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Abstract: In plant breeding, Multi-Environment Trials (METs) evaluate candidate genotypes across
various conditions, which is financially costly due to extensive field testing. Sparse testing addresses
this challenge by evaluating some genotypes in selected environments, allowing for a broader range
of environments without significantly increasing costs. This approach integrates genomic information
to adjust phenotypic data, leading to more accurate genetic effect estimations. Various sparse testing
methods have been explored to optimize resource use. This study employed Incomplete Block Design
(IBD) to allocate lines to environments, ensuring not all lines were tested in every environment. We
compared IBD to Random line allocation, maintaining a consistent number of environments per
line across both methods. The primary objective was to estimate grain yield performance of lines
using Genomic Estimated Breeding Values (GEBVs) computed through six Genomic Best Linear
Unbiased Predictor (GBLUP) methods. In the first five methods, missing values were predicted
before cross-environment adjustment; in the sixth, adjustment was performed directly. Using the
Bayesian GBLUP model, we analyzed genotype performance under both IBD and random allocation.
Results indicate that computing GEBVs for a target population of environments (TPE) using available
phenotype and marker data is effective for selection. The IBD method showed superior performance
with less variability compared to random allocation. These findings suggest that using IBD designs
can enhance selection accuracy and efficiency, and that pre-adjustment prediction of missing lines
may not necessarily improve selection outcomes.

Keywords: genomic prediction; incomplete block designs allocation; sparse testing; random allocation;
selection across environments

1. Introduction

Multi-Environment Trials (MET) are integral to plant breeding, offering critical insights
into genotype performance under diverse environmental conditions. These trials assess
genotypes across various stresses, including differing climates, soil types, and management
practices, with the aim of identifying those that exhibit consistent performance, stability,
and adaptability. Breeders must balance selecting genotypes that perform well across
a broad spectrum of environments against those tailored to specific conditions. This
information is essential for developing varieties suited to regional agricultural needs,
ultimately improving crop productivity and resilience. However, MET are costly and
resource-intensive due to the extensive field testing involved.
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In response to these challenges, sparse testing [1–3] combined with genomic prediction
presents a transformative approach. Rather than testing every genotype in all environ-
ments, sparse testing evaluates subsets of genotypes across specific environments. This
allows breeders to expand the number of lines tested without significantly increasing
phenotyping costs. Genomic information is then used to adjust phenotypic data across
environments, improving the accuracy of genetic effect estimations and compensating for
missing phenotypes, thus maintaining high selection accuracy.

The integration of genomic prediction within sparse testing frameworks provides
several key advantages. First, it enhances MET efficiency by reducing the dependency
on complete phenotypic data, enabling accurate breeding value estimations with fewer
trials. This accelerates breeding cycles, reduces costs, and expedites the development of
new varieties. Additionally, sparse testing expands the selection intensity by testing more
genotypes across diverse environments, increasing the likelihood of identifying superior
genotypes. The use of genomic data to predict missing phenotypes allows breeders to
focus on high-potential lines, thereby refining the candidate pool and intensifying selection
pressure for genetic gain. By strategically distributing genotypes across environments
and utilizing genomic predictions, breeders can gain deeper insights into how genotypes
respond to environmental variation, ultimately refining breeding strategies and ensuring
the development of varieties that are not only high yielding but also resilient to stress.

In plant breeding, evaluating a larger number of lines across more environments
is financially costly due to the extensive field testing required [4,5]. Additionally, it is
highly challenging to ensure consistent high quality and homogeneous precision across all
measurements in every trial. To address this challenge, sparse testing strategies have been
proposed [1–3]. These strategies involve evaluating some cultivars in certain environments
but not in others, enabling testing across a broader range of environments in early-stage
yield trials without significantly increasing phenotyping costs. By evaluating only a fraction
of lines in each environment, sparse testing effectively increases the number of lines tested
across diverse environments and the number of testing environments, thereby allowing for
greater selection intensity [2,3,6,7].

When using only phenotypic data to estimate breeding values, the predictions are
based solely on observed traits. This method can miss a lot of genetic information, especially
for traits with complex inheritance patterns. Traditional models may not fully capture the
additive genetic variance because they lack direct genomic information. By incorporating
genomic data, the Genomic Estimate Breeding Values (GEBVs) obtained from the Genomic
Best Linear Unbiased Predictor (GBLUP) can capture the effects of specific genetic variants
(markers) across the genome. This allows the model to more accurately estimate the
true genetic potential of every line, even if some environmental factors or random noise
influence the observed phenotypes. GEBVs capture a larger proportion of the additive
genetic variance by using dense marker data [8], leading to more accurate selection of
individuals with desirable genetic traits. Genomic data allows for better predictions across
the population, even for individuals that are distantly related or unrelated to those with
phenotypic records, because the model is based on genetic similarity. GEBVs allow for
earlier and more accurate selection of breeding candidates because the predictions are
based on their genetic potential, even before phenotypic traits are fully expressed. Using
GEBVs, combined with phenotypic data and genomic markers, provides a more precise and
reliable estimate of an individual’s breeding value. This leads to better decision-making in
parental selection, improving the efficiency and success of breeding programs.

In sparse testing strategies, one common scenario involves predicting the performance
of certain lines that are missing in specific environments while other lines are predicted
in others. Montesinos-Lopez et al. [3] and Burgueño et al. [6] addressed the challenge of
sparse testing by missing data in multi-environment trials where the idea was to leverage
available data from tested lines and environments to predict the performance of untested
lines in environments where their data is absent. This method is particularly valuable in
plant breeding, where practical constraints often prevent the evaluation of all lines in all en-
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vironments. However, when evaluating the performance of lines in the TPEs where all lines
have been observed at least once across the environments within a specific TPE, the focus
shifts. In this situation, the objective is not to predict the performance of unobserved lines
in a specific environment, but rather to estimate their overall performance across the TPE.
Here, the goal is to adjust the observed phenotypes of the lines by accounting for genomic
effects across all environments. By computing the Genomic Estimated Breeding Values
(GEBVs) within the previous framework, the impact of genomic factors on phenotypic
expression can be quantified, leading to more accurate breeding decisions and enhancing
the overall efficiency of the breeding program.

In this paper, we evaluate the estimation capacity of sparse testing methodology
using a real data set from South Asian TPEs, which included 25 site/year combinations.
This assessment was conducted under the scenario where some lines were considered
missing in some environments but present in others. We tested various methods (different
structures of the variance-covariance matrix of environmental effects) for estimating the
overall performance of the lines across TPEs, including approaches that predict missing
values for each line in each environment before performing the overall adjustment, as well
as methods where the overall adjustment is performed directly.

2. Results

The results are given in four sections. Sections 2.1–2.3 present the results for data sets
TPE_1_2021_2022, TPE_2_2021_2022, and TPE_3_2022_2023, while Section 2.4 provides
the results across data sets. Finally, Appendices B and C provide the results for data sets
TPE_1_2022_2023, TPE_2_2022_2023, and TPE_3_2021_2022. The results are provided in
terms of Pearson’s correlation (COR), Normalized Root Mean Square Error (NRMSE), and
the Percentage of Matching in the top 10% (PM_10) and top 20% (PM_20) of lines for each
data set and across data sets. The selection of which data sets results were assigned to the
Appendix is random, that is, without any criteria.

2.1. TPE_1_2021_2022

Figure 1 presents the results for the TPE_1_2021_2022 data set under a compara-
tive analysis of the models GBLUP, GBLUP_CE, GBLUP_CE_Abs, GBLUP_CE_mean,
GBLUP_CE_Res, and GBLUP_TRN in terms of their predictive efficiency measured by Pear-
son’s correlation (COR), Normalized Root Mean Square Error (NRMSE), and Percentage of
Matching (PM). For more details, see Table A1 in Appendix A.

The Pearson’s correlation computed between observed and predicted values (Figure 1A)
shows that the GBLUP_TRN model is the most effective for both the IBD and Random
metrics. For the COR metric, the models based on IBD and Random data exhibit different
levels of efficiency. In the case of IBD, the GBLUP_TRN model demonstrates the best
predictive efficiency with an average of 0.852 and a positive RE compared to the other
models, with variation in IBD between 0.323% and 3.188%, with GBLUP_CE being the
worst-performing model and GBLUP the second-best. On the other hand, for Random data,
GBLUP_TRN also showed the best performance with an average of 0.868 and a positive
RE, with variation between 7.422% and 10.547%, with GBLUP_CE_Abs being the worst,
showing a higher RE than the training model at 10.547%.

Regarding the NRMSE metric (Figure 1B), the results show that for data based on IBD,
the GBLUP_TRN model has the lowest average (0.555). Compared to the other models, it
shows an RE ranging from 10.170% to 23.602%, with GBLUP as the best alternative (with
an average of 0.612 and an RE of 10.17%) and GBLUP_CE_Abs as the worst model (with an
average of 0.686 and an RE of 23.602%). For Random data, GBLUP_TRN also leads with an
average of 0.507. The other models have REs between 23.757% and 38.149%, with GBLUP
as the best alternative (RE of 23.757%).
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Figure 1. Comparative Performance of genomic prediction models in terms of Pearson´s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (C), and top 20% (PM_20) (D) for TPE_1_2021_2022, using Incomplete Block Design Cross-
Validation and Random Cross-Validation.

The Percentage of Matching “lines/genotypes” (Figure 1C) in the top 10% (PM_10)
shows that, for data based on IBD, the GBLUP model has the best predictive efficiency with
an average of 65.758% and the GBLUP_TRN model as the second-best with an average of
65.152%. Regarding the Relative Efficiency (RE) of GBLUP_TRN, it is mostly positive except
for the conventional model, where they present an RE between −0.922% and 8.586%, with
GBLUP_CE as the worst model (with an RE of TRN of 8.586%). For data using Random
Cross-Validation, GBLUP_TRN is the best model with an average of 67.879 and a positive
RE compared to the other models, which show REs between 5.164% and 8.213%, with
GBLUP_CE_mean as the best alternative (RE of 5.164%).

