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Multivariate genomic analysis of 5 million 
people elucidates the genetic architecture 
of shared components of the metabolic 
syndrome
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Hyeonbin Jo1, Akl C. Fahed7,8,9,10,11, Pradeep Natarajan7,8,9,10,11, 
Patrick T. Ellinor    7,8,9,10,11, Ali Torkamani    12, Woong-Yang Park1,13, 
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Metabolic syndrome (MetS) is a complex hereditary condition comprising 
various metabolic traits as risk factors. Although the genetics of individual 
MetS components have been investigated actively through large-scale 
genome-wide association studies, the conjoint genetic architecture has 
not been fully elucidated. Here, we performed the largest multivariate 
genome-wide association study of MetS in Europe (nobserved = 4,947,860) by 
leveraging genetic correlation between MetS components. We identified 
1,307 genetic loci associated with MetS that were enriched primarily in 
brain tissues. Using transcriptomic data, we identified 11 genes associated 
strongly with MetS. Our phenome-wide association and Mendelian 
randomization analyses highlighted associations of MetS with diverse 
diseases beyond cardiometabolic diseases. Polygenic risk score analysis 
demonstrated better discrimination of MetS and predictive power in 
European and East Asian populations. Altogether, our findings will guide 
future studies aimed at elucidating the genetic architecture of MetS.

MetS is a cluster of interrelated risk factors that predispose individuals 
to cardiovascular disease (CVD) and type 2 diabetes (T2D). These fac-
tors, known as MetS components, include central obesity, dyslipidemia, 
hypertension (HTN) and impaired glucose tolerance1. They often run 
within families, suggesting a shared genetic basis. MetS components 
are moderately heritable, with heritability estimates ranging from 0.26 
for T2D2 to 0.61 for HTN3, with MetS having a heritability of 0.10–0.30  
(ref. 4). Recent genome-wide association studies (GWASs) revealed 
numerous genetic loci associated with individual MetS components. For 
example, a GWAS conducted by the Global Lipids Genetics Consortium 

has identified 380 and 388 genetic variants associated with high-density 
lipoprotein cholesterol (HDL) and triglycerides (TG), respectively, in 
populations of European ancestry5. However, the genetic basis of the 
shared risk across these components remains unclear.

The co-occurrence of unhealthy metabolic traits has prompted 
ongoing endeavors to unveil their common genetic underpinnings. For 
instance, five categories of T2D mechanistic pathways were identified 
using T2D-associated variants through clustering analyses, and the 
genes and traits associated with each cluster were investigated6,7. Simi-
larly, colocalization analyses were conducted between cardiometabolic 
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suggested polygenicity rather than bias from cryptic confounders such 
as population stratification (Supplementary Table 4).

The genetic correlations among all pairs of MetS components 
were computed using LDSC regression (Fig. 1a). These correlations 
were then used for the Kaiser–Meyer–Olkin (KMO)19 test and parallel 
analysis. The KMO test estimated a sampling adequacy of 0.73, suggest-
ing that the data were suitable for subsequent factor analysis. Parallel 
analysis suggested that the extraction of the three factors was optimal 
(Supplementary Table 5 and Supplementary Fig. 2). We then conducted 
exploratory factor analysis (EFA) and concluded that the three-factor 
solution was optimal, accounting for 70.2% of the variance in the seven 
MetS components (Supplementary Table 6).

Before conducting confirmatory factor analysis (CFA) based on 
the EFA results using Genomic SEM12, we examined whether a single 
latent construct could represent MetS by constructing a common fac-
tor model. However, the model fit indices were insufficient, suggesting 
that MetS is a complex trait that cannot be described adequately by a 
common factor (Supplementary Table 7).

Subsequently, we constructed a correlated three-factor 
model based on the EFA results, and it exhibited a good model fit 
(χ2(11) = 185.98; Akaike information criterion (AIC) = 219.98; compara-
tive fit index (CFI) = 0.981; standardized root mean square residual 
(SRMR) = 0.043) (Supplementary Table 8). The latent factors were 
clustered with MetS components having similar characteristics and 
labeled as follows: F1, obesity; F2, insulin resistance/hypertension 
and F3, dyslipidemia. Since a moderate genetic correlation was 
observed between the three latent factors and the goal of this study 
was to define and identify shared genetic effects for MetS among its 
components, we further constructed a hierarchical factor model 
(χ2(11) = 185.98; AIC = 219.98; CFI = 0.981; SRMR = 0.043) (Fig. 1b and 
Supplementary Table 9). An identical model could be constructed 
using UKB-excluded cohorts, which showed a good fit (χ2(11) = 107.09; 
AIC = 141.09; CFI = 0.996; SRMR = 0.036) (Supplementary Tables 10 
and 11).

Association analyses using multivariate GWAS for MetS
Genomic SEM12 was used to conduct a multivariate GWAS to analyze 
the association between SNPs and MetS (Fig. 1c and Supplementary 
Fig. 3). The neff of the MetS factor was estimated to be 1,384,348 and 
the SNP-based heritability (h2) was estimated to be 0.11. We identi-
fied 1,650 lead SNPs for MetS across 939 genetic loci using the FUMA 
standard clumping method20. We further conducted a conditional and 
joint analysis (COJO)21 on 1,650 MetS lead SNPs to report statistically 
significant and independent SNPs, of which 1,307 COJO MetS SNPs 
were identified (Supplementary Table 12). Among them, 26 were non-
synonymous, 44 had a RegulomeDB score of 1 (indicating a high likeli-
hood of having a regulatory function) and 19 were located in the active 
transcription start site (TSS) with the highest accessibility. Moreover, 
414 genes were mapped using three gene-mapping strategies, includ-
ing positional mapping, expression quantitative trait loci mapping 
(eQTL) mapping and chromatin interaction mapping, in the FUMA and 
MAGMA gene-based analyses (Supplementary Note, Supplementary 
Tables 13–15 and Supplementary Figs. 4 and 5).

We then assessed the independence of the COJO MetS SNPs, with 
a window size of 500 kb and r2 threshold of <0.01, from previously 
reported signals. Among the 1,307 COJO MetS SNPs, 82 (6.3%) were 
independent of the GWAS signals of the seven MetS components 
included in the Genomic SEM, 848 (64.9%) were independent of pre-
vious MetS GWAS (Lind10 and van Walree et al.22), and 159 (12.2%) were 
previously unreported in the NHGRI-EBI GWAS Catalog23 using FUMA 
(Table 1, Supplementary Tables 11 and 16 and Supplementary Fig. 6). 
The GWAS effect of COJO MetS SNPs exhibited a high correlation with 
GWAS results conducted using UKB-excluded cohorts (Pearson’s cor-
relation (ρ) of 0.95, 95% confidence interval (CI) = 0.95–0.96; Sup-
plementary Fig. 7). We identified a substantial number of COJO SNPs 

traits and quantitative trait loci (QTL) to identify shared genes across 
various traits8. However, these clustering analyses were constrained 
to T2D-associated variants, and the mere overlap between colocalized 
genes may lack substantial evidence of a shared genetic basis across 
all components of MetS.

Most previous MetS GWAS have focused on a binary definition of 
MetS. Kraja et al.9 expanded on this by conducting a GWAS for MetS and 
pairwise combinations of its components and identified 29 common 
variant associations; however, these studies lacked robust evidence for 
a consistent association across all MetS components. Lind10 examined 
291,107 individuals from the UK Biobank (UKB) and identified 93 inde-
pendent loci associated with MetS. Despite the different definitions 
of MetS, both studies categorized MetS based on the number of MetS 
criteria met. Such an approach may potentially introduce variability 
due to the different combinations of criteria met, thus limiting the rep-
resentativeness of MetS and leading to an incomplete understanding 
of the genetic architecture of MetS11.

Multivariate GWAS, such as genomic structural equation modeling 
(Genomic SEM)12 could be a more suitable approach for studying the 
broad genetic liability across several phenotypes. Genomic SEM incor-
porates a genetic covariance structure to model the shared genetic 
architecture across indicators with several advantages, such as accom-
modating varying and unknown sample overlaps, flexibility in con-
structing factor models, and comparing the fit indices across different 
models. Additionally, it has been used widely to distinguish the shared 
genetic architecture of several diseases, ranging from psychiatric 
disorders13,14 to immune diseases15.

