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Abstract: This study addresses the challenges of human–robot interactions in real-time environments
with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture
in indoor environments in confined areas is a significant challenge for service robots. The proposed
approach works on two levels: the estimation of human location and the robot’s intention to serve
based on the human’s location at static and adaptive positions. This paper presents three method-
ologies to address these challenges: binary classification to analyze static and adaptive postures for
human localization in indoor environments using the sensor fusion method, adaptive Simultaneous
Localization and Mapping (SLAM) for the robot to deliver the task, and human–robot implicit com-
munication. VLSI hardware schemes are developed for the proposed method. Initially, the control
unit processes real-time sensor data through PIR sensors and multiple ultrasonic sensors to analyze
the human posture. Subsequently, static and adaptive human posture data are communicated to the
robot via Wi-Fi. Finally, the robot performs services for humans using an adaptive SLAM-based trian-
gulation navigation method. The experimental validation was conducted in a hospital environment.
The proposed algorithms were coded in Verilog HDL, simulated, and synthesized using VIVADO
2017.3. A Zed-board-based FPGA Xilinx board was used for experimental validation.

Keywords: posture recognition; localization; FPGA; service robot; sensor fusion

1. Introduction

Human–robotic interaction (HRI) systems have become increasingly integrated into
healthcare environments [1] (Alzheimer elders assistance), playing a vital role in assisting
with tasks such as patient monitoring, medication delivery, and physical support. These
robots must not only interact with their surroundings but also adapt to dynamic changes
in real time to provide effective assistance. One of the key challenges in developing such
systems is the precise localization of a human subject at stationary and moving positions [2].
Reliable and accurate human localization is essential for enabling robots to provide timely
and context-aware responses and enhance the patient care and safety. Over the past
30 years, significant research has been conducted on human posture, sleep analysis, and
sleep monitoring. In HRI systems, the early stage is about sensing and analyzing human
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activity recognition to serve as a better way of interacting with autonomous attendants. In
this regard, human activities are confined to the sleep and activity stages.

According to the authors of a review analysis [3], sleep apnea affects between 9%
and 38% of the general population, and this number is expected to increase in the future.
Services navigate towards the localization point of elders/people with Alzheimer’s. Human
localization has been classified into three categories: monitor-based localization (MBL),
device-based localization (DBL), and proximity-based localization. The proposed HRI
system is driven by ultrasound MBL algorithms [4]. In the HRI system, the next stage is
service robot-based Simultaneous Localization and Mapping (SLAM) navigation. Recent
market trends in statistical analysis shows that the global robotic healthcare AI market is
expected to reach INR 188 billion by 2030, increasing CAGR by 37% from 2022 to 2030 [5].

In an HRI system, sensing has been performed in two ways by humans and au-
tonomous robots. In this process, estimating the human pose in the environment plays a
critical role in enabling the robot to assist humans in delivering necessary services. Human
localization analysis using various sensing methods has been presented over the last two
decades by researchers. The main challenge involved in pose estimation analysis relies on
the quality of sensor data acquisition and pre-processing. Researchers have used pressure,
non-contact, wearable, and non-wearable sensing devices to collect data [6–8]. The author
focuses on in-bed human pose estimation, including sleep and sitting positions, using a
multimodal conditional variational auto encoder (MC-VAE) and HRNet for single-modality
inference [9,10]. A novel body posture recognition system on a bed, which accurately
estimates sleep postures (supine, left lateral, prone, right lateral) using ballistocardiogram
signals, enhancing comfort and reliability, was presented by the authors of [11]. The author
of [12] focused on predicting sleep postures, including sitting using a Bayesian network
algorithm with a heartbeat rate and image monitoring for accurate posture recognition in
wireless body area networks. Similarly, a human sleep posture recognition method using
millimeter-wave radar and interactive learning to overcome the sensitivity of radar signals
to different individuals was presented by the authors of [13]. Wearable and non-wearable
sensors, including three-axis accelerometers, multi-modal sensor fusion, electroencephalog-
raphy (EEG), and thermometers, have been used to capture data on sleep posture [14,15].
The proposed system was developed using ultrasonic sensor fusion data and a contactless
sensing approach to estimate human poses in the environment.

For autonomous robot navigation, SLAM approaches have been used. A robotic assis-
tance system can provide care and support for humans, including those localized on a bed,
thereby demonstrating the potential of robots to collaborate in various care scenarios [16].
Ultrasonic sensor fusion data are provided to the robot for effective navigation, allowing
it to accurately detect human positions and assess distances, thus enabling smoother and
more efficient movement through its environment. The authors have developed robotic
delivery systems such as MEDROBO, which can enhance patient care by automating
medicine delivery and monitoring vital signs for bedridden individuals using RFID tags
attached to the bed [17]. A multifunctional intelligent bed (MIB) integrates autonomous
movement, position adjustment, and interaction interfaces to assist mobility-impaired
individuals, showing the potential for robotic assistance for bed-localized humans [18]. The
challenges involved in the above approaches include maintaining accurate optimization
and adaptability, particularly in adaptive healthcare environments. Issues such as RFID
tag misplacement and the need for continuous real-time sensing can affect its efficiency in
automating medicine delivery and assisting individuals with mobility impairment. There-
fore, there is a need for IoT-based systems that enhance healthcare robotics by enabling
real-time data collection and communication, thereby improving the task automation and
accuracy. IoT-based robotic medicine delivery systems for bedridden individuals, improv-
ing outcomes, and overall healthcare efficiency in hospitals, have been addressed by the
authors of [19]. Hu. Q. et al. proposed a system that employed a pressure sensor array
integrated into a bed sheet with 1024 nodes for comprehensive data collection [20]. The
author focused on a mobile robot using ZigBee for bed localization and drug identifica-
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tion based on a central processing unit (CPU) [21]. The key literature findings are that
human localization and robot navigation progress independently in the best way. The
major challenge is dynamic human localization [2] versus robot services [22], which has
been addressed by a few researchers. SLAM methods have been addressed in the last four
decades, and the navigation algorithm [23,24] is a subset of the data structure, as well as the
shortest path algorithm, tree algorithm, and graph models such as Dijkstra, A* algorithms,
and heuristic approaches. Bresson et al. [25] proposed an autonomous navigation method.
A challenge mentioned is that navigation methods for person-following mobile robots are
required in services. This challenge motivated the proposed research, and recent studies
have developed a person-following approach using computer vision methods [26].

