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Abstract

Numerical models are increasingly used for noninvasive diagnosis and treatment planning in 

coronary artery disease, where service-based technologies have proven successful in identifying 

hemodynamically significant and hence potentially dangerous vascular anomalies. Despite recent 

progress towards clinical adoption, many results in the field are still based on a deterministic 

characterization of blood flow, with no quantitative assessment of the variability of simulation 

outputs due to uncertainty from multiple sources. In this study, we focus on parameters that are 

essential to construct accurate patient-specific representations of the coronary circulation, such 

as aortic pressure waveform and intramyocardial pressure, and quantify how their uncertainty 

affects clinically relevant model outputs. We construct a deformable model of the left coronary 

artery subject to a prescribed inlet pressure and with open-loop outlet boundary conditions, 

treating fluid-structure interaction through an arbitrary-Lagrangian-Eulerian framework. Random 

input uncertainty is estimated directly from repeated clinical measurements from intracoronary 

catheterization and complemented by literature data. We also achieve significant computational 

cost reductions in uncertainty propagation thanks to multifidelity Monte Carlo estimators of 

the outputs of interest, leveraging the ability to generate, at practically no cost, one- and zero-

dimensional low-fidelity representations of left coronary artery flow, with appropriate boundary 

conditions. The results demonstrate how the use of multifidelity control variate estimators leads 

to significant reductions in variance and accuracy improvements with respect to traditional Monte 

Carlo. In particular, the combination of three-dimensional hemodynamics simulations and zero-

dimensional lumped parameter network models produces the best results, with only a negligible 

(less than 1%) computational overhead.
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1. INTRODUCTION

Cardiovascular disease poses a significant burden on the lives of millions of people 

worldwide, with projected total costs estimated by the American Heart Association of 

over 1 trillion dollars by 2035 [1]. As the standard of care improves through continued 

research and innovation, virtual hemodynamic representations have been proposed as a 

noninvasive, image-based approach to complement clinical diagnostics, assess patient risk, 

aid in clinical decision-making, and facilitate treatment planning. Use of numerical models 

in clinical diagnosis for specific pathologies has also been extensively tested and supported 

by clinical studies [2–4]. The complexity of these models has substantially increased in 

recent years, transitioning from idealized and patient-agnostic concepts to patient-specific 

models constructed through a complex pipeline which includes image acquisition and 

segmentation, application of physiologically sound boundary conditions, specification of 

heterogeneous wall material properties, and accurate solution of the governing equations on 

high-performance computing platforms [5,6]. Our cardiovascular simulation methods have 

been extensively validated against in vitro data [7–9], and have been applied to clinical 

decision making including noninvasive assessment of fractional flow reserve (FFR) [10], 

new surgical designs for congenital heart disease [11], risk assessment in coronary artery 

bypass surgery [12], thrombotic risk stratification in Kawasaki disease [13], design of 

ventricular assist devices [14], study of cerebral and aortic aneurysms [15], stent design and 

placement [16,17], and many others.

Although the realism of simulation tools has improved in recent years, the predictions 

provided through these tools are essentially deterministic in most of the literature. 

Most cardiovascular simulations ignore impact of variability due to uncertainty in input 

parameters on simulation outcomes. In our view, this shortcoming can be overcome 

through the establishment of strict guidelines and effective methods to assess the impact 

of uncertainty on simulation predictions, particularly for model-as-a-device technologies 

used in the clinic. In particular, there is a need for methods that can increase efficiency 

of uncertainty quantification to make it tractable for full-scale patient-specific problems. 

Common sources of uncertainty relate to basic hemodynamic metrics (e.g., heart rate 

or blood pressure), echocardiography measures (stroke volume, ejection fraction, cardiac 

output, acceleration times) and invasive cardiac catheterization data (cardiac pressures 

or intravascular ultrasound velocities). Inter-patient variability from population studies 

as well as intra-patient variability from repeated measurements, can also be useful in 

complementing information on uncertainty.

After characterizing the input variability, output statistics are determined by uncertainty 
propagation through a computationally expensive three-dimensional cardiovascular model. 

This step can easily become prohibitive, particularly for models with large discretizations, 
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models that account for fluid-structure interaction [18], or include physiologic boundary 

conditions [19], possibly assimilated from available clinical data under uncertainty [20,21]. 

Several studies in the literature have investigated the effects of parametric uncertainty 

in the context of coronary artery disease, for example, considering one-dimensional 

hemodynamic models and the effect of variability in constitutive model parameters [22], 

arterial wall stiffness, inlet velocity [23], combined boundary conditions and material 

properties [24], physiologic and anatomic parameters that impact the predictions of FFR 

[25] resistance and pressure [26], and assessment of global sensitivity. In most of these 

studies, uncertainty propagation is performed using spectral stochastic approaches based 

on generalized polynomial chaos expansion [27], multielement [28] or multiresolution [29–

31] approaches, probabilistic tessellations [32], compressive sampling and LASSO [33,34] 

and others. While offering significant computational savings when the problem at hand 

has a smooth stochastic response under a moderate dimensionality, these methods suffer 

significantly from the increase in computational complexity of handling tensor product basis 

in high dimensions.