In this study, we investigated the common genetic liability for 
MetS in a European population by constructing a comprehensive fac-
tor model using large-scale GWASs with an observed sample size of 
4,947,860 individuals. We examined the genetic relationships between 
key indicators, including body mass index (BMI), waist circumference 
(WC), T2D, fasting glucose (FG), HTN, HDL and TG, using Genomic 
SEM. Extensive functional annotation, enrichment analyses and gene 
prioritization were performed to determine the underlying biological 
mechanisms. We evaluated the performance of the MetS polygenic risk 
score (PRS) in European and East Asian populations. Because MetS is 
highly interrelated with various disorders16, we examined its associa-
tion with health outcomes using a phenome-wide association study 
with PRS (PRS-PheWAS). We further explored the causal relationship 
between significantly associated health outcomes using two-sample 
Mendelian randomization (TSMR). Collectively, our results provided 
new insights into the complex genetic structure of MetS (Supplemen-
tary Fig. 1).

Results
Factor analysis of MetS components
We collected summary statistics from previous GWASs conducted in 
European populations for seven MetS components: BMI, WC, T2D, 
FG, HTN, HDL, and TG (Supplementary Table 1). Quality control was 
applied to the GWAS summary statistics, where single-nucleotide poly-
morphisms (SNPs) were filtered based on six criteria (Supplementary 
Table 2; Methods). We conducted a meta-analysis on T2D and HTN to 
create a GWAS with a larger sample size and greater statistical power. 
Minimal evidence of sample overlap was observed between the GWAS 
summary statistics included in the meta-analysis, as indicated by the 
bivariate linkage disequilibrium score (LDSC) regression17,18 intercept 
(Supplementary Table 3).

The effective sample sizes (neff) of the seven MetS components 
ranged from 151,188 to 1,253,277. Although our findings were based 
on GWAS summary statistics for UKB individuals, we prepared an addi-
tional set of GWAS summary statistics (referred to as the UKB-excluded 
cohort) to avoid sample overlap when conducting the following 
post-GWAS analyses: PRS analyses, PRS-PheWAS and TSMR. The uni-
variate LDSC regression intercept of each GWAS summary statistic 
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(718, 496 and 608) associated with obesity (F1), insulin resistance/
hypertension (F2) and dyslipidemia (F3), respectively.

We then conducted a heterogeneity test of QSNP (that is, SNPs 
having heterogeneous effects on one or more indicators rather than 
pleiotropic effects via latent factors) for MetS using Genomic SEM and 
identified 1,203 QSNP lead SNPs using an identical clumping approach 
(Supplementary Note and Supplementary Fig. 8). Among the 1,307 

COJO MetS SNPs, 62.1% (n COJO SNPs = 811) were independent of QSNP 
and 20.9% (n COJO SNPs = 273) were genome-wide significant (GWS) in 
the heterogeneity test of QSNP. When we compared the direction of the 
effects of the COJO MetS SNPs directly with the corresponding SNPs 
in the GWAS of MetS components, we observed that 59% of the COJO 
MetS SNPs (n = 772) had a perfect match in terms of effect direction. 
Additionally, 37.9% of the COJO MetS SNPs (n = 495) showed consistency 
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Fig. 1 | Genetic correlations, multivariate genetic factor model and 
multivariate GWAS of MetS. a, SNP-based heritability and pairwise genetic 
correlations for the seven MetS components were estimated using LD score 
regression. The off-diagonal upper, lower and diagonal triangles represent the 
pairwise genetic correlation, the standard error of the genetic correlation and 
SNP-based heritability, respectively. b, Path diagram with standardized  
factor loadings in the hierarchical model estimated using Genomic SEM.  

The U represents the residual variance that is not explained by the latent factor. 
The subscript g indicates that the model was built based on genetic covariances 
between the MetS components. c, Manhattan plot of Genomic SEM-based GWAS 
associations. The x axis represents the chromosomal position, and the y axis 
represents the uncorrected −log10(P) from two-sided z tests for SNP associations 
with MetS. *Reverse-coded.
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in the effect direction with five or six MetS components. The Cohen’s 
kappa (κ) test indicated agreement in the effect direction between 
MetS and each of the seven MetS components, with κ values ranging 
from 0.47 to 0.96 (Supplementary Table 17). These findings suggest 
that the identified COJO MetS SNPs exhibit consistent and horizontal 
pleiotropic effects across MetS components via shared genetic liability 
(that is, MetS factor).

Genetic correlation analysis of MetS with external traits
We estimated the genetic correlation (rg) between MetS and 119 external 
traits categorized into eight groups using LDSC regression (Fig. 2 and 
Supplementary Table 18). Among the 119 examined traits, 82 exhibited 
significant associations after Bonferroni correction. Given that the link 
between MetS and CVD is acknowledged widely24, our findings reveal a 
moderate genetic overlap with angina pectoris (rg = 0.51; 95% CI = 0.46–
0.56) and ischemic heart disease (rg = 0.50; 95% CI = 0.46–0.55).

We also observed a substantial positive genetic correlation 
between MetS and nonalcoholic fatty liver disease (NAFLD) (rg = 0.84, 
95% CI = 0.55–1.14) and a negative correlation with health satisfaction 
(rg = −0.53; 95% CI = −0.57 to −0.49) (Supplementary Table 19). Given 
that MetS is genetically correlated with various cognitive functions 
and psychiatric disorders, such as education years (rg = −0.39; 95% CI = 
−0.41 to −0.36) and attention deficit hyperactivity disorder (rg = 0.38, 
95% CI = 0.33–0.42), we additionally investigated its correlation with 
magnetic resonance imaging phenotypes in 101 brain regions. We 
observed a significant negative correlation with gray matter volume 
(rg = −0.24; 95% CI = −0.31 to −0.17) after applying Bonferroni correction 
(P < 4.95 × 10−4) (Supplementary Table 20).

Heritability and enrichment in functional categories
To determine whether specific functional categories of SNPs were 
enriched for heritability, we performed a partitioned SNP heritability 
analysis using stratified LDSC (S-LDSC)25 regression on the 53 annota-
tions. We observed significant enrichment of SNP heritability in 35 of 
these annotations even after Bonferroni correction (P < 9.43 × 10−4). 
The highest levels of enrichment were observed in conserved genomic 
regions (enrichment = 13.0; s.e. = 1.2), coding regions (enrich-
ment = 5.91; s.e. = 0.86), and the 5′ untranslated regions (UTRs) of genes 
(enrichment = 5.28; s.e. = 1.22) (Fig. 3a and Supplementary Table 21).

LDSC regression for specifically expressed genes (LDSC-SEG)26 
was used to investigate whether MetS genetic signals were enriched 
in specific cells or tissue types based on gene expression or activat-
ing histone marks. We observed significant enrichment in various 
brain tissues, including the hippocampus (P = 1.30 × 10−10), entorhi-
nal cortex (P = 1.08 × 10−08) and frontal cortex (P = 5.46 × 10−7), using 
gene expression data sourced from a previous study27 (Fig. 3b). This 
enrichment in brain tissues was consistent with the significant genetic 
correlation observed between brain volume and MetS and was further 

validated using multitissue chromatin-based annotation data and 
MAGMA gene property analyses (Supplementary Note and Supple-
mentary Tables 22–26). Furthermore, both F1 and F2 were enriched 
in brain tissues, whereas F3 was enriched in adipose and liver tissues 
(Supplementary Tables 27 and 28).

MAGMA gene set analysis identified 25 gene sets that were associ-
ated significantly with MetS, including a range of functions related to 
neuronal, molecular and lipid metabolism (Supplementary Table 29).

