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Os agonistas do receptor de GLP1 (GLP1-
RAs) são medicamentos que imitam os 
efeitos do hormônio incretínico GLP1. Eles 
foram inicialmente introduzidos na medicina 
para o tratamento do diabetes em 2005 e 
para a obesidade em 2014. Com o passar 
do tempo, dados provenientes de objetivos 
secundários e exploratórios de amplos 
ensaios clínicos randomizados sugeriram 
que os GLP1-RAs também poderiam 
exercer ação renal ao retardar a progressão 
da doença renal em pacientes com e sem 
diabetes. Com base nesse raciocínio, o 
estudo Flow (semaglutida 1 mg vs. placebo) 
foi desenhado e o recrutamento começou 
em 2019, estendendo-se até maio de 2021. 
Os resultados publicados recentemente 
confirmaram o efeito da semaglutida na 
redução do desfecho renal composto. 
No entanto, assim como os inibidores do 
SGLT2, os mecanismos potenciais por trás 
dos efeitos renais dos GLP1-RAs ainda 
precisam ser elucidados. O objetivo desta 
revisão é abordar os diferentes mecanismos 
fisiológicos dos GLP1-RAs em nível 
renal, utilizando evidências de estudos 
experimentais e da literatura científica atual.

Resumo

GLP1 receptor agonists (GLP1-RAs) 
are drugs that mimic the effects of 
the incretin hormone GLP1 and were 
initially introduced in medicine for the 
treatment of diabetes in 2005 and for 
obesity in 2014. Over time, data from 
secondary and exploratory objectives 
of large randomized controlled-trials 
suggested that GLP1-RAs could also 
exert renal action by slowing the 
progression of kidney disease in patients 
with and without diabetes. Based on 
this rationale, the Flow study (1 mg 
semaglutide vs placebo) was designed 
and recruitment began in 2019 until  
May 2021. The recently published  
results confirmed the effect of 
semaglutide in reducing the composite 
renal outcome. However, similar 
to SGLT2 inhibitors, the potential 
mechanisms behind the renal effects of 
GLP1-RAs still need to be elucidated. 
The aim of this review is to address 
the different physiological mechanisms 
of GLP1-RAs at the renal level, using 
evidence from experimental studies and 
current scientific literature.
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GLP1 Production and Secretion

Glucagon-Like Peptide 1 (GLP1) is a 
polypeptide composed of 30 amino acids 
that originates from post-translational 
processes of the proglucagon gene. 
Its formation requires amidation at 
the carboxyl end, facilitated by a 

peptide-convertase enzyme complex1,2. 
These processes of translation, amidation, 
and release primarily occur in L-type 
cells located in the gastrointestinal 
epithelium, particularly in the ileum and 
colon3. Amidation is crucial for GLP1, 
as it impacts metabolic and endocrine 
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functions, including the regulation of glucose, lipids, 
and gastric emptying4. In the 1980s, during studies 
on proglucagon genes, GLP1 was discovered and 
characterized. Initially considered inactive, further 
research revealed that post-translational amidation 
was essential for its activation. It was determined 
that the active and functional forms in the body are 
GLP1(7-37) and GLP1(7-36)-amide, detectable in the 
peripheral circulation2,5.

Physiological Effects of GLP1

GLP1 performs a variety of physiological functions 
that focus on glucose homeostasis, depending on the 
glycemic and nutritional status of patients6,7. In fasting 
conditions, the average concentration of GLP1(7-36)-
amide is 7.6 ± 1 pM. However, 90 minutes after eating, 
there is a significant increase, reaching 41.6 ± 5 pM. In 
contrast, GLP1(7-37) shows a more modest increase 
after eating, with concentrations of 6.6 ± 1 pM while 
fasting and 10 ± 1 pM after 90 minutes from food 
intake5.

