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To tackle the high resource consumption in occluded person re-identification, sparse attention 
mechanisms based on Vision Transformers (ViTs) have become popular. However, they often suffer 
from performance degradation with long sequences, omission of crucial information, and token 
representation convergence. To address these issues, we introduce AIRHF-Net: an Adaptive Interaction 
Representation Hierarchical Fusion Network, named AIRHF-Net, designed to enhance pedestrian 
identity recognition in occluded scenarios. Our approach begins with the development of an Adaptive 
Local-Window Interaction Encoder (AL-WIE), which aims to overcome the inherent subjective 
limitations of traditional sparse attention mechanisms. This innovative encoder merges window 
attention, adaptive local attention, and interaction attention, facilitating automatic localization and 
focusing on visible pedestrian regions within images. It effectively extracts contextual information 
from window-level features while minimizing the impact of occlusion noise. Additionally, recognizing 
that ViTs may lose spatial information in deeper structural layers, we implement a Local Hierarchical 
Encoder (LHE). This component segments the input sequence in the spatial dimension, integrating 
features from various spatial positions to construct hierarchical local representations that substantially 
enhance feature discriminability. To further augment the quality and breadth of datasets, we adopt an 
Occlusion Data Augmentation Strategy (ODAS), which bolsters the model’s capacity to extract critical 
information under occluded conditions. Extensive experiments demonstrate that our method achieves 
improved performance on the Occluded-DukeMTMC dataset, with a rank-1 accuracy of 69.6% and an 
mAP of 61.6%.
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Current methods tackling occluded person re-identification often utilize external models such as pose estimation 
and human parsing to enhance accuracy in scenarios of partial visibility1–4. While this approach leverages 
auxiliary data effectively, it considerably increases computational demands, making it less efficient for processing 
extensive sequences and adding significant computational overhead. The Hierarchical Aggregation Transformers 
(HAT) for person re-identification, as presented by Zhang et al.5, introduce a hierarchical structure to aggregate 
features at multiple scales, which enhances the model’s ability to capture both local and global information. 
However, HAT may still struggle with significant domain shifts, as it does not explicitly address the challenge of 
adapting to new domains with different background styles.

In contrast, the Local Correlation Ensemble with GCN based on Attention Features for Cross-Domain Person 
Re-ID, proposed by Zhang et al.6, focuses on reducing intra-class differences and improving the reliability of 
class centers. The method incorporates a pedestrian attention module to emphasize person-specific features 
and a priority-distance graph convolutional network (PDGCN) to refine class center predictions. While this 
approach effectively leverages unlabeled target domain data and reduces intra-class variations, it may require 
more computational resources due to the additional complexity of the PDGCN and the need for robust 
clustering, which can be challenging in practice.

As the field gravitates towards more streamlined models, sparse attention mechanisms based on Vision 
Transformers (ViTs) have gained prominence in person re-identification (Re-ID)7. ViTs dissect images 
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into smaller patches (tokens) and leverage the Transformer architecture to analyze these tokens, capturing 
comprehensive contextual information. Traditional self-attention mechanisms, which compute interactions 
among all tokens, lead to a complexity of O(nÂ²) that becomes unsustainable with longer sequences8,9. To 
counter this, sparse attention strategies reduce computational complexity by focusing selectively on crucial 
tokens, thus significantly lightening the computational load. This selective focus not only streamlines processing 
but also maintains robustness in recognizing occluded individuals. Figure 1 provides an analysis of the 
complexity of different sparse attention models. Specifically, (a) represents self-attention without sparsification. 
Figure 1b shows dilated sparse attention, while (c) and (d) depict different sliding window attentions, where the 
computational complexity is positively correlated with the number of surrounding tokens being attended to.

Analysis of the figure reveals that manually designed sparse attention methods significantly reduce 
computational overhead, facilitating model lightweighting. However, practical applications encounter several 
challenges. Firstly, sparsification may lead to a decline in model performance when processing complex long 
sequences, and the extraction of key information in specific scenarios may be insufficient, adversely affecting 
recognition accuracy. Secondly, manually designed sparse attention strategies often suffer from a high degree 
of subjectivity. Designers must determine which tokens are worth attending to and which can be disregarded, a 
process that is prone to biases that can result in the omission of important information. Additionally, as model 
architectures (e.g., ViT) stack layers, the token representations across layers tend to converge, diminishing 
the model’s ability to distinguish features from different spatial locations. The loss of spatial information is 
particularly detrimental for visual tasks, especially for occluded person re-identification, which requires fine 
spatial feature differentiation.

To address these issues, this paper proposes a lightweight, adaptive interaction representation hierarchical 
fusion network, as illustrated in Fig. 2. This network consists of three primary components: an Occlusion-based 
Data Augmentation Strategy (ODAS), an Adaptive Local-Window Interaction Encoder (AL-WIE), and a Local 
Hierarchical Encoder (LHE). Firstly, to enhance the extraction of critical information in occluded scenarios 
while incorporating sparsification, the ODAS is proposed. This strategy increases the number of occluded 

Fig. 2.  Overall architecture of the proposed AIRHF-Net. The images of pedestrians in this figure are from the 
Occluded-DukeMTMC dataset. https://gith​ub.com/light​as/Occluded-​DukeMTMC-Da​taset.

 

Fig. 1.  Self-attention vs. sparse attention patterns (Dark blue squares represent tokens attending to themselves, 
light blue squares indicate attention computations between the corresponding dark blue square token and 
other tokens).
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samples during model training to improve data diversity and consistency while ensuring the quality of the 
generated samples. Secondly, compared to the overly subjective manually designed sparse attention strategies, 
the proposed AL-WIE architecture can adaptively leverage relation-aware mechanisms to extract visible 
pedestrian regions and contextual features from larger-scale window tokens. This alleviates the issue where, 
under sparse mechanisms, the model fails to capture all critical contextual information within long sequences, 
resulting in significant performance degradation. Simultaneously, it filters out occlusion noise and reduces 
computational complexity. Structurally, the architecture consists of three sub-modules: Large-Scale Window 
Attention, Association-Aware Adaptive Local Attention, and Interactive Attention Additionally, to combat the 
issue of progressive spatial information loss resulting from increased stacking of ViT layers, we propose the a 
Local Hierarchical Encoder (LHE). Unlike methods that segment local features horizontally, the LHE partitions 
the input sequence along the spatial dimension, integrating features from different spatial areas to generate 
hierarchical representations of various local features. This strategy effectively reduces the similarity between 
local features, significantly enhancing their discriminability.

The main contributions of our work can be summarized as follows:

•	 Firstly, we introduce an AL-WIE that leverages attention maps from ViTs to dynamically extract visible pedes-
trian regions and contextual features. This is accomplished through three sub-modules: Large-Scale Window 
Attention, Adaptive Local Attention, and Interaction Attention, which aid in filtering out occlusion noise and 
reducing computational complexity.

•	 Secondly, we develop a local hierarchical encoder that partitions the input sequence along the spatial dimen-
sion and integrates features from various spatial dimensions to generate hierarchical representations. This 
reduces the similarity among local features, enhancing their discriminability.

•	 Thirdly, an occlusion sample augmentation strategy is proposed to enrich person images by substituting dif-
ferent occluders while preserving the identity of the subject, improving both the quality and coverage of the 
dataset, and facilitating more efficient learning from sparse data.The remainder of this paper is structured 
as follows: section “Related work” provides a comprehensive review of related works in the field. In section 
“Methodology”, we present the architecture of the proposed framework and elaborate on the implementation 
details. Experimental results and a thorough analysis of the effectiveness of our method are presented in sec-
tion “Experimental results and analysis”. Finally, section “Conclusion” concludes our work by summarizing 
the key findings and contributions.