Acceleration, more precisely variance reduction, in Monte Carlo sampling has been widely 

discussed in the literature but, more recently, new multifidelity Monte Carlo estimators are 

increasingly appearing in applications (see a recent review in [35]). In this study, we focus 

on approximate control variate estimators [36]. The basic idea is to shift the computational 

cost from the solution of an expensive high-fidelity model to that of a family of inexpensive 

low-fidelity surrogates, with the only requirement for high- and low-fidelity models being 

that they are sufficiently correlated (Fig. 1). In other words, the low-fidelity models do not 

necessarily need to be an exact approximation of higher-fidelity models, as long as they are 

correlated. Our group has recently demonstrated the efficiency of such estimators on fully 

pulsatile simulations using healthy and diseased cardiovascular geometries [37], but further 

applications of multifidelity approach research remains to be conducted in cardiovascular 

simulations. In this study, we focus on a vascular submodel with boundary conditions that 

are specifically designed to capture coronary physiology [38,39]. We aim to quantify the 

variability of clinically relevant model outputs, based on uncertainty in input parameters 

that are often subjectively chosen by the analyst. The following original contributions are 

discussed in this paper:

• Random input uncertainty is informed directly through repeated measurements 

from intracoronary chatheterization. To the authors’ knowledge, this is one of the 

few studies where clinical data collection is designed to provide sufficient data so 

that uncertain random inputs can be statistically characterized.

• We focus on the most important parameters, whose characterization is essential 

for accurately simulating the coronary arterial circulation in specific patients. 

For example, the intramyocardial pressure and its time derivative are difficult to 

determine in practice, and often assumed equal to the left ventricular pressure.

• Coronary boundary conditions have been implemented for all model fidelities, in 

particular for one- and zero-dimensional flow solvers.
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• We demonstrate the effectiveness of multifidelity approaches in models 

incorporating wall deformation with the arbitrary-Lagrangian-Eulerian (ALE) 

framework.

The paper is organized as follows. Section 2 presents the formulation for the three-, 

one-, and zero-dimensional hemodynamic solvers used to analyze the coronary circulation 

and discusses the boundary conditions used to mimic the coronary physiology. This is 

followed by a discussion of approximate control variate estimators and their variance in 

Section 3. Section 4 focuses on the random inputs and their representation in terms of 

a random combination of time-varying modes. We also identify the quantities of interest, 

the computational cost needed for their determination, and the correlations across different 

model fidelities. Variance reduction and accuracy for the selected Monte Carlo estimators 

are analyzed in Section 5 and finally, in Section 6, we summarize our findings, discuss 

limitations, and briefly outline future work.

2. MULTIDIMENSIONAL MODELS FOR THE CORONARY CIRCULATION

2.1 Three-Dimensional Left Coronary Model

A three-dimensional anatomic model of the left coronary artery was constructed from 

computed tomography clinical images using SimVascular [40]. Outlet boundary conditions 

are specified through a lumped parameter network (LPN) representation of the downstream 

circulation whose parameters are tuned to match multiple clinical targets (stroke volume, 

ejection fraction, pressure, etc.) and found to reproduce physiologically admissible 

responses [20,41]. Interaction between fluid and structure is simulated through arbitrary 

Lagrangian-Eulerian (ALE) coupling provided through the SimVascular svFSI solver, which 

implements a variational multiscale finite element method with second-order implicit 

generalized-α time integration [42,43]. The incompressible Navier-Stokes equations in ALE 

form are

 
ρ∂u

∂t x
+ ρv ⋅ ∇u = ρf + ∇ ⋅ σf

∇ ⋅ u = 0
in Ωf,

(1)

where ρ, u = u x, t , and f are fluid density, velocity vector, and body force 

in the fluid domain Ωf. Blood is assumed as a Newtonian fluid, for which 

σf = − pI + μ ∇u + ∇uT = − pI + μ∇su, with viscosity μ, pressure p = p x, t , and v = u − û
is the fluid velocity relative to the mesh. Additionally, in the solid domain Ωs, we solve the 

equilibrium equations

ρs
∂u
∂t = ρsf + ∇ ⋅ σs  in Ωs,

(2)

where ρs and σs denote the density and stress tensor in the solid, respectively. The spatial 

discretization is based on the variational multiscale finite element method [41–43] and P1–
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P1 (linear and continuous) elements with colocated nodal velocity and pressure unknowns, 

while a Saint Venant-Kirchhoff hyperelastic constitutive model is used for the solid wall. 