The GLP1 receptor (GLP1R) consists of 463 
amino acids and includes eight hydrophobic domains. 
The key region of the GLP1(7-36)-amide peptide, 
responsible for its binding to the receptor, is located 
in amino acids 7 to 21. Notably, the amino acid at 
position 7 (histidine) at the N-terminal end of GLP1 
features an imidazole side chain and a free amino group. 
The imidazole side chain is crucial for the interaction 
with the GLP1R, while the free amino group is the 
site where the enzyme dipeptidyl peptidase-4 (DPP-4) 
carries out enzymatic inactivation2,8-10.

GLP1 exerts its effects by activating receptors 
belonging to the family of metabotropic G protein-
coupled receptors, which are distributed across 
various organs such as the pancreas, lungs, heart, 
kidneys, stomach, intestine, pituitary gland, vagus 
nerve, and multiple regions of the central nervous 
system11.

GLP1 acts on the pancreas with the purpose of 
reducing blood glucose levels. This is achieved by 
increasing the synthesis and release of insulin, as 
well as stimulating the proliferation and inhibiting 
apoptosis of beta cells as demonstrated in animal 
and in vitro studies7,11-13. It is interesting to note that 
this increase in insulin secretion is proportional to 
blood glucose levels, and this is one of the factors that 
likely contributes significantly to the low incidence of 
hypoglycemia with the use of GLP1-RAs.

Pharmacokinetics and Pharmacodynamics 
of GLP1 Receptor Agonists

GLP1-RAs are a group of drugs that act as 
hypoglycemic agents by mimicking the action of the 
endogenous GLP1 peptide. They activate the GLP1R, 
triggering glucose-dependent insulin secretion, 
inhibiting glucagon release, and delaying gastric 
emptying. Additionally, these drugs have a longer 
half-life than endogenous peptides because their 
structure makes them resistant to inactivation by the 
DPP-4 enzyme 413.

Currently, there are six approved drugs in 
this category: exenatide, liraglutide, semaglutide, 
albiglutide, lixisenatide, and dulaglutide. However, 
albiglutide is not commercially available. Each of 
these drugs reduces glycated hemoglobin levels by 
approximately 1%, with a greater impact on patients 
with poorer glycemic control14.

In addition to the structural differences between 
GLP1 agonists and endogenous GLP1 peptide, 
GLP1RAs are structurally different from each 
other, giving them unique pharmacokinetic and 
pharmacodynamic characteristics. According to their 
structure, they can be divided into those of human 
origin, those synthesized from modifications of active 
fragments of physiological GLP1, and those generated 
by replicating the structure of exendin-4, a natural 
39-amino acid peptide naturally resistant to the action 
of the DPP-4 enzyme15. Classification according to 
pharmacokinetic properties divides these drugs into 
two different groups: short-acting agonists (exenatide 
and lixisenatide) with a half-life of approximately 
2 to 3 hours and long-acting agonists (dulaglutide, 
liraglutide, semaglutide, albiglutide, and long-acting 
exenatide) with a half-life of 7 to 13 days16.

Kidney Effects of GLP1-RAs

GLP1R has been identified in different parts of the 
tubuloglomerular unit. Human studies have identified 
its expression in proximal tubular cells and in 
preglomerular vascular smooth muscle cells17 whilst 
in animal models, various studies have localized 
GLP1R in glomerular cells and the proximal portion 
of the proximal convoluted tubule18,19.

Additionally, GLP1-RAs seem to induce an increase 
in sodium excretion and urinary volume through direct 
action on the proximal tubule. This effect, which was 
dose-dependent, was also associated with a reduction 
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in GFR, suggesting a potential renoprotective effect of 
GLP1-RAs since the mid-2000s20,21.

Most of the evidence on hemodynamic impacts 
at the glomerular level comes from animal studies 
and in vitro models, which somewhat limits the 
extrapolation of these findings to physiological 
conditions in humans22.

Some animal models have provided evidence 
suggesting that GLP1 is a physiologically relevant 
natriuretic factor that contributes to sodium balance, 
partly through the tonal modulation of the activity of 
sodium-hydrogen exchanger isoform 3 (NHE3) in the 
brush border of the proximal convoluted tubule23,24. 
The natriuresis induced by these hormones activates 
tubuloglomerular feedback and, as a result, promotes 
reflex vasoconstriction of the glomerular afferent 
arteriole19.