The HRI final stage has been accomplished with computational devices, and active re-
search has been conducted using edge computation devices such as the Central Processing
Unit (CPU), Graphical Processing Unit (GPU), and field programmable gate array (FPGA).
Processing large amounts of data with a high computational speed is not sufficient with a
CPU. An FPGA offers parallel data processing with lower latency and power consumption,
making it ideal for real-time IoT features such as real-time sensor data collection, process-
ing, and communication for efficient and adaptive systems. The authors of [27] discussed
an FPGA-based smart delivery bot for goods, not medicine, utilizing sensors and the
Dijkstra algorithm for efficient navigation. The authors developed an Internet-of-Things
controlled robot using FPGA, enabling remote navigation via voice commands from a
mobile app, with sensor data uploaded to the cloud for task completion [28]. The authors
presented FPGA-based robotic accelerators as competitive alternatives to CPU and GPU
platforms [29,30], focusing on their performance and energy efficiency, while analyzing
optimization techniques and technical challenges within the robotic system pipeline, in-
cluding commercial and space applications [31]. By leveraging FPGA architectures, the
authors proposed an adaptive FPGA-based accelerator for human–robot interactions in
indoor environments.

Utilizing an FPGA as a hardware accelerator represents a significant advancement,
greatly enhancing computational speed and parallel processing capabilities. The emphasis
of this algorithm on FPGA technology makes it particularly suitable for real-time applica-
tion. The key contributions of the proposed approach are as follows:

• Novel Hardware Schemes are presented for static and adaptive human localization
analyses in indoor environments.

• The proposed accelerator is a novel heuristic-triangulation-based navigation algorithm
for achieving adaptive SLAM.

• FPGA-based accelerators are proposed for establishing interactions between human
localization and robot systems.

The research presented in this paper includes the following components. Section 1
outlines the background and motivation behind human sleep posture analysis using the
FPGA implementation. Sections 2 and 3 details the proposed methodology, including both
theoretical and hardware aspects. In Section 4, the proposed method is validated using
results related to the synthesis, power consumption, and experimental comparisons. The
final section summarizes the research findings and discusses future research directions.

2. Hardware-Based Algorithms

Human–service robot interactions are embedded with the localization of the hu-
man and robot and the robot provides services based on the navigation algorithm under
event-driven conditions. Hardware-based algorithms were developed to analyze human
localization in both static and adaptive scenarios. Based on human localization, the pro-
posed hardware-based triangulation-navigation algorithm was developed using a service
robot. Table 1 represents the related symbols and abbreviations used through out this
research work.
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Table 1. Proposed research-related abbreviations.

Symbol Abbreviation

SPR

S: ultrasonic sensors, as {H_R, H_L, A_R, A_L, R_L & L_L}
P: Position of sensor at Head (H), Abdomen (A), Limb(L)
R: Position at sides as Right ®, left(L)

PP Past Position

CP Current Position

SR Service Robot

Dest_ Node Destination Node

2.1. Hardware-Based Algorithm for Human–Robot Interaction

Figure 1 presents an overall flowchart of the proposed hardware-based human–robot
interaction (HRI). The proposed HRI methods depend on the localization of the subject (hu-
man) and robot. Human localization was performed using contactless sensing. Localization
is associated with both static and adaptive forms. The same information is transmitted to
the service robot. Before planning to serve the human, the service robot self-localizes based
on direction and triangulation methods. After receiving the coordinates of the human
localization, it navigates towards the destination using a triangulation-based navigation
algorithm. After the successful accomplishment of the task, it retrieves to its parking station
using the same navigation algorithm.

Figure 1. Flowchart of proposed hardware-based human–robot interaction.
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2.1.1. Hardware-Based Algorithm for Human Localization in an Indoor Environment

This portion focuses on determining human localization within an indoor environment.
The pseudocode for locating humans in various scenarios is outlined in Algorithm 1.

The explanation of the pseudocode in Algorithm 1 is represented in the form of a flowchart,
as shown in Figure 2.

Algorithm 1 describes the human localization process using a hardware-based algo-
rithm. As shown in Figure 1, sensor data were acquired using distance and PIR sensors
(line 1). All parameters were initialized with a reset and operated based on clk (lines 2
and 3). The proposed human-localization algorithm was executed when the PIR sensor
was evaluated for human availability. Distance sensor fusion was arranged in the form of
six-bit posture values. When the position values were more than two, the sleep posture
was considered (line 8). Sleep postures were classified in simple forms, such as supine and
left- and right-side sleep postures (lines 9 to 11). In addition to the sleeping posture, the
sitting posture is considered by the proposed algorithm (lines 12 to 18).