In the PM_20 metric (Figure 1D), for data based on IBD, the GBLUP_TRN model has
the best average (70.909%) and an RE compared to the other models ranging from 0.429%
to 7.834%, with GBLUP being the best model only after GBLUP_TRN (RE of 0.429%). For
Random data, GBLUP_TRN maintains the best predictive efficiency with an average of
72.424%, with an RE ranging from 3.913% to 16.870%. It is important to point out that
even the GBLUP_TRN was the best in the four metrics not in all cases was better than the
other methods.

2.2. TPE_2_2021_2022

The results for the models evaluated on the TPE_2_2021_2022 data set (Figure 2) also
were evaluated with the same metrics: Pearson’s correlation (COR), Normalized Root Mean
Square Error (NRMSE), and Percentage of Matching (PM) for the top 10% (PM_10) and top
20% (PM_20). For more details, see Table A2 in Appendix A.
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For the Pearson´s correlation metric between observed and predicted values in the
testing sets (Figure 2A), the GBLUP_TRN model on IBD data presents the highest mean
(0.843) and the low variability (Sd = 0.020). The GBLUP_TRN model on Random data shows
a little better performance (mean = 0.862, Sd = 0.019). In contrast, the GBLUP_CE_Abs
model applied to Random data has a lower mean (0.700) and higher variability (Sd = 0.065),
reflecting greater uncertainty and lower performance. The RE calculated for training
relative to the other models (IBD and Random) is positive, ranging from 0.373% to 23.122%,
with larger efficiencies obtained using Random CV (from 7.380% to 23.122%).

Regarding the NRMSE metric (Figure 2B), the GBLUP_TRN model on IBD data again
stands out with the lowest mean (0.544) and a moderate standard deviation (Sd = 0.035).
The GBLUP_CE_Abs model applied to Random data presents the highest mean value
(0.738) and a standard deviation of 0.047, suggesting poorer performance in terms of
prediction error. The RE of GBLUP_TRN (IBD-Random) ranges from 1.103% to 42.885%.

For the PM_10 metric (Figure 2C), which refers to the Percentage of Matching of the
selected top 10% lines under the prediction model with those that are truly the best lines
(BLUEs values), the models show significant variations. The GBLUP_TRN model applied
to IBD data has the highest mean (56.364) with a standard deviation of 7.719, indicating
better performance in selecting the top lines. In contrast, the GBLUP_CE_Abs model
applied to Random data has the lowest mean (34.212) with a standard deviation of 13.480,
indicating inferior performance in selecting the top lines. The RE of the TRN model is
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positive in most cases (0.541% to 75.728%), except for the conventional model with Random
CV (RE = −1.630%).

In terms of the PM_20 metric (Figure 2D), which refers to the Percentage of Matching
of the selected top 20% lines under the prediction model with those that are truly the best
lines, the GBLUP_TRN model on IBD data again stands out with a mean of 69.091% and
a standard deviation of 6.821. The GBLUP_CE model applied to Random data presents
a slightly lower mean (55.758) with a standard deviation of 8.323. As with the previous
metric, the RE of the TRN model is positive in most cases (1.333% to 20.00%), except for the
conventional model with Random CV (RE = −3.104%).

Overall, the GBLUP_TRN model on IBD data consistently demonstrates better per-
formance in terms of correlation, NRMSE, and Percentage of Matching. The GBLUP_CE
model, especially when applied to Random data, tends to show inferior performance and
higher variability across all evaluated metrics. However, while GBLUP_TRN performed
best across all four metrics, it was not always statistically superior to the other methods.

2.3. TPE_3_2022_2023

This section presents the results of the genomic prediction models evaluated on the
TPE_3_2022_2023 data, considering the same metrics as before. For more details, see
Table A3 in Appendix A.

In terms of COR (Figure 3A), the GBLUP_TRN model showed the best performance
on IBD data, with a mean of 0.859 and low variability (Sd = 0.016), followed by GBLUP,
which also performed well with a mean of 0.822 and even low variability (Sd = 0.019). In
comparison, models with Random Cross-Validation showed higher variability, with the
GBLUP_TRN model achieving a mean of 0.865 and a standard deviation of 0.026.

For the NRMSE (Figure 3B), the GBLUP_TRN model also led with a mean of 0.561 on
IBD and a standard deviation of 0.028, showing higher precision compared to the other
models. The second-best GBLUP model had a mean of 0.576 on IBD, with a standard
deviation of 0.026. In Random Cross-Validation, the models also showed higher variability,
with GBLUP_TRN achieving a mean of 0.539 and a standard deviation of 0.051.

Regarding the Percentage of Matching (Figure 3C) for the top 10% best performance
lines, the GBLUP_TRN model with IBD showed outstanding results with a mean of 57.083%
and a standard deviation of 11.120. Furthermore, it showed positive REs compared to the
other models, which show REs between 7.874% and 25.688%. The second-best GBLUP
model achieved a mean of 52.917% on IBD, with a standard deviation of 12.274. In Random
Cross-Validation, GBLUP_TRN achieved a mean of 67.083 with a standard deviation of
13.672, showing consistent results with its performance in IBD.

For the Percentage of Matching (Figure 3D) for the top 20% best performance lines,
the GBLUP_TRN model on IBD obtained a mean of 72.857 and a standard deviation of
4.308, maintaining its position as the best model. Furthermore, it showed positive REs
compared to the other models, which show REs between 12.975% and 22.260%. In Random
Cross-Validation, GBLUP_TRN obtained a mean of 69.796 and a standard deviation of
6.857, similar to its performance in IBD.

Overall, the GBLUP_TRN model consistently showed the best performance in terms
of COR, NRMSE, and PM in both IBD and Random Cross-Validation, standing out as the
most robust and precise model in predicting the best lines. Although GBLUP_TRN showed
the best performance across all four metrics, it was not consistently statistically better than
the other methods.
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Figure 3. Comparative Performance of genomic prediction models in terms of Pearson´s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (C), and top 20% (PM_20) (D) for TPE_3_2022_2023, using Incomplete Block Design Cross-
Validation and Random Cross-Validation.

2.4. Across Data

In this section, the analysis of the results presented across data sets is given under the
same model and metrics as before. For more details, see Table A4 in Appendix A.

In terms of the COR metric (Figure 4A), the GBLUP_TRN model demonstrates the
highest predictive efficiency with a mean value of 0.846 for the IBD Cross-Validation
method and 0.838 for the Random Cross-Validation method. Other models within the
IBD method have REs ranging from 3.234% to 8.353%, while in the Random method, the
REs range from 4.538% to 10.748%. This suggests that although other models also have
considerable predictive capability, GBLUP_TRN remains the most efficient.

In terms of the NRMSE metric (Figure 4B), GBLUP_TRN also stands out with the
lowest mean values (0.584 for IBD and 0.585 for Random), indicating the smallest prediction
error and, therefore, the highest prediction accuracy. The REs for other models in IBD
range from 2.138% to 19.113%, while in Random, the values fluctuate between 5.335% and
22.390%. This greater range of RE in Random suggests higher variability in the predictive
efficiency of the models evaluated under this method.
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For the PM_10 metric (Figure 4C), the GBLUP_TRN model shows a mean of 57.311%
in IBD and 55.970% in Random, outstanding the other models in both methods. Other
models in IBD show an RE between 3.462% and 18.283%, while in Random, the REs range
between 2.546% and 15.603%. This implies that, although there are alternative models that
can predict effectively, GBLUP_TRN remains the standard in terms of predictive efficiency.

For the PM_20 metric (Figure 4D), GBLUP_TRN has the highest means with 67.715%
for IBD and 65.336% for Random, once again surpassing the other models in both methods.
The REs for other models in IBD vary between 5.696% and 13.683%, while in Random,
the values fluctuate between 3.038% and 10.982%. Again, this indicates that despite the
competition, GBLUP_TRN maintains superior predictive efficiency.

Across data, the GBLUP_TRN model consistently stands out as the model with the
best predictive capability in all metrics and data types, following almost the same behavior
shown in each of the data sets. Other models exhibit variations in their relative efficiency,
but none surpass GBLUP_TRN. However, while GBLUP_TRN outperformed across all four
metrics, it was not consistently statistically superior to the other methods.

3. Discussion

Sparse testing combined with genomic information is gaining significant attention due
to its potential to maximize efficiency and reduce costs in plant breeding programs [2,6,7,9].
Traditional methods, which require testing every genotype in all environments, are often
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prohibitively expensive and time-consuming. Sparse testing, by contrast, allows breeders
to strategically evaluate only a subset of genotypes across different environments, thereby
expanding the number of environments covered without escalating the costs of field trials.
This approach not only preserves the statistical power necessary for accurate predictions
but also enhances the ability to model genotype-by-environment interactions, which are
crucial for identifying stable and high-performing genotypes. Moreover, in the context of
genomic selection, sparse testing leverages advanced computational models to fill in the
gaps left by untested genotypes, enabling predictions that are nearly as accurate as those
obtained from more exhaustive testing. This combination of cost-effectiveness, improved
resource allocation, and robust predictive performance makes sparse testing an attractive
strategy for advancing crop improvement efforts.