Related work
Due to the relevance of our approach to data augmentation, attention mechanisms, and lightweight methods, 
this section mainly analyzes algorithms related to these three aspects.

Occlusion augmentation strategies
Existing person re-identification models struggle with occlusions, as the interference caused by them limits 
robustness. A key factor is the limited number of occluded samples in the training set2,10, which prevents the 
model from learning the relationship between occlusions and pedestrians. An effective way to address this issue 
is through occlusion augmentation strategies.

Zhong et al.11 introduced a method where pixels are randomly erased and replaced with random values 
on the image. This approach is simple and helps reduce the risk of overfitting, but it has limited generalization 
capabilities. As an improvement, Chen et al.12 randomly cropped rectangular regions from training images, 
scaled the cropped regions, and randomly pasted them onto one of four predefined areas. Compared to the 
former strategy, the generated images better simulate real-world occlusion scenarios, enabling the model to 
implicitly learn more robust features. Similar methods also exist13,14. Jia et al.15 proposed cropping different 
occluders from the training set and randomly synthesizing them for each training batch. Similar to Chen et al.’s 
approach, the generated images better simulate real-world occlusion scenarios, allowing the model to implicitly 
learn more robust features16. Likewise, Wang10proposed Parallel Augmentation and Dual Enhancement (PADE), 
which includes a Parallel Augmentation Mechanism (PAM) designed to generate more suitable occlusion data 
to mitigate the negative impact of imbalanced data. However, using background elements from the dataset for 
occlusion synthesis differs from real-world scenarios17. In contrast to strategies that use only backgrounds as 
occluders, our method employs actual occluders, making it closer to real-world situations. It also considers the 
spatial positions of the occluders rather than randomly distributing them, thereby ensuring data complexity and 
consistency.

Attention and lightweight design
Due to the capability of self-attention mechanisms to model relationships between different semantic component 
representations on a global scale, some scholars have progressively developed ReID methods based on self-
attention18. For instance, He et al.19 proposed a pure transformer framework named TransReID for object 
re-identification tasks, demonstrating the robustness of self-attention mechanisms. Wang et al.20 developed a 
Pose-Guided Feature Disentangling (PFD) framework, which simultaneously trains a pure transformer network 
and a pose estimation model with learnable parameters. Similar approaches include21. Despite their superior 
performance, the quadratic time complexity of self-attention operations and the incorporation of pose-guided 
models slow down their execution speed. Recent studies have proposed various methods to tackle this problem, 
especially in the field of person Re-ID, where these methods have shown considerable potential. For instance, 
the study on reference22 introduced a score-based diffusion model to handle incomplete multimodal data in 
emotion recognition. This approach effectively maps input Gaussian noise to the distribution space of the missing 
modalities and recovers the data according to their original distributions, while reducing semantic ambiguity 
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between the recovered data and the missing modalities. Another notable contribution is23, which proposed 
an innovative recovery paradigm called DiCMoR to deal with missing modalities in incomplete multimodal 
learning. DiCMoR maintains the consistency of the recovered data by transferring distributions from available 
modalities to missing ones, thereby enhancing the model’s performance in classification tasks. Similar to this is 
the study of24,25. These studies indicate that by integrating various attention modules and hierarchical network 
structures, the performance of person re-identification tasks can be effectively improved, especially when dealing 
with occluded or missing data.

To address the challenges of complexity, recent research has proposed various methods for constructing more 
efficient transformer architectures26. Notably, studies have revealed a degree of sparsity within the self-attention 
mechanisms of visual transformers, prompting approaches that prune tokens based on their importance scores. 
Rao et al.27 introduced DynamicViT (Dynamic Visual Transformer), featuring a lightweight prediction module 
designed to estimate the importance scores of each token, thereby facilitating the pruning of redundant tokens. 
Similarly, Meng et al.28 presented AdaViT (Adaptive Visual Transformer), which strategically learns which blocks, 
self-attention heads, and token usage strategies should be retained within the transformer’s backbone network. 
Both methodologies incorporate additional lightweight prediction modules that track informative token data 
during the training phase and consequently exclude this information during inference. Another innovative 
approach leverages class token attention to retain focused tokens while pruning those that are less informative29. 
Liang et al.30 proposed EViT (Extended Visual Transformer), defining focused tokens as the image tokens that 
attract the maximum attention from class tokens. This method merges less informative tokens into a consolidated 
representation. Building on this, Yin et al.31 introduced A-ViT (Adaptive Token Visual Transformer), which 
employs an adaptive token pruning mechanism that dynamically adjusts computational costs based on the 
complexity of different images. In line with the DyViT approach, the HTS strategy also integrates an additional 
lightweight prediction module to determine which tokens should be discarded. However, it is crucial to note that 
the pruned tokens may contain vital features related to human body parts, which can lead to contamination of 
the feature representation and, consequently, degrade overall performance.

Methodology
In this section, we present the implementation details of our AIRHF-Net method for occluded person re-id, as 
shown in Fig. 2. The AIRHF-Net, network primarily consists of three components: ODAS, AL-WIE, and LHE.

ODAS
Existing ReID methods struggle to handle occluded images, partly due to a lack of occlusion data. Figure 3a 
shows that the Occluded-DukeMTMC training set contains a limited number of occluded samples, resulting 
in insufficient diversity during training, whereas the test set has a higher proportion of occluded samples. 
Figure 3b illustrates that gallery images are almost unobstructed, while query images are nearly all occluded, 
leading to inadequate generalization of the model to occlusions. Consequently, researchers11,32 employed data 
augmentation strategies to simulate real-world occlusions, such as random cropping and random erasing on 
individual images. While these techniques enhance the diversity of training data, augmentation performed on 
individual data points leads to a lack of consistency and makes model training more challenging to converge. 
Some methods32 use backgrounds as artificial occlusions. However, there is a notable difference between simple 
background occlusions and real occlusions. Furthermore, attention modules, which are widely used in re-
identification research, naturally focus more on semantically rich foregrounds rather than backgrounds. As a 
result, the network inevitably overlooks occlusions formed by backgrounds. This oversight leads to the model’s 
inadequate perception of occlusions.

Fig. 3.  Current issues in occluded person re-identification datasets.The images of pedestrians in this figure are 
from the Occluded-DukeMTMC dataset. https://gith​ub.com/light​as/Occluded-​DukeMTMC-Da​taset.
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To address the aforementioned issues, this paper adopts an occlusion sample augmentation strategy to 
enhance pedestrian images. While ensuring the retention of pedestrian identity, the proposed method generates 
new images by replacing different occluders. Compared to existing similar occlusion augmentation methods, 
our strategy has two significant differences: First, the occluders (Masks) utilized in our approach are sourced 
from real occluding objects within the dataset, which have been carefully selected and acquired through manual 
methods. In contrast, other methods typically utilize random background cropping or randomly erase certain 
regions of the image to create occlusion Masks. Thus, our approach exhibits a higher level of credibility in 
simulating real occlusion scenarios. Second, the proposed occlusion sample augmentation strategy considers 
the spatial positioning of the occluders within the image. Specifically, when designing the occlusion masks, 
we place the occluders on the left, right, top, and bottom sides of the image. This design approach differs from 
other methods that randomly generate occluder positions, effectively enhancing data consistency while ensuring 
occlusion complexity.

