alpha ≤ 0.6 Embosses the image and overlays the result with the original image0.5 ≤ strength ≤ 1.5

Sharpen 0.2 ≤ alpha ≤ 0.5 Sharpens the image and overlays the result with the original image0.5 ≤ lightness ≤ 1.5

Optical Distortion −0.15 Applies negative optical distortion to the image
+0.15 Applies positive optical distortion to the image

Gaussian Blur blur ≤ 7 Blurs the image using a Gaussian filter
σ ≤ 5

Glass Blur σ = 0.5 Applies glass blur to the image
δ = 2

ISO Noise colour shift = 0.15 Applies ISO noise to the imageintensity = 0.6

Random Rain - Adds random rain to the image

Random Fog - Adds random fog to the image

Random Snow - Adds random snow to the image

Spatter Mud - Adds mud spatter to the image

Spatter Rain - Adds rain spatter to the image
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(a) ISO noise. (b) Hue and saturation changes.

(c) Rain. (d) Fog.

Figure 3. Examples of augmentations performed on the 3D2cut Single Guyot dataset [11] in order to
increase the variability of the dataset.

The deep learning models used were initially trained with similar hyperparameters
for 50 epochs. However, there was a lack of convergence on the training loss for all the
models. Therefore, the number of training epochs was gradually incremented to 150 for
all the models to guarantee that the training loss value stabilized. Despite using similar
hyperparameters in the first set of training conducted, eventually, a few suffered different
tuning strategies to guarantee that the best results from each model were achieved as well
as to ensure correct adaptation to the hardware used. Parameters such as input and batch
sizes had to be modified on all models due to constraints on the hardware of the device
used for training (NVIDIA GeForce RTX 3090, NVIDIA Corporation, Santa Clara, CA,
USA) (NVIDIA GeForce RTX 3090. https://www.nvidia.com/en-eu/geforce/graphics-
cards/30-series/rtx-3090-3090ti/ (accessed on 17 October 2024)). However, YOLOv8s,
YOLOv9-S and YOLOv10-S presented more difficulties to reach convergence during train-
ing. For this purpose, the Cosine learning Rate Scheduler Function [28] was activated
during training, and mosaic data augmentation was deactivated on the last 50 epochs to
improve loss stabilization at the last training stages. Furthermore, different optimizers
were tested on different trainings, and it was discovered that on all the models tested, the
AdamW contributed to better convergence. The basic configurations of the models and
the hyperparameters that suffered further modifications in each deep learning model used,
which resulted in the most favourable results, can be seen in Table 2.

https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/
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Table 2. Tuned hyperparameters used in each YOLO model.

Parameter YOLOv7-tiny YOLOv8s YOLOv9-S YOLOv10-S

Input Size 640 × 640 px 640 × 640 px 640 × 640 px 640 × 640 px
Batch Size 16 16 16 16

Initial Learning Rate 0.01 0.01 0.01 0.01
Final Learning Rate 0.0002 0.0002 0.0002 0.002

Optimizer AdamW AdamW AdamW AdamW
Cos_lr Function False True True True

Cls_mosaic Parameter - 50 50 50

3. Results

The trained YOLO models demonstrated convergence within the 150 epochs of training.
However, the YOLOv7-tiny resulted in smaller box loss values for both training and
validation, and those values were more stable at the end of the training when compared to
the other models. The other models started to present a slight increase in the validation
loss, which can be an indicator that the model was starting to overfit [29]. In contrast,
YOLOv10-S exhibited higher loss values during training compared to the other models.
The box loss values of the trained models are presented in Figure 4.

(a) YOLOv7-tiny (b) YOLOv8s

(c) YOLOv9-S (d) YOLOv10-S

Figure 4. Box loss values on the four models trained.

Validation and Field Trials

Three different sets of images were selected to evaluate the performance of the models
in detecting the nodes on grapevines. The first set was composed of images from the
3D2cut Single Guyot dataset [11], containing an artificial background behind the captured
grapevines. The remaining two sets consisted of images selected from the datasets gathered
on the Portuguese Dão and Douro regions, containing 30 original images and 150 augmented
images, which added geometric modifications to the original images in order to increase
the variability of the dataset by containing grapevines captured in different layouts.