For a complete formulation of the above equations in weak form and the resulting algebraic 

system, the interested reader is referred to [41,43]. Linear system solutions are computed 

using the Trilinos library [44], developed at Sandia National Laboratory and coupled with 

the SimVascular svFSI solver. We use either the Biconjugate gradient iterative linear solver 

with incomplete LU preconditioner or the generalized minimum residual with a diagonal 

preconditioner. These combinations were shown to be optimal for cardiovascular simulations 

with deformable walls in our prior work [41]. The computational mesh for the coronary 

artery lumen was informed by a preliminary convergence study [45] and contains 567,373 

tetrahedral elements. The wall mesh consists of 373,435 tetrahedral elements, with three 

elements through the thickness, which is regarded as appropriate due to the prevalent 

membrane deformations.

2.2 One-Dimensional Left Coronary Model

The formulation of the one-dimensional hemodynamics solver used in this study, and 

available through the SimVascular project, is adapted from Hughes and Lubliner [46], with 

details discussed in [47–49]. Blood is assumed Newtonian, flowing in the axial direction z
of an ideal cylindrical branch, the pressure is assumed constant over the entire vessel cross 

section, and no-slip boundary conditions are applied at the lumen.

Conservation of mass and momentum are formulated by integrating the incompressible 

Navier-Stokes equations over the cross section of a deformable cylindrical domain as

∂A
∂t + ∂Q

∂z = 0,  ∂Q
∂t + ∂

∂z 1 + δ ∂Q2
∂A + A

ρ
∂ρ
∂z = Af + N Q

A + v∂2Q
∂z2 ,

(3)

Here the solution variables are the vessel cross-sectional area A and blood flow rate Q; 

other parameters are the density ρ, external force f, kinematic viscosity v = μ/ρ, and velocity 

profile parameters δ and N defined as

δ = 1
A∫

A
ϕ2 − 1 ds, N = v∫

∂A

∂ϕ
∂mdl,

(4)

where ϕ r  is a general velocity profile function given in the form v z = ϕ r v‾ with average 

velocity v‾ and radius r. A linear constitutive equation is given by

p A, z = p0 z + Eℎ0
r0 z

A z, t
A0 z − 1 ,

(5)
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where E is the Young’s modulus of the vascular tissue, ℎ0 the wall thickness, and r0 z  and 

A0 z  the undeformed inner radius and area, respectively. Our in-house 1D solver combines 

a stabilized finite element discretization in space and a discontinuous Galerkin approach 

in time; the nonlinear algebraic system is solved using modified Newton iterations, while 

pressure and cross-sectional area continuity at the joints between two segments is enforced 

through Lagrange multipliers. Location and properties of joints, segments, boundary 

conditions, data tables, initial conditions, and solver parameters are specified through a text 

input file. Input flow and pressure waveforms are prescribed through time/frequency data 

tables, while supported boundary conditions include pressure, area, flow, resistance (steady 

or time-varying), pressure wave, RCR, coronary, impedance, and admittance. Further details 

can be found in [47].

2.3 Zero-Dimensional Left Coronary Model

Our simplest low-fidelity representation consists of a lumped parameter network, an 

equivalent circuit layout formulated by hydrodynamic analogy, with flow rate and pressure 

as the main unknowns. Each circuit element is associated with an algebraic or differential 

equation, so that

resistor ΔP = RQ,  capacitor ΔQ = C dP
dt ,  inductor ΔP = LdQ

dt .

(6)

Resistors, capacitors, and inductors are used to represent viscous dissipation in vessels 

through friction at the endothelium, vascular tissue compliance, and blood inertia, 

respectively. A Poiseuille flow assumption is used to determine the model parameters for 

these circuit elements [50],

R = 8μl
πr4,  C = 3lπr3

2Eℎ ,  L = lρ
πr2,

(7)

where μ is the dynamic viscosity, l is the vessel length, r is the vessel radius, E is the 

elastic modulus, ℎ is the wall thickness, and ρ is the blood density. An in-house automated 

0D solver is used in this study, designed to formulate arbitrary circuit layouts from the 

integration of simple templates, such as capacitors, inductors, resistors, junctions, pressure 

sources, flow sources, and diodes. Each template is connected via edges and junctions 

with user-specified connectivity among the templates. The equations are then automatically 

assembled in a system of differential-algebraic equations,

E y, t ẏ + F y, t + C t = 0,

(8)

which is solved numerically. The above equation is discretized in time and integrated in time 

using an implicit, generalized-α scheme.
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2.4 LPN Boundary Conditions at the Coronary Arteries

Specialized boundary conditions are applied in this study to three-, one-, and zero-

dimensional model fidelities, to better capture the physiology of coronary blood flow [51]. 