When sparse testing ensures that each line is evaluated in at least one environment,
the use of the genomic information for estimation and selecting the best candidate lines
across locations can be computed directly from the measured data. Nonetheless, it is
reasonable to assume that incorporating genomic selection methodology could enhance
the selection process. By estimating the GEBV for each line, the selection process can utilize
both observed and genomic information, potentially leading to more accurate decisions.
Therefore, in this paper, we compare the selection process of candidate lines relying solely
on GEBV calculated from observed and genomic data

Across the four evaluation metrics—COR, NRMSE, PM_10, and PM_20—the GBLUP_
TRN model, which computes GBLUPs using genomic information without employing
the prediction methodology, consistently demonstrates superior predictive performance
compared to models that incorporate genomic prediction methodology (GBLUP_CE,
GBLUP_CE_Abs, GBLUP_CE_mean, and GBLUP_CE_Res). All six methods used genomic
information, but only the first five involved prediction. The GBLUP_TRN method adjusted
phenotypic values without predicting missing lines in some environments, while the other
models used genomic data to predict missing values. For the COR metric, GBLUP_TRN
significantly outperforms the other models, with gains ranging from 3.897% to 11.551%.
Similarly, in the NRMSE metric, GBLUP_TRN shows notable gains, ranging between 2.229%
and 20.628%. Also, across data sets for the PM_10 metric, it leads with gains of 4.467%
to 19.582%, and for the PM_20 metric, it excels again with gains ranging from 3.765% to
15.049%. These results collectively highlight GBLUP_TRN as the most efficient and reliable
model across all metrics and Cross-Validation methods.

Our best results achieved a COR of 0.844, an NRMSE of 0.596, a PM_10 of 56.692%,
and a PM_20 of 67.561% using a model trained with 50% of the data and predicting the
remaining 50%. These results are highly promising, as they demonstrate that we can reduce
plot costs by 50% while incurring only a modest loss of approximately 15.6% in terms of
COR, 43.308% in capturing the top 10% of the best lines, and 32.439% in capturing the top
20% of the best lines.

Although multi-trait prediction models may appear theoretical, they are grounded in
substantial empirical research that highlights the utility of shared genetic, environmental,
or phenotypic correlations among traits. In our study, the model is applied to real field trial
data from a single year, but it involved data collected from 11 different sites, providing
a solid foundation for the results. Importantly, the parameter estimation considers both
the mean and the variance of the traits, ensuring a comprehensive analysis. It is crucial to
underscore that all the data used were derived from field trials, ensuring that the relevance
of the multi-trait model is firmly anchored in real-world conditions. This already validates
the practical applicability of our approach. Furthermore, the model’s predictions have
been tested with actual phenotypic data collected across diverse environments, enhancing
confidence in its use for breeding programs.

Among the two Cross-Validation strategies used across the five methods that employed
the GS methodology, the IBD Cross-Validation showed slightly better performance. It
produced similar mean predicted values but with significantly less variability. This finding
is consistent with previous reports by Montesinos-López et al. (2023). The superiority of
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IBD over the Random allocation of lines can be attributed to its use of a combinatorial
algorithm that ensures minimal prediction error during the estimation process. However,
the advantage of the IBD method may be limited to smaller data sets, such as those used in
this study. Therefore, further research is needed to determine whether this benefit extends
to larger data sets.

Finally, our results support the adoption of sparse testing combined with genomic
information, as it can significantly reduce costs without substantially sacrificing accuracy.
Additionally, the findings for these particular data sets show that when sparse testing
guarantees at least one replication per line, the prediction of missing values before the
estimation of GEBV across locations does not represent a significant advantage, since the
across locations GEBVs can be effectively estimated directly through the Genomic Best
Linear Unbiased Predictor (GBLUP) using observed phenotypic and marker data. In such
cases, the selection process can be efficiently carried out by directly computing GBLUPs.
However, when sparse testing involves many unobserved cultivars across environments,
genomic prediction methodology becomes essential to enhance selection accuracy.

4. Materials and Methods
4.1. Data Sets

The experimental material consisted of 941 wheat new elite lines from CIMMYT,
including four checks (NADI, KABILU, NAINA, NINGA) and one local check (Table 1).
The genotypes in the data set were evaluated for grain yield (GY) over two crop seasons
and across three target populations of environments (TPEs). Of the total genotypes, 444
were tested during the 2021–2022 growing season, while the remaining 497 were evaluated
in 2022–2023. In the 2021–2022 season, the genotypes were distributed as follows: 166 in
TPE1 (across four locations), 165 in TPE2 (across five locations), and 112 in TPE3 (across
two locations). In the 2022–2023 season, 166 genotypes were planted in each of TPE1
(four locations), TPE2 (four locations), and TPE3 (three locations). At each location, the
genotypes were planted using an alpha lattice design with two replications. The use of this
experimental design with this number of replications had been used for saving costs and
for a reasonable parameter estimation, which had provided reasonable results for CIMMYT
breeding programs.

Table 1. Description of the wheat data sets. MAF denotes the Minor Allele Frequency, and PMV
denotes the threshold of Percentage of Missing Values.

No. Data Lines Markers Env MAF PMV

1 TPE_1_2021_2022 166 18238 4 0.05 50%

2 TPE_1_2022_2023 166 18238 6 0.05 50%

3 TPE_2_2021_2022 166 18238 4 0.05 50%

4 TPE_2_2022_2023 165 18238 6 0.05 50%

5 TPE_3_2021_2022 112 18238 2 0.05 50%

6 TPE_3_2022_2023 166 18238 3 0.05 50%

4.2. Bayesian GBLUP Model

The multi-environment GBLUP model implemented was:

Yij = µ + Li + gj + gLij + ϵij (1)

where Yij is the BLUE of each ith line at every jth environment, µ is the grand mean,
Li, i = 1, . . . , I, are the Random effects of locations, distributed as L = (L1, . . . , LI)

T ∼
NJ

(
0, σ2

EΩE
)
, where ΩE denotes the covariance relationship matrix of environments, and

σ2
E denotes the variance component of environments. In addition, gj, j = 1, . . . , J, are the

Random effects of lines, gLij are the Random effects of location-line interaction, and ϵij
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are Random error components in the model assumed to be independent normal Random
variables with mean 0 and variance σ2. Furthermore, it is assumed that g =

(
g1, . . . , gJ

)T ∼
NJ

(
0, σ2

gG
)

, where G is the genomic relationship-matrix [10], and σ2
g denotes the genetic

variance component; gL =
(

gL11, . . . , gL1J , . . . , gLI J
)T ∼ NI J

(
0, σ2

gL

(
ZgGZT

g
◦ZEΩEZT

E

))
,

Zg denotes the incidence matrix for the vector of additive genetic effects, σ2
gL denotes

the variance component of the genotype by environment interaction and ◦ denotes the
Hadamard product, and ZE represents the incidence matrix for the effects of environments
(i.e., the matrix that connects the phenotypes with environments). The implementation of
this model was done in the BGLR library [11]. Finally, ϵij corresponds to the residual error
assuming ϵij ∼ NJ

(
0, σ2

ϵ

)
, where σ2

ϵ is the error variance.
Therefore, with small differences in the Equation (1) we end up implementing six

methods, which are the following:
GBLUP: this method uses an identity matrix for the covariance relationship matrix

between environments, that is, ΩE = II.
GBLUP_CE: this method uses an unstructured covariance relationship matrix between

environments, but this was estimated in a first stage using also the BGLR package but
with the Multitrait() function. More explicitly, the unstructured covariance matrix was
implemented with the following R code:

fmUN < −Multitrait(y = Y, ETA = list(Lines = list(K = G, model = “RKHS”, Cov = list(type = “UN”, df0 = 5,
S0 = diag(No_Env))) , nIter = 20000, burnIn = 10000, verbose = FALSE),

In this fitting process, the Y matrix contained in each column the information of each
environment. Also, those positions in the testing set in the Y matrix were filled with missing
values, “NA”. G denotes the genomic relationship matrix computed as explained before,
RKHS denotes the reproducing kernel Hilber spaces model, in type was specified “UN,”
which denotes that it was implemented an unstructured covariance matrix, df0 denotes a
hyperameter that denotes the prior degrees of freedom, S0 denotes a prior scale matrix, this
is a diagonal matrix of dimension the number of environments (No_Env), nIter denotes
the number of iterations used in the training process, and burnIn denotes the number
of iterations that are discarded for estimation of the parameters. After this first training
process, the genetic and residual covariance matrices of environments were extracted as:

Cov_Env = fmUN$ETA$Lines$Cov$Omega

Res_Cov_Env = fmUN$resCov$R

Finally, this GBLUP_CE method was implemented as the GBLUP method but using in
ΩE = Cov_Env.

GBLUP_CE_Abs: this method uses an unstructured covariance relationship matrix
with absolute values for the genetic covariances between environments. That is, this was
implemented as the GBLUP method but using in ΩE = abs(CovEnv), whre abs denotes the
absolute values of each component of the Cov_Env matrix.

GBLUP_CE_mean: this method uses an unstructured covariance relationship matrix
for the genetic covariance between environments. This is composed as the addition of the
genetic and residual covariances divided by 2. That is, this method was implemented as
the GBLUP method but using ΩE = 0.5 ∗ CovEnv + 0.5 ∗ Res_Cov_Env.

GBLUP_CE_Res: this method uses an unstructured covariance relationship ma-
trix for the genetic covariance between environments, and it is composed of a residual
covariance. That is, this method was implemented as the GBLUP method but using
ΩE = Res_Cov_Env.

GBLUP_TRN: this method uses the repeated lines in some environments to compute
the genomic estimate breeding value (GEBV) of the cultivars by adjusting the phenotype
of the observed cultivars using genomic information. For this reason, we did not apply
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the prediction methodology in this approach. Instead, we computed the GEBVs using the
observed data, and the model is provided in Equation (1).

When using the above six methods, it is useful to define: (1) GBLUP: linear mixed
model where the relationship matrix is the genomic relationship matrix, which is derived
from molecular markers (Single Nucleotide Polymorphisms, SNPs). This allows for the
inclusion of genomic information in the estimation of breeding values; (2) GEBV: The
outcome of the GBLUP model is the GEBV, which represents the estimated breeding value
of an individual based on its genetic makeup, as inferred from the marker data. These
GEBVs represent the genetic potential of individuals, helping breeders make more informed
selection decisions.