The images from the 3D2cut Single Guyot dataset [11] were used as a benchmark to
compare the robustness of the YOLO models trained. Since these images were similar to
the ones used for training, it was expected that the models would achieve the best results.
Dão and Douro datasets constituted of images taken in open fields without covering the
objects behind the grapevines. This feature allowed these datasets to be used as indicators
to evaluate the robustness of the models developed in detecting nodes in images with
natural backgrounds (cluttered).
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Furthermore, despite the fact that the models have been trained with an input size of
640 × 640 px, tests were also conducted with changes in the input parameter to consider a
size of 1280 × 1280 px. Since nodes on grapevines are relatively small objects on the overall
size of the image, this test was crucial to reduce the loss of information on the images used.
However, it was expected that this increase in the input size would result in delays in the
inference times of the models [30].

The results obtained on the validation phase of the detection models trained on the four
different datasets are presented in Table 3. The metrics obtained were analysed at confidence
levels of at least 10% and at the best F1-Score obtained in each model. Confidence levels
below 10% were excluded from the analysis, as lower confidence scores are likely to lead to
an increase in false positive detections [31]. An increase in false positives would negatively
affect the performance of the node detection task, resulting in inaccurate conclusions and
potentially compromising the reliability of the system to be integrated into an autonomous
pruning robot. Furthermore, Table 4 displays the average inference time per image on each
of the models with different input sizes.

Table 3. Performance of the models in images from the different datasets.

Dataset Model Input Size Precision Recall F1-Score mAP@50 Precision Recall F1-Score mAP@50 Average
(px) Confidence ≥ 10% On the Best F1-Score IoU

3D2cut

YOLOv7-tiny

640 × 640

84.5% 86.8% 85.6% 83.4% 84.5% 86.8% 85.6% 83.4% 78.6%
YOLOv8s 90.9% 73.8% 81.5% 71.3% 90.9% 73.8% 81.5% 71.3% 80.5%
YOLOv9-S 91.1% 76.2% 83% 74.6% 91.1% 76.2% 83% 74.6% 80.9%

YOLOv10-S 87.9% 77.3% 82.3% 75.3% 87.9% 77.3% 82.3% 75.3% 80.6%

YOLOv7-tiny

1280 × 1280

71.8% 92.6% 80.9% 86.6% 88.8% 84.3% 86.5% 80.1% 76.3%
YOLOv8s 76.3% 91.4% 83.2% 84.9% 87.6% 86.8% 87.2% 80.8% 77%
YOLOv9-S 78.4% 93.1% 85.1% 88.5% 84.1% 90.5% 87.2% 86.1% 78.3%

YOLOv10-S 80.6% 91.4% 85.7% 86.8% 85.8% 89.8% 87.8% 85.2% 79.1%

Dão

YOLOv7-tiny

640 × 640

79% 49.5% 60.8% 44.5% 79% 49.5% 60.8% 44.5% 70.8%
YOLOv8s 85.5% 19% 31.1% 18.8% 85.5% 19% 31.1% 18.8% 69.6%
YOLOv9-S 76.6% 16% 26.4% 13.9% 76.6% 16% 26.4% 13.9% 63.2%
YOLOv10-S 78.9% 13.9% 23.7% 12% 78.9% 13.9% 23.7% 12% 67.2%

YOLOv7-tiny

1280 × 1280

73.4% 70.4% 71.8% 61.5% 76.4% 69.7% 72.9% 60.8% 74.8%
YOLOv8s 76.4% 64.7% 70% 53.9% 76.4% 64.7% 70% 53.9% 73.6%
YOLOv9-S 79.3% 61.4% 69.2% 50.8% 79.3% 61.4% 69.2% 50.8% 72.2%
YOLOv10-S 80% 55.4% 65.5% 46.1% 80% 55.4% 65.5% 46.1% 73.3%