In this context, it is well known how the contraction of the cardiac muscle during systole 

impedes the flow in the coronaries, which instead reaches its maximum following diastolic 

relaxation. In other words, a typical coronary flow waveform is out of phase with the aortic 

pressure. To mimic this behavior, a special coronary boundary condition has been proposed 

in the literature [51], consisting of an RCRCR circuit connected to an intramyocardial 

pressure generator. Coronary boundary conditions [51,52] are applied to the no = 6 left 

coronary artery (LCA) outlets, formulated through the ordinary differential equations

dPp,i
dt = 1

Ca,i
Qi − Pp,i − Pd,i

Ram,i
,  i = 1, 2, …, no,

(9)

dPd,i
dt = 1

Cim,i

Pp,i − Pd,i
Ram,i

− Pd,i − P im
Rv,i

+ dP im
dt ,  i = 1, 2, …, no,

(10)

where Pp, i and Pd, i are the proximal and distal pressures, Ca, i and Cim, i are the proximal and 

distal capacitances, and Ram, i and Rv, i are the resistances, respectively (Fig. 2). Note that the 

same rate of intramyocardial pressure dP im/dt is used for all no outlets. In the 3D model, the 

above equations are integrated in time using a fourth-order Runge-Kutta explicit scheme, 

while the pressure at the 3D model outlet Po, i is computed as Po, i = Pp, i + Ra, iQi and coupled 

to the three-dimensional model solution at each time step [53]. In the 1D model, algebraic 

equations of the coronary circuit are instead implemented as discussed in [51], whereas the 

compartment containing the coronary boundary conditions simply extends the 0D circuit 

network and these two are solved in a monolithic fashion.

The total coronary resistance was computed by assigning 4% of the cardiac output to 

the coronary arteries [54] and vessel resistances were distributed among outlets following 

a morphometric relation associating flow rates with vessel diameters, Q ∝ d/2 m. An 

empirically derived morphometry exponent m = 2.6 has been suggested in [55, 56]; for 

the coronary circulation, a previous uncertainty quantification study found only negligible 

difference in the simulation results with m ranging between 2.4 and 2.8 [45]. Approximating 

the diameter with the square root of the area Ai, the resistance of a distal branch, Ri is 

computed as

Ri = ∑j Aj
2.6

Ai
2.6 ⋅ Rtotal,  i, j = 1, 2, …, no,

(11)

while the capacitances are instead distributed proportional to the outlet area [52].
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2.5 Agreement between Low- and High-Fidelity Model Outputs

Low-fidelity one-dimensional models were extracted from the three-dimensional 

segmentation using a newly developed plug-in in SimVascular [57] that automatically 

creates one-dimensional solver input files, containing the appropriate inlet and outlet 

boundary conditions. Similarly, low-fidelity zero-dimensional models were generated 

through a separate set of conversion tools from one-dimensional model segments. The 

agreement between low-fidelity and three-dimensional model outputs was found to be 

excellent under both resistance-capacitance-resistance circuit (RCR) and coronary outlet 

boundary conditions as shown in Fig. 3 for selected flow and pressure quantities of interest.

3. MULTIFIDELITY MONTE CARLO UNCERTAINTY PROPAGATION

Consider a complete probability space Ω, F , P  where Ω is a set of elementary events, F
is a Borel σ-algebra of 2Ω, and P  a probability measure assuming values in [0,1] over 

events in F . Model inputs are represented though the random vector ξ = ξ1, ξ2, …, ξd , 

with components ξi:Ω Σi, i = 1, …, d (for d-dimensional random variable) having marginals 

ξi ρi ξi  and joint probability density ρ ξ . Space and time are denoted by x ∈ ℝn and t ∈ ℝ+, 

respectively. In this study, we focus on the forward problem in uncertainty quantification, 

Q = Q x , ξ , t , (through its mean E Q  or variance V Q , where, for a given realization 

ξ
i

 of the random inputs, Q i = Q ξ
i

 is determined through the numerical solution of a 

high-fidelity model. For simplicity, in what follows we assume space x  and time t to be 

fixed, leading to Q = Q ξ .

The Monte Carlo estimator Q̂N
MC

 of the expected value of Q based on N realizations is 

defined as

E Q = ∫
Σ

Q ξ ρ ξ d ξ ≃ QN
MC = 1

N ∑
i = 1

N
Q i , with variance V QN

MC = V Q
N .

(12)

The variance V Q̂N
MC

 can be reduced by either increasing its denominator or reducing its 

numerator. The former can be achieved through stratified or low-discrepancy sampling 

sequences, such as latin hypercube or quasi Monte Carlo sampling (QMC), which offer a 

more uniform coverage of the random input range Σ, and have been shown to improve the 

convergence rate of MC estimators up to O 1/N2 . In this study, we use Sobol’ [58] QMC 

sequences, as shown in Fig. 4.

Alternatively, reduction in the numerator V Q  can be achieved by introducing approximate 
control variate Monte Carlo estimators, which combine contributions from two different 

model fidelities (low-fidelity LF and high-fidelity HF, respectively). The Monte Carlo 
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estimator for the high-fidelity model Q̂HF is replaced by Q̂CV, HF which embeds a correction 

based on the LF model [59,60]

QNHF
HF,CV r = QNHF

HF + α QNHF
LF − E QLF ≈ QNHF

HF + α QNHF
LF − QNLF

LF ,

(13)

where NLF = NHF + ΔLF = NHF 1 + r , and the additional LF realizations ΔLF = rNHF are used to 

estimate E QLF  as Q̂NLF
LF

. Similarly to the MC estimator, QHF, CV is unbiased with variance

V QNHF
HF,CV = V QNHF

HF + α2V QNHF
LF + 2αℂ QNHF

HF , QNHF
LF .