Specifically, we first manually segment the occluders covering the pedestrian areas in the training set to 
create an occlusion Setoccluded. This effectively ensures the diversity of the occluders and guarantees that they 
do not appear in the test set. Utilizing P ×K  sampling, where P pedestrian IDs are randomly selected from the 
original images and K images are randomly chosen for each pedestrian ID. Unlike single data augmentation 
methods, our strategy selects K occluders as augmentation samples for each batch. The same K occluders are 
used to augment images of different identities within the same batch, rather than selecting occlusion samples. 
This approach helps maintain a certain level of complexity while ensuring data consistency.

Given an input image, we first perform conventional data augmentation, such as resizing, random flipping, 
padding, and cropping, to obtain the conventionally augmented image x ∈ RH×W×C , which has a size of 
S = H ×W . Next, to simulate realistic occlusion scenarios, the occlusion sample Po is resized to So = to × S
, where to ∼ µ(0.2, 0.5) (with µ representing the uniform distribution), resulting in Po having a height 
Ho =

√
So × ts and width Wo =

√
So
ts
, with ts ∼ µ(0.3, 3.3) denoting the specific values drawn from this 

distribution.
To increase the diversity of the occlusion samples, we also apply conventional augmentation techniques to 

them. Based on empirical observations, occluders tend to appear in four spatial positions relative to the object of 
interest: top, bottom, left, and right. Therefore, we construct a coordinate set Setcorner as follows:

	

Setcorner =





(xt, yt) ∈ (H −Ho, H), (0,W ),

(xb, yb) ∈ (0, H −Ho), (0,W ),

(xl, yl) ∈ (0,W −Wo), (0, H),

(xr, yr) ∈ (W −Wo,W ), (0, H),

� (1)

After selecting occlusion sample , we calculate its height-to-width ratio, denoted as α = Ho/Wo . If α is less than 
2, the sample is considered a horizontal occluder; otherwise, it is deemed a vertical occluder. For horizontal 
occluders, a random point from the coordinate set (xt, yt)(xb, yb) is chosen as the starting point, and the 
augmented occlusion sample is pasted onto the original image to create the final input image xoccluded for the 
network. For vertical occluders, the occluder is placed on either the left or right side of the image, forming a 
new augmented sample. Figure 4 illustrates the effects of the occlusion sample augmentation strategy, where (a) 
represents the original image, and (b) shows the input occluded image.

AL-WIE
After obtaining sufficient occlusion samples, it is crucial to reduce the model’s attention to the occluders. Due 
to the quadratic growth in computational complexity of self-attention operations with sequence length in ViTs, 
the models exhibit high computational complexity. To address this, some methods33,34 use non-overlapping 
windows and shifting operations to reduce computational load and achieve global modeling, while others35 

Fig. 4.  Display of occluded images generated by ODAS. The images of pedestrians in this figure are from the 
Occluded-DukeMTMC dataset. https://gith​ub.com/light​as/Occluded-​DukeMTMC-Da​taset.
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design windowed context self-attention mechanisms combined with global self-attention to expand the 
receptive field. However, the former method may hinder inter-window communication since self-attention is 
confined within windows. The latter method loses the ability to model multi-scale contexts due to the fixed 
number of image patches and constant embedding size. To address this, we propose an AL-WIE that reduces the 
computational complexity of self-attention through sparsification at the attention level and models multi-scale 
features obtained from different attentions, effectively expanding the model’s perception of visible pedestrian 
areas.

The AL-WIE consists of three submodules: the Large-Scale Window Attention Module, the Association-
Aware Adaptive Local Attention Module, and the Interaction Attention Module. Firstly, the Large-Scale Window 
Attention Module conducts global context interactions over large-scale window image patches to capture the 
spatial relationships among adjacent windows effectively. Secondly, the Association-Aware Adaptive Local 
Attention Module exploits the inter-token associative information adaptively to extract pertinent local features 
from critical image patches. This mechanism mitigates the impact of occlusion while concurrently reducing the 
computational complexity associated with self-attention operations. Lastly, the Interaction Attention Module 
integrates the outputs from both branches, facilitating the transmission of inter-window contextual information 
to the salient image patches within each window. By synthesizing information across various scales, this module 
significantly enhances the model’s perceptual range concerning the visibility of pedestrian areas.

Large-scale window attention
This section follows the setting of ViT, dividing the image into 

{
P i
0

}N

i
 non-overlapping image patches, 

and applying linear projections to obtain the embedding patches Xp ∈ RN×W×C1 , where C1 is the channel 
dimension. Then, a class token Xcls is concatenated to accumulate information from other tokens and serve as 
the final feature representation for classification. Positional encoding is added to each image patch to help the 
Transformer model capture the relative positional information of elements in the input sequence, which is crucial 
for understanding context relationships and modeling long-term dependencies in the sequence. Therefore, the 
input sequence can be represented as X = [Xcls,Xp] ∈ R(N+1)×W×C1

In self-attention, the input sequence X goes through three linear layers to produce query Q, key K,value V 
matrices, where Q,K,V ∈ R(N+1)×W×C1 represents the dimensions of these matrices. The Multi-Head Self-
Attention (MSA) operation formula is as follows:

	
Attention(Q,K,V) = Softmax

(
QKT

√
d

)
V� (2)

Figure 5 illustrates the structure of the AL-WIE. The adaptive local attention branch continues with the output 
sequence from the previous encoder layer, while in the window attention branch, tokenization operations are 
used to obtain a larger-scale input sequence. Previous tokenization operations often employed linear mappings, 
which might not capture low-level features such as edges and corners in images. To better extract low-level 
features of image patches, the tokenization operation in the window attention introduces variable convolution 
kernels and is applied at different stages of the network. This design helps to enhance the network’s generalization 
ability, allowing it to better adapt to images of varying scales and complexities. For instance, if the window token 

Fig. 5.  Architecture of the AL-WIE. The images of pedestrians in this figure are from the Occluded-
DukeMTMC dataset. https://gith​ub.com/light​as/Occluded-​DukeMTMC-Da​taset.
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size is Swindow
2 , and the token size in the original input sequence is Sinput

2 , this means that one window token 
spatially includes numo = (Swindow/Swindow)

2 original input tokens locally.

Based on the above analysis, in the window attention branch, the input 
{
P i
0

}N

i
 is resized to C ×H ×W  through 

a reshape operation. Subsequently, through the variable convolution tokenization operation t1, the three-
dimensional image is divided into window tokens via convolutional operations.

	 PW = Conv(Reshape(
{
P i
0

}N

i
))� (3)

The image patches in the window attention branch are denoted as PW =
[
p1w, p

2
w, ..., p

N/num0
w

]
, where interactions 

among all window tokens take place to effectively learn global information while keeping the number of window 
tokens minimal. This information covers the contextual understanding of the entire image. Since the windows 
are non-overlapping, this branch can also facilitate information exchange among windows. Consequently, the 
computation of window features through window attention is given by equation ,

	 Fw−MSA = fw(Pw) + MSA(LN(fw(Pw)))� (4)

where fw() represents the feature mapping of aligned dimensions, MSA stands for MSA, and LN denotes Layer 
Normalization.