Algorithm 1: Pseudo code for Hardware-Based human localization

1. Initialize sensory fusion distance data
2. always @ (posedge clk) begin
3. {PIR, Human available, Position values, Two Positions, Sleep posture, sitting posture, one

hot} = 0.
4. state = INIT.
5. Case (state)
6. State_1: (PIR = 1)? Human available: state.
7. Case (Human available)
8. State_11: (Position values > Two Positions) Sleep posture: Sitting posture.
9. Case (Sleep posture)
10. State_1a: (Posture = 6′b111111)? Supine: State_1b.
11. State_1b: (Posture = 6′bxx0101)? Right side posture: Left side posture.
12. Case (Sitting posture)
13. State_1as: (((Position && Time) = Static)? State static: Adaptive.
14. Case (State static)
15. State_a1: (Position = one hot)? State_a2: Aliasing_pose.
16. State_a2: (Position = 6′dx)? Position Binary Classifier: state.
17. Case (Aliasing_pose)
18. State_b1: (Position = 6′dy)? Position Binary Classifier: state.
19. Case (Adaptive)
20. State_b11: if (count && CP == end position) begin
21. count && CP <= start position.
22. else {count <= count + 1, CP <= CP + 1}, {PP_n = CP}.
23. State_b12: (count = 0)? State static: State_b14.
24. State_b13: (CP = PP)? State static: State_b14.
25. State_b14: (CP = PP_n)? Position Binary Classifier: State b15.
26. default: state = INIT.
27. end case, End.

The sitting pose was evaluated based on the sensor distance, and its position was vital
to the service robot to analyze whether the subject is in a sitting posture at a static position;
if the subject traverses from one position to another, it is considered as an adaptive sitting
position, which has been evaluated based on the time and position parameters (line 13).
Adaptive positions were evaluated using lines 19–25. The static pose positions depend
on the coverage of the sensor fusion. The sensor coverage of sitting positions includes
complete individual sensors and aliasing situations (sensing of more than one human
sensor). Digital one-hot-based sensor fusion was evaluated for the subject position among
the six positions on the bed. Positions were classified using a binary classifier (line 16).
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In the aliasing situation, sensor fusion coverage with an encoded one-hot approach was
embedded and classified using a position binary classifier (line 18).

Figure 2. Flowchart for hardware-based human localization.

The hardware-based adaptive sitting position analysis is the first of its kind to provide
better services using robots. Thus, the proposed method provides superior robotic services.
Count, past position (PP), and current position (CP) are parameters for adaptive sitting
position evaluation. The start position was initialized by sensors, and every step of the
movement from one position to another position was recorded until the subject stopped
moving (lines 20 to 22). Each stage’s past position was memorized as PP_n, and the
proportional adaptive time was registered as the count value. Adaptive current positioning
was then classified and shared with the updated new position of the service robot (line 25).
Table 2 presents the classification of the positions in the lines into a binary classifier using
sensor fusion data.

Table 2. Sensor fusion data for human localization.

Subject Seated at Head_Right
(HR)

Head_Left
(HL)

Abdomen_Right
(AR)

Abdomen_Left
(AL)

Right Lower
Limb_(RL)

Left Lower
Limb_(LL)

Top position of right 1 0 0 0 0 0

Top position of left 0 1 0 0 0 0

Middle position of right 0 0 1 0 0 0

Middle position of left 0 0 0 1 0 0

Lower position of right 0 0 0 0 1 0

Lower position of left 0 0 0 0 0 1

Aliasing top of right 1 0 1 0 0 0

Aliasing top of head 1 1 0 0 0 0

Aliasing top of left 0 1 0 1 0 0

Aliasing middle of right X 0 1 0 X 0
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Table 2. Cont.

Subject Seated at Head_Right
(HR)

Head_Left
(HL)

Abdomen_Right
(AR)

Abdomen_Left
(AL)

Right Lower
Limb_(RL)

Left Lower
Limb_(LL)

Aliasing middle of left 0 X 0 1 0 X

Aliasing lower of right 0 0 1 0 1 0

Aliasing lower of limbs 0 0 0 0 1 1

Aliasing lower of left 0 0 0 1 0 1

2.1.2. Hardware-Based Adaptive SLAM

The proposed hardware-based adaptive Simultaneous Localization and Mapping
(SLAM) was used to serve humans in an indoor environment. In robotics, localization and
mapping are embedded in navigation systems. In the generic approach, the robot navigates
to the destination early using robot navigation. In this process, SLAM plays a vital role in
allowing the robot to continuously update its localization. Based on the obtained path, it
plans to retain its route by mapping. When serving a human (subject), the subject changes
from one portion of the bed to another. In this regard, the proposed adaptive SLAM
approach was developed to serve adaptive situations according to human movement.

The proposed method was developed as a heuristic-type triangulation-based naviga-
tion algorithm to achieve an adaptive SLAM.