Prioritization of MetS genes
We used summary data-based Mendelian randomization (SMR) using 
gene expression data from the following tissues to prioritize MetS 
genes: brain cortex (BrainMeta v.2 (ref. 28), n = 2,865), whole blood 
(eQTLGen29, n = 31,684), subcutaneous adipose (GTEx30, n = 581), skel-
etal muscle (GTEx, n = 706), liver (GTEx, n = 208), aorta (GTEx, n = 387) 
and coronary artery (GTEx, n = 213) (Supplementary Table 30). The 
Heterogeneity in Dependent Instruments (HEIDI) test was simultane-
ously conducted to distinguish pleiotropic gene expression from MetS 
associations due to linkage. Significant associations with MetS were 
identified in various tissues, including the brain cortex, whole blood, 
subcutaneous adipose, skeletal muscle, liver, aorta and coronary artery, 
with 43, 136, 14, 16, 5, 14 and 5 genes, respectively, meeting the criteria 
after Bonferroni correction (P < 0.05/n genes tested) and passing the 
HEIDI test (P > 0.05) (Fig. 3c, Table 2 and Supplementary Table 31). 
Among these, 11 genes (AMHR2, BCL7B, FEZ2, HM13, MED23, MLXIPL, 
MYO1F, RBM6, RFT1, SP1 and STRA13) were replicated in an independ-
ent cohort across the corresponding tissues, except for the liver, aorta 
and coronary artery because of the lack of available independent data 
(Supplementary Table 32). Nonetheless, among the 11 replicated genes, 
significant associations were observed for STRA13 in the aorta and coro-
nary artery tissues, and MYO1F in coronary artery tissue. Additionally, 
HM13, AMHR2, RFT1 and SP1 were identified through positional, eQTL 
and chromatin interaction mapping using FUMA, and demonstrated 
significant gene associations with MAGMA.

PRS analysis
We computed the genome-wide PRS for MetS using MetS GWAS con-
ducted with UKB-excluded cohorts and PRS-CS31. The MetS PRS was 
used to investigate its relationship with dichotomized MetS in the UKB 
cohort of 11,139 individuals (ncase = 4,641; ncontrol = 6,498) and the CVD 
incidence rate from UKB32 (Supplementary Note).

First, we investigated the odds ratio (OR) of MetS risk within the 
UKB cohort for each PRS decile (Fig. 4a and Supplementary Table 33). 
OR increased as the PRS decile increased, with the top decile showing 
a 2.21-fold increased risk (95% CI = 1.85–2.63) compared with the first 
decile.

We then investigated how the PRS of latent factors (that is, obesity, 
insulin resistance/hypertension, dyslipidemia and MetS) and individual 

Table 1 | Summary of multivariate GWAS for MetS factor model

Factor neff h2 (s.e.) Mean χ2 λGC LDSC 
intercept 
(s.e.)

Attenuation 
ratio (s.e.)

n COJO 
SNP

Independent 
from QSNP

Independent 
from 
corresponding 
MetS 
components

Independent 
from previous 
studiesa

Unreported 
in GWAS 
catalog

MetS 1,384,348 0.1109 
(0.003)

4.2501 2.8971 1.1208 
(0.0259)

0.0372 
(0.008)

1,307 811 82 848 159

F1 679,472 0.1721 
(0.0048)

3.515 2.5641 1.1097 
(0.0191)

0.0436 
(0.0076)

718 677 14 – 40

F2 728,556 0.1136 
(0.0039)

2.7305 1.9923 1.0529 
(0.0208)

0.0306 
(0.012)

496 346 57 – 57

F3 1,086,560 0.0993 
(0.0069)

3.0111 1.6831 0.8766 
(0.0234)

<0 608 329 0 – 85

aPrevious studies include van Walree et al.22 and Lind10.
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MetS components contributed to the prediction of dichotomized 
MetS in the UKB. To this end, we compared the incremental variance 
explained (ΔR2) between the baseline and PRS models (Fig. 4b and Sup-
plementary Table 34). In all PRS models, the estimates were statistically 
significant after Bonferroni correction (P < 0.05/11). The MetS PRS 
explained the largest variance for predicting MetS (ΔR2 = 0.75%; 95% 
CI = 0.49–1.04%), followed by the TG PRS (ΔR2 = 0.63%; 95% CI = 0.39–
0.93%) and the T2D PRS (ΔR2 = 0.5%; 95% CI = 0.3–0.75%).

We further investigated the relationship between MetS PRS and 
the incidence rate of CVD in the UKB. The MetS PRS showed distinct 
differences in CVD incidence rates across stratified genetic risk groups, 
and a notable association between the MetS PRS and CVD incidence 
rate (hazard ratio = 1.11; 95% CI = 1.10–1.13) was identified through 
multivariable Cox regression analysis (Supplementary Fig. 9 and Sup-
plementary Table 35).

MetS GWAS and PRS transferability in East Asians
Using PLINK v.2.0 (ref. 33), we performed a GWAS for dichotomized 
MetS based on the AHA/NHLBI criteria, including 62,314 independ-
ent Korean individuals from the Korean Genome and Epidemiology 
Study (KoGES) cohort34 (Supplementary Fig. 10). We identified 19 lead 
SNPs across six genomic risk loci using the standard clumping method 
within FUMA20, of which 10 SNPs were significant even after condi-
tional analysis using COJO (Supplementary Table 36). We computed the 
genetic correlation between European and East Asian MetS GWAS using 
Popcorn35 and observed a substantial genetic correlation of rg = 0.70 
(s.e. = 0.18) (Supplementary Table 37).

To evaluate the consistency and transferability of European COJO 
MetS SNPs in the East Asian population, we investigated GWAS effect 
consistency and locus transferability. We observed a moderate ρ of 
0.34 (P = 3.16 × 10−34; Supplementary Fig. 11) and a high power-adjusted 
transferability (PAT)36 of 1.66.

We further evaluated the performance of PRS computed using 
the European GWAS in KoGES (Fig. 4b and Supplementary Table 38). 
Similar to the UKB target, the MetS PRS demonstrated the largest ΔR2 
in KoGES (UKB ΔR2 = 0.75%; 95% CI = 0.49–1.04%; KoGES ΔR2 = 0.41%; 
95% CI = 0.31–0.54%), and a similar ΔR2 pattern was evident in PRS 
computed using PRSice-2 (ref. 37) (Supplementary Note and Supple-
mentary Table 39). These findings suggest the potential transferability 
of European MetS GWAS findings to diverse populations.

PRS-PheWAS
To investigate the health outcomes associated with MetS, we conducted a 
PRS-PheWAS on UKB individuals with a sample size ranging from 196,837 
to 294,024. We applied logistic regression to analyze 1,621 distinct health 
outcomes after adjusting for sex, age and ten principal components 
(PCs) of genetic ancestry. After Bonferroni correction (P < 0.05/1,621), 
350 medical outcomes were associated significantly with MetS, and the 
OR ranged from 0.84 to 1.83 per s.d. increase in the MetS PRS (Fig. 5 and 
Supplementary Table 40). Additionally, we conducted PRS-PheWAS for 
F1, F2 and F3, and 205, 213 and 294 health outcomes exhibited signifi-
cant associations, respectively (Supplementary Table 41). Moreover, 43 
health outcomes showed significant associations solely with the MetS 
PRS, including paroxysmal tachycardia (OR = 1.09; 95% CI = 1.06–1.13) 
and delirium (OR = 1.10; 95% CI = 1.06–1.14) (Supplementary Fig. 12).

These associations extended beyond the expected links with 
health outcomes closely related to MetS components, such as hyper-
tension, obesity, diabetes, hyperlipidemia and hypercholesterolemia. 
Thus, the MetS PRS exhibited significant associations with health 
outcomes across a wide range of bodily systems, including the circula-
tory (for example, chest pain and heart failure), digestive (for example, 
cholelithiasis, liver disease and gastroesophageal reflux disease), renal 
(for example, renal failure and urinary tract infection), and respiratory 
(for example, pneumonia) systems, and mental disorders (for example, 
tobacco use and anxiety disorders).