It is important to note that all six methods utilized genomic information, but only the
first five employed a prediction methodology. The last method, GBLUP_TRN, used genomic
information but did not predict missing values for lines in certain environments. Instead,
GBLUP_TRN adjusted the phenotypic values using genomic data without specifically
predicting missing values. In contrast, the other models used genomic information to
predict each missing value individually. Also, it is important to point out that model
(1) was implemented for each year separately. For this reason, we are not making any
assumptions about the similarity of years.

4.3. Allocation of Lines to Environments

Under both allocation methods, balanced incomplete block design (IBD) and Random,
we use the following notation: J represents the number of lines (treatments), k represents
the environment (location or block) size, I represents the number of environments, and
r represents the number of replicates of line j in the entire design. In IBD, k will be less
than J, meaning you cannot assign all treatments in each environment. Ensuring an equal
number of replications is crucial for minimizing variance in pairwise comparisons. Thus,
with ri = r for all treatments, the total number of observations in the experiment N is given
by: N = J·r = b·k.

4.3.1. Allocation Under a Balanced Incomplete Block Design (IBD)

A balanced incomplete block design (IBD) is one where all pairs of treatments occur
together within a block an equal number of times (λ). Specifically, λjj denotes the number of
times treatment j occurs with j in an environment (block). To generate this sparse allocation
of lines to environments, we can use the function find.BIB() from the R package crossdes.

For example, Montesinos-López et al. [3] assume that we have J =12 treatments and
I = 4 environments, and we decide to use N_TRN = 36 (75%) of the total individuals in the
training set (TRN_set). The number of lines per environment can be obtained by solving
(kI = N_TRN) for k, which results in k = N_TRN/I. This gives us k = 36/4 = 9 treatments
per block. The corresponding elements for the training set can then be obtained with
the function find.BIB(12, 4, 9) from the crossdes package in R. The numbers used in the
function find.BIB() represent the treatments, the environments (blocks), and the lines per
environment, respectively. Finally, the lines that will be tested in the field (TRN set) are
shown in Table 2.

Table 2. Allocation of J = 12 lines to I = 4 environments under a BIB design. This allocation represents
the training set (75%), the size of the environment is equal to 9, and each line is repeated r = b(k)/J =
36/12 = three times.

Environments 1 2 3 4 5 6 7 8 9

Env1 L1 L3 L4 L5 L6 L7 L9 L11 L12

Env2 L1 L2 L3 L5 L7 L8 L9 L10 L11

Env3 L2 L3 L4 L5 L6 L8 L10 L11 L12

Env4 L1 L2 L4 L6 L7 L8 L9 L10 L12
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According to Table 2, each treatment is present in three blocks and missing in one
block. It is important to note that all the lines shown in Table 2 correspond to the training
set, while those not allocated in each environment constitute the testing set. For example,
in environment 1, the testing set includes treatments L2, L8, and L10; in environment 2, the
testing set comprises treatments L4, L6, and L12; in environment 3, the testing set consists
of treatments L1, L7, and L9; and in environment 4, the testing set includes treatments L3,
L5, and L11. It is also important to point out that the find.BIB() function does not always
guarantee a BIB design. When a full BIB design is not possible, it only guarantees a partially
BIB design.

4.3.2. Random Allocation (Random) of Lines to Environments

According to Montesinos-López et al. [3], starting from a balanced data set with
J genotypes (lines) and I environments (locations), the Random allocation of lines to
environments was performed so that each line is repeated in approximately r out of I
environments, and all environments are of the same size (k). The algorithm for this Random
allocation is as follows:

Step 1. Compute =
⌈

J×r
I

⌉
(the least integer greater than or equal to J×r

I ). Then,
randomly allocate k out of J lines to the first environment.

Step 2. Repeat this process for the second environment by randomly allocating k out
of J lines.

Step 3. Continue this process for each environment up to the Ith environment, with
the restriction that lines allocated to a particular environment are present in fewer than r
environments, ideally in exactly r environments. Lines that do not satisfy this restriction
are not candidates for allocation to that environment.

4.4. Cross-Validation Strategy

To evaluate the predictive performance, we used Cross-Validation with 10 Random
partitions. In each partition, 50% of the data was used for training and 50% for testing
but assuming that each line was observed in at least one environment. This means that,
for example, each particular line should be observed in two environments and missed in
the other two, assuming that the data set under evaluation contains four environments.
This type of cross validation belongs to simulating tested lines in tested environments,
as described with details in [12]. Then, using the observed and predicted values in each
testing set, the Normalized Root Mean Square Error (NRMSE), Pearson’s correlation (COR),
and the Percentage of Matching in the top 10% (PM_10) and top 20% (PM_20) of lines
across the 10 random partitions were computed. It is important to point out that in the
testing set the metrics of each random partition were computed, and what is reported as
prediction performance is the average of the 10 random partitions for each data set. These
metrics were used to assess prediction performance in each data set under study. While
focusing solely on COR may simplify the presentation, the use of four evaluation criteria
was intentional to provide a comprehensive assessment of the model’s performance. Each
metric offers a unique perspective, allowing for a more robust and nuanced understanding
of the results. Relying on just one criterion, such as COR, could overlook important aspects
of model behavior that other metrics, like NRMSE or PM_10/PM_20, help capture. Thus,
we believe that presenting multiple evaluation criteria adds depth and value to the analysis,
rather than unnecessary complexity.

For comparing the prediction performance between the GBLUP_TRN method and
the remaining methods in terms of COR, PM_10, and PM_20, we computed the relative
efficiency as:

RE =
Average per f ormance o f the GBLUP_TRN method

Average per f ormance o f any o f the other f ive methods
× 100

where RE denotes the relative efficiency of the GBLUP_TRN method with respect to any
other of the five methods. If the value of RE is greater than 100, then the GBLUP_TRN
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method is better than the other method in terms of COR, PM_10, or PM_20. While if the RE
is less than 100, the GBLUP_TRN method is less efficient (with more prediction error) than
the other method.

While in terms of NRMSE, the RE was computed as

RE =
Average per f ormance o f any o f the other f ive methods

Average per f ormance o f the GBLUP_TRN method
× 100

Again, if the value of RE is greater than 100, then the GBLUP_TRN method is better
than the other method in terms of NRMSE. While if the RE is less than 100, the GBLUP_TRN
method is less efficient (with more prediction error) than the other method in terms
of NRMSE.

It is important to point out that the use of the RE for comparison methods was used
under both types of Cross-Validation, IBD and Random.

4.5. Genotypic Data

The genotypic data set consisted of approximately 18,000 SNP markers, generated
using the Genotyping-by-Sequencing (GBS) technique. The genotyping was performed on
an Illumina HiSeq2500 sequencer at Kansas State University. Stringent quality control was
carried out using TASSEL v5.0 software (https://tassel.bitbucket.io, 10 June 2023). During
the initial data curation, markers with a minor allele frequency (MAF) below 5% were
filtered out, and those with more than 50% missing data were excluded. The remaining
missing genotypes were imputed using samples from the marginal distribution of marker
genotypes, that is, xij ∼ Bernoulli

(
pj
)
, where pj is the estimated allele frequency computed

from the non-missing genotypes.

5. Conclusions

Our research supports the idea that sparse testing can maximize efficiency and reduce
costs in plant breeding programs. In sparse testing, we try to predict the genetic merit of
each line based on available data. In this scenario, where only a subset of lines is tested in
specific environments, the goal is to estimate the genetic performance of all genotypes across
all environments, rather than simply predicting missing values for those genotypes not
available in specific environments. This estimation allows breeders to adjust the observed
data, accounting for genetic effects captured by markers, and to make informed decisions
based on these adjusted phenotypes.

We have shown that the use of sparse testing combined with genomic information is
an efficient approach for selecting candidate lines for the next generation. In these cases,
candidate lines can be selected simply by computing the GBLUPs using the observed
data. Nonetheless, we recognize that there are several alternatives for allocating lines to
environments where many lines may not be present in all environments. In such scenarios,
the use of genomic prediction methodology becomes crucial. Therefore, we encourage
further research to design novel approaches to sparse testing that can enhance the efficiency
of plant breeding programs.
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Appendix A

Table A1. Comparative Performance of genomic prediction models in terms of Pearson´s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (C), and top 20% (PM_20) (D) for the TPE_1_2021_2022 data set under Incomplete Block
Design (IBD Cross-Validation and Random Cross-Validation.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