On the other hand, the vascular role of GLP1-RAs 
seems to be explained by their action on endothelin-1, 
a potent vasoconstrictor that can contribute to renal 
dysfunction and the progression of clinical disease25. 
In vitro and in vivo studies have demonstrated the 
action of GLP1-RAs through the suppression of 
endothelin-1 at the vascular level by decreasing the 
phosphorylation of nuclear factor kappa B (NF-κB) 
in the presence of elevated glucose concentrations, 
as occurs in patients with type 2 diabetes mellitus 
(DM2). This reduces vasoconstriction and improves 
renal blood flow26.

In addition, tubuloglomerular feedback activation 
reduces renin secretion through an inhibitory signal in 
the juxtaglomerular apparatus, reflexively inducing 
vasodilation of the glomerular efferent arteriole. In 
this way, GLP1 is part of the regulatory mechanisms 
involved in the homeostasis of the renin-angiotensin-
aldosterone system, which is commonly compromised 
in patients with nephropathy27,28. Additional research 
has reported that GLP1 may downregulate tissue 
expression of angiotensin II, which could lead 
to beneficial physiological processes by reducing 
glomerular hypertension, aldosterone secretion, and 
tone of the renal efferent arterioles28. In this way, 
various antagonistic mechanisms are evidenced that 
paradoxically modify renal hemodynamics; however, 
there are also other mechanisms that tip the balance 
toward a net nephroprotective effect in patients using 
analogs of these medications. Figure 1 summarizes 
the known glomerular and tubular renal effects of 
GLP1.

Within these additional mechanisms, related 
research has revealed that GLP1-RAs decreases the 
expression of AT1 receptors, favoring the function 
of AT2 receptors in glomerular capillaries and 
the proximal tubules of the nephron. This effect 
contributes to the reduction of angiotensin 2-induced 
fibrosis28. On the other hand, some animal models 
have established that GLP1-RAs administration 
increases the activity of angiotensin-converting 
enzyme in different organs, particularly in the kidney, 
whose enzymatic activity is compromised in scenarios 
of renal failure29.

Another potential nephroprotective effect of GLP1 
is related to its antioxidant function, which is carried 
out through the downregulation of nuclear factor-
kB mediated by superoxide and the suppression 
of the NADPH oxidase 4 (NOX-4) enzyme30,31. 
This enzyme is inducible through an angiotensin 
2-dependent transduction cascade. NOX- 4 promotes 
the production of reactive oxygen species, leading to 
hyperactivation of the renin-angiotensin-aldosterone 
system, as well as endothelial dysfunction and 
diabetic nephropathy. In addition to inhibiting 
tissue production of angiotensin 2, GLP1 activates 
the AMPc-dependent transduction pathway and 
protein kinase A, which negatively counteracts NOX-
4 expression and reduces oxidative stress-derived 
effects32,33. Figure 2 describes the anti-inflammatory 
mechanisms and reduction of oxidative stress induced 
by GLP1.

The antialbuminuric effect related to the 
physiological functions of GLP1 has been reported 
as an underlying phenomenon that is associated with 
the decrease in plasma renin activity, induction of 
natriuresis, and reduction of oxidative stress21.

Kidney Outcomes

With the regulatory changes instituted by the FDA at 
the end of the 2000s, large cardiovascular safety studies 
became mandatory for new drugs to treat diabetes. 
This requirement provided the opportunity to explore 
relevant secondary outcomes, including those related 
to kidney disease, which are of particular interest to us.

Over the past several years, various studies 
on different GLP1-RAs have shown promising 
data regarding this new class of medications for 
the treatment of chronic kidney disease (CKD) 
progression. The LEADER study34, found that the 
administration of liraglutide in diabetic patients was 



Braz. J. Nephrol. (J. Bras. Nefrol.) 2024, 46(4): e20240101

GLP1-RAs and the kidney

4

associated with a significant reduction in the incidence 
of nephropathy as a microvascular event compared 
to the placebo group (HR 0.78; 95% CI 0.67–0.92;  
p  = 0.003). Additionally, the use of liraglutide was 
also linked to a lower incidence of chronic kidney 
disease, highlighting a significant preservation in the 
number of events with a glomerular filtration rate 
(GFR) between 30 and 59 mL/min/1.73 m2.