Two-sample Mendelian randomization
We conducted TSMR to investigate the potential causal associa-
tion between MetS and health outcomes that showed a significant 
association in the PRS-PheWAS analysis. Among the 350 significant 
health outcomes, we collated UKB GWAS summary statistics for 
325 medical outcomes. After harmonization, 262 instrumental vari-
ables (IVs) were extracted from the MetS GWAS. Four causal estima-
tion methods—inverse-variance weighted (IVW)38, weighted median 
(WM)39, MR-Egger40 and MR pleiotropy residual sum and outlier 
(MR-PRESSO)41—were used to estimate causal effects. We selected 
the most robust causal effect estimate based on its significance after 
Bonferroni correction (P < 0.05/325) and results from heterogeneity 
and pleiotropy tests following the approach of Kim et al.42.

MetS was associated significant and causally with 29 health out-
comes spanning various bodily systems (Table 3), such as ischemic  

Table 2 | MetS genes prioritized from the SMR analysis

Gene Tissue Chr Top SNP PeQTL PGWAS Beta s.e. PSMR PHEIDI

RBM6 Adipose subcutaneous 3 rs9814664 1.27 × 10−116 1.28 × 10−47 0.034 0.003 1.54 × 10−34 –

MLXIPL Adipose subcutaneous 7 rs17145813 5.19 × 10−12 1.03 × 10−34 0.111 0.018 1.78 × 10−9 6.78 × 10−2

BCL7B Adipose subcutaneous 7 rs11972595 1.54 × 10−14 4.55 × 10−9 −0.054 0.012 3.15 × 10−6 5.69 × 10−1

MYO1F Adipose subcutaneous 19 rs4804311 2.59 × 10−20 8.05 × 10−30 0.095 0.013 7.98 × 10−13 1.30 × 10−1

STRA13 (CENPX) Adipose subcutaneous 17 rs4995642 2.78 × 10−47 1.61 × 10−7 −0.016 0.003 8.41 × 10−7 1.32 × 10−1

STRA13 (CENPX) Brain cortex 17 rs4995642 2.17 × 10−192 1.61 × 10−7 −0.007 0.001 2.48 × 10−7 6.13 × 10−2

FEZ2 Brain cortex 2 rs10172196 2.72 × 10−88 1.05 × 10−9 0.013 0.002 5.42 × 10−9 1.00 × 10−1

MED23 Skeletal muscle 6 rs2608954 7.35 × 10−16 1.44 × 10−16 0.048 0.008 7.89 × 10−9 3.10 × 10−1

AMHR2 Skeletal muscle 12 rs2272002 3.15 × 10−11 6.98 × 10−12 −0.046 0.010 1.84 × 10−6 1.92 × 10−1

STRA13 (CENPX) Skeletal muscle 17 rs4995642 2.99 × 10−45 1.61 × 10−7 −0.016 0.003 9.00 × 10−7 1.03 × 10−1

HM13 Whole blood 20 rs6120704 0 1.41 × 10−11 0.021 0.003 2.14 × 10−11 7.32 × 10−2

MED23 Whole blood 6 rs2245133 3.75 × 10−181 2.04 × 10−19 0.051 0.006 8.14 × 10−18 6.95 × 10−2

RFT1 Whole blood 3 rs2336725 6.08 × 10−263 7.37 × 10−21 −0.038 0.004 1.52 × 10−19 –

SP1 Whole blood 12 rs10876447 1.66 × 10−139 9.12 × 10−14 −0.032 0.004 8.95 × 10−13 9.21 × 10−1

PeQTL is the uncorrected P value from two-sided z test for the top associated cis-eQTL in the eQTL, PGWAS is the uncorrected P value from two-sided z test for the top associated cis-eQTL in the 
GWAS, Beta is the effect estimate from SMR, s.e. is the corresponding standard error, PSMR is the uncorrected P value from two-sided χ2-test with 1 d.f. for SMR and PHEIDI is the uncorrected P value 
from two-sided HEIDI test. Chr, chromosome.
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heart disease (OR = 2.32; 95% CI = 2.00–2.68), other mental disor-
ders (OR = 1.34; 95% CI = 1.18–1.52), spondylosis without myelopathy 
(OR = 1.61; 95% CI = 1.28–2.03), cholelithiasis and cholecystitis (OR = 1.52; 
95% CI = 1.29–1.80) and renal failure (OR = 1.47; 95% CI = 1.21–1.77)  
(Supplementary Tables 42 and 43). We observed robustness in 
the identified causal associations through constrained maximum  
likelihood and model averaging-based MR (cML-MA)43, and the bidi-
rectional TSMR suggested insufficient evidence for the potential 
reverse causation (Supplementary Tables 44–46 and Supplemen-
tary Figs. 13 and 14). We further validated these results by leveraging 
GWASs from an independent cohort, the Michigan Genomics Initiative 
(MGI)44 freeze 3 (we note that one health outcome was unavailable in 
the MGI). Among the 28 health outcomes, 13 remained significant in 
the MGI after Bonferroni correction (P < 0.05/28) (Supplementary 
Tables 47 and 48).

Discussion
In this study, we used Genomic SEM to investigate genetic MetS factors 
using seven MetS components: BMI, WC, T2D, FG, HTN, HDL and TG. We 
developed a hierarchical model comprising three first-order factors 
(obesity, insulin resistance/hypertension and dyslipidemia), which 
effectively described the shared genetic liability of MetS. We identified 
the genomic loci associated with MetS and 11 potential therapeutic 
target genes. We demonstrated the performance of the MetS PRS in 
individuals of European ancestry and its potential utility in individu-
als of East Asian ancestry. Additionally, we examined the association 
between MetS and various health outcomes.

Genomic SEM identified genomic loci associated with MetS, of 
which 1,307 were significant COJO SNPs even after conditional analysis. 
Furthermore, 6.3% (n = 82) of the COJO MetS SNPs were independent of 
the genomic loci of the MetS components, and only 21% (n = 273) were 
GWS in the QSNP heterogeneity test. A previous study by Van Walree 
et al.22 used Genomic SEM to construct a common MetS factor based 
on genetic clustering across five main criteria. Although they identified 
numerous MetS lead SNPs (n = 318), their study has several limitations, 
including a lack of validity assessment through a heterogeneity test, 
limited exploration of potential relationships with other health out-
comes and a lack of validation in independent cohorts, especially in 
populations of different ancestry. Therefore, our findings are notable, 

as we identified additional MetS SNPs compared with the largest MetS 
GWAS conducted to date and rigorously assessed their validity.

MetS has strong connections with brain functions45, and its 
association with various psychiatric disorders has been consistently 
suggested46,47. For example, individuals with schizophrenia (SCZ) or 
bipolar disorder (BD) exhibit an increased prevalence of MetS (SCZ: 
37–63%; BD: 30–49%) and a higher relative risk than the general pop-
ulation (SCZ: two- to threefold; BD: 1.5- to twofold)48. Additionally, 
MetS is associated with Alzheimer disease, with a more than threefold 
increased risk49. In this study, we observed a significant association 
between MetS and psychiatric disorders through genetic correlation 
analysis and enrichment of MetS genetic signals in the hippocampus 
and brain tissues. As psychiatric disorders have a heritable component, 
our results provide genetic evidence that MetS may be associated with 
brain function and, consequently, various mental disorders.

We prioritized 11 potential genes (AMHR2, BCL7B, FEZ2, HM13, 
MED23, MLXIPL, MYO1F, RBM6, RFT1, SP1 and STRA13) associated 
strongly with MetS through SMR analyses across MetS-relevant tissues. 
Additionally, whole blood tissue from the eQTLGen cohort was included 
because of its drug delivery suitability, biomarker measurement 
convenience and large sample size enhancing statistical power50–52.  
Using resources such as GeneCards53, the Open Targets Platform54 and 
the International Mouse Phenotyping Consortium (IMPC)55, most of 
these genes were linked to MetS components (Supplementary Note). 
STRA13 regulates adipogenesis and lipogenesis56 and SP1 is crucial 
for the transcription of genes associated with hyperinsulinemia, T2D 
and MetS in response to insulin levels57. Both BCL7B and MLXIPL are 
associated with MetS and inflammation, whereas MLXIPL is associated 
specifically with lipid metabolism58. Furthermore, Med23 knockout 
mice had higher HDL and lean body mass, whereas Hm13 and Rbm6 
deletions led to lower fasting glucose levels, which is concordant with 
the direction of the genetic effect from SMR analyses. The prioritized 
MetS genes demonstrated substantial evidence of their relevance to 
metabolic traits, supporting their use as potential targets for thera-
peutic interventions in MetS.