Association-aware adaptive local attention
In the study of occluded pedestrian re-id, the diversity of backgrounds and occlusions often leads to a significant 
decline in model performance. To improve performance, the complexity of models has consistently increased, 
consequently raising the computational costs for training and inference. Inspired by the research of Rao et 
al.27, which found that pruning away less informative parts, such as small backgrounds, has little impact on 
model accuracy, this paper proposes an adaptive sparsification mechanism at the attention level. This approach 
helps to reduce unnecessary information interference, thereby accelerating training speed and enhancing the 
effectiveness of occluded pedestrian re-identification.

The module consists of two components: one is the Relation-Aware Adaptive Token Selection module; the 
other is Sparsification.

Relation-aware adaptive token selection module. In ViTs, all image patches are treated as tokens, and 
MSA is used to compute the relationships between every pair of tokens. This inevitably results in computational 
redundancy, as not all image patches are meaningful in the MHSA. Furthermore, Caron et al.36 demonstrated 
that the class token in ViT tends to focus more on target regions than on non-target areas in the image. To 
address this, the present module selects relevant target tokens and filters out irrelevant tokens based on the 
correlations between image patches and their contributions to recognition. The selected target tokens are fed 
into subsequent encoders for information interaction, effectively preventing the propagation of irrelevant tokens 
in the subsequent transformer layers. The proposed module surpasses CNNs by dynamically adjusting its focus 
according to input features, enhancing flexibility. Unlike fixed convolution kernels, it targets specific relevant 
regions, capturing essential information more accurately. By accounting for interrelationships between image 
tokens, it reduces noise and improves performance. This method effectively integrates global information and 
captures long-range dependencies, enhancing semantic understanding. This approach avoids the introduction 
of additional noise from frequently selecting occluded image patches and utilizes only the discriminative image 
patches, which can significantly enhance model performance. The proposed Token Selection module introduces 
several improvements built upon the ViT framework.

Let Z ∈ R(N+1)×C1 be the input sequence of the ViT, where N + 1 denotes the sequence length. The first 
image patch is the class token xcls, representing global features, while the remaining image patches are referred 
to as image tokens image token ximgi, i = [1, 2, ..., N ].

	

Zcls = xcls;

Zimg = [ximg1; ximg2; ...; ximgN ]
� (5)

The interaction between the class token and image tokens occurs through the attention mechanism in ViT:

	
Attentioncls(Q,K,V) = Softmax

(
QclsK

T

√
d

)
V = α • V� (6)

Here α ∈ R1×N , (excluding the attention values of the class token itself) corresponds to the attention values 
from the first row to in the attention matrix, as described in Eq. (2). Qcls denotes the query matrix obtained 
through the linear mapping of xcls . Since vi originates from the i-th token of V, the attention value αi (i.e., the 
i-th element of α ) determines how much information from the i-th token is fused into xcls. Therefore, αi can be 
interpreted as representing the importance of the i-th token for xcls.

The traditional approaches entail computing the average attention score (α), across all attention heads. These 
scores are then ordered in descending order, and a top-k strategy is employed to select the top k image patches 
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with the highest attention values as target tokens. The remaining image patches are classified as irrelevant tokens, 
which predominantly include background features and occlusions. This also results in obtaining the indices 
idxobj  and idxocc corresponding to the target and irrelevant tokens. However, in the context of sparse attention 
mechanisms for processing long sequences, the strategy of focusing solely on the top K important tokens may 
lead to significant limitations. First, this approach may prevent the model from effectively capturing all relevant 
contextual information within the long sequence, thereby affecting its performance. Secondly, the selected 
target tokens may exhibit a high correlation with certain irrelevant tokens, resulting in the model collecting a 
substantial amount of interference information from these unrelated tokens. Therefore, this paper considers the 
correlations not only between the class token and image tokens but also between the image tokens themselves.

Specifically, the first column of the attention matrix ω (excluding the attention value of the class token itself) 
is denoted as β , which represents the attention scores for the interaction of contextual information among image 
tokens. Thus, the interaction attention values γ are computed as follows:

	 γ = αi • βi, i = 1, 2, ..., N � (7)

After obtaining the interaction attention values γ, the top k image patches with the highest attention scores are 
selected as target tokens, following the top-k strategy. The retention rate of the target tokens is defined as Γ :

	 Γ = k/N � (8)

This module does not incorporate any additional parameters, thereby not increasing the parameter count of the 
model.

Sparsification
First, the adaptive selection module obtains the indices idxobj  and idxocc corresponding to the target tokens 

and irrelevant tokens. The adaptive local attention module computes the global attention exclusively among 
the target tokens. After a linear mapping, the target tokens are transformed into query, key, and value matrices, 
which are calculated using the following formula:

	 QAL = P i
OWq, i ∈ idxobj � (9)

	 KAL = P i
OWk, i ∈ idxobj � (10)

	 VAL = P i
OWv, i ∈ idxobj � (11)

Where Wq,Wk,Wv, denote learnable linear mapping functions.

	 QAL =
[
q1AL, q

2
AL, . . . , q

Γ×N
AL

]
� (12)

	 KAL =
[
k1AL, k

2
AL, . . . , k

Γ×N
AL

]
� (13)

	 VAL =
[
v1AL, v

2
AL, . . . , v

Γ×N
AL

]
� (14)

Compared to traditional self-attention operations, the adaptive local attention module significantly reduces 
the amount of noise information by performing attention calculations exclusively among the target tokens, 
informed by an interpretive analysis of the attention maps of ViT when handling occlusions37. Furthermore, to 
avoid introducing excessive interfering feature information into the target tokens, this module cleverly omits 
the residual connection structure. As a result, the output features contain far less noise information than the 
input features, enabling the model to capture key features more accurately in occluded person re-identification 
scenarios. Therefore, the computation of adaptive local attention is as follows:

	
FAL−MSA = Softmax

(
QALK

T
AL√

d

)
VAL� (15)

Interactive attention
In order to incorporate global information encompassing the relationships among larger-scale image patches 
into the highly responsive local areas of smaller-scale patches, thereby enhancing spatial discriminative cues and 
expanding the model’s perceptual range, this section introduces the concept of Interactive Attention. Specifically, 
following the acquisition of outputs from both Adaptive Self-Attention and Window Attention, to facilitate 
communication between window tokens and their original counterparts, the globally refined features extracted 
via Window Attention serve as a bridge to be relayed back to the original tokens within the window. This process 
aims at mitigating the limitations imposed by single-scale features and further diversifying the representation 
of pedestrians.

Each window token piw corresponds to numo original tokens Pw−o =
[
pi,1o , pi,2o , ..., pi,numo

o

]
 in the spatial 

dimension, where pi,jo  denotes the i-th original token within the j-th window. Instead of interacting with the 
tokens within the window, the window token piw performs self-attention operations solely with the target 
tokens pi,jo , j ∈ idxobj  , following the adaptive local attention framework. This design allows global contextual 
information to be transmitted only to the tokens containing pedestrian information, thereby reducing the 
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similarity between the tokens containing pedestrian information and those containing noise information, such 
as occlusions, which enhances the network’s focus on the target pedestrian areas.