Similarly, data from the SUSTAIN-6 study35, which 
compared the administration of semaglutide with 
placebo, revealed a notable nephroprotective function 

of GLP1-RAs. This was associated with a significant 
reduction in the incidence of macroalbuminuria and a 
lower number of GFR reduction events. Furthermore, 
the REWIND study36 revealed significant differences 
favoring the use of dulaglutide compared to placebo 
regarding de novo macroalbuminuria and reduction 
of renal function with GFR > 30 mL/min/1.73 m2. The 
HARMONY study reported that in patients treated 
with albiglutide, there are a lower incidence of renal 
failure with GFR ≥60 to <90 mL/min/1.73 m2 compared 
to the placebo group37. In the AMPLITUDE-O 

Figure 1. Effect of GLP1 on the glomerulus and renal tubules: Stimulation of the GLP1 receptor induces vasodilation of the afferent arteriole 
mediated by an increase in nitric oxide availability (NO-mediated vasodilation). There is also direct vasodilation on the afferent arteriole. This results 
in an increase in intraglomerular pressure. On the other hand, GLP1 decreases vascular resistance in the efferent arteriole through antagonizing 
mediators such as endothelin 1 (ET1) and angiotensin 2 (ANGII), resulting in postglomerular vasodilation and consequently a decrease in 
intraglomerular pressure. In the tubules, GLP1 induces a natriuretic effect, decreasing the activity and expression of sodium-glucose cotransporters 
type I and II (SGLT1/2) as well as reducing the activity of the NH3 exchanger through phosphorylation, leading to increased Na+ presence in 
the macula densa, restoring tubuloglomerular feedback with afferent vasoconstriction and reduction of intraglomerular pressures. There is also 
a decrease in glucagon release, which is related to reduced Na+ reabsorption in the proximal convoluted tubule. In summary, the net effect on 
glomerular filtration rate will depend on the magnitude of the dominant effect on mechanisms with opposing effects, the baseline glomerular 
filtration rate, and the individual characteristics of each patient. GLP1: Glucagon-like peptide-1.
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study38, a lower incidence of macroalbuminuria and 
deterioration was found in renal function in diabetic 
patients treated with efpeglenatide compared to 
those who received placebo. This underscores the 
need for further evidence to confirm whether these 
medications are truly nephroprotective in patients 
with CKD associated with type 2 diabetes. Real-
world studies have confirmed the same results found 
in controlled trials, demonstrating the efficacy, safety, 
and reduction of albuminuria with GLP1-RAs39,40.

Given all these promising results, it is only 
natural to design and conduct a study with GLP1-
RAs focusing primarily on kidney outcomes. The 
FLOW study with semaglutide was the first study 
specifically designed to confirm the renal benefits of 
this medication in a population of diabetic patients 
at very high cardiovascular risk41. The use of 1 
mg of semaglutide resulted in a 24% reduction in 
the primary composite outcome, which included 
a persistent reduction in eGFR of more than 50%, 
reaching an eGFR of less than 15 mL/min/1.73 m2, 
initiation of renal replacement therapy, and renal 
or cardiovascular death. All the results of the other 

pre-specified outcomes in the hierarchical analysis 
were also in favor of semaglutide, including the 
comparison of the slopes of the glomerular filtration 
rate (GFR) curves, major adverse cardiovascular 
events (MACE), and even all-cause mortality.

The publication of the FLOW study, which occurred 
no more than two weeks before the conclusion of this 
review, has not yet provided a mediation analysis. 
This analysis would help determine how much of the 
observed effect was due to indirect effects, such as 
weight loss and HbA1c reduction, as opposed to a 
potential direct effect of semaglutide. The latter can 
include better control of oxidative stress, an anti-
inflammatory action, induction of natriuresis, and 
a reduction of glomerular hypertension. Figure 3 
summarizes the individual results of all these studies 
for a better visualization of the impact of GLP1-RAs 
on renal outcomes.