(14)

Thus, the regression coefficient α that minimizes (14) can be determined as

α = − ρ
V QNHF

HF

V QNHF
LF ,

(15)

where ρ is Pearson’s correlation coefficient between the LF and HF estimators. Substituting 

the optimal α from Eq. (15) into Eq. (14), leads to

V QNHF
HFCV = V QNHF

HF 1 − r
1 + rρ2 .

(16)

Expression (16) suggests how a sufficiently large correlation between HF and LF models is 

the main determinant of variance reduction and, since ρ2 ∈ 0,1  approximate control variate 

estimators are always superior to their vanilla Monte Carlo counterpart.

4. INPUT AND OUTPUT UNCERTAINTIES

In an effort to focus our attention on relevant random inputs, essential for the physiological 

admissibility of the coronary outputs of interest, we consider two uncertain input parameters 

in the modeling of the coronary circulation model. The first random input parameter is the 

left coronary artery inlet pressure waveform imposed at the inlet of the left coronary model, 

Pin, whose intra-patient variability is determined from repeated clinical data acquired in 
vivo through cardiac catheterization [45]. The second random input parameter is the time 

derivative of the intramyocardial pressure in the LPN model for coronary circulation, Pim,t, 

imposed at the outlets of the model, whose variability is instead assumed. In our study we 

assumed these two parameters are independent and then conducted two separate propagation 

studies.
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4.1 Karhunen-Loève Representation of the Random Inputs

We approximate the left coronary pressure waveform, Pin, with a wide-sense stationary 

Gaussian process in time with exponential covariance, K t, t′ = σ2exp − t − t′ /lc , where t, 
and t′ are two arbitrary time points, lc is the correlation length, and σ2 the process variance 

[61]. Under these circumstances, for a sufficiently large truncation level NKL, such a process 

admits the representation

P t, ω ≈ P t + ∑
i = 1

NKL
λiψi t ξi ω ,

(17)

where ξ ω = ξ1 ω , ξ2 ω , …, ξd ω ,  ω ∈ Ω is a collection of independent standard Gaussian 

random variables and λi,  ψi t  are the eigenvalues and eigenvectors of the covariance kernel 

K t, t′ = ∑i = 1
NKL λiψi t ψi t′ , respectively ([62]). A satisfactory approximation of Pin t, ω  is 

obtained using only the eigenmodes associated with the four largest eigenvalues NKL = 4 , 

when the correlation length is chosen to lc = T/2 = 0.5sec. In other words, Pin t, ω  is modeled 

with the K-L expansion with four terms in the truncated expansion. We select lc = 0.5
based on the decay rate of the eigenvalue spectrum of the exponential covariance function. 

Specifically, the largest eigenvalue spectra compared to the first eigenvalue, λi/maxi λi , are 

λ2/λ1 = 34%, λ3/λ1 = 14%, λ4/λ1 = 7%, and λi/maxi λi  decays to less than 5 percent after the 

first four modes i > 4 . For Pin t, ω , the process standard deviation is set equal to 7% of the 

mean, as per repeated pressure measurements from cardiac catheterization in six patients 

[45]. Samples from ξi ω , i = 1, …, 4 are obtained by projecting the four-dimensional Sobol’ 

sequence in Fig. 4(a) through the inverse cumulative distribution function of a multivariate 

Gaussian. Results are illustrated in Fig. 4. A collection of eigenfunctions ψi t , i = 1, …, 6
from the selected covariance kernel is shown in Fig. 4(b), while Fig. 4(c) contains an 

ensemble of inlet pressure realizations from Eq. (17).

Due to the significant challenge of measuring the intramyocardial pressure, Pim, in vivo, 

the left ventricular pressure and its time derivative are often used as a viable replacement 

[12,20,24,52]. This is clearly an approximation, whose effect on the simulation results is 

rarely discussed in the literature, despite the key importance of intramyocardial pressure in 

defining the diastolic character of coronary flow. This may relate to the use of open-loop 

boundary conditions with prescribed coronary flow in many studies. Here, rather than a 

flow, we prescribe an inlet pressure and additionally model the uncertain intramyocardial 

pressure time derivative Pim,t as a stochastic process in time. Pim, t t, ω  is modeled with 

the K–L expansion with four terms in the truncated expansion. We perturbed a baseline 

intramyocardial pressure time derivative [20] using a zero-mean Gaussian process having 

standard deviation equal to σ = 0.1 ⋅ maxt ∈ 0, T Pim, t, with T  the heart cycle duration [Fig. 4(d)].
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4.2 Quantities of Interest