Specifically, the query vector Qi,j
o =

[
qi,1o , qi,2o , ..., qi,jo j ∈ idxobj

]
 is computed from the original 

tokens pi,jo , j ∈ idxobj  within the window. The key vector Ki
w =

[
k1w, k

2
w, ..., k

N/numo
w

]
 and value vector 

Vi
w =

[
v1w, v

2
w, ..., v

N/numo
w

]
 are computed from the window tokens, as illustrated in the following process:

	 Qi,j
o = BN

[
linear(FAL-MSA)

]
� (16)

	 Ki
w = BN

[
linear(FAL-MSA)

]
� (17)

	 Vi
w = BN

[
linear(FAL-MSA)

]
� (18)

where BN denotes a batch normalization layer, and linear represents a linear layer. The vectors Qi,j
o ,Ki

w, undergo 
matrix multiplication to obtain the adaptive local-window weights, which are then normalized using a Softmax 
layer. The normalized weights are multiplied by the value vector Vi

w to yield the adaptive-window attention 
interaction features F i

AL−w within a single window, as described in Eq. (19):

	
Fi
AL−w = Softmax

(
Qi,j

o Ki
w
T

√
d

)
Vi

w� (19)

where d represents the dimensionality of the query vector, and i, j denotes the j-th image patch within the i-th 
window. Finally, all the obtained adaptive-window attention features are concatenated in the spatial dimension, 
and a multilayer perceptron is applied to enhance the features, resulting in the final output features FAL−w of the 
AL-WIE module. It is noteworthy that, aside from layer normalization, the weights between window attention 
and adaptive local attention are shared. Therefore, the number of parameters does not significantly increase 
compared to a standard Transformer encoder.

Analysis of complexity
In this section, we discuss the complexity of the AL-WIE, which consists of three components: window attention, 
Association-Aware adaptive local attention, and interaction attention. We will analyze the complexity of these 
three components one by one.

For window attention, we divide the original tokens into n segments. Therefore, the window attention 
includes Nn  original tokens, and with n windows, the computational complexity of window attention is given by:

	
O

((
N

n

)2

× n

)

In the case of adaptive local attention, after obtaining the interaction attention values, we select the top k image 
patches with the highest attention values (top-k strategy) as the target tokens and the retention rate of the target 
tokens be denoted as Γ. Thus, the computational complexity of adaptive local attention is:

	 O
(
(Γ ·N)2

)

Interaction attention refers to the interaction between adaptive self-attention and window attention. It is 
noteworthy that, in this paper, the window attention and adaptive local attention share weights, except for layer 
normalization. Consequently, the overall computational complexity of interaction attention is:

	 O(Γ · n ·N)

Therefore, the overall time complexity is :

	 O((N 2/n) + (ΓN)2) + ΓnN).

Furthermore, in this paper, the image size is 256× 128, and the patch size is 16× 16, The window attention is 
divided into n=4 segments. This results in N=128, and the retention rate is set to 0.7. Substituting these values 
into the formulas, we get the following computational complexities: O(0.74N 2 + 2.8N).

Compared to the full self-attention operation, which has a computational complexity of O(N 2), the proposed 
method reduces the computational complexity by approximately 25%. This reduction in computational 
complexity demonstrates the efficiency of the AL-WIE, making it a more computationally feasible solution while 
maintaining a high level of performance.

LHE
Although the ViT excels at utilizing global features to achieve effective recognition performance, in the context 
of occluded pedestrian re-identification, critical information often relies more heavily on local features. Previous 
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works16,38 have only horizontally partitioned these local features, as depicted in Figure 6a. However, they fall 
short in capturing ideal local features. While the input to a Transformer encoder is a one-dimensional sequence, 
from an image processing perspective, it can be viewed as a sequence of two-dimensional image patches, thus 
maintaining spatial associations among the sequence elements. In other words, not only do adjacent image 
patches exhibit strong correlations, but due to the presence of a two-dimensional space, certain patches that are 
further apart also share a degree of spatial correlation.

Inspired by39, this paper proposes a LHE, illustrated in Fig. 7. Contrary to the strategy of merely horizontally 
segmenting local features, the LHE recursively divides the image sequence, extracting spatially correlated features 
from distinct local regions under the guidance of global semantics. As the hierarchical structure deepens, the 
diversity of fine-grained cues is captured, significantly enhancing the discriminability of local features.

Specifically, the input to the LHE is denoted as Fin = [Xcls,X1, X2, ..., XN ] . First, the class token is 
separated, resulting in a new sequence of image patches Fpatch = [X1, X2, ..., XN ]. Let us assume that the LHE [
LHE1, LHE2, ..., LHEk

]
 , divides the sequence in LHEk into 2k parts, thereby introducing a hierarchical 

partition for different local features. Specifically, the hierarchical partitioning of the sequence is illustrated as 
follows:

	
F 1
patch =

[
Xcls,X1, X2, . . . , XN/2k

]
� (20)

Fig. 7.  Architecture of the LHE.

 

Fig. 6.  Improvement diagram of local feature learning module for person re-identification. The images of 
pedestrians in this figure are from the Occluded-DukeMTMC dataset. ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​l​i​g​h​​t​a​s​/​O​c​c​l​u​d​e​d​-​D​
u​k​e​M​T​M​C​-​D​a​t​a​s​e​t​​​​​.​​​​
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F 2
patch =

[
X(N+1)/2k, X(N+2)/2k, X(N+3)/2k, . . . , X(2N)/2k

]
� (21)

	
Fk−1
patch =

[
X(((k−2)N+1)/2k), X(((k−2)N+2)/2k), X(((k−2)N+3)/2k), . . . , X((k−1)N)/2k

]
� (22)

	
Fk
patch =

[
X(((k−1)N+1)/2k), X(((k−1)N+2)/2k), X(((k−1)N+3)/2k), . . . , X((k−1)N)/2k

]
� (23)

For the locally segmented image patch sequence F i
patch, i = 1, 2, ..., k obtained from the hierarchical partitioning 

of LHKk, the class token Xk−1
cls ∈ R1×C1 output from layer LHKk−1 is concatenated with F i

patch to guide fine-
grained feature learning. Additionally, a new class token Xk

cls is appended to F i
patch to summarize contextual 

information. Consequently, the input sequence to the k-th local hierarchical encoder is represented as:

	 F i
in =

[
Xk−1

cls , Xk
cls, F

i
patch

]
, i = 1, 2, ..., k.� (24)

Subsequently, F i
in is processed through a MSA mechanism and a multi-layer perceptron to construct local 

hierarchical features, with the computational process detailed as follows:

	

F i
LHE′ = fLHE(F i

in) +MSA(LN(fLHE(F i
in)))

F i
LHE = F i

LHE′ +MLP (LN(F i
LHE′))

� (25)

Here, FLHE(•) represents a linear mapping, and F i
LHE  is the output of the local hierarchical encoder . 

i = 1, 2, ..., k.. Then, the class token Xk
cls from the k outputs of F i

LHE . That is separated out as the final local 
feature representation.

Objective function
This section introduces the loss functions used for training the network. To ensure that the model learns identity 
information while emphasizing the relative relationships between images, a combination of cross-entropy loss 
and triplet loss is employed, thereby constructing a multi-task learning framework. Specifically, cross-entropy 
loss is used to measure the discrepancy between predictions and true labels. In this study, different classifiers are 
employed to train the local and global features, with each classifier comprising a fully connected layer followed 
by a Softmax layer, which converts the model outputs into a probability distribution. The formula for cross-
entropy loss is as follows:

	
LCE = − 1

kB + 1

∑(∑
yi log

(
exp(WiFm)∑
exp(WjFm)

)
+ yi log

(
exp(WiFG)∑
exp(WjFG)

))
� (26)

Here, k denotes the number of partitions for local features, B represents the number of images in a batch, W is 
the linear mapping matrix, and yi denotes the corresponding labels. Fm and FG represent the local and global 
feature representations, respectively. Furthermore, the proposed method utilizes triplet loss to encourage the 
model to learn discriminative feature representations and to enhance its sensitivity to similarities. The formula 
for triplet loss is

	 Ltri = max(0, µ + ∥Fa − Fp∥2 − ∥Fa − Fn∥2)� (27)

where Fa, Fp and Fn , refer to the anchor, positive sample, and negative sample, respectively, and µ is a 
hyperparameter that regulates the distance between positive and negative samples.