Figure 3 shows a service-based robot in an indoor environment, initially a robot at a
parking station. As mentioned in Algorithm 2, the robot executes services based on task
assignment. Standard services have been used during the COVID pandemic, such as service
robots serving subjects (humans) in isolation/individual. Standard tasks include food and
medical services along with standard timings. Simultaneously, the robot registers the tasks
of either food or medical services. As presented in Algorithm 2, the robot is assigned to
either a multitask or a single task in line 4. In the case of the multitask, the sorting of
the path is performed using the bubble sort technique, and the robot traverses to the task
point (line 7). SLAM retains its localization and is mapped in line with triangulation-based
navigation. The task coordinates were registered and utilized until the task was completed.
The path plan mapping was computed using the angles of the robot localization coordinates
and task coordinates (lines 9–13).

Figure 3. Triangulation-based navigation for service robots in an indoor environment. Different
colored lines shows the representation of receiving signals from all sensors.
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Adaptive SLAM was established once the robot received the delivery point (task
destination) in the traversing mode. The robot adapts its path based on the adaptive
movements of the subjects. If the subject moves to a new location, the robot can adapt
the path and travel to deliver the item (lines 14 to 17). The explanation of Algorithm 2
is represented in the form of a flowchart, as shown in Figure 4. The use of triangulation
navigation is shown in the lines presented in Figure 5. Triangulation navigation supports
the performance of static and adaptive SLAM, as indicated by Algorithm 2. Figure 5 shows
the subject in bed at various locations. Paths 3a and 3b are the shortest paths among the
path distance weights when the robot navigates. Similarly, the longest distances for the
robot navigating from the gateway to the destination of the task were paths 6a and 6b.
The robot moves back using the same route that it has taken to accomplish the task until
the endpoint of the gateway (i.e., the entrance gateway). It then transitions to the parking
station if no other tasks are scheduled. If any task is assigned, Algorithm 2 follows.

Algorithm 2: Pseudo code of hardware based Adaptive SLAM for robotic services

1. Service Robot (SR) initialize services and ready at parking station.
2. If (Task assigned)
3. Case (Task type)
4. State_1: (Task type = Multitask)? State_2: Static SLAM.
5. State_2: (Task sort)? Task destination: Task sort.
6. Case (Task_destination)
7. State_11: (Task_destination = Static Task sort _n)? State_12: Accomplished.
8. State_12: (Task_destination = Adaptive Task)? Adaptive SLAM: SLAM static.
9. Case (Static SLAM)
10. State_SS1: (Navigation sort_n = Task_destination_n)? Accomplished: State_SS2.
11. State_SS2: if (Current Node == Dest_ Node) begin
12. Current Node <= start position.
13. else {Current Node <= Current Node + 1}.
14. Case (Adaptive SLAM)
15. State_AS1: (Adaptive task)? Task assigned <= Adaptive task: Task_destination.
16. State_AS2: (Adaptive task sort)? State_AS3: State_AS2.
17. State_AS3: (Task destination <= Task sort)? Static SLAM: State_AS3.
18. end case, End.

Figure 4. Flowchart for adaptive SLAM for robotic services.
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Figure 5. Path planning of service robots based on task in an indoor environment with different colors.

3. Hardware Schemes for Human–Robot Interaction in an Indoor Environment

Section 3 deals with FPGA-based accelerators that are equivalent to accomplishing the
proposed hardware-based algorithms for human–robot interactions. Concurrently, human
and robot localization has been confined to different reconfigurable devices. The robot
continuously receives static or adaptive human localization because it navigates to the
destination using the triangulation approach.

3.1. Hardware Accelerator for Human–Robot Interaction

The proposed hardware accelerator is versatile for human–service robot interactions,
as illustrated in Figure 6. It was integrated with human localization, robot localization,
and navigation. In this research, two FPGA reconfigurable edge computing devices were
incorporated; the first of these was for the human, and the other was for the robot. The
pose control unit (PCU) is a part of the FPGA position for evaluating human localization.
This is performed using the lines in Algorithm 1. Initially, the algorithm was triggered
based on the PIR sensor information. Human availability was evaluated using PIR, which
enables human localization computations. Six ultrasonic sensors {SH_R, SH_L, SA_R, SA_L,
SR_L, and SL_L} were positioned on the roof to capture the human localization on the bed.
These sensors were triggered by the PCU, and echo signals were captured and digitized
at a distance from the sensor-distance fusion module. It is compiled with all the 20-bit
sensor distances in the fusion with respect to the event conditions. Human localization
was performed with five Processing Elements (PEs): sleep posture, static sitting position,
adaptive sitting position, aliasing sitting position, and position binary classifier. The PCU
verifies the classification of the subject during sleep or in the sitting position. Under these
conditions, humans are versatile in the sitting position. If the subject is at one position until
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the robot begins its services, it is considered as a static position with six-bit information.
Under certain conditions, the subject is positioned between two or three sensor coverage
areas, and the subject is considered to be in an aliasing sitting position. This was addressed
based on the maximum position zone. The adaptive sitting position evaluates the change
in position by the participant with respect to time. All positions were evaluated using a
position binary classifier and shared with the other end-edge computing device for human
localization using ESP8266. It is operated at 9600 baud rates with the UART protocol to
transmit the human localization details continuously.

Figure 6. Overall hardware accelerator for human–robot interaction.