We focused on three hemodynamic quantities of interest (QoIs), flow rate, and pressure at 

each outlet Qi, Pi, i =  1, …, no), and branch wall shear stress (WSS). In more detail, the shear 

stress τ x, t  was averaged over one heart cycle in time and over the vessel circumference in 

space so that

WSSi z = ∫
C

1
 T ∫

0

T
τ x, t dt ds,

(18)

where z is the spatial distance along the vessel branch centerline, and C is the lumen 

circumference at the branch cross section. Finally, we averaged WSSi z  along the centerlines 

of each vessel branch to obtain a single averaged value for WSS. For zero-dimensional 

models, the wall shear stress is determined based on Poiseuille flow conditions on an ideal 

vessel with circular cross section of radius r,

τ = 4 μ Q
π r3 ,

(19)

where Q is the instantaneous flow rate, μ the dynamic viscosity, and the vessel radii are 

based on a one-dimensional model anatomy.

4.3 Computational Cost

Outputs for each model fidelity were computed using a fixed number of input parameter 

realizations. Specifically, we solved a total of 400 high-fidelity (HF) cardiovascular model 

instances in parallel using 48 cores for each HF simulation, either through the Comet cluster 

available through a XSEDE allocation, or using resources from the Center for Research 

Computing at the University of Notre Dame. All simulations were performed over four 

cardiac cycles, the first half consisting of QMC realizations of the inlet pressure Pin, and 

the remaining 200 with stochastic intramyocardial pressure Pim. One- and zero-dimensional 

models were solved 1000 and 10,000 times, respectively, for each random input. Relative 

and cumulative simulation costs are reported in Tables 1 and 2, respectively.

4.4 Correlations of High- and Low-Fidelity Models

Following the discussion on approximate control variate Monte Carlo estimators in Section 

3, it should be clear how the correlations among high- and low-fidelity model outputs are the 

main determinant of variance reduction. We observe very large average Pearson correlations 

ρ > 0.9  across all QoIs and all coronary branches, as reported in Tables 3 and 4. Once 

again we would like to emphasize that a high correlation between model outputs does not 

necessarily imply a close agreement between high- and low-fidelity QoIs, as shown in Fig. 

5.
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5. UNCERTAINTY PROPAGATION RESULTS

5.1 Uncertainty in the Inlet Pressure Waveform

To provide a preliminary idea of how the variability in inlet pressure waveform affects the 

model outputs, we first performed 200 realizations from the zero-dimensional model in Fig. 

6, and observed similar results as in previous studies from our research group [45]. Next, 

we compared the variance reduction obtained for QoIs in six left coronary artery branches 

resulting from vanilla Monte Carlo sampling and approximate control variate estimators 

with one-(CV-1D) and zero-dimensional (CV-0D) low-fidelity models, respectively (Fig. 

7). From a pilot run consisting of 200, 1000, and 10,000 model evaluations, the CV-1D 

estimator reduces the variance by a factor of 3–4, while an order of magnitude reduction is 

achievable using the CV-OD estimator.

We use the normalized confidence interval nCI of a generic estimator Q̂ as six times the 

coefficient of variation in accordance with previous literature [37,63],

nCI Q =
6 V Q

E Q
= μ + 3σ − μ − 3σ

μ = 6σ
μ .

(20)

The amplitude of ± 3σ (i.e., three standard deviations) confidence interval normalized by 

the mean corresponds to the 99.7% confidence interval normalized by the expected value. 

Smaller values of nCI Q̂  indicate a higher level of confidence in the estimates from Q̂. The 

nCI of QMC, CV-1D, and CV-0D estimators is shown in Fig. 8 for all relevant QoIs. Similar 

to previous results, reductions in nCI of one order of magnitude result from the CV-0D 

estimator. Finally, we note that the discussion above is equally valid for pressure/flow and 

for wall shear stress QoIs.

5.2 Uncertainty in the Intramyocardial Pressure Time-Derivative

Variability in the intramyocardial pressure time derivative significantly affects outlet flow 

and time-averaged wall shear stress uniformly across all branches (~ 30% variation [45]), 

leaving the pressure almost unaltered, as shown in Fig. 9. Variance reduction for QMC and 

multifidelity estimators is quantified in Fig. 10, while their nCI is shown in Fig. 11.

Similarly to the findings in the previous section, both variance reduction and nCI are greatly 

improved by the multifidelity estimators with superior performance of CV-0D. This is due 

to the Pearson correlations being very high over all the QoIs for this latter estimator and the 

larger number of zero-dimensional simulations (10,000 for each input uncertainty) included 

in the pilot run. This suggests zero-dimensional models to be particularly well suited for 

low-fidelity or reduced-order representations of the coronary subcirculation due to their 

almost negligible computational cost and highly correlated QoIs. Finally, we observe how 

outlet pressure variability due to intramyocardial pressure uncertainty is limited if compared 

to flow or wall shear stress QoIs. This justifies the clustering of nCI results in Fig. 11.
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We evaluate the performance of the multifidelity UQ using extrapolation of the computing 

cost in terms of the equivalent high-fidelity model runs. We first set a range of targeted nCI
and estimate the computational cost to achieve the target nCI by extrapolation using Eqs. 