In summary, the overall loss function is computed as follows:

	 Ltotal = LCE + Ltri� (28)

Experimental results and analysis
Experimental setup
The network proposed in this paper is deployed in the PyTorch 1.11.0 framework and trained and tested using 
a single RTX A100 GPU. The method employs ViT as the backbone network, which segments the input images 
256× 128 into patches of size 16× 16. The batch size is set to 32, with each batch containing 4 images of the 
same identity. Following the standard settings of ViT-base, the backbone network has a depth of L = 12 layers. 
In layers 1 to 9, the tokenization operation t1 segments the images into patches of size 64× 64, while in layers 
10 and 11, the patch size is set to 32× 32 . Additionally, the target token retention rate γ is configured to 0.7 
to select image patches with high attention response. Feature learning is constrained using ID loss and triplet 
loss. For triplet loss, a hard positive and a hard negative sample are selected for each sample in the mini-batch 
obtained through PK sampling, forming triplets with µ set to 0.3. The number of LHE stacked layers is set 
to 4. The training process is end-to-end, utilizing the Adam optimizer to minimize the system loss function. 
The network is trained for 160 epochs with an initial learning rate of 0.008. A warm-up strategy is employed, 
linearly increasing the learning rate before epoch 5, followed by cosine decay. The model converges within 120 
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epochs. During inference, all local and global features output by the network are concatenated along the channel 
dimension to form a one-dimensional feature vector, representing the pedestrian re-identification (Table 1).

In order to conduct an objective evaluation of the proposed method, a comparative analysis is performed with 
state-of-the-art occluded pedestrian re-identification techniques using the extensive Occluded-DukeMTMC 
dataset https://gith​ub.com/light​as/Occluded-​DukeMTMC-Da​taset, the Occluded-ReID dataset ​h​t​t​p​s​:​​/​/​c​s​.​p​​a​p​e​r​
s​w​​i​t​h​c​o​​d​e​.​c​o​m​/​d​a​t​a​s​e​t​/​o​c​c​l​u​d​e​d​-​r​e​i​d​​​​​, as well as the well-established Market-1501 ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​s​y​b​e​r​n​i​x​/​
m​a​r​k​e​t​1​5​0​1​​​​ and DukeMTMC-ReID ​h​t​t​p​s​:​​/​/​d​r​i​v​​e​.​g​o​o​g​​l​e​.​c​o​​m​/​f​i​l​e​/​d​/​1​j​j​E​8​5​d​R​C​M​O​g​R​t​v​J​5​R​Q​V​9​-​A​f​s​-​2​_​5​d​Y​3​O​
/​v​i​e​w​​​​ pedestrian re-identification datasets.

Analysis of AIRHF-net effectiveness
Effectiveness of ODAS
The experimental results comparing indices 1 and 2 in Table 2 demonstrate that the incorporation of ODAS 
into the baseline network improves the rank-1 accuracy by 1.7% and the mAP by 2.5%. This indicates that 
introducing an occlusion sample augmentation strategy allows the model to better adapt to various occlusion 
scenarios that may occur in the real world. By including occlusions in the training data, the model can learn 
more robust features, thereby enhancing its ability to handle occlusions during testing and ultimately improving 
its performance in practical applications. Figure 8 illustrates the comparison of the proposed algorithm with 
other data augmentation methods. From the results, it can be seen that the proposed ODAS is closer to real-
world scenarios, which is very positive for enhancing algorithm performance.

In our experiments, we have included a comparative analysis of various data augmentation strategies, 
specifically comparing RE, VPM, AP-Net, IGOAS, and OAMN (Fig. 9). The experimental results indicate 

Fig. 8.  Data augmentation contrast effect diagram. The images of pedestrians in this figure are from the 
Occluded-DukeMTMC dataset. https://gith​ub.com/light​as/Occluded-​DukeMTMC-Da​taset.

 

Index Baseline ODAS AL-WIE LHE R-1 R-5 R-10 mAP

1 ✓ 60.7 77.6 82.9 52.3

2 ✓ ✓ 62.4 77.1 83.1 54.8

3 ✓ ✓ 63.5 78.8 83.5 56.3

4 ✓ ✓ 62.8 78.3 82.8 56.7

5 ✓ ✓ ✓ 68.4 81.5 85.6 60.5

6 ✓ ✓ ✓ 65.6 79.0 83.9 57.5

7 ✓ ✓ ✓ 67.1 81.2 85.6 59.4

8 ✓ ✓ ✓ ✓ 69.6 82.7 88.1 61.6

Table 2.  Ablation experiments of each module in AIRHF on Occluded-DukeMTMC (%). The best 
performance values are in bold. 

 

Method Rank1 Rank5 Rank10 mAP

Baseline 67.1 81.2 85.6 59.4

Random pasting 68.5 82.1 86.9 60.9

Horizontal occlusion 69.2 82.4 87.6 61.3

Vertical occlusion 68.9 82.1 87.4 61.1

Ours 69.6 82.7 88.1 61.6

Table 1.  Comparison of different occlusion strategies.
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that our proposed method outperforms the other methods, showing a significant performance advantage. 
Specifically, our method achieved high scores of 61.6% and 69.6% at two metrics, which are the highest among 
all the compared methods. This not only highlights the superior performance and reliability of our method 
for this task but also reflects its effectiveness. The primary reason for this is that, from a practical perspective, 
occlusions most commonly occur at the legs, sides, and above pedestrians. This suggests that our method is more 
closely aligned with real-world scenarios, thereby enhancing its overall performance.

The ablation study on data augmentation, as shown in Table 1, compares random occlusion, horizontal 
pedestrian occlusion, vertical pedestrian occlusion, and the proposed method of occluding from top, bottom, 
left, and right. The experimental results indicate that the horizontal occlusion method achieves a rank-1 
accuracy and mAP of 69.1% and 61.3%, respectively, which are 0.5% and 0.3% lower than those of the horizontal 
occlusion method. Furthermore, the proposed method, which involves pasting to create occlusions from all four 
sides, improves the performance over the baseline by 2.5% in terms of rank-1 accuracy. This demonstrates the 
effectiveness of the proposed MASK strategy. The primary reason for this is that, from a practical perspective, 
occlusions often occur at the legs, sides, and above pedestrians, indicating that our method is more closely 
aligned with real-world scenarios, thereby enhancing the overall performance.

Effectiveness of AL-WIE
The AL-WIE module proposed in this paper aims to reduce the computational complexity of ViTs while 
effectively modeling more discriminative global features. There are various approaches to reduce computational 
complexity: the most straightforward solution is to decrease the embedding dimension, which may result in 
the loss of some detailed information. Additionally, reducing the number of attention heads is also a commonly 
used method; however, each head attends to different positions and features of the input sequence, which may 
compromise performance. In contrast, this paper adopts a different approach through the AL-WIE module by 
filtering out useless redundant features, thereby enhancing the capture of discriminative features. As shown 
in the results of Table 2, Index 3 achieves a 2.8% improvement in the rank-1 metric compared to Index 1, 
which uses only the baseline. Additionally, the computational complexity of AL-WIE is lower than that of a 
conventional Transformer encoder.This indicates that the proposed adaptive screening method can, to some 
extent, select more discriminative features and reduce feature redundancy, thereby lowering complexity. The 
comparison between Index 5 and Index 2 reveals a substantial enhancement in model performance, indicating 
that in the context of a large-scale occlusion dataset, the AL-WIE module can effectively improve the network’s 
ability to perceive occlusions and construct more discriminative global feature representations.