Usage of GLP1 Analogues in Non-Diabetic 
Obese Patients

Because of the good results with GLP1-RAs in 
diabetic patients, it was to be expected that the study 
of the effects of these drugs would also begin to be 

Figure 2. Anti-inflammatory and antioxidative stress effect of GLP1: Stimulation of the GLP1 receptor activates intracellular signaling pathways such 
as protein kinase A, leading to a subsequent increase in the concentration of second messengers such as cyclic adenosine monophosphate (cAMP), 
which exerts an inhibitory effect on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an important enzyme in the production of 
reactive oxygen species (ROS). Additionally, there is a positive regulation of heme oxygenase 1 (HO1), which inhibits ROS production. The increase 
in cAMP concentrations negatively regulates apoptotic signaling and the activity of the nuclear factor Kappa Beta (NF-κB), resulting in a subsequent 
decrease in the production of proinflammatory cytokines and chemokines. DPP4: Dipeptidyl peptidase-4, GLP1: Glucagon-like peptide-1.
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explored in patients without diabetes. This is similar 
to what we have recently observed in nephrology 
with SGLT2 inhibitors and is currently ongoing with 
finerenone.

Data from over forty clinical trials conducted in 
obese patients without diabetes indicate an absolute 
nephroprotective effect42-44. In the STEP 3 trial, a 
significantly higher percentage of patients with normal 
renal function (eGFR ≥90 mL/min/1.73 m2) was 
observed in the semaglutide-treated group compared 
to the placebo group (68.8% vs. 65.2%)45. Conversely, 
in a double-blind randomized clinical trial, no cases 
of renal deterioration or failure were observed in 
patients treated with exenatide and dapagliflozin. 
However, it is important to note that these events 
occurred in all arms of the study, underscoring the 
need for continued monitoring46. Recently, the TRIAL 
study demonstrated a lower incidence of death from 
renal causes, initiation of long-term renal replacement 
therapy (dialysis or transplant), persistent eGFR 
below 15 mL per minute per 1.73 m2, persistent 
50% reduction in eGFR compared to baseline, and 
initiation of persistent macroalbuminuria in patients 
treated with semaglutide compared to placebo47. 
Additionally, in the exploratory study by Heerspink 
et al48, data from the STEP 1, STEP 2, and STEP 3 
trials were analyzed, finding that the urine albumin-
to-creatinine ratio improved in a greater proportion 
of patients taking semaglutide 1.0 mg and 2.4 mg 
compared to placebo. It is also noteworthy that a 

significant decrease in albuminuria was observed in 
the non-diabetic population involved in these studies. 
This suggests the possibility of direct nephroprotective 
effects of the medication in this group, in addition to 
the indirect effect of weight reduction.

Finally, we recently published the results of 
the SELECT trial on kidney outcomes. Using data 
from over 16,000 patients, half of whom received 
semaglutide at a dose of 2.4 mg weekly, the authors 
reported an improvement in renal outcomes even in 
patients without diabetes. The composite outcome 
of the SELECT study differs from that of the FLOW 
study in that it includes the onset of persistent 
macroalbuminuria as one of its components. The 
observed reduction in the composite outcome was 
very similar to that of the FLOW study, with a 22% 
reduction over 104 weeks of follow-up49.

Conclusions

Every day we learn more about the renal effects 
of GLP1-RAs. These mechanisms of action in 
the renal system can be classified into direct and 
indirect. However, we must continue to gain a better 
understanding of the molecular pathways through 
which GLP1-RAs exert their impact on renal function, 
as clinical data suggest that this therapeutic class of 
drugs could have significant nephroprotective effects. 
Most of the literature providing clinical data on renal 
outcomes is derived from pivotal studies in diabetic 
patients with or without obesity. Therefore, we must 

Figure 3. Composite kidney outcomes in GLP1 clinical trials.
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both improve the evidence in obese patients without 
diabetes and conduct specific studies in populations 
with already defined chronic kidney disease.
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