COR IBD GBLUP 0.825 0.849 0.845 0.875 0.017 0.323

COR IBD GBLUP_CE 0.742 0.825 0.840 0.869 0.044 3.188

COR IBD GBLUP_CE_Abs 0.729 0.829 0.830 0.873 0.041 2.759

COR IBD GBLUP_CE_mean 0.776 0.833 0.840 0.870 0.029 2.176

COR IBD GBLUP_CE_Res 0.812 0.842 0.842 0.879 0.022 1.085

COR IBD GBLUP_TRN 0.824 0.852 0.849 0.880 0.019 0.000

COR Random GBLUP 0.762 0.799 0.802 0.829 0.019 8.592

COR Random GBLUP_CE 0.739 0.789 0.797 0.818 0.025 9.898

COR Random GBLUP_CE_Abs 0.725 0.785 0.791 0.833 0.037 10.547

COR Random GBLUP_CE_mean 0.766 0.808 0.814 0.829 0.021 7.422

COR Random GBLUP_CE_Res 0.764 0.804 0.803 0.837 0.021 7.971

COR Random GBLUP_TRN 0.834 0.868 0.864 0.896 0.017 0.000

NRMSE IBD GBLUP 0.507 0.612 0.615 0.700 0.062 10.170

NRMSE IBD GBLUP_CE 0.546 0.670 0.676 0.741 0.060 20.681

NRMSE IBD GBLUP_CE_Abs 0.600 0.686 0.672 0.801 0.057 23.602

NRMSE IBD GBLUP_CE_mean 0.587 0.675 0.675 0.771 0.057 21.525

NRMSE IBD GBLUP_CE_Res 0.582 0.664 0.671 0.719 0.043 19.667

NRMSE IBD GBLUP_TRN 0.476 0.555 0.561 0.618 0.043 0.000

NRMSE Random GBLUP 0.564 0.627 0.628 0.679 0.038 23.757

NRMSE Random GBLUP_CE 0.649 0.681 0.667 0.738 0.034 34.315

NRMSE Random GBLUP_CE_Abs 0.615 0.700 0.702 0.776 0.045 38.149

NRMSE Random GBLUP_CE_mean 0.628 0.675 0.666 0.761 0.038 33.242

NRMSE Random GBLUP_CE_Res 0.604 0.664 0.659 0.724 0.031 31.017

NRMSE Random GBLUP_TRN 0.455 0.507 0.508 0.568 0.033 0.000

PM_10 IBD GBLUP 48.485 65.758 62.121 84.848 11.521 −0.922

PM_10 IBD GBLUP_CE 42.424 60.000 63.636 69.697 9.236 8.586

PM_10 IBD GBLUP_CE_Abs 36.364 60.909 60.606 84.848 13.282 6.965

PM_10 IBD GBLUP_CE_mean 36.364 60.303 62.121 78.788 11.014 8.040

PM_10 IBD GBLUP_CE_Res 48.485 63.333 65.152 78.788 8.505 2.871

PM_10 IBD GBLUP_TRN 42.424 65.152 63.636 84.848 12.392 0.000

PM_10 Random GBLUP 48.485 63.333 66.667 78.788 9.416 7.177

PM_10 Random GBLUP_CE 48.485 62.727 63.636 72.727 9.040 8.213

PM_10 Random GBLUP_CE_Abs 54.545 63.939 63.636 72.727 5.794 6.161
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Table A1. Cont.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

PM_10 Random GBLUP_CE_mean 54.545 64.545 63.636 75.758 7.831 5.164

PM_10 Random GBLUP_CE_Res 54.545 63.333 62.121 75.758 6.136 7.177

PM_10 Random GBLUP_TRN 48.485 67.879 69.697 78.788 8.713 0.000

PM_20 IBD GBLUP 63.636 70.606 69.697 84.848 6.235 0.429

PM_20 IBD GBLUP_CE 51.515 65.758 65.152 81.818 8.812 7.834

PM_20 IBD GBLUP_CE_Abs 48.485 66.667 66.667 78.788 9.367 6.364

PM_20 IBD GBLUP_CE_mean 57.576 66.970 66.667 78.788 6.136 5.882

PM_20 IBD GBLUP_CE_Res 57.576 66.970 65.152 81.818 7.619 5.882

PM_20 IBD GBLUP_TRN 63.636 70.909 69.697 84.848 6.731 0.000

PM_20 Random GBLUP 59.091 69.697 71.212 77.273 5.249 3.913

PM_20 Random GBLUP_CE 54.545 65.000 63.636 77.273 7.871 11.422

PM_20 Random GBLUP_CE_Abs 51.515 61.970 57.576 75.758 9.270 16.870

PM_20 Random GBLUP_CE_mean 56.061 67.576 67.424 75.758 5.449 7.175

PM_20 Random GBLUP_CE_Res 59.091 66.818 67.424 74.242 5.553 8.390

PM_20 Random GBLUP_TRN 60.606 72.424 74.242 78.788 5.430 0.000

Table A2. Comparative Performance of genomic prediction models in terms of Pearson´s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (C), and top 20% (PM_20) (D) for the TPE_2_2021_2022 data set under Incomplete Block
Design (IBD Cross-Validation and Random Cross-Validation.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

COR IBD GBLUP 0.812 0.839 0.835 0.885 0.019 0.373

COR IBD GBLUP_CE 0.722 0.780 0.780 0.858 0.040 8.067

COR IBD GBLUP_CE_Abs 0.687 0.763 0.759 0.823 0.044 10.373

COR IBD GBLUP_CE_mean 0.736 0.784 0.795 0.811 0.026 7.502

COR IBD GBLUP_CE_Res 0.755 0.787 0.778 0.829 0.027 7.094

COR IBD GBLUP_TRN 0.815 0.843 0.842 0.880 0.020 0.000

COR Random GBLUP 0.757 0.803 0.807 0.841 0.025 7.380

COR Random GBLUP_CE 0.607 0.714 0.721 0.777 0.056 20.780

COR Random GBLUP_CE_Abs 0.563 0.700 0.708 0.773 0.065 23.122

COR Random GBLUP_CE_mean 0.642 0.743 0.752 0.823 0.049 16.086

COR Random GBLUP_CE_Res 0.674 0.749 0.750 0.803 0.040 15.099

COR Random GBLUP_TRN 0.830 0.862 0.858 0.891 0.019 0.000

NRMSE IBD GBLUP 0.499 0.550 0.559 0.586 0.025 1.103

NRMSE IBD GBLUP_CE 0.626 0.670 0.669 0.721 0.028 23.294

NRMSE IBD GBLUP_CE_Abs 0.625 0.687 0.692 0.739 0.034 26.414

NRMSE IBD GBLUP_CE_mean 0.624 0.667 0.666 0.707 0.027 22.592

NRMSE IBD GBLUP_CE_Res 0.607 0.658 0.647 0.725 0.037 20.943

NRMSE IBD GBLUP_TRN 0.476 0.544 0.545 0.593 0.035 0.000

NRMSE Random GBLUP 0.541 0.604 0.599 0.659 0.035 16.982

NRMSE Random GBLUP_CE 0.684 0.729 0.728 0.801 0.040 41.120
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Table A2. Cont.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

NRMSE Random GBLUP_CE_Abs 0.682 0.738 0.730 0.828 0.047 42.885

NRMSE Random GBLUP_CE_mean 0.634 0.705 0.710 0.782 0.044 36.489

NRMSE Random GBLUP_CE_Res 0.640 0.695 0.706 0.763 0.039 34.585

NRMSE Random GBLUP_TRN 0.473 0.517 0.522 0.558 0.027 0.000

PM_10 IBD GBLUP 42.424 56.061 57.576 66.667 7.593 0.541

PM_10 IBD GBLUP_CE 24.242 44.848 43.939 60.606 11.935 25.676

PM_10 IBD GBLUP_CE_Abs 18.182 42.424 39.394 66.667 15.843 32.857

PM_10 IBD GBLUP_CE_mean 24.242 44.545 46.970 60.606 12.041 26.531

PM_10 IBD GBLUP_CE_Res 24.242 45.758 45.455 66.667 14.246 23.179

PM_10 IBD GBLUP_TRN 42.424 56.364 56.061 66.667 7.719 0.000

PM_10 Random GBLUP 45.455 55.758 53.030 69.697 7.850 −1.630

PM_10 Random GBLUP_CE 15.152 34.545 33.333 57.576 14.441 58.772

PM_10 Random GBLUP_CE_Abs 12.121 31.212 33.333 51.515 13.480 75.728

PM_10 Random GBLUP_CE_mean 24.242 38.182 37.879 57.576 10.222 43.651

PM_10 Random GBLUP_CE_Res 21.212 35.758 34.848 57.576 10.860 53.390

PM_10 Random GBLUP_TRN 48.485 54.848 53.030 69.697 7.752 0.000

PM_20 IBD GBLUP 57.576 68.182 68.182 78.788 5.578 1.333

PM_20 IBD GBLUP_CE 48.485 58.485 57.576 66.667 6.069 18.135

PM_20 IBD GBLUP_CE_Abs 48.485 57.576 56.061 63.636 5.151 20.000

PM_20 IBD GBLUP_CE_mean 54.545 61.515 60.606 69.697 5.354 12.315

PM_20 IBD GBLUP_CE_Res 48.485 61.818 62.121 69.697 6.420 11.765

PM_20 IBD GBLUP_TRN 57.576 69.091 66.667 81.818 6.821 0.000

PM_20 Random GBLUP 62.121 68.333 68.939 71.212 2.984 −3.104

PM_20 Random GBLUP_CE 42.424 55.758 55.303 68.182 8.323 18.750

PM_20 Random GBLUP_CE_Abs 37.879 55.909 56.818 66.667 9.753 18.428

PM_20 Random GBLUP_CE_mean 50.000 60.606 59.848 71.212 7.035 9.250

PM_20 Random GBLUP_CE_Res 53.030 60.909 59.848 71.212 5.569 8.706

PM_20 Random GBLUP_TRN 59.091 66.212 66.667 72.727 4.520 0.000

Table A3. Comparative Performance of genomic prediction models in terms of Pearson´s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (C), and top 20% (PM_20) (D) for the TPE_3_2022_2023 data set under Incomplete Block
Design (IBD Cross-Validation and Random Cross-Validation.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE(%)

COR IBD GBLUP 0.786 0.822 0.826 0.843 0.019 4.499

COR IBD GBLUP_CE 0.761 0.794 0.795 0.829 0.019 8.185

COR IBD GBLUP_CE_Abs 0.774 0.796 0.795 0.825 0.016 7.923

COR IBD GBLUP_CE_mean 0.777 0.801 0.804 0.831 0.016 7.260

COR IBD GBLUP_CE_Res 0.778 0.806 0.802 0.844 0.021 6.640

COR IBD GBLUP_TRN 0.842 0.859 0.855 0.890 0.016 0.000

COR Random GBLUP 0.762 0.821 0.830 0.867 0.034 5.468
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Table A3. Cont.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE(%)