Although sparse attention mechanisms can enhance computational efficiency, their advantages may diminish 
when processing long sequences. Long sequences often carry complex contextual information, some of which 
may be essential for understanding the content. Under sparse mechanisms, the model may fail to adequately 
capture all critical contextual information within long sequences, resulting in significant performance 
degradation. To verify that the proposed AL-WIE can further address this issue under sparsification, we compare 
the performance of our method with the classic sparsification strategy, top-K, on the Occluded-DukeMTMC 
Dataset. As shown in the Fig. 10, our method achieves improvements of 1.2% and 0.5% in rank1 and mAP 
metrics, respectively, compared to the top-K strategy. This performance enhancement demonstrates that the 
adaptive token selection module based on relation awareness can effectively mitigate the information loss caused 
by sparsification by considering both the correlation between class tokens and image tokens, as well as the 
correlations among image tokens.

Effectiveness of LHE
The experimental results from indices 4, 6, and 7 in Table 2indicate that the addition of the LHE module further 
enhances model performance. The reason for this phenomenon lies in the fact that stacking LHE allows for the 
further extraction of discriminative local features under the guidance of global semantics. Additionally, as the 
number of segmented local features increases, this approach is more beneficial for capturing diverse fine-grained 
cues. In contrast, traditional hard segmentation of local features undermines the spatial correlations among 
those local features.

Fig. 9.  The performance comparison of different data augmentation methods.
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Ablation experiment on image patch size from tokenization operations
In CNN architectures, shallow layers typically emphasize features with maximum spatial dimensions and minimal 
channel dimensions, gradually increasing channel dimensions while decreasing spatial dimensions. This design 
philosophy enhances the network’s generalization capabilities. Consequently, we modified the tokenization 
operation t1 within the AL-WIE module to yield five variants, as presented in Table 3, while maintaining a 
constant depth of 11 layers for the AL-WIE stack. Different tokenization operations can produce image patches 
of various sizes, as shown in Table 3, where S1 indicates an image patch of size 128× 128 derived from the 
tokenization operation t1 , with S1, S2, S3, S4 sequentially halving this size. Notably, [11,  0,  0,  0] represents 
window token sizes of 128× 128 across all 11 layers of AL-WIE.

The results indicate that reducing the size of the image patches increases the floating-point computational 
load. Moreover, decreasing the patch size in subsequent layers aids in enhancing matching accuracy. Considering 
a balance between computational requirements and model precision, this study concludes that V5 represents a 
reasonable compromise.

Ablation experiment on the recursive stacking depth of the LHE module
In the LHE module, a recursive stacking approach is employed to delineate local features at different hierarchical 
levels, enabling the model to learn more optimal local features under the guidance of global semantic information. 
The results of the ablation experiment are shown in Table 4. As the number of LHE stacked layers increases, the 
rank-1 accuracy improves significantly. Furthermore, it is observed that with the enhancement in performance, 
both the model parameter count and floating-point computational load also increase. For example, when k 
= 2, the rank-1 metric improves by 1.2%, but there is a corresponding increase in both the model parameter 

Methods k

Occluded-
DukeMTMC Params FLOPs

Rank-1 mAP (M) (G)

Baseline  
+ LHE

– 60.7 52.3 87.36 17.56

1 61.1 53.7 98.33 19.79

2 61.9 56.3 108.67 20.93

4 62.8 56.7 115.19 21.41

8 63.1 56.8 121.50 22.38

10 63.0 56.6 123.20 24.10

Table 4.  Ablation experiments of LHE stacking layers. The best performance values are in bold.

 

Variants [S1, S2, S3, S4] FLOPs (G) Rank-1 mAP

V1 [11, 0, 0, 0] 10.84 68.1 59.8

V2 [11, 0, 0, 0] 14.31 68.7 60.7

V3 [11, 0, 0, 0] 16.03 68.4 60.3

V4 [2, 9, 0, 0] 11.14 68.4 58.8

V5 [0, 9, 2, 0] 12.45 69.6 61.6

V6 [0, 9, 0, 2] 15.46 69.7 61.5

Table 3.  Ablation experiment on the size of patches divided by tokenization operation. The best performance 
values are in bold.

 

Fig. 10.  The comparison of our method with the performance of the framework based on top-K sparsification.
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count and floating-point calculations compared to the Baseline. To achieve a balance between accuracy and 
complexity, the value for the LHE stacking depth is set to 4.

Comparative experiments
To validate the performance of the proposed model in the pedestrian re-identification task, a series of experiments 
were conducted. This study specifically focuses on occluded pedestrian re-identification datasets, local pedestrian 
re-identification datasets, and complete pedestrian re-identification datasets. A detailed experimental protocol 
was designed, and comparisons were made with other methods. The compared methods include both classical 
approaches and representative research ideas from the past three years. Overall results indicate that the proposed 
network achieved outstanding performance across all three datasets.

Comparison of occluded pedestrian re-identification methods
Table 5 presents the experimental comparison results of the AIRHF method against other approaches on the 
Occluded-DukeMTMC dataset. The methods included in the comparison are categorized into three groups: the 
first group employs horizontal segmentation and alignment to extract local features of pedestrians; the second 
group consists of methods for augmenting occluded samples; and the third group is based on mainstream 
network models such as ViT. As shown in the results in Table 5, the proposed AIRHF method achieved a rank-1 
accuracy of 69.6% and mAP of 61.6%. Compared to existing state-of-the-art methods, the proposed approach 
demonstrates superior performance. In the first group, PCB and Adver Occulded effectively mined different 
local features through horizontal partitioning, achieving commendable performance. This further validates the 
rationale behind focusing on local feature learning in pedestrian re-identification research. In the proposed 
method, the AL-WIE constructs meaningful sequences, while the LHE progressively extracts multi-granularity 
local features under the guidance of global descriptors. This approach aids in better capturing local details within 
the images.

Compared to the second group of methods that enhance data diversity, the proposed model simulates 
realistic occluded scenarios by pasting actual occlusions onto the original images, ensuring that the same batch 
of data contains consistent occlusions to maintain data integrity, thereby attaining superior performance. When 
compared to DNL+BED15 , the rank-1 accuracy and mAP are enhanced by 1.4% and 4.0%, respectively. While 
traditional approaches help mitigate the risk of overfitting, their generalization capability is relatively weak 
when confronted with diverse occlusions, which is a significant performance bottleneck. Thus, simulating more 
realistic occlusion scenarios is crucial for pedestrian re-identification research. Methods based on Transformer 
architectures are inherently designed to extract features with global relevance; however, they do not effectively 
utilize the local feature correlations within image sequences. The proposed method adaptively mines important 
information regions within images and improves the network’s ability to extract context features at different 
scales. During the local feature extraction phase, recursive partitioning of the image sequences generates 
hierarchical features for distinct local traits, effectively reducing the similarity among local features and 