The utility of the MetS PRS in the European population was exam-
ined by stratifying the MetS PRS into deciles, where individuals with 
MetS PRS in the highest decile had a 2.21-fold greater risk of develop-
ing MetS. Furthermore, the MetS PRS exhibited slightly improved 
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discrimination in identifying individuals at an elevated risk of devel-
oping CVD compared with the PRS of its components. These findings 
emphasize the utility of the MetS PRS in identifying individuals at high 
CVD risk and in implementing proactive lifestyle adjustments and 
clinical interventions.

Building on these findings, we further investigated the perfor-
mance of the MetS PRS computed from a European GWAS for predicting 
dichotomized MetS in identical and different target populations. The 
MetS PRS demonstrated superior predictive power for dichotomized 
MetS in both cohorts compared with the PRSs of its components, 
which is consistent with MetS exhibiting the highest PAT. In contrast, 
FG accounted for the least MetS variance in both cohorts. This may 
be attributed to the fact that the performance of PRS depends on the 
GWAS sample size59, and the sample size of the FG GWAS was com-
paratively smaller than that of the other components. These findings 
highlight a promising scope for wider application of the MetS PRS 
across different populations, yet they stress the need for GWAS with 
larger sample sizes.

As mentioned previously, MetS is associated with various health 
outcomes16. We investigated the associations across various health 
outcomes in different bodily systems using the PRS-PheWAS, and 350 
health outcomes showed significant associations. As an extension 
of the association analysis, we investigated the causal relationship 
between MetS and a broad range of health outcomes using the TSMR. 
Most health outcomes with a causal relationship to MetS are related 
to the circulatory system. However, the association between digestive, 
respiratory, and genitourinary system disorders and mental disorders 
was notable.

Our study had several limitations. First, we focused on individu-
als of European ancestry for the main discovery of the MetS genetic 
architecture. Genomic SEM is based on LDSC, which uses ancestry- 
dependent linkage disequilibrium scores that restrict the analysis to a 
homogenous population. However, the potential heterogeneity in SNP 
effects on MetS components among various ancestral backgrounds 
suggests that genetic signals for MetS may vary across populations60,61. 
These findings highlight the importance of conducting analyses that 
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Table 3 | Results of TSMR analysis

ICD-10 category Outcome Method OR 
 (95% CI)

P value Heterogeneity  
P value

MR-Egger 
intercept  
P value

MR-PRESSO 
global test  
P value

Circulatory Peripheral angiopathy in  
diseases classified elsewhere

Inverse variance 
weighted

5.58  
(2.42, 12.87)

5.43 × 10−5 0.056 0.44 –

Circulatory Other disorders of arteries  
and arterioles

Inverse variance 
weighted

2.68  
(1.75, 4.11)

6.34 × 10−6 0.343 0.63 –

Circulatory Coronary atherosclerosis MR-PRESSO 2.49  
(2.10, 2.95)

1.54 × 10−21 2.95 × 10−37 0.31 <0.001

Circulatory Angina pectoris MR-PRESSO 2.46  
(2.05, 2.95)

3.92 × 10−19 6.34 × 10−24 0.22 <0.001

Circulatory Other chronic ischemic heart 
disease, unspecified

MR-PRESSO 2.39  
(2.00, 2.85)

1.34 × 10−18 1.20 × 10−16 0.50 <0.001

Circulatory Unstable angina (intermediate 
coronary syndrome)

MR-PRESSO 2.34  
(1.82, 3.02)

2.48 × 10−10 1.74 × 10−7 0.77 <0.001

Circulatory Peripheral vascular disease, 
unspecified

Inverse variance 
weighted

2.33  
(1.68, 3.23)

4.08 × 10−7 0.058 0.84 –

Circulatory Ischemic heart disease MR-PRESSO 2.32 (2.00, 
2.68)

8.93 × 10−24 3.05 × 10−45 0.19 <0.001

Circulatory Other forms of chronic  
heart disease

Inverse variance 
weighted

2.29  
(1.58, 3.30)

1.00 × 10−5 0.393 0.69 –

Circulatory Myocardial infarction MR-PRESSO 2.25  
(1.84, 2.75)

7.13 × 10−14 4.47 × 10−23 0.28 <0.001

Circulatory Heart failure NOS MR-PRESSO 1.79  
(1.36, 2.35)

3.88 × 10−5 2.42 × 10−4 0.58 <0.001

Circulatory Congestive heart failure; 
nonhypertensive

MR-PRESSO 1.75  
(1.37, 2.22)

7.93 × 10−6 2.62 × 10−4 0.56 <0.001

Circulatory Peripheral vascular disease Inverse variance 
weighted

1.74  
(1.34, 2.27)

3.86 × 10−5 0.057 0.25 –

Circulatory Circulatory disease NEC MR-PRESSO 1.36  
(1.18, 1.56)

2.28 × 10−5 1.87 × 10−4 0.02 <0.001

Circulatory Other disorders of the 
circulatory system

MR-PRESSO 1.36  
(1.18, 1.56)

2.19 × 10−5 2.40 × 10−4 0.02 <0.001

Circulatory Nonspecific chest pain MR-PRESSO 1.34  
(1.20, 1.51)

1.11 × 10−6 3.17 × 10−12 0.01 <0.001

Digestive Other chronic nonalcoholic 
liver disease

MR-PRESSO 3.3  
(2.16, 5.04)

9.31 × 10−8 2.60 × 10−9 0.14 <0.001

Digestive Chronic liver disease and 
cirrhosis

MR-PRESSO 2.12  
(1.53, 2.95)

1.13 × 10−5 1.83 × 10−7 0.04 <0.001

Digestive Cholelithiasis and cholecystitis MR-PRESSO 1.52  
(1.29, 1.80)

1.50 × 10−6 6.59 × 10−28 0.12 <0.001

Digestive Cholelithiasis MR-PRESSO 1.45  
(1.21, 1.73)

6.72 × 10−5 7.70 × 10−23 0.07 <0.001

Endocrine/metabolic Gout MR-PRESSO 2.07  
(1.48, 2.90)

3.38 × 10−5 2.28 × 10−8 0.14 <0.001

Genitourinary Renal failure Inverse variance 
weighted

1.47  
(1.21, 1.77)

7.05 × 10−5 0.291 0.58 –

Mental disorders Tobacco use disorder MR-PRESSO 1.35  
(1.16, 1.56)

1.28 × 10−4 1.35 × 10−19 0.03 <0.001

Mental disorders Other mental disorder MR-PRESSO 1.34  
(1.18, 1.52)

1.20 × 10−5 7.68 × 10−14 0.30 <0.001

Musculoskeletal Spondylosis without 
myelopathy

Inverse variance 
weighted

1.61  
(1.28, 2.03)

4.23 × 10−5 0.119 0.99 –

Musculoskeletal Unspecified monoarthritis MR-PRESSO 1.59  
(1.34, 1.90)

3.65 × 10−7 7.14 × 10−22 0.01 <0.001

Musculoskeletal Arthropathy NOS MR-PRESSO 1.46  
(1.29, 1.66)

1.62 × 10−8 8.40 × 10−32 0.02 <0.001

Musculoskeletal Other arthropathies MR-PRESSO 1.4  
(1.24, 1.59)

2.97 × 10−7 5.23 × 10−34 0.04 <0.001

Respiratory Asthma MR-PRESSO 1.35  
(1.18, 1.55)

2.39 × 10−5 1.58 × 10−30 0.77 <0.001

P value is uncorrected P value from two-sided z test for inverse variance weighted and two-sided t-test for MR-PRESSO, Heterogeneity P value is uncorrected P value from one-sided χ2-test with 
number of IV − 1 as degrees of freedom, MR-Egger intercept P value is uncorrected P value from two-sided t-test with number of IV − 1 as d.f., and MR-PRESSO global test P value is uncorrected 
P value from two-sided global test. NOS, nitric oxide synthase.
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include several ancestral groups. Second, the genetic factor model of 
MetS described in this study may not be the true model. Genomic SEM 
can deduce an optimal factor model only from the genetic covariance of 
indicators included in the analysis. Hence, various post hoc analyses are 
essential to elucidate the usefulness of the suggested latent factors in 
biological mechanisms. Furthermore, considering that the definition of 
MetS undergoes periodic updates, encompassing a broader spectrum 
of metabolic traits or diseases, such as insulin resistance and NAFLD, 
will provide more comprehensive insights into the genetic underpin-
nings of MetS. Third, apart from MetS GWAS signals, we observed 
a substantial number of SNPs that showed heterogeneous effects 
(that is, QSNP) on the MetS components included in the analysis. Fur-
ther investigation of QSNP may potentially identify phenotype-specific 
genetic signals. Fourth, because of the limited availability of GWAS 
for MetS components in East Asian populations, the genetic model 
of MetS, which was identified specifically in individuals of European 
ancestry, could not be replicated. Therefore, we highlight the need for 
an increase in the sample size across diverse populations.