COR Random GBLUP_CE 0.727 0.779 0.787 0.821 0.037 11.032

COR Random GBLUP_CE_Abs 0.727 0.788 0.799 0.831 0.035 9.795

COR Random GBLUP_CE_mean 0.732 0.790 0.800 0.841 0.036 9.563

COR Random GBLUP_CE_Res 0.739 0.792 0.812 0.835 0.040 9.274

COR Random GBLUP_TRN 0.815 0.865 0.873 0.903 0.026 0.000

NRMSE IBD GBLUP 0.547 0.576 0.571 0.633 0.026 2.696

NRMSE IBD GBLUP_CE 0.587 0.631 0.630 0.687 0.026 12.611

NRMSE IBD GBLUP_CE_Abs 0.595 0.628 0.623 0.685 0.025 11.961

NRMSE IBD GBLUP_CE_mean 0.570 0.619 0.621 0.668 0.027 10.478

NRMSE IBD GBLUP_CE_Res 0.554 0.608 0.602 0.667 0.031 8.463

NRMSE IBD GBLUP_TRN 0.519 0.561 0.563 0.607 0.028 0.000

NRMSE Random GBLUP 0.500 0.576 0.564 0.656 0.054 6.813

NRMSE Random GBLUP_CE 0.597 0.646 0.637 0.708 0.041 19.827

NRMSE Random GBLUP_CE_Abs 0.601 0.638 0.624 0.712 0.040 18.238

NRMSE Random GBLUP_CE_mean 0.589 0.633 0.615 0.705 0.041 17.446

NRMSE Random GBLUP_CE_Res 0.579 0.631 0.611 0.696 0.046 17.015

NRMSE Random GBLUP_TRN 0.449 0.539 0.540 0.602 0.051 0.000

PM_10 IBD GBLUP 29.167 52.917 58.333 70.833 12.274 7.874

PM_10 IBD GBLUP_CE 12.500 45.417 45.833 58.333 14.089 25.688

PM_10 IBD GBLUP_CE_Abs 25.000 46.250 47.917 62.500 11.189 23.423

PM_10 IBD GBLUP_CE_mean 16.667 47.083 50.000 58.333 12.888 21.239

PM_10 IBD GBLUP_CE_Res 20.833 50.000 52.083 66.667 14.027 14.167

PM_10 IBD GBLUP_TRN 41.667 57.083 58.333 70.833 11.120 0.000

PM_10 Random GBLUP 45.833 61.250 62.500 75.000 8.345 9.524

PM_10 Random GBLUP_CE 37.500 53.333 52.083 70.833 12.699 25.781

PM_10 Random GBLUP_CE_Abs 37.500 53.750 50.000 70.833 11.015 24.806

PM_10 Random GBLUP_CE_mean 33.333 52.917 54.167 79.167 15.472 26.772

PM_10 Random GBLUP_CE_Res 41.667 53.750 50.000 75.000 11.360 24.806

PM_10 Random GBLUP_TRN 41.667 67.083 68.750 87.500 13.672 0.000

PM_20 IBD GBLUP 53.061 64.490 64.286 75.510 7.212 12.975

PM_20 IBD GBLUP_CE 46.939 59.592 59.184 73.469 7.440 22.260

PM_20 IBD GBLUP_CE_Abs 55.102 61.020 59.184 77.551 7.034 19.398

PM_20 IBD GBLUP_CE_mean 51.020 61.224 60.204 75.510 7.390 19.000

PM_20 IBD GBLUP_CE_Res 53.061 63.469 65.306 73.469 7.034 14.791

PM_20 IBD GBLUP_TRN 63.265 72.857 73.469 77.551 4.308 0.000

PM_20 Random GBLUP 51.020 62.245 63.265 73.469 6.887 12.131

PM_20 Random GBLUP_CE 48.980 60.204 62.245 67.347 7.215 15.932

PM_20 Random GBLUP_CE_Abs 53.061 59.184 59.184 67.347 5.610 17.931

PM_20 Random GBLUP_CE_mean 53.061 59.184 57.143 67.347 5.181 17.931

PM_20 Random GBLUP_CE_Res 51.020 58.776 57.143 69.388 6.991 18.750

PM_20 Random GBLUP_TRN 59.184 69.796 69.388 79.592 6.857 0.000
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Table A4. Comparative Performance of genomic prediction models in terms of Pearson´s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (C), and top 20% (PM_20) (D) for the Across-data sets under Incomplete Block Design (IBD
Cross-Validation and Random Cross-Validation.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

COR IBD GBLUP 0.553 0.819 0.840 0.885 0.064 3.234

COR IBD GBLUP_CE 0.545 0.786 0.798 0.900 0.066 7.625

COR IBD GBLUP_CE_Abs 0.563 0.781 0.796 0.881 0.067 8.353

COR IBD GBLUP_CE_Res 0.557 0.795 0.809 0.894 0.062 6.341

COR IBD GBLUP_CE_mean 0.584 0.791 0.804 0.886 0.062 6.906

COR IBD GBLUP_TRN 0.723 0.846 0.849 0.890 0.028 0.000

COR Random GBLUP 0.574 0.802 0.812 0.873 0.054 4.538

COR Random GBLUP_CE 0.549 0.758 0.770 0.841 0.064 10.548

COR Random GBLUP_CE_Abs 0.517 0.757 0.773 0.844 0.072 10.748

COR Random GBLUP_CE_Res 0.589 0.777 0.798 0.854 0.058 7.893

COR Random GBLUP_CE_mean 0.583 0.773 0.788 0.857 0.061 8.470

COR Random GBLUP_TRN 0.594 0.838 0.858 0.904 0.067 0.000

NRMSE IBD GBLUP 0.480 0.597 0.567 0.873 0.093 2.138

NRMSE IBD GBLUP_CE 0.538 0.685 0.674 0.882 0.072 17.235

NRMSE IBD GBLUP_CE_Abs 0.570 0.696 0.687 0.881 0.071 19.113

NRMSE IBD GBLUP_CE_Res 0.517 0.674 0.664 0.942 0.079 15.271

NRMSE IBD GBLUP_CE_mean 0.541 0.681 0.678 0.824 0.068 16.618

NRMSE IBD GBLUP_TRN 0.467 0.584 0.551 1.090 0.113 0.000

NRMSE Random GBLUP 0.500 0.616 0.601 0.879 0.080 5.335

NRMSE Random GBLUP_CE 0.597 0.711 0.708 0.858 0.056 21.566

NRMSE Random GBLUP_CE_Abs 0.601 0.716 0.711 0.882 0.061 22.390

NRMSE Random GBLUP_CE_Res 0.572 0.689 0.684 0.909 0.065 17.804

NRMSE Random GBLUP_CE_mean 0.589 0.698 0.695 0.830 0.059 19.245

NRMSE Random GBLUP_TRN 0.428 0.585 0.530 1.014 0.156 0.000

PM_10 IBD GBLUP 9.091 55.393 57.576 84.848 12.836 3.462

PM_10 IBD GBLUP_CE 12.500 48.956 48.732 73.469 12.735 17.067

PM_10 IBD GBLUP_CE_Abs 9.091 48.453 48.485 84.848 14.124 18.283

PM_10 IBD GBLUP_CE_Res 18.182 51.463 54.545 78.788 13.780 11.365

PM_10 IBD GBLUP_CE_mean 16.667 48.828 48.980 78.788 13.503 17.373

PM_10 IBD GBLUP_TRN 27.273 57.311 57.955 84.848 10.870 0.000

PM_10 Random GBLUP 27.273 54.581 54.824 78.788 12.279 2.546

PM_10 Random GBLUP_CE 15.152 48.416 47.159 72.727 14.479 15.603

PM_10 Random GBLUP_CE_Abs 12.121 48.571 50.000 72.727 14.630 15.234

PM_10 Random GBLUP_CE_Res 18.182 49.453 50.510 75.758 13.908 13.179

PM_10 Random GBLUP_CE_mean 18.182 48.628 48.980 79.167 14.235 15.100

PM_10 Random GBLUP_TRN 9.091 55.970 54.545 87.500 14.294 0.000

PM_20 IBD GBLUP 22.727 64.066 66.667 84.848 10.220 5.696

PM_20 IBD GBLUP_CE 22.727 59.846 60.606 81.818 10.276 13.149
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Table A4. Cont.

METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

PM_20 IBD GBLUP_CE_Abs 22.727 59.565 60.606 78.788 10.733 13.683

PM_20 IBD GBLUP_CE_Res 31.818 61.310 63.636 81.818 9.749 10.448

PM_20 IBD GBLUP_CE_mean 27.273 60.405 60.915 78.788 10.281 12.102

PM_20 IBD GBLUP_TRN 40.909 67.715 67.929 84.848 8.298 0.000

PM_20 Random GBLUP 40.909 63.410 64.899 78.571 8.349 3.038

PM_20 Random GBLUP_CE 36.364 59.309 59.184 77.273 8.738 10.163

PM_20 Random GBLUP_CE_Abs 37.879 58.871 59.091 75.758 8.495 10.982

PM_20 Random GBLUP_CE_Res 40.909 60.861 60.606 74.242 7.140 7.353

PM_20 Random GBLUP_CE_mean 40.909 60.746 60.606 75.758 7.820 7.557

PM_20 Random GBLUP_TRN 40.909 65.336 67.007 79.592 8.849 0.000
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Figure A1. Comparative Performance of genomic prediction models in terms of Pearson’s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (C), and top 20% (PM_20) (D) for the TPE_1_2022_2023 data set under Incomplete Block
Design (IBD Cross-Validation and Random Cross-Validation.
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Table A5. Comparative performance of genomic prediction models in terms of Pearson�s correlation 
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10% 
(PM_10) (c), and top 20% (PM_20) (D) for TPE_1_2022_2023, TPE_2_2022_2023, and 
TPE_3_2021_2022 data sets under Incomplete Block Design (IBD Cross-Validation and Random 
Cross-Validation. 