An FPGA reconfigurable edge computing device was placed on the robot. It operates
according to Algorithm 2. Four ultrasonic sensors {SF, SL, SR, and SB} were used on
board to sense the environment. A Robot Control Unit (RCU) plays a vital role under
various conditions. It triggers all the sensors and the communication module ESP8266.
The proposed service robot was assigned a task based on its timestamp. For example, a
robot can serve diabetic tablets based on the time at which the human wakes up from sleep
(evaluated based on human movements). All services are registered in DDR3 memory.
The AXI lite protocol was used to drive the data from memory. The pickup nodes were
registered as tasks. Task sorting is in the sleep module for a regular navigation path until
the human is positioned at a new location on the bed, compared to the previous destination
task. Task-sorting PE has been revamping route nodes with mapping as per the human
localization PE. Rerouted mapping nodes were provided to the navigation module. Robot
localization is another parallel task that self-evaluates an edge device by using sensory
information. Navigation develops a route according to the task nodes and robot localization
using triangulation-based navigation approaches. Simultaneous Localization and Mapping
(SLAM) was performed with 20-bit sensor distances and their fusion along with continuous
destination task estimation.

3.2. Hardware Schemes for Human Localization

Figure 7 presents the detailed human localization information with internal architec-
tures. The ultrasonic sensors were operated at a 40 KHz frequency and captured at a rate
of 1/8 s. Distance data fusion was captured and stored in FIFO {H_R to L_L}. Prior to
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normalizing the six sensors’ distance as 6′bxxxxxx, it had been decoded as in the sleep
position. For Sitting position at different levels, the sensory digital value is given as ‘1’
when it is in the availability range. Otherwise, this value is ‘0’. The sampling data are
presented in Table 2. These data were used to classify either sleep or sitting postures using
a pose-selection encoder. Sleep postures have been presented. There are more than two
positions and the sensor data logic value is ‘1’. Then, it enables the sleep posture PE. Sensor
data have been compared with the reference FIFO data on sleep posture, including supine
posture (SP), left-side posture (LP), and right-side posture (RP), and they are encoded and
transferred to the position binary classifier.

Figure 7. Internal architecture of the human localization process.

A pose-period encoder distinguishes between static and adaptive position modules.
The static position has been presented in two ways: the static sitting pose PE and aliasing
sitting pose PE. In the static sitting position PE, real-time sensor data were compared with
the reference FIFO position. Similarly, aliasing and adaptive approaches have been used.
To replace the sitting PE, an encoder was designed along the logic computation module.
The logic computation module normalizes the aliasing coverage data with the adjacent
higher grouping logic ‘1’. e.g., when HR = 1, HL = 1, and AR = 1 is 6′b111000, the subject
is sitting in the cross mode between the left and right sides of the bed. Normalization
confines the subject’s position to the right side of the bed. The adaptive position was
confined to the pose period and the array of sensor data were compared. For example, if
the subject initially sat at the HR, the sensor data weere presented as 6′b100000 at time
T. It compares the subject’s movement from one position to another over time. The same
is true for the PBC module. In this case, T + 1 with 6′b001000 and T + 2 with 6′b000010
indicate moving around the right side of the bed. Finally, the human was positioned at the
right-limb coverage spot (RL). The relative information is shared with a binary classifier,
and human localization is provided to the robot through IoT communication. The position
binary classifier has been continuously evaluated in lines [32,33] of the binary search.
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3.3. Hardware Schemes of Robot Localization and Triangulation-Based Navigation

Figure 8 shows the internal hardware schemes for robot localization and navigation.

Figure 8. Hardware scheme robot localization and triangulation-based navigation.

The real time sensor data of robot localization is represented in red color lines where
as human localization is represented in blue color. The processing of data inside the archi-
tecture is represented in different colors. The environments were sectioned into sectors
(sec_1. . . sec_n). Each sector was divided into multilevel sectors, e.g., sec_4 into sec_4_1 to
sec_4_n. Robot localization was performed by comparing the real-time sensor fusion data
and the location of the reference sector (s _1 to s _4_5). Human localization PE provides
the destination of the human position, which is used for the assigned task. Every node
has been considered a destination, and all sub-destinations (Des_1. . . Des_4_5) are routed
to the end destination (Des-end), which has been assigned as the task. Concurrently, the
time-stamp task assignment is aligned with human localization PE as a task assignment.
The assigned tasks were sorted according to bubble sorting techniques. A task-based bub-
ble sorting technique was constructed using eight register arrays and shifters. Four clock
cycles were used to obtain the task-based sorted information. The information was shared
with the mapping control unit to develop the route maps. Route maps were established
based on triangulation-based navigation using a CORDIC IP core. The robot localization
output is driven into the CORDIC and Euclidean distance computation modules. Trian-
gulation computation inherent modules are CORDIC, which have been computed with
32 bits for the angles and their square root of distance calculation. Based on the task sort,
information route maps were registered as static routes and adapted for routing in SLAM
lines. Euclidean distance computation is performed with the two-bit navigation control
and it estimates the distance with 32 bits between two nodes. The same procedure was
performed by mapping the control unit to update the route maps. As shown in Figure 5,
CORDIC and Euclidean provide an accurate distance to travel by the robot. The longest
route from the gateway to the destination in the service sector is on the right side of the
bed at the HR sensor-coverage node. Concurrently, an on-board reconfigurable computing
device provides distances as paths 4a and 4b. The travel distance was evaluated using
an odometer-based soft code as part of the execution unit. The execution controls the
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left and right motors of the robot with four bits each (two-bit acceleration control and
two-bit direction).