In conclusion, our results reveal the complex genetic architecture 
of MetS and its relationship with various health outcomes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01933-1.
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Methods
Ethics statement
We received approval to use data from the UKB and KoGES under appli-
cation number 33002 and NBK-2022-063, respectively. Our study 
adhered to all the conditions and access procedures established by 
the corresponding biobanks.

Selection of GWAS on MetS components and meta-analysis
Seven MetS components (BMI, WC, T2D, FG, HTN, HDL and TG) were 
selected to define MetS1 (Supplementary Note). We gathered the largest 
European GWAS summary statistics for these components from previ-
ous studies or public repositories, including the Genetic Investigation 
of Anthropometric Traits, Meta-Analyses of Glucose and Insulin-related 
Traits Consortium, Global Lipids Genetics Consortium, Million Veterans 
Program (MVP), FinnGen Release 7 and UKB. Additionally, we prepared 
a UKB-excluded cohort, in which UKB individuals were absent from the 
GWAS summary statistics. The purpose of the UKB-excluded cohort 
was to avoid sample overlap with the target cohort (that is, UKB) when 
conducting post-GWAS analyses such as PRS analyses, PRS-PheWAS and 
TSMR. A detailed summary of the individual GWAS summary statistics 
used in this study is provided in Supplementary Table 1.

We conducted a fixed-effects meta-analysis of T2D and HTN using 
METAL63 to increase the sample size of the corresponding GWAS. FinnGen 
and UKB were included in the meta-analysis of HTN whereas FinnGen, 
MVP and Vujkovic et al.64 were included in the meta-analysis of T2D. For 
the UKB-excluded cohort, we performed a T2D-specific meta-analysis 
using FinnGen and MVP. The intercept of the bivariate LDSC regression 
indicated no sample overlap between cohorts (Supplementary Table 3).

Quality control of GWAS
Quality control (QC) of the GWAS summary statistics was conducted 
using EasyQC65 v.23.8. The European 1000 Genomes Phase 3 (1kGP3) 
was used as a reference for QC. The SNPs were filtered based on the 
following criteria: (1) SNPs with alleles other than A, T, C and G, or 
mismatched with the reference; (2) monomorphic SNPs; (3) SNPs 
with a minor allele frequency (MAF) below 0.5%; (4) duplicated or 
multiallelic SNPs; (5) low-quality SNPs (INFO < 0.9 if imputation qual-
ity is provided); and (6) SNPs absent in the reference (Supplementary 
Table 2). All the GWAS summary statistics were aligned to the genome 
build GRCh37. For the FinnGen data, we converted them from GRCh38 
to GRCh37 using the UCSC liftOver66.

KMO test
The KMO19 test was used to assess the suitability of the data for factor 
analysis. The KMO test computes measures of sampling adequacy for 
each and all overall indicators, and a value above 0.5 indicates data 
adequacy for factor analysis. We used the R package psych v.2.1.9 to 
conduct the KMO test.

Parallel analysis
Parallel analysis67 determined the number of factors retained in the 
following EFA. The eigenvalues from the genetic correlation matrix 
were compared with those from a Monte-Carlo-simulated genetic 
correlation matrix by introducing random noise from the sampling 
covariance matrix. We used the ldsc function in Genomic SEM12 v.0.0.5 
to compute the genetic correlation matrix and the corresponding 
sampling covariance matrices for the seven MetS components. The 
suggested number of factors was determined by selecting the last 
factor with an eigenvalue greater than that of the simulated genetic 
correlation matrix. The scree plot for the parallel analysis is illustrated 
in Supplementary Figs. 2 and 15.

Exploratory factor analysis
EFA was performed using the factanal function in R package stats 
v.4.0.5. We fitted the single-factor model to the three-factor model, as 

suggested by the parallel analysis. Promax rotation accounted for the 
correlation between the latent factors, and we retained a factor that 
explained more than 15% of the variance68.

Confirmatory factor analysis
A CFA was performed using Genomic SEM12 v.0.0.5. The result from 
EFA was leveraged to construct the genetic factor model, where the 
indicators with factor loadings ≥0.3 were retained for the correspond-
ing latent factor. In addition, the factor models in the CFA were speci-
fied using unit variance identification (that is, fixing the variance of 
the latent factor to one) for a better interpretation of the model fit 
result. CFA parameters were estimated using the diagonally weighted 
least-squares fit method12.

Model fit depends on the closeness of the model-implied genetic 
covariance matrix to the observed genetic covariance matrix. We 
assessed the model fit using four indices conventionally used in SEM: 
χ2-statistic, CFI, AIC and SRMR. The χ2-statistic indicates the exact fit 
of the SEM model. The CFI indicates whether the proposed model fits 
better than one that assumes that all phenotypes are heritable and 
genetically uncorrelated. The AIC is a relative fit index used to com-
pare models regardless of their nested states. SRMR represents an 
approximate model fit, calculated as the difference in SRMR between 
the model-implied and observed genetic covariance matrices. We 
defined a good model fit based on CFI and SRMR, where CFI ≥ 0.95 and 
SRMR < 0.08, as proposed by Hu and Bentler69.

MetS multivariate GWAS with Genomic SEM
A multivariate GWAS was conducted to estimate the association of 
SNPs with MetS factors from a hierarchical factor model using Genomic 
SEM. The factor construct was specified by unit loading identification 
(that is, one of the factor loadings of indicators on the latent factor was 
fixed at 1), where the factor loadings of BMI and the F1 factor (that is, 
obesity factor) were fixed for the F1 factor and MetS factor, respectively. 
The identical parameter estimation fit function (that is, diagonally 
weighted least-squares) was used for the SNP association test. Addi-
tional QC steps for individual-level GWAS were performed by filtering 
SNPs with MAF > 1% and SNPs commonly observed in all individual-level 
GWAS and the European 1kGP3 reference panel. In total, 2,265,555 SNPs 
were included in the multivariate GWAS for MetS. The neff for the latent 
factor was estimated by following Mallard et al.14, where neff for the 
latent factor is calculated as (Zj/βj)

2

σj
2

 using the SNPs with MAF between 10 
and 40%.

FUMA20 v.1.4.1 was used to identify independent lead SNPs, per-
form functional annotation and conduct functional gene mapping. The 
lead SNPs were identified through a two-step clumping procedure: the 
independent significant SNPs were first defined by clumping the SNPs 
with a P < 0.05 and r2 ≥ 0.6; the lead SNPs were defined by applying a 
second round of clumping with a P < 5 × 10−8 and r2 ≥ 0.1. The identified 
lead SNPs were subjected to GCTA-COJO21 v.1.94.1 and determined 
whether they were conditionally and jointly associated SNPs through 
a stepwise model selection procedure with default parameters (that is, 
P < 5 × 10−8, window of 10 Mb, and collinearity <0.9). To identify MetS 
COJO SNPs independent of other GWAS, we compared the lead SNPs 
with their independent significant SNPs within the 500-kb window of 
the MetS COJO SNP. A MetS COJO SNP was classified as ‘independent’ if 
any lead SNPs and their independent significant SNPs with P < 5 × 10−8 
and r 2 > 0.01 were not identified. A MetS COJO SNP was classified as  
‘previously reported’ if the SNP was mapped from FUMA using 
NHGRI-EBI GWAS catalog23 (last updated on 2 August 2023).