DATA TPE METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%) 
1_2022_2023 COR IBD GBLUP 0.815 0.856 0.854 0.881 0.020 0.090 
1_2022_2023 COR IBD GBLUP_CE 0.763 0.831 0.825 0.900 0.042 3.053 
1_2022_2023 COR IBD GBLUP_CE_Abs 0.780 0.824 0.824 0.881 0.035 3.937 
1_2022_2023 COR IBD GBLUP_CE_mean 0.789 0.834 0.816 0.886 0.037 2.729 
1_2022_2023 COR IBD GBLUP_CE_Res 0.799 0.836 0.821 0.894 0.036 2.457 
1_2022_2023 COR IBD GBLUP_TRN 0.818 0.856 0.856 0.884 0.019 0.000 
1_2022_2023 COR Random GBLUP 0.796 0.829 0.835 0.848 0.019 2.808 
1_2022_2023 COR Random GBLUP_CE 0.711 0.793 0.813 0.841 0.044 7.475 
1_2022_2023 COR Random GBLUP_CE_Abs 0.717 0.796 0.809 0.844 0.046 6.971 
1_2022_2023 COR Random GBLUP_CE_mean 0.742 0.804 0.813 0.834 0.031 5.929 
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Appendix C

Table A5. Comparative performance of genomic prediction models in terms of Pearson´s correlation
(COR) (A), Normalized Root Mean Square Error (NRMSE) (B), Percentage of Matching in top 10%
(PM_10) (c), and top 20% (PM_20) (D) for TPE_1_2022_2023, TPE_2_2022_2023, and TPE_3_2021_2022
data sets under Incomplete Block Design (IBD Cross-Validation and Random Cross-Validation.

DATA TPE METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

1_2022_2023 COR IBD GBLUP 0.815 0.856 0.854 0.881 0.020 0.090

1_2022_2023 COR IBD GBLUP_CE 0.763 0.831 0.825 0.900 0.042 3.053

1_2022_2023 COR IBD GBLUP_CE_Abs 0.780 0.824 0.824 0.881 0.035 3.937

1_2022_2023 COR IBD GBLUP_CE_mean 0.789 0.834 0.816 0.886 0.037 2.729

1_2022_2023 COR IBD GBLUP_CE_Res 0.799 0.836 0.821 0.894 0.036 2.457

1_2022_2023 COR IBD GBLUP_TRN 0.818 0.856 0.856 0.884 0.019 0.000

1_2022_2023 COR Random GBLUP 0.796 0.829 0.835 0.848 0.019 2.808

1_2022_2023 COR Random GBLUP_CE 0.711 0.793 0.813 0.841 0.044 7.475

1_2022_2023 COR Random GBLUP_CE_Abs 0.717 0.796 0.809 0.844 0.046 6.971

1_2022_2023 COR Random GBLUP_CE_mean 0.742 0.804 0.813 0.834 0.031 5.929

1_2022_2023 COR Random GBLUP_CE_Res 0.751 0.814 0.814 0.846 0.029 4.641

1_2022_2023 COR Random GBLUP_TRN 0.823 0.852 0.851 0.884 0.017 0.000

1_2022_2023 NRMSE IBD GBLUP 0.480 0.534 0.536 0.622 0.047 1.620

1_2022_2023 NRMSE IBD GBLUP_CE 0.538 0.641 0.660 0.735 0.069 22.029

1_2022_2023 NRMSE IBD GBLUP_CE_Abs 0.570 0.668 0.669 0.764 0.061 27.138

1_2022_2023 NRMSE IBD GBLUP_CE_mean 0.541 0.642 0.650 0.730 0.062 22.126

1_2022_2023 NRMSE IBD GBLUP_CE_Res 0.517 0.629 0.651 0.743 0.071 19.691

1_2022_2023 NRMSE IBD GBLUP_TRN 0.467 0.526 0.518 0.586 0.036 0.000

1_2022_2023 NRMSE Random GBLUP 0.531 0.566 0.559 0.608 0.027 7.270

1_2022_2023 NRMSE Random GBLUP_CE 0.662 0.698 0.699 0.756 0.027 32.271
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Table A5. Cont.

DATA TPE METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

1_2022_2023 NRMSE Random GBLUP_CE_Abs 0.629 0.699 0.700 0.766 0.040 32.349

1_2022_2023 NRMSE Random GBLUP_CE_mean 0.614 0.674 0.675 0.727 0.038 27.727

1_2022_2023 NRMSE Random GBLUP_CE_Res 0.572 0.646 0.651 0.724 0.042 22.348

1_2022_2023 NRMSE Random GBLUP_TRN 0.467 0.528 0.535 0.568 0.029 0.000

1_2022_2023 PM_10 IBD GBLUP 55.102 61.020 61.224 73.469 5.965 −1.003

1_2022_2023 PM_10 IBD GBLUP_CE 42.857 55.306 56.122 73.469 9.448 9.225

1_2022_2023 PM_10 IBD GBLUP_CE_Abs 42.857 53.673 56.122 63.265 8.499 12.548

1_2022_2023 PM_10 IBD GBLUP_CE_mean 42.857 55.714 58.163 67.347 8.714 8.425

1_2022_2023 PM_10 IBD GBLUP_CE_Res 48.980 59.184 55.102 73.469 8.106 2.069

1_2022_2023 PM_10 IBD GBLUP_TRN 55.102 60.408 61.224 63.265 2.395 0.000

1_2022_2023 PM_10 Random GBLUP 38.776 58.367 59.184 69.388 8.616 −10.490

1_2022_2023 PM_10 Random GBLUP_CE 38.776 51.020 50.000 69.388 11.095 2.400

1_2022_2023 PM_10 Random GBLUP_CE_Abs 28.571 52.857 56.122 71.429 12.707 −1.158

1_2022_2023 PM_10 Random GBLUP_CE_mean 32.653 51.020 53.061 61.224 8.870 2.400

1_2022_2023 PM_10 Random GBLUP_CE_Res 40.816 55.918 57.143 71.429 8.507 −6.569

1_2022_2023 PM_10 Random GBLUP_TRN 40.816 52.245 48.980 67.347 10.371 0.000

1_2022_2023 PM_20 IBD GBLUP 60.606 67.576 69.697 72.727 4.959 1.345

1_2022_2023 PM_20 IBD GBLUP_CE 54.545 65.455 66.667 69.697 4.781 4.630

1_2022_2023 PM_20 IBD GBLUP_CE_Abs 48.485 62.424 62.121 72.727 6.577 9.709

1_2022_2023 PM_20 IBD GBLUP_CE_mean 54.545 63.333 63.636 69.697 4.391 8.134

1_2022_2023 PM_20 IBD GBLUP_CE_Res 51.515 63.030 63.636 72.727 5.496 8.654

1_2022_2023 PM_20 IBD GBLUP_TRN 60.606 68.485 69.697 78.788 5.190 0.000

1_2022_2023 PM_20 Random GBLUP 52.525 62.727 64.141 73.737 7.399 −0.644

1_2022_2023 PM_20 Random GBLUP_CE 53.535 59.899 61.111 68.687 5.174 4.047

1_2022_2023 PM_20 Random GBLUP_CE_Abs 49.495 58.485 58.586 67.677 6.032 6.563

1_2022_2023 PM_20 Random GBLUP_CE_mean 51.515 60.404 60.101 66.667 4.898 3.177

1_2022_2023 PM_20 Random GBLUP_CE_Res 55.556 61.818 62.121 72.727 5.710 0.817

1_2022_2023 PM_20 Random GBLUP_TRN 51.515 62.323 63.131 71.717 6.442 0.000

2_2022_2023 COR IBD GBLUP 0.826 0.853 0.853 0.879 0.017 −0.054

2_2022_2023 COR IBD GBLUP_CE 0.781 0.811 0.806 0.863 0.026 5.137

2_2022_2023 COR IBD GBLUP_CE_Abs 0.739 0.806 0.813 0.859 0.035 5.770

2_2022_2023 COR IBD GBLUP_CE_mean 0.787 0.817 0.821 0.857 0.025 4.361

2_2022_2023 COR IBD GBLUP_CE_Res 0.760 0.813 0.822 0.859 0.035 4.796

2_2022_2023 COR IBD GBLUP_TRN 0.821 0.852 0.854 0.879 0.017 0.000

2_2022_2023 COR Random GBLUP 0.809 0.844 0.847 0.873 0.020 3.416

2_2022_2023 COR Random GBLUP_CE 0.756 0.803 0.803 0.833 0.023 8.682

2_2022_2023 COR Random GBLUP_CE_Abs 0.766 0.810 0.814 0.838 0.023 7.748

2_2022_2023 COR Random GBLUP_CE_mean 0.755 0.812 0.814 0.857 0.030 7.541

2_2022_2023 COR Random GBLUP_CE_Res 0.785 0.816 0.814 0.854 0.023 7.041
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Table A5. Cont.