(12) and (16). Specifically, the number of equivalent high-fidelity runs, Neq,HF, is computed as

Neq,HF = 1
CHF

NHFCHF + NLFCLF ,

(21)

where CHF and CLF are the computational cost and NHF and NLF are the number of simulations 

of high- and low-fidelity models, respectively. We set a target nCI of 0.2, 0.1, 0.05, 0.025, 

0.01, and 0.005, and extrapolate the cost of the simulation to reduce CI using the variance 

reduction rule in Eq. (12), in which the variance is reduced by the inverse of the number of 

simulations.

In Fig. 12, we summarize the extrapolated computational cost to achieve a targeted nCI of 

the Monte Carlo estimator. The multifidelity Monte Carlo (MFMC) methods dramatically 

reduce the computational cost for providing accurate estimators of Monte Carlo, especially 

for MF with the 0D models.

6. DISCUSSION

Recent advances in model-based diagnostics of coronary artery disease have demonstrated 

how models can be successfully integrated in clinical routines, but have raised questions 

related to their robustness, in light of possible uncertainty or ignorance associated with 

their input parameters. In this study, we focused on two clinically relevant parameters, the 

inlet pressure for coronary circulation subnetworks, and the intramyocardial pressure time 

derivative. Stochastic processes in time are used to inject uncertainty in these parameters, 

leading to a representation by a finite collection of independent random variables following 

Karhunen-Loève expansion. Inlet pressure waveform uncertainty is directly estimated from 

repeated measurements obtained during cardiac catheterization in six patients [45], while 

variability in intramyocardial pressure is assumed equal to 10% of its maximum systolic 

rate.

We have quantified the variance in model output expectations for a three-dimensional 

multiscale cardiovascular model with deformable walls, ALE fluid-structure interaction, 

and conforming fluid and wall mesh interfaces. We also generated computationally 

inexpensive one- and zero-dimensional low-fidelity representations from three-dimensional 

segmentation, using a recently developed pipeline in SimVascular. Coronary boundary 

conditions were also implemented for all low-fidelity formulations and thoroughly validated 

against three-dimensional simulation results. Despite a common misconception that UQ 

analysis can easily become computationally intractable for large cardiovascular models 

containing millions of degrees of freedom, we were able to characterize confidence in 

expectations of clinically relevant quantities of interest under a fixed computational budget 

of approximately 200 high-fidelity model runs.
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This is possible thanks to the high correlations between high- and low-fidelity outputs, 

even if these outputs are not necessarily in perfect agreement with each other, or in other 

words low-fidelity QoIs do not need in general to be close to their high-fidelity counterpart. 

Our results highlight how CV-1D estimators of mean pressure, flow, and wall shear stress 

have variance which is reduced by a factor of 3–4 with respect to QMC estimators, with 

accuracy improvements of the same order. CV-0D estimators show superior performance 

with improvements up to one order of magnitude and total simulation cost equal to less than 

1% with respect to high-fidelity three-dimensional models. The computational cost savings 

using extrapolation of the current results shows that one can save one or two orders of 

magnitude compared to high-fidelity model evaluations alone to achieve a targeted nCI by 

using the multifidelity framework.

Estimator variance and nCI are computed, in this study, from a pilot run consisting of a fixed 

number of simulations selected a priori. A better approach would be to adaptively refine the 

number of simulations needed to achieve a certain variance reduction or to satisfy a certain 

computational budget from a small initial pilot run. This will be easily achieved through a 

software interface between SimVascular and the Dakota UQ software platform (developed at 

Sandia National Laboratory), currently under development [37].

The high correlations between high- and low-fidelity models obtained in this study can 

be attributed to the fact that the current quantities of interest are spatially averaged global 

variables, and that the current cardiovascular model does not involve complex flows (e.g., 

flow recirculation or turbulence) or abrupt changes in the geometry (e.g., bifurcation, 

valve, or stenosis). We note that the 3D-1D approach cannot be replaced by 3D-0D when 

quantities of interest include local variations of wall shear stress, atheroprone area, and wall 

deformations, as those are not obtainable from the 0D modeling.

We remark that the MFMC approach provides many advantages over nonintrusive stochastic 

collocation methods, which were generally regarded as an accurate choice for uncertainty 

propagation. In our previous work [45], we demonstrated that the convergence of QMC 

method provided similar performance against the stochastic collocation methods. However, 

MFMC can reduce variance by orders of magnitude at only a small fraction of the cost of 

one HF additional, while the next step refinement of stochastic collocation requires on the 

order of tens to hundreds of HF simulations, since it requires a discrete increase in samples 

for refinements. The stochastic collocation method also has other shortcomings against the 

MC approach, for example, nonconvergent behavior for discontinuous response surfaces.