Douro

YOLOv7-tiny

640 × 640

72.2% 47% 56.9% 42% 72.2% 47% 56.9% 42% 66.5%
YOLOv8s 67.3% 18.7% 29.2% 14.6% 67.3% 18.7% 29.2% 14.6% 61.7%
YOLOv9-S 70.6% 19.9% 31% 15.9% 70.6% 19.9% 31% 15.8% 64.1%
YOLOv10-S 68.5% 18.9% 29.6% 14.5% 68.5% 18.9% 29.6% 14.5% 62.4%

YOLOv7-tiny

1280 × 1280

63.9% 70.6% 67.1% 62.8% 74.2% 65.5% 69.6% 59.3% 68.5%
YOLOv8s 72.7% 58.9% 65.1% 52% 72.7% 58.9% 65.1% 52% 68.2%
YOLOv9-S 71.1% 53.5% 61.1% 46.4% 71.1% 53.5% 61.1% 46.4% 67%
YOLOv10-S 77.4% 49.2% 60.2% 44.9% 77.4% 49.2% 60.2% 44.9% 69.2%

Text in Bold indicates the best-performing results for each metric.

Table 4. Average inference time of the YOLO models.

Model Input Size (px) Average Inference Time (ms)

YOLOv7-tiny

640 × 640

20.52
YOLOv8s 323.79
YOLOv9-S 63.82

YOLOv10-S 51.59

YOLOv7-tiny

1280 × 1280

88.79
YOLOv8s 502.52
YOLOv9-S 288.53

YOLOv10-S 260.21
Text in Bold indicates the shortest inference time for each input size.
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4. Discussion

Overall, YOLOv7-tiny achieved higher F1-Score values than the other models. The more
recent models tested, despite typically presenting slightly higher Precision values, resulted
in lower Recall values. Moreover, the mAP obtained by the novel YOLOv10-S was usually
significantly lower than the other models benchmarked for scenarios significantly different
from the training environment.

Observing the results previously presented in Table 3, there was a tendency for the
models to perform better with an input size of 1280 × 1280 px when compared to the
standard input size of 640 × 640 px, which supports the possibility of information being
lost in smaller images due to the reduced size of the nodes. Due to this characteristic, it
was considered advantageous to use this larger input size on the developed models, which
demonstrated performance improvements. Figure 5 shows a comparison of the F1-Score
values from the four YOLO models analysed on the different datasets used, considering an
input size of 1280 × 1280 px.

(a)

(b)

Figure 5. Cont.
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(c)

Figure 5. F1-Score of the models with an input size of 1280 × 1280 px in the three datasets used.
(a) 3D2cut Single Guyot [11]; (b) Dão; (c) Douro.

Despite these performance differences between the used versions, all the models were
capable of detecting the grapevine’s nodes successfully. Furthermore, it was possible to
observe that on the 3D2cut Single Guyot dataset [11], the four models achieved F1-Score
values of above 80%, despite the input size used. Meanwhile, on both Dão and Douro datasets,
the highest F1-Score values were around 70%. However, since the objective of this study
is to further implement a perception algorithm on a robotic system capable of performing
pruning tasks autonomously, not only is it crucial to analyse the models’ accuracy and their
adaptability to different real-case scenarios, but also how much time they take to complete
the inference.

4.1. Adaptability to Different Grapevine’s Configurations and Environments

As expected, the models’ inference performance was considerably higher on the
3D2cut Single Guyot dataset [11], where all the models presented a similar detection capa-
bility, as seen in Figure 6. This behaviour occurs not only because this set constituted of
images similar to the ones used for training, but also due to the amount of additional infor-
mation on the background of the Dão and Douro datasets, which induced the occurrence of
some false positive detections on the background of the images.

In both of these two datasets (Dão and Douro), we noticed that the YOLOv7-tiny
achieved higher F1-Score values than the other three models, with this difference being
more noticeable on these datasets in comparison to the results obtained on the 3D2cut
Single Guyot dataset [11]. Furthermore, although YOLOv8s was the second best performing
model on the Dão dataset, the performance changed significantly on the Douro dataset,
in which this model presented varying results according to the input size used, resulting in
lower F1-Score values for an input size of 640 × 640 px. Although the Precision of YOLOv10-
S was usually higher than the other models on the Portuguese datasets, the Recall was
lower, especially when considering an input size of 640 × 640 px. This allowed us to notice
that when using the YOLOv10-S, despite not encountering many false positives, the model
presented more difficulties in detecting small objects on each frame, ignoring a few nodes
in the image. This behaviour makes it less valuable for the intended task than the other
models analysed, since this behaviour results in a considerable amount of nodes not being
considered as such.