We conducted a heterogeneity test using genome-wide QSNP sta-
tistics to evaluate the potential SNP effect heterogeneity across the 
indicators. The null hypothesis of the heterogeneity test posits that the 
effect of an SNP operates through a latent factor (that is, the common 
pathway model). The deviation from this null hypothesis indicates 
that the model with direct SNP effects on the indicators (that is, the 
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independent pathway model) provides a better explanation. QSNP sta-
tistics were derived from the χ2 difference test comparing the common 
and independent pathway models.

SNP-based heritability and genetic correlation
LDSC17,18 v.1.0.1 was used to estimate genomic inflation, SNP-based 
heritability, and bivariate genetic correlation. For all estimations, 
precalculated LD scores from the European 1kGP3 and approximately 
1.3 million high-quality SNPs were defined by the HapMap3 Consor-
tium70. Genomic inflation was determined based on the LDSC intercept 
and the attenuation ratio. The LDSC intercept was close to 1 and the 
attenuation ratio was close to 0, indicating that the observed inflation 
in the association test statistics was due to polygenicity rather than bias 
from population stratification.

Genetic correlations were computed between the MetS compo-
nents used in the Genomic SEM and between MetS factors and exter-
nal traits (Supplementary Table 18). The SNPs in the corresponding 
GWAS summary statistics were filtered using the following thresholds: 
MAF > 0.01 and INFO > 0.9 (if available). For dichotomous traits, we 
used the effective sample size rather than the total sample size (that 
is, the sum of ncase and ncontrol).

Partitioned heritability
We partitioned SNP heritability using S-LDSC25. The SNPs were catego-
rized into 53 annotations as defined by Finucane et al.25. Heritability 
enrichment in each category was computed as the proportion of SNP 
heritability in that category to the proportion of total SNPs annotated 
in the corresponding category. We used the precomputed LD scores of 
the European 1kGP3 reference panel and annotations available online. 
The Bonferroni-corrected significance threshold for 53 annotations 
was indicated by P < 0.05/53 = 9.43 × 10−4.

Cell- and tissue-type-specific analysis
LDSC-SEG26 was used to analyze cell- and tissue-specific enrich-
ment by testing the heritability enrichment of genes with high cell- 
or tissue-specific expression. The human leukocyte antigen region 
was excluded from all analyses because of its complex LD patterns26. 
Precomputed annotation files (LD scores) from Finucane et al.26 were 
utilized, covering 205 tissues and cell types from Franke laboratory27, 
489 tissue-specific chromatin-based annotations from Roadmap Epig-
enomics71 and the ENCODE project72, and three mouse brain cell types 
from Cahoy et al.73.

MAGMA gene-based, gene set and gene property analyses
MAGMA74 v.1.08, implemented in FUMA, was used for gene-based gene 
sets and gene property analyses75. In the gene-based analysis, SNPs 
were linked to protein-coding genes by aggregating the P values of 
SNPs using the SNP-wise mean model. The European 1kGP3 reference 
panel was used to account for LD between SNPs. This mapping process 
encompassed 17,674 protein-coding genes from Ensembl Build 85, with 
Bonferroni-corrected significance set at P < 2.83 × 10−6.

Gene set analysis was performed to identify the genes (grouped by 
specific biological pathways, cellular components or molecular func-
tions) associated with the phenotype through competitive analysis. 
In total, 15,481 gene sets (5,497 curated genes and 9,984 gene ontol-
ogy terms) obtained from MsigDB v.7 (ref. 76) were tested, with the 
Bonferroni-corrected significance set at P < 3.23 × 10−6.

Gene property analysis was performed to test the relation-
ship between tissue-specific gene expression profiles and the 
phenotype-gene association P value obtained from the gene-based 
analysis. We evaluated 54 specific tissues from GTEx30 v.8 and 11 brain 
developmental stages from BrainSpan77. Gene expression values in 
both sets were log2 transformed average reads per kilobase million 
per tissue type (with reads per kilobase million exceeding 50 replaced 
with 50). Bonferroni-corrected significance thresholds were set at 

P < 9.26 × 10−4 for GTEx tissues and at P < 0.005 for BrainSpan devel-
opmental stages.

Gene prioritization
To prioritize genes potentially mediating the effects of SNPs on the tar-
get phenotype, we performed SMR78 analysis using SMR v.1.03. We used 
publicly available cis-eQTL data from BrainMeta v.2 (ref. 28) (n = 2,865) 
for the brain, eQTLGen29 (n = 31,684) for whole blood and GTEx v.8  
(ref. 30) for subcutaneous adipose tissue (n = 581), skeletal muscle 
(n = 706), liver (n = 208), aorta (n = 387) and coronary arteries (n = 213) 
as our discovery set. The results were then validated in brain cortical 
tissues (cortex (n = 205), frontal cortex (n = 175), anterior cingulate 
cortex (n = 147)) and whole blood (n = 670) using GTEx v.8. Brain cortical 
tissues in the GTEx were considered specifically because the genotype 
and RNA sequencing data of BrainMeta v.2 were obtained from brain 
cortical tissue. The results for subcutaneous adipose and skeletal mus-
cles were validated using METSIM79 (n = 434) and FUSION80 (n = 301), 
respectively (an overview of the eQTL data used can be obtained in 
Supplementary Table 30).

We randomly selected 10,000 individuals of European ancestry 
from the UKB to compute the LD between SNPs. The significance of 
the SMR results was determined using the Bonferroni correction for 
the number of genes tested in each cohort. The resulting genes were 
subjected to the HEIDI78 test to distinguish the associations between 
pleiotropy and linkage. The null hypothesis of the HEIDI test was that 
there is a single causal SNP associated with gene expression and phe-
notype; hence, P > 0.05, suggesting that a pleiotropic effect due to 
linkage is unlikely.

PRS analysis
We computed the PRS for all seven MetS components (BMI, WC, T2D, 
FG, HTN, HDL and TG) included in the Genomic SEM and latent factors 
using PRS continuous shrinkage (PRS-CS)31, while GWAS summary 
statistics from the UKB-excluded cohort were used. The PRS-CS uses a 
Bayesian approach that infers the posterior mean effect size of the SNP, 
where continuous shrinkage is applied before the SNP effect estimates 
from the GWAS. We used the global shrinkage parameter (Φ) of 0.01, the 
neff for the input of GWAS sample size if the GWAS was of dichotomous 
phenotype, the LD reference panel from European 1kGP3, and the rest 
of the parameters set to default values (that is, Bayesian gamma-gamma 
prior of 1 and 0.5; Monte-Carlo iterations of 1,000; burn-in iterations 
of 500, and Markov chain thinning factor of 5). We then computed the 
PRS for individuals in the UKB using PLINK v.2.0 (ref. 33) by summing 
the variants weighted by the inferred posterior mean effect size for 
the effect allele.

The computed PRS of the seven MetS components and latent fac-
tors predicted the MetS status in UKB individuals (Supplementary Note 
describes the phenotyping of MetS in the UKB cohort). We constructed 
baseline and PRS models, in which the percentage of incremental 
pseudo-R2 was computed. The baseline model was a logistic regres-
sion model with baseline covariates of sex, age and the ten genetic 
PCs. The PRS model was identical to the baseline model, except for 
PRS as an additional covariate. The adjusted McFadden’s pseudo-R2 
was computed for each model to penalize McFadden’s pseudo-R2 as 
more covariates were added to the model. The 95% CI for incremental 
pseudo-R2 was estimated using the percentile bootstrapping method 
with 1,000 iterations.

MetS GWAS in the East Asian population
We conducted a GWAS on MetS in Korean individuals using the KoGES. 
The KoGES comprises three population-based studies. We gathered 
62,314 individuals from the Ansan and Ansung (Ansan/Ansung) and 
Health Examinee studies that had both genotype and phenotype data 
after QC. Among the 62,314 individuals, 10,684 were MetS cases and 
51,630 were MetS controls (Supplementary Note describes KoGES, 
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quality control and MetS phenotyping). The GWAS was performed 
using PLINK v.2.0 (ref. 33), and logistic regression with the firth-fallback 
option was used. The covariates included sex, age and the presence of 
ten genetic PCs.