4. Results

The proposed human–robot interaction was developed with FPGA-based accelerators.
Human localization was evaluated at one edge of the FPGA device, and the robot on the
other side on board was directed to the right destination (human positions) under both
static, adaptive, and even driven conditions. The validation of the proposed algorithms is
discussed in Section 2 and the hardware schemes are discussed in Section 3. The results
were obtained with resource utilization at both ends along with power consumption. An
experimental setup was established as a platform for validating the proposed algorithm in
the form of experimental studies.

4.1. Resource Utilization

The proposed HRI utilizes Xilinx products from the Xilinx University program. The
hardware accelerator proposed in Section 3 was developed with equivalent code by using
Verilog HDL and was tailored as per the proposed HRI. The functional verification of the
system was performed using the Xilinx simulator; Xilinx tools were used for the synthesis
and implementation steps.

The reconfigurable devices are part of the Xilinx Zynq family, and their design has
been mentioned by Xilinx (San Jose, CA, USA) as an XC7Z020-1CSG484 Zed board. The
proposed approach utilizes the processing system (PS) to capture time-stamped tasks
while executing the services. Control logic and interfacing were performed using the
programming logic (PL) of the zed-board device. PS and PL were interfaced at the system
level using the AXI lite protocol for synchronization at the complete system level. The
Block RAM (BRAM) (140 blocks, 36 kb equal to 4.9 Mb) and 220 Digital Signal Processing
(DSP) slices were on the zed board, which has been utilized to a certain extent to pursue
this method.

Resources are consumed in the execution of human localization, as mentioned in
Table 3, and robot localization and navigation are listed in Table 4. Among the comput-
ing methods, edge computation provides the fastest and most accurate method; FPGA
reconfigurable devices consume less power and perform concurrently [34–36]. FPGAs for
HRI solutions are the first to provide solutions under adaptive position–event conditions.
Consumption in an FPGA was evaluated using lookup table (LUT), Block RAM (BRAM),
and Digital Signal Processing (DSP) slices. Human localization consumed LUT (48%),
BRAM (42%), and DSP slices (38%). Similarly, robot localization and navigation were used
for LUT (57%), BRAM (46%), and DSP slices (39%).

Table 3. FPGA resource utilization for human localization accelerator on Zed board.

Module LUT BRAM DSP Slice

External modules and pose control unit 5246 14 22

Sleep posture PE 2714 06 08

Position binary classifier PE 1846 06 10

Adaptive sitting position PE 6330 18 18

Static and aliasing sitting position PE 4702 08 16

Execution modules, UART, and display 4342 6 08

Total 25180 58 82
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Table 4. FPGA resource utilization for robot localization and navigation accelerator on Zed board.

Module LUT BRAM DSP Slice

External modules and robot control unit 5246 14 22

Human localization PE 4404 10 12

Task assignment and sort PE 3916 12 10

Robot localization PE 5140 08 18

Triangulation navigation PE 7268 14 16

Execution modules, UART, and display 4342 6 08

Total 30,316 64 86

Figures 9 and 10 show the details of the consumption of each module as percentages.
The adaptive sitting position PE for human localization and triangulation navigation PE for
service robot implementation consumed the highest resource utilization. The architectures
of service robot localization and navigation-based adaptive target positions were deployed
in the FPGA and are presented in Figure 8. Table 3 and Figure 9 illustrate human localization
resource utilization. Control units and interfacing implicit communication modules, such
as UART, are consumed, as described above. The resource utilization of the other modules
was as follows: sleep posture PE (11%, 10%, and 10%), position binary classifier PE (8%,
10%, and 12%), adaptive sitting position PE (25%, 31%, and 22%), and static and aliasing
sitting positions PE (18%, 14%, and 20%). Similarly, Table 4 and Figure 10 show the device
consumption as LUT, BRAM, and DSP slices of FPGA-based robots, such as the external
modules and robot control unit (17%, 22%, and 25%), human localization PE (15%, 16%,
and 14%), task assignment and sort PE (13%, 19%, and 12%), robot localization PE (17%,
12%, and 21%), triangulation navigation PE (24%, 22%, and 19%), and execution modules,
UART, and display (14%, 10%, and 9%).

Figure 9. Resource utilization of human localization accelerator.
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Figure 10. Resource utilization of robot localization and navigation accelerator.

Figure 11 illustrates the power consumption of a human localization accelerator of
1.2 watts. The power consumption was registered using the Xilinx power estimation tool.
The power consumption details of each hardware module are provided in percentage form
in the pie chart in Figure 11. The adaptive sitting PE consumed 27% power; compared to
other modules in human localization tasks, this value is high. The power consumption
details of the other modules were as follows: pose control (23%), PE (18%), position binary
classifier PE (12%), static and aliasing sitting PE (14%), and execution (6%).

Figure 11. Device power consumption of human localization accelerator.
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Figure 12 shows the power consumption of the service-based robot localization and
navigation accelerator. The overall device consumes 1.8 watts of power and presents the
consumption of each module in percentage form, whereas the control unit and execution
consume the same amount of power. The preferred tool is XPE, and the power consumption
of each module is as follows: human localization (12%), task assignment and sorting
(16%), data driven from the PS through the AXI protocol, robot localization (18%), and
triangulation-based navigation PE (25%). Triangulation PE consumes more power than the
other modules on the FPGA-based robots. The interfacing and control unit modules had
the second highest share of power consumption.

Figure 12. Device power consumption of service-based robot localization and navigation accelerator.