Furthermore, when comparing the results obtained between the two datasets without
an artificial background, the Douro dataset resulted in less-accurate detections by the models
than the Dão dataset. Analysing the images present in each one, it is possible to observe
what features might be causing this discrepancy. The grapevines on the Dão dataset, despite
having a structure different from the grapevines on the images of the training dataset, make
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distinguishing each cane on the plant easily feasible. Meanwhile, on the Douro dataset,
the grapevines have more canes overlapped, and thus sometimes make it more difficult to
distinguish the primary canes; this also results in nodes that can be occluded by nearby
branches, as can be observed in Figure 7.

(a) Ground truth. (b) YOLOv7-tiny.

(c) YOLO8s. (d) YOLOv9-S.

(e) YOLOv10-S.

Figure 6. Inference on a grapevine from the 3D2cut Single Guyot dataset [11] considering an input
size of 1280 × 1280 px.

Regarding the annotations performed on the 3D2cut Single Guyot dataset [11], only the
nodes on the primary canes of the centred grapevine on the image were selected. The same
logic was implemented on the construction of the ground truth for the Dão and Douro image
sets. However, the models also detected a few nodes on canes in adjacent grapevines that
slightly appeared on the images captured. This consequently resulted in these detections
being considered as false positives, which is not entirely wrong since the nodes do not belong
to the focused grapevine, but they are correctly assumed as being nodes. Although these
situations slightly affect some of the images, they were not considered relevant for the overall
performance of the models in detecting nodes on these datasets, since it only happened in a
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few cases. Furthermore, in these sets of images taken in open field, the pictures captured in
a bottom-to-top perspective are preferable to achieve better results. This approach helped
reduce the background information, resulting in less false positives detected. In Figure 8, it
is possible to notice that a horizontal camera perspective captures additional information,
not only from other grapevines behind the one in foreground, but also from the ground of
the figure. Meanwhile, a bottom-to-top perspective reduces the amount of content in the
background of the image, allowing for a more precise detection.

Figure 7. Partially occluded node (red circle) not detected in image from Douro dataset.

(a) Horizontal perspective.

(b) Bottom-to-top perspective.

Figure 8. YOLOv7 inference comparison considering two different camera perspectives.
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Regardless of the performance differences between datasets and between images con-
taining artificial backgrounds or not, grapevine node detection recurring to YOLO detection
models presents an efficient and more versatile approach when compared to the previously
implemented methods. The previously published work by Gentilhomme et al. [11] man-
aged to achieve an overall Precision of 95% and Recall of 90% in the task of node detection,
having an execution time between 0.55 s and 8 s. Despite obtaining good detection perfor-
mance on the selected testing environment, the authors acknowledged that the algorithm
requires optimization to be implemented on a real-time system and also considered that the
algorithm proposed for pruning assistance would be severely impacted in work conditions
without uniform artificial backgrounds. However, this work assures that grapevine node
detection is feasible in heterogeneous environments recurring to state-of-the-art YOLO
detection models, despite presenting a slight performance decrease.

Furthermore, it was possible to assess the capability of performing node detection
on the entirety of the grapevines even when configurations different from those used in
training are provided to the models. In Figures 9 and 10, it is possible to analyse the
inference behaviour of the models used on each of the datasets acquired in Portugal, Dão
and Douro, respectively, considering an input size of 1280 × 1280 px.

(a) Ground truth. (b) YOLOv7-tiny.

(c) YOLOv8s. (d) YOLOv9-S.

(e) YOLOv10-S.

Figure 9. Inference on grapevines from the Dão region.
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(a) Ground truth. (b) YOLOv7-tiny.

(c) YOLOv8s. (d) YOLOv9-S.

(e) YOLOv10-S.

Figure 10. Inference on grapevines from the Douro region.