Future work will extend the present results for high-dimensional, arbitrarily distributed, 

and correlated random inputs. There are multiple sources of uncertainty in cardiovascular 

simulations, including boundary conditions, material properties, and geometry that should 

be combined in future studies to offer a complete picture of uncertainty in predictions. 

The effects of these uncertainty sources used to be studied independently. In more realistic 

cases these uncertainty sources may be correlated. By reducing the computational cost, the 

multifidelity framework will be exploited to study the effect of multiple sources.
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FIG. 1: 
Computational cost versus fidelity for the three hemodynamic models utilized in this study
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FIG. 2: 
Numerical models with coronary boundary conditions at the outlets. Three-dimensional 

model with deformable walls (left), one-dimensional model (center), and zero-dimensional 

lumped parameter network model (right).
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FIG. 3: 
Three-, one-, and zero-dimensional model results with pulsatile inlet pressure and coronary 

outlet boundary condition
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FIG. 4: 
Stochastic modeling of the random inputs. (a) 1000 samples from a quasi Monte Carlo 

Sobol’ sequence. (b) Six largest eigenfunctions of the exponential covariance kernel. (c) 

200 inlet pressure realizations from the Karhunen-Loève (K–L) expansion (17). (d) 200 

realizations for the intramyocardial pressure time-derivative.
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FIG. 5: 
Low- versus high-fidelity model outputs at LCx branch and Pearson correlations under 

intramyocardial pressure uncertainty
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FIG. 6: 
Schematic workflow showing how the uncertainty in the inlet pressure waveform is 

propagated through a zero-dimensional left coronary artery model, specifically for outlet 

pressure and flow QoIs in LCx branches
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FIG. 7: 
Variance reduction for QMC and approximate control variate estimators
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FIG. 8: 
Improvements in normalized confidence interval nCI I from approximate control variate 

estimators under the inlet pressure uncertainty
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FIG. 9: 
Ensemble of model outputs for the zero-dimensional model of the left coronary circulation 

under intramyocardial pressure uncertainty
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FIG. 10: 
Variance reduction from approximate control variate estimators under intramyocardial 

pressure uncertainty
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FIG. 11: 
Improvements in nCI from approximate control variate estimators under intramyocardial 

pressure rate uncertainty
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FIG. 12: 
Extrapolated equivalent high-fidelity model costs for target nCI for MC, MFMC with 1D 

model, and MFMC with 0D model. QoI are at the LCX branch when the intramyocardial 

pressure is perturbed
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Seo et al. Page 31

TABLE 1:

Absolute and relative simulation costs for all three model fidelities. The simulation cost is reported in CPU 

times, in which computing times from all processors are summed

Solver Cost (one simulation) Effective cost (one simulation)

3D 1775 hrs 1

1D 8.5 mins 7.98 × 10−5

0D 5 secs 7.82 × 10−7
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TABLE 2:

Effective cost and associated number of model evaluations for high-fidelity Monte Carlo and multifidelity 

estimators

Method Effective cost (percentage to QMC) No. 3D simulations No. 1D simulations No. 0D simulations

QMC 100% 200 0 0

MF-1D 108.13% 200 1000 0

MF-0D 100.78% 200 0 10,000
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TABLE 3:

High- to low-fidelity model correlations under inlet pressure waveform uncertainty. LCx—left circumflex 

artery, OM—obtuse marginal, LAD—left anterior descending artery, D—diagonal branch of the LAD

QoI Pressure Flow WSS

Branch 3D-1D 3D-0D 3D-1D 3D-0D 3D-1D 3D-0D

LCx 0.9756 0.9999 0.9388 0.9999 0.9353 0.9997

LCx-OM1 0.9756 0.9999 0.9281 0.9999 0.9092 0.9998

LCx-OM2 0.9753 0.9999 0.9360 0.9999 0.9292 0.9997

LCx-OM3 0.9758 0.9999 0.9315 0.9999 0.9234 0.9999

LAD 0.9758 0.9999 0.9420 0.9999 0.9077 0.9995

LAD-D1 0.9716 0.9959 0.9295 0.9999 0.9040 0.9998

Int J Uncertain Quantif. Author manuscript; available in PMC 2024 November 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript
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TABLE 4:

High- to low-fidelity model correlations under intramyocardial pressure uncertainty

QoI Pressure Flow WSS

Branch 3D-1D 3D-0D 3D-1D 3D-0D 3D-1D 3D-0D

LCX 0.9886 0.9960 0.9857 0.9999 0.9864 0.9969

LCX-OM1 0.9909 0.9942 0.9911 0.9999 0.9913 0.9984

LCX-OM2 0.9888 0.9949 0.9872 0.9999 0.9877 0.9972

LCX-OM3 0.9894 0.9968 0.9902 0.9999 0.9904 0.9984

LAD 0.9822 0.9999 0.9829 0.9999 0.9831 0.9944

LAD-D1 0.9207 0.9297 0.9905 0.9999 0.9906 0.9984
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