Crosspopulation genetic correlation
The crosspopulation genetic correlation between the European and 
East Asian MetS GWAS was estimated using Popcorn software v.1.0 
(ref. 35). We included SNPs with MAF > 0.01 and precomputed cross-
population scores for European and East Asian 1kGP3 populations. We 
discuss the genetic effect correlation and correlation coefficients of 
the per-allele SNP effect sizes.

Power-adjusted transferability
We computed PAT to evaluate the reproducibility of MetS GWAS loci 
from European individuals in East Asians, regardless of effect size and 
considering differences in power or LD patterns. PAT was calculated 
by dividing the observed number of transferable loci by the expected 
number of transferable loci. The observed number of transferable loci 
is obtained by the following steps: (1) generation of credible sets from 
European MetS GWAS that consist of lead SNPs (available in East Asian 
MetS GWAS) and corresponding proxy SNPs (r2 ≥ 0.8) within a 50-kb 
window with P < 100 × PleadSNP; (2) defining each credible set as being 
transferable if at least one SNP is associated with P < 0.05 in East Asian 
MetS GWAS. The expected number of loci was obtained by adding the 
computed power (alpha = 0.05) for each lead SNP from the European 
MetS GWAS.

Phenome-wide association study with PRS
We performed PheWAS using PRS, computed using GWAS from the 
UKB-excluded cohort, and determined health outcomes from the UKB 
cohort. We fitted a logistic regression to 1,621 disease phenotypes, 
adjusted for sex, age and ten genetic PCs. The number of samples for each 
disease phenotype varied between 196,837 and 294,024, respectively.

Two-sample Mendelian randomization
We conducted TSMR to investigate the causal relationship between 
MetS and the health outcomes identified in the PRS-PheWAS. MetS was 
considered an exposure, and its GWAS summary statistics were sourced 
from the UKB-excluded cohort to avoid sample overlap with the out-
come GWAS. From the 350 significant Bonferroni associations from 
PRS-PheWAS, we extracted GWAS summary statistics for 325 medical 
outcomes from three sources (UKB SAIGE81, PanUKB and UKB Neale 
Laboratory) after excluding outcomes related to or overlapping with 
MetS (Supplementary Table 49). The TSMR results from the UKB were 
further validated using data from the MGI44 Freeze 3. TSMR analysis was 
conducted using the R package TwoSampleMR v.0.5.6.

The SNPs in the exposure and outcome GWAS were filtered with 
an MAF below 0.5%. IVs from the exposure GWAS were selected using 
the default clumping options in TwoSampleMR (that is, P < 5 × 10−8, 
r2 = 0.001, clumping distance = 10 Mb, and the European 1kGP3 refer-
ence panel). They harmonized with the outcome GWAS, with the effect 
alleles aligned between the exposure and outcome GWAS. We further 
excluded any IV palindromic or absent cases from the GWAS outcomes. 
A total of 262 IVs were extracted from MetS, and the number of IVs 
utilized for TSMR ranged from 176 to 253, depending on the outcome 
data sources and estimation methods (Supplementary Table 50).

Bidirectional TSMR (that is, considering health outcome as expo-
sure and MetS as outcome) was performed for 22 of 29 health outcomes 
that showed a significant causal association with MetS (note that seven 
health outcomes were excluded as IV was absent after filtering by GWS 
threshold and palindromic SNP). The IVs for bidirectional TSMR were 
extracted using an approach identical to that described above. The 
number of extracted IVs ranged from 1 to 14, depending on the health 
outcomes (Supplementary Table 51).

Five methods were used for each exposure and outcome pair to 
obtain causal estimates, depending on the number of IVs available. The 
Wald ratio82 method was used when a single IV was available, and the 
IVW38 method was used when more than two IVs were available. The 
WM39, MR-Egger regression40 and MR-PRESSO41 methods were used 
when more than three IVs were available where the MR-PRESSO method 
was not performed if either the MR-PRESSO global test was insignificant 
or the number of IVs retained after outlier removal was insufficient.

The Wald ratio method estimates the causal effect by dividing the 
regression of the outcome coefficient by exposure. The IVW method 
assumes that all IVs are valid and estimates the causal effect through a 
weighted regression of the coefficient from the outcome and exposure 
while constraining the intercept to zero. The WM method estimates the 
effect by varying the weights of the IVs, which provides a more consist-
ent estimate even if 50% of the IVs are valid. The MR-Egger regression 
method detects and accounts for the potential horizontal pleiotropy. 
The MR-PRESSO method estimates the causal effects by correcting 
horizontal pleiotropy and removing pleiotropic outliers. We examined 
the heterogeneity of the IVW model using Cochran’s Q-test83. The pres-
ence of horizontal pleiotropy was determined based on the significance 
of either the MR-Egger intercept test or the MR-PRESSO global test. We 
distinguished the best causal effect estimation method by following 
the decision tree from Kim et al.42, which is based on heterogeneity 
and horizontal pleiotropy. When a single IV was available, neither het-
erogeneity nor pleiotropy tests could be performed. Hence, the Wald 
ratio method was selected as the best causal effect estimation method.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics of the multivariate and KoGES MetS GWAS are avail-
able through GWAS Catalog (https://www.ebi.ac.uk/gwas/) under acces-
sion IDs GCST90444487–GCST90444489. The PRS weights developed 
for MetS are available through PGS Catalog (https://www.pgscatalog.
org/) with publication ID PGP000664 and score ID PGS004928. The 
individual-level phenotypic and genetic data for UKB (https://www.
ukbiobank.ac.uk/) and KoGES (https://is.kdca.go.kr/) can be accessed 
through the application. The reference panel for 1kGp3 can be obtained 
from the following URL: https://mathgen.stats.ox.ac.uk/impute/1000GP_
Phase3.html. The NHGRI-EBI GWAS Catalog is available at the following 
URL: https://www.ebi.ac.uk/gwas/docs/file-downloads. The GWAS sum-
mary statistics from the following consortia and biobanks are publicly 
available at the corresponding URL: GIANT (https://portals.broadinsti-
tute.org/collaboration/giant/index.php/GIANT_consortium_data_files), 
MAGIC (https://magicinvestigators.org/downloads/), GLGC (http://www.
lipidgenetics.org/#data-downloads-title), FinnGen (https://www.finngen.
fi/en/access_results), UKB from Neale laboratory (http://www.nealelab.
is/uk-biobank), UKB from Lee lab (https://www.leelabsg.org/resources) 
and PanUKB (https://pan.ukbb.broadinstitute.org/downloads). The 
GWAS summary statistics of the MVP cohort were obtained using an 
approved dbGaP application (phs001672.v9.p1). The GWAS summary 
statistics from the MGI cohort are available upon request from https://
precisionhealth.umich.edu/our-research/documents-for-researchers. 
The eQTL summary statistics are available from GTEx (https://gtexportal.
org/home/downloads/adult-gtex#qtl), eQTLGen (https://www.eqtlgen.
org/cis-eqtls.html), BrainMeta v.2 (https://yanglab.westlake.edu.cn/
software/smr/#DataResource), METSIM (https://mohlke.web.unc.edu/
data/1702-2/) and FUSION (https://www.ebi.ac.uk/birney-srv/FUSION/).

Code availability
The script used to conduct the parallel analysis was written by Javier de la 
Fuente and is available via GitHub (https://github.com/AnnaFurtjes/
genomicPCA/blob/main/data); also available on GitHub are the Genomic 
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SEM software (https://github.com/GenomicSEM/GenomicSEM), the 
LDSC software including S-LDSC and SEG-LDSC (https://github.com/
bulik/ldsc) and the Popcorn software (https://github.com/brielin/ 
Popcorn). LDScore is available at https://alkesgroup.broadinstitute.
org/LDSCORE and FUMA at https://fuma.ctglab.nl. The analysis codes 
are deposited with the repository name Park-Nature-Genetics-2024 via 
Zenodo at https://doi.org/10.5281/zenodo.13137680 (ref. 84).
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