4.2. Experimental Results

This section describes the experimental setup for human and robot interactions based
on their localization under static and adaptive conditions.

4.2.1. Experimental Setup

Figure 13 presents the experimental setup with two parts: one regarding the human
posture and position analysis setup and another regarding the service-type FPGA-based
robot. The human localization process is illustrated in Figure 13a,b. The service-based robot
is shown in Figure 13c. A real-time experimental setup was used for the proposed hardware-
based algorithms validated with the experimental setup in Figure 14a–d. Figure 14a shows
the sensor coverage bed for capturing the human posture and positions. Figure 14b presents
the human reverse supine sleep posture and the subject in the HL sensor coverage area in
Figure 14c. The other subject was positioned in the RL sensor coverage area at the same
time as the robot travelled to serve the subject.

Both experimental setups were embedded with ultrasonic sensors to capture human
positions and explore the environment. The major experimental setups are sensing devices
and other auxiliary devices such as a digital compass and PIR. The ultrasonic sensors
were operated at 40 KHz and 5 volts, and the sensor array was operated using FPGA
control units. A digital compass was deployed on the FPGA-based service robot to estimate
the angles, which was also applied to CORDIC. Implicit communication was performed
between the two devices using the ESP8266 Wi-Fi modules operated at a baud rate of
9600. The main unit in the proposed method is the FPGA. Xilinx-manufactured FPGAs
are edge-computing devices, as mentioned in Section 4.1. The other parts of the robot
experiment were embedded with two driven wheels and driving circuits, based on the
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control logic received from the triangulation-based navigation algorithm module. This
is operated with driving circuits with LED acid batteries at 24 V/7 Amp. These batteries
are charged every 6 h, and the operational time can be improved by replacing it with new
battery technology. The FPGA and sensors are powered around 3.3–5 V from batteries
through voltage regulators using 7805 IC modules. Figure 14c,d show the experimental
details about the proposed hardware approaches. The robot frame was developed in
in-house by local design experts. The robot frame has three layers: a bottom layer with
batteries and voltage regulators, a middle layer with computational devices, and a layer on
top of the service robot where service modules were positioned.

Figure 13. Human and robot interaction experimental setup.

Figure 14. Real-time experimental setup of human and robot interaction.

4.2.2. Experimental Results of Human and Robot Interaction at Static Position

The FPGA-based robot services towards human localization at static positions are
shown in Figure 15a–h. The versatile approach of the proposed method is that duo FPGAs
are performed concurrently and communicate regularly through IoT modules. The FPGA-
based robot initially triggered it to navigate from the parking point with respect to the
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timestamp task assignment, as illustrated in Figure 15a. Implicit communication has
continued with the human localization analysis of FPGA accelerator devices.

Figure 15. (a–d) Demonstration results of robot navigation from parking to pick up. (e–h) Demon-
stration results of human and robot interaction at static position.

The navigation was performed in lines of TNA to pick up the food/medicine drives
towards sector 2, as presented in Figure 15b. The navigation in sector 2 continued until the
pickup node was reached (Figure 15c) and the robot waits until the human positioned the
food (PIR and ultrasonic sensor signal patterns were evaluated) on the robot (Figure 15d).
The mapping module in Figure 8 provides a route map for navigating from sector 2 to
sector 3 (gateway). Robotic turns are continuously evaluated by the CORDIC modules, and
the distance to travel is provided by the Euclidean distance for successful navigation. Robot
localization and self-positioning, along with kinematics and movements, are operated with
robot control, and the positions are corrected based on the TNA with CORDIC modules.

The robot navigates from the gateway entry (Figure 15e) to sector 4 (Figure 15f) of
the delivery bed and human localization. Based on human localization, a route map
was mapped, and SLAM was performed using TNA to reach the destination point, as
shown in Figure 15g. Similar to the pickup node, the human pattern identification of
the subject indicated that food and medicine were collected. The proposed environment
was considered ethical and not false or misleading in the collection of foods/medicines
by the subjects. The FPGA-based robot returned from the delivery node to the parking
station using a reroute with similar mapping techniques, as shown in Figure 15h. The



Sensors 2024, 24, 6986 19 of 24

return navigation by the FPGA adapts the mapping modules and TNA to reach the parking
station. When the continuous task assignment continues to the robot, it is performed
according to the assignments. In this approach, the delivery modes are inclined toward
first-come, first-serve methods.

The static human-position-based services provided by the FPGA-based robot demon-
stration are as follows: https://www.youtube.com/watch?v=xIjKWfpmPIU (accessed on
25 September 2024).

4.2.3. Experimental Results of Human and Robot Interaction at Adaptive Position

A demonstration of the adaptive-based position service by the FPGA-based robot
is shown in Figure 16a–h. Similar to the previous experiment, it starts and collects the
essential material from the pickup node (Figure 16a) and the navigates through gateway
(Figure 16b). Adaptive human localization was initially observed at the HL sensor coverage
area (Figure 16c). When the subject is in continuous motion, the human localization-side
FPGA shares information with the FPGA-based robot. In this study, we considered coverage
up to 50 cm from the bed. This coverage was provided to avoid false positives during the
inference stage using the proposed method. The FPGA-based robot adapts to adaptive
human localization, and proportional adaptive SLAM was performed (Figure 16e). In
this demonstration, the subject reached the destination node as the RL coverage point
(Figure 16f). The time duration was recorded to determine the rate of speed of the subject
switching from one sensor to another, and the proportional total duration captured from
the HL to RL nodes was 14.20 s. The robot moves from the delivery point to the parking
station/next task point (Figure 16g,h). The experimental results are as follows: https:
//www.youtube.com/watch?v=cPasjy0F528&t=14s (accessed on 25 September 2024).