4.2. Capability of Implementation in a Real-Time System

According to the work by Botterill et al. [1], a human takes approximately 2 min to
prune a grapevine. In a robotic system, there might be several necessary additional steps
from the detection of the cutting location until the cut is completed. These steps are mainly
related to navigation towards the cutting location and actuation of the cutting tool [7,32].
Considering this, minimizing the inference time of the detection algorithm is crucial to
ensure the maximum efficiency of the system by reducing the necessary time to execute the
pruning task on each vine.

The average inference time of the analysed YOLO models varied significantly. These
inference time differences were not only between the distinct versions of the models,
but also between different input sizes. YOLOv7-tiny was the fastest model at grapevine
node detection, presenting inference times below 100 ms. YOLOv8s, YOLOv9-S and
YOLOv10-S presented significantly larger times, with YOLOv8s reaching an average of
around 502.5 ms when detecting nodes with a 1280 × 1280 px input size.
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Despite the most recent models (YOLOv9-S and YOLOv10-S) being faster than the
502 ms of YOLOv8s, their inference times on 1280 × 1280 px sized images are still near
300 ms, which is significantly higher than the inference time obtained using the YOLOv7-
tiny. Furthermore, the YOLOv7-tiny model presents less computational complexity than
the other models tested, having 6.2 million (M) parameters and 13.8 Giga (G) Floating Point
Operations Per Second (FLOPS). This number of operations corresponds to around 36%
fewer operations than YOLOv10-S, which is the second model tested with fewer FLOPS,
as can be seen in Table 5. Considering this, as a matter of the capability of implementation
in a real-time system, the YOLOv7-tiny would be the preferred model of the four in order
to ensure the system’s efficiency.

Table 5. Complexity comparison of the models tested.

Model Number of Parameters FLOPS

YOLOv7-tiny 6.2 M 13.8 G
YOLOv8s 11.2 M 28.6 G
YOLOv9-S 7.1 M 26.4 G

YOLOv10-S 7.2 M 21.6 G

5. Conclusions

This work allowed us to compare, side-by-side, four distinct YOLO models on the
capability of successfully performing the task of node detection of a grapevine’s canes.
The models were trained on the publicly available 3D2cut Single Guyot dataset, which
contained an artificial background on the captured images. Furthermore, the models
were tested on two different Portuguese grapevine datasets without artificial backgrounds,
which allowed us to evaluate the robustness of the models on two distinct cultivars with
different surrounding environments.

Considering this approach, it was possible to notice that YOLOv7-tiny achieved the
best detection performance compared to the other used models. Furthermore, YOLOv7-tiny
was the best model considering the trade-off between accuracy and inference speed. This
detection model not only achieved overall better metrics compared to the state-of-the-art
detection models, but also presented the fastest inference speed for both tested input sizes
(640 × 640 px and 1280 × 1280 px).

Despite the significant performance variation between solutions, all the state-of-the-art
YOLO models used are capable of detecting the nodes on grapevines even when additional
environment information is present on the background of the frames behind the vines,
which is an improvement to previously developed algorithms that lacked robustness to
actuate in heterogeneous environments. This approach of node detection recurring to
YOLO detection models fulfilled the objectives of presenting efficient and light-computing
deep learning models for node detection on 2D images of grapevines. These models are
capable of detecting nodes in cluttered environments while visualizing the entire grapevine,
and they offer inference times suitable for real-time system implementation. Based on
these features, the models demonstrate sufficient robustness for integration with decision-
making algorithms to predict potential pruning locations on grapevine canes, even in
highly heterogeneous settings. Notably, this performance is achieved without the need for
artificial backgrounds to reduce background interference. Additionally, the low inference
times, particularly for YOLOv7-tiny, enable the practical deployment of these algorithms
on an autonomous pruning robot, allowing real-time operation without compromising
system efficiency.

However, despite being proven the feasibility of implementing YOLO-detecting mod-
els on these types of environments, as future work, it would be interesting to perform the
detections by firstly filtering the background of the images using data from a depth camera
to remove unwanted information, which is expected to also improve inference times since
the information available for inference will be reduced.
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