DATA TPE METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

2_2022_2023 COR Random GBLUP_TRN 0.847 0.873 0.867 0.904 0.020 0.000

2_2022_2023 NRMSE IBD GBLUP 0.481 0.547 0.529 0.631 0.053 2.124

2_2022_2023 NRMSE IBD GBLUP_CE 0.623 0.720 0.747 0.779 0.055 34.472

2_2022_2023 NRMSE IBD GBLUP_CE_Abs 0.629 0.724 0.730 0.813 0.064 35.132

2_2022_2023 NRMSE IBD GBLUP_CE_mean 0.623 0.713 0.716 0.782 0.051 33.050

2_2022_2023 NRMSE IBD GBLUP_CE_Res 0.620 0.702 0.704 0.783 0.054 31.088

2_2022_2023 NRMSE IBD GBLUP_TRN 0.476 0.536 0.535 0.595 0.038 0.000

2_2022_2023 NRMSE Random GBLUP 0.528 0.578 0.570 0.683 0.050 13.901

2_2022_2023 NRMSE Random GBLUP_CE 0.702 0.741 0.746 0.783 0.028 46.186

2_2022_2023 NRMSE Random GBLUP_CE_Abs 0.703 0.745 0.751 0.798 0.033 46.998

2_2022_2023 NRMSE Random GBLUP_CE_mean 0.682 0.737 0.752 0.782 0.034 45.376

2_2022_2023 NRMSE Random GBLUP_CE_Res 0.670 0.728 0.732 0.769 0.031 43.464

2_2022_2023 NRMSE Random GBLUP_TRN 0.428 0.507 0.508 0.582 0.051 0.000

2_2022_2023 PM_10 IBD GBLUP 42.857 53.878 53.061 73.469 9.187 −4.924

2_2022_2023 PM_10 IBD GBLUP_CE 38.776 48.163 45.918 65.306 7.587 6.356

2_2022_2023 PM_10 IBD GBLUP_CE_Abs 30.612 48.367 47.959 63.265 10.758 5.907

2_2022_2023 PM_10 IBD GBLUP_CE_mean 36.735 47.143 47.959 61.224 7.959 8.658

2_2022_2023 PM_10 IBD GBLUP_CE_Res 42.857 49.592 48.980 61.224 6.164 3.292

2_2022_2023 PM_10 IBD GBLUP_TRN 38.776 51.224 50.000 73.469 9.250 0.000

2_2022_2023 PM_10 Random GBLUP 30.612 48.776 47.959 69.388 10.861 8.368

2_2022_2023 PM_10 Random GBLUP_CE 28.571 47.959 46.939 63.265 11.312 10.213

2_2022_2023 PM_10 Random GBLUP_CE_Abs 32.653 46.939 48.980 61.224 11.137 12.609

2_2022_2023 PM_10 Random GBLUP_CE_mean 24.490 45.102 44.898 63.265 12.224 17.195

2_2022_2023 PM_10 Random GBLUP_CE_Res 28.571 47.959 48.980 61.224 10.680 10.213

2_2022_2023 PM_10 Random GBLUP_TRN 36.735 52.857 54.082 69.388 9.546 0.000

2_2022_2023 PM_20 IBD GBLUP 58.163 65.816 64.796 75.510 6.108 1.445

2_2022_2023 PM_20 IBD GBLUP_CE 48.980 63.878 68.878 72.449 8.807 4.524

2_2022_2023 PM_20 IBD GBLUP_CE_Abs 51.020 65.612 68.878 74.490 9.064 1.761

2_2022_2023 PM_20 IBD GBLUP_CE_mean 42.857 64.388 69.388 72.449 10.209 3.696

2_2022_2023 PM_20 IBD GBLUP_CE_Res 52.041 64.388 66.327 73.469 7.983 3.696

2_2022_2023 PM_20 IBD GBLUP_TRN 60.606 66.768 64.646 80.808 7.086 0.000

2_2022_2023 PM_20 Random GBLUP 52.041 63.367 64.796 78.571 8.296 7.438

2_2022_2023 PM_20 Random GBLUP_CE 55.102 64.082 61.735 73.469 6.679 6.241

2_2022_2023 PM_20 Random GBLUP_CE_Abs 58.163 65.408 65.816 73.469 6.131 4.086

2_2022_2023 PM_20 Random GBLUP_CE_mean 51.020 63.980 66.327 73.469 7.038 6.410

2_2022_2023 PM_20 Random GBLUP_CE_Res 57.143 62.755 63.265 69.388 4.935 8.486

2_2022_2023 PM_20 Random GBLUP_TRN 57.576 68.081 69.192 75.758 5.537 0.000

3_2021_2022 COR IBD GBLUP 0.553 0.697 0.710 0.777 0.067 16.619

3_2021_2022 COR IBD GBLUP_CE 0.545 0.674 0.681 0.765 0.061 20.506
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Table A5. Cont.

DATA TPE METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

3_2021_2022 COR IBD GBLUP_CE_Abs 0.563 0.666 0.668 0.762 0.050 22.112

3_2021_2022 COR IBD GBLUP_CE_mean 0.584 0.678 0.678 0.752 0.052 19.807

3_2021_2022 COR IBD GBLUP_CE_Res 0.557 0.688 0.690 0.771 0.060 18.106

3_2021_2022 COR IBD GBLUP_TRN 0.723 0.813 0.806 0.880 0.044 0.000

3_2021_2022 COR Random GBLUP 0.574 0.716 0.728 0.809 0.067 −0.909

3_2021_2022 COR Random GBLUP_CE 0.549 0.671 0.681 0.760 0.061 5.734

3_2021_2022 COR Random GBLUP_CE_Abs 0.517 0.662 0.669 0.750 0.065 7.245

3_2021_2022 COR Random GBLUP_CE_mean 0.583 0.681 0.671 0.774 0.060 4.249

3_2021_2022 COR Random GBLUP_CE_Res 0.589 0.687 0.692 0.764 0.054 3.223

3_2021_2022 COR Random GBLUP_TRN 0.594 0.710 0.725 0.785 0.069 0.000

3_2021_2022 NRMSE IBD GBLUP 0.627 0.763 0.736 0.873 0.077 −2.867

3_2021_2022 NRMSE IBD GBLUP_CE 0.645 0.777 0.781 0.882 0.069 −1.053

3_2021_2022 NRMSE IBD GBLUP_CE_Abs 0.650 0.783 0.783 0.881 0.066 −0.300

3_2021_2022 NRMSE IBD GBLUP_CE_mean 0.659 0.774 0.783 0.824 0.052 −1.490

3_2021_2022 NRMSE IBD GBLUP_CE_Res 0.642 0.780 0.768 0.942 0.086 −0.644

3_2021_2022 NRMSE IBD GBLUP_TRN 0.540 0.785 0.770 1.090 0.151 0.000

3_2021_2022 NRMSE Random GBLUP 0.617 0.747 0.748 0.879 0.087 −18.209

3_2021_2022 NRMSE Random GBLUP_CE 0.697 0.773 0.762 0.858 0.055 −15.380

3_2021_2022 NRMSE Random GBLUP_CE_Abs 0.708 0.778 0.776 0.882 0.050 −14.896

3_2021_2022 NRMSE Random GBLUP_CE_mean 0.661 0.762 0.773 0.830 0.054 −16.607

3_2021_2022 NRMSE Random GBLUP_CE_Res 0.691 0.773 0.757 0.909 0.065 −15.412

3_2021_2022 NRMSE Random GBLUP_TRN 0.774 0.914 0.924 1.014 0.082 0.000

3_2021_2022 PM_10 IBD GBLUP 9.091 42.727 45.455 63.636 16.625 25.532

3_2021_2022 PM_10 IBD GBLUP_CE 18.182 40.000 40.909 63.636 13.687 34.091

3_2021_2022 PM_10 IBD GBLUP_CE_Abs 9.091 39.091 45.455 63.636 14.876 37.209

3_2021_2022 PM_10 IBD GBLUP_CE_mean 18.182 38.182 36.364 63.636 16.487 40.476

3_2021_2022 PM_10 IBD GBLUP_CE_Res 18.182 40.909 36.364 63.636 16.735 31.111

3_2021_2022 PM_10 IBD GBLUP_TRN 27.273 53.636 54.545 81.818 14.501 0.000

3_2021_2022 PM_10 Random GBLUP 27.273 40.000 40.909 54.545 12.272 2.273

3_2021_2022 PM_10 Random GBLUP_CE 18.182 40.909 45.455 54.545 11.539 0.000

3_2021_2022 PM_10 Random GBLUP_CE_Abs 27.273 42.727 45.455 54.545 9.630 −4.255

3_2021_2022 PM_10 Random GBLUP_CE_mean 18.182 40.000 40.909 54.545 12.999 2.273

3_2021_2022 PM_10 Random GBLUP_CE_Res 18.182 40.000 36.364 63.636 14.342 2.273

3_2021_2022 PM_10 Random GBLUP_TRN 9.091 40.909 45.455 54.545 15.599 0.000

3_2021_2022 PM_20 IBD GBLUP 22.727 47.727 50.000 63.636 10.978 21.905

3_2021_2022 PM_20 IBD GBLUP_CE 22.727 45.909 45.455 59.091 10.595 26.733

3_2021_2022 PM_20 IBD GBLUP_CE_Abs 22.727 44.091 45.455 54.545 9.352 31.959

3_2021_2022 PM_20 IBD GBLUP_CE_mean 27.273 45.000 45.455 63.636 10.376 29.293

3_2021_2022 PM_20 IBD GBLUP_CE_Res 31.818 48.182 47.727 72.727 11.579 20.755

3_2021_2022 PM_20 IBD GBLUP_TRN 40.909 58.182 59.091 77.273 10.884 0.000
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Table A5. Cont.

DATA TPE METRIC CV MODEL MIN MEAN MEDIAN MAX SD RE (%)

3_2021_2022 PM_20 Random GBLUP 40.909 54.091 54.545 68.182 8.951 −1.681

3_2021_2022 PM_20 Random GBLUP_CE 36.364 50.909 50.000 68.182 9.535 4.464

3_2021_2022 PM_20 Random GBLUP_CE_Abs 40.909 52.273 50.000 68.182 8.368 1.739

3_2021_2022 PM_20 Random GBLUP_CE_mean 40.909 52.727 50.000 68.182 9.141 0.862

3_2021_2022 PM_20 Random GBLUP_CE_Res 40.909 54.091 54.545 68.182 8.145 −1.681

3_2021_2022 PM_20 Random GBLUP_TRN 40.909 53.182 50.000 68.182 9.104 0.000
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