Table 5 presents a qualitative analysis comparing the contributions of various studies
in this field of interest. Adaptive human localization-based services using autonomous
robots have drawn attention owing to their effectiveness. In this regard, researchers are
working on analyzing subject/human posture position groups [20,37–39]. Other robotics
have been developed to serve subjects with different interaction methods, using face
recognition and other methods. The integration of both ends has been attempted by very
few researchers [40,41]. The proposed research contribution involves integrating both
human localization and FPGA-based robot services; it is first of its kind to use adaptive-
based robot services. FPGA edge computation provides better results than the other
computation methods at the inference level [30].

The edge device clock frequency = 100 MHz, voltage applied for the device = 3.3 V,
switching capacitance = 4.41 PF, dynamic power (P_dynamic) = 0.96 W, static power
(P_static) = 0.24 W, and total power consumed for human localization is 1.2 W. The number
of pipeline stages in hardware (S) is eight, clock time (Tclk) is 10 ns, and latency per itera-
tion (S × Tclk) is 80 ns. The total number of iterations (N) was 30, and the total latency as
(N + S − 1) × Tclk was 370 ns. The number of correct predictions was 29 and the to-
tal number of predictions was 30. The resulting accuracy was 98.4% and the error rate
was 1.6%.

Accuracy =
No o f Correct Predictions

Total Prediction
× 100 = 98.4% (1)

Error = 1 − No o f Correct Predictions
Total Prediction

× 100 = 1 − 29
30

= 1.6% (2)

The average response time for each path is represented as static in Figure 17 and
adaptive in Figure 18. The time responses are the same up to the early delivery node,
based on the Euclidean distance triangulation navigation towards various nodes around
the bed. The return response time was the critical return time. The average response time
of adaptive human–robot interaction (HRI) presents adaptive human localization and robot
navigation. The adaptive response time changes when humans move from node1 to node4;
its critical path and time response is 5 min 10 s.

https://www.youtube.com/watch?v=xIjKWfpmPIU
https://www.youtube.com/watch?v=cPasjy0F528&t=14s
https://www.youtube.com/watch?v=cPasjy0F528&t=14s
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Table 5. Comparison of human and robot interaction with relevant research methods.

Reference
Papers

Sensory Approach
Algorithm Hardware Number of

Postures/Position
Pros Accuracy Cons

Method Fusion

Q. Hu et al. 2021
[20]

1024 sensors
Pressure
sensor

Yes HOG, SVM,
and CNN

Arduino Nano
and CPU 6 <400 ms, sampling and

processing
86.94% to

91.24%
Contact

approach

Matar et al. 2020
[37]

1728
FSR sensors Yes HOG + LBP,

FFANN CPU 4 Health
monitoring 97% More usage of

sensors

R. Tapwal et al. 2023
[38]

Two flex force
sensors Yes K-means Arduino Uno

and CPU 4 Health
monitoring ~99.3%

consumes
17.5 W,
contact

approach

Hu, D et al. 2024
[39]

32
Piezoelectric sensor Yes S3CNN N/A 4

Effectively detects
nuanced pressure
disturbances

93.0% not applicable

Y. Tanaka et al. 2020
[40] Camera No Amygdala FPGA _ Interaction with subject

based face recognition >90% not applicable

T.Kim et al. 2024
[41]

Multi sensors and
Camera Yes DFS, 3D routes,

Vision algorithms

Intel NUC and
Nvidia Jetson

Xavier

Multi floor service and
mapping N/A Costlier in

implementation

Proposed 10
Ultrasonic sensors Yes

Human
Localization,
Triangulation

Navigation
algorithm

FPGA

Parallel computing,
<200 ns, sampling, and
computation. Adaptive
localization-based robot
services

98.4%
PR flow will be

preferred in future
usage
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Figure 16. (a–h) Demonstration results of human and robot interaction at adaptive position.

Figure 17. Average response time of human–robot interaction at static conditions.
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Figure 18. Average response time of human–robot interaction at adaptive conditions.

5. Conclusions

In this article, we presented a service-based human–robot interaction system in health-
care environments. The proposed methodology successfully addresses a solution for
human–robot interactions in delivering a task by analyzing adaptive human positions in a
static or dynamic manner. FPGA-based accelerators have been developed as key solutions
to address the challenges in healthcare assistance. Equivalent hardware accelerators were
developed and deployed on a Xilinx FPGA XC7Z020-1CSG484 Zed board. The resource uti-
lization of the proposed HRI for a human localization accelerator on a Zed board consumes
48%, 42%, and 38% for the LUT, BRAM, and DSP slices, respectively. Similarly, the robot
localization and navigation consumed 57%, 46%, and 39% of the LUT, BRAM, and DSP
slices, respectively. The device power consumption of the human localization accelerator
is 1.2 watts and that of the service-based robot localization and navigation accelerator
is 1.8 watts. The proposed human localization and triangulation navigation algorithm
with parallel computing provided 98.4% accuracy compared with previous methods. In
the future, the proposed method could be integrated with partial reconfigurations for
multi-tasking services.
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