Methods

Occluded-
DukeMTMC

Occluded-
REID

Rank-1 mAP Rank-1 mAP

Part Aligned40 28.8 20.2 – –

MGN41 41.2 33.4 – –

PCB + RPP42 42.6 33.7 41.3 38.9

Adver Occulded43 44.5 32.2 – –

IGOAS44 60.1 49.4 – –

OAMN12 62.6 46.1 – –

DRL-Net15 65.8 53.9 – –

DNL + BED45 68.4 57.2 – –

Pirt46 60.0 50.9 – –

PAT47 64.5 53.6 81.6 72.1

PVT48 65.5 57.6 79.1 74.0

PAFormer49 66.4 60.4 – –

TransReID19 66.5 57.4 84.2 78.7

AAFormer50 67.0 58.2 – –

LoGoViT51 67.4 61.4 – –

FED20 67.9 56.3 86.3 79.3

MVI2P*52 68.6 57.3 – –

ViT-SPT*53 68.6 57.4 86.8 81.3

PVT*48 69.0 61.2 83.3 77.5

Ours 69.6 61.6 86.8 80.2

Table 5.  Comparison with state-of-the-arts on the Occluded-DukeMTMC and Occluded-REID dataset (%). 
The best performance values are in bold.
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significantly enhancing their distinguishability. When compared to AAFormer50, our method improves the 
rank-1 metric by 2.6%, demonstrating a stronger focus on local feature learning, particularly showcasing its 
best performance on the Occluded-DukeMTMC dataset. Compared to the latest Transformer-based methods, 
MVI2P*52, ViT-SPT*53 , and PVT*48, our method achieves improvements of 1%, 1%, and 0.4% respectively in 
the Rank-1 metric. These performance gains are primarily attributed to the synergistic contributions of the three 
modules proposed in this work.

Comparative experiments of local pedestrian re-identification Methods
To further evaluate the effectiveness of the proposed AIRHF method, comparative experiments were conducted 
on two local datasets. The Partial-ReID dataset is specifically designed to investigate the problem of local 
pedestrian re-identification, where pedestrian images are divided into multiple local regions, each of which may 
be subject to occlusion. The Partial-ilIDS dataset aims to address pedestrian re-identification under conditions 
where local regions exhibit occlusions due to obstructing objects. In this context, more discriminative local 
features are essential for local pedestrian re-identification tasks.

Methods based on CNNs and ViTs often struggle to maintain optimal accuracy across local datasets. In 
contrast, our proposed method takes into account the issue of uneven sample distribution by designing an ODSA 
process to ensure the quality and diversity of generated samples. Additionally, the AL-WIE and LHE modules 
implemented in our method place greater emphasis on the partitioning of local regions and the robustness of 
local features.

Due to the limited number of images in the aforementioned datasets, Market-1501 was utilized as the 
training dataset for evaluation. As presented in Table 6, the rank-1 accuracy of AIRHF on the Partial-ReID 
dataset reached 87.3%. Notably, our method even outperformed those utilizing external cues. In summary, the 
proposed model demonstrates exceptional performance on local pedestrian re-identification datasets.

Comparative experiments of complete pedestrian re-identification methods
In complete pedestrian re-identification datasets, the considerations of occlusions or other local information 
deficits are typically absent; therefore, it is crucial to evaluate the proposed method on non-occluded datasets. 
Table 7 presents the performance of AIRHF on the Market-1501 and DukeMTMC datasets. The methods 
compared can be categorized into four groups: methods based on global features (SFT58, Circle59, and IANet60), 
methods based on local features (PCB42, AWPCN61, VPM62 ), methods relying on external cues (Pirt46, 
HOReID57, PGFA63), and methods based on Transformer architectures ( AAFormer50, FCFormer16, ViT-SPT*53 
MVI2P*52).

When compared to IANet from the first group, the proposed method demonstrates improvements of 1.0% in 
rank-1 and 5.6% in mAP metrics on the Market-1501 dataset. Furthermore, the performance surpasses that of the 
advanced method AWPCN from the second group by a substantial margin. This indicates that hard partitioning 
may not perform well when handling occlusions and is sensitive to pose variations; if part of a pedestrian is 
occluded, the partitioned region may fail to encompass vital information pertaining to the individual.

The LHE designed in this study performs recursive partitioning of the image sequences, allowing for different 
levels of local features to represent distinct semantic regions. Guided by global semantic information, it extracts 
more discriminative local features, in contrast to the traditional hard partitioning approach.

In comparison with the externally cue-dependent HOReID method, our approach achieves improvements 
of 1.2% in rank-1 and 3.8% in mAP, signifying that it achieves superior performance without relying on external 
semantic information or additional cues. Additionally, when compared to Transformer-based methods, AIRHF 
exhibits competitive results.

Complexity analysis
The ViT has demonstrated significant success in pedestrian re-identification due to its capacity to model long-
range dependencies and effectively construct global feature information. However, its model parameters and 
computational complexity are substantially greater than those of mainstream Convolutional Neural Networks 

Methods

Partial-ReID Partial-iLIDS

Rank-1 mAP Rank-1 mAP

Part 
Bilinear54 57.7 59.3 – –

PCB+RPP42 66.3 63.8 – –

MHSA-
Net55 81.3 – 73.6 85.4

FRR56 81.0 76.6 – –

PFT39 81.3 79.9 74.8 87.3

FED20 83.1 80.5 – –

HOReID57 85.3 – 72.6 86.4

OAMN12 86.0 – – –

Ours 87.3 80.6 79.8 87.4

Table 6.  Comparison with the state-of-the-art methods on the Partial-ReID and Partial-iLIDS datasets. The 
best performance values are in bold.
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(CNNs). Therefore, designing a lightweight re-identification model is essential. This study compares the 
proposed method’s complexity and accuracy with prior research based on ViT, including DenseFormer64, Pirt46, 
TransReID19 , HAT5, PFD65, AAFormer50, and TRSDF66.

To ensure fair experimental results, all ViT implementations were set to the base type. As illustrated in Fig. 
11, the comprehensive performance of AIRHF surpasses that of the other methods. Specifically, the proposed 
method achieves a floating-point computation volume that is 54% and 51% of that of Pirt and AAFormer, 
respectively, while improving rank-1 accuracy by at least 1.5%. Although it exhibits slightly lower performance 
than PFD, the proposed method reduces both the parameter count and floating-point computation volume 
compared to PFD by 21% and 66%, respectively.

In contrast to overly subjective manual design strategies for attention sparsification, our algorithm 
introduces AL-WIE, which decreases computational overhead while simultaneously mitigating the network’s 
focus on occluded regions. In summary, our method not only achieves outstanding matching accuracy but also 
demonstrates strong advantages in terms of complexity.

Fig. 11.  Comparison of model complexity on the Occluded-DukeMTMC dataset.

 

Methods

Market-1501 DukeMTMC

Rank-1 mAP Rank-1 mAP

SFT58 93.4 82.7 86.9 73.2

Circle59 94.2 84.9 – –

IANet60 94.4 83.1 87.1 73.4

PCB42 92.3 77.4 81.8 66.1

AWPCN61 94.0 82.1 85.7 74.1

VPM62 93.0 80.8 83.6 72.6

Pirt46 94.1 86.3 88.9 77.6

HOReID57 94.2 84.9 86.9 75.6

PGFA63 91.2 76.8 82.6 65.5

ViT-SPT*53 94.5 86.2 89.4 79.1

PAT47 95.4 88.0 88.8 78.2

DRL-Net15 94.7 86.9 88.1 76.6

FCFormer16 95.0 86.8 89.7 78.8

MVI2P*52 95.3 87.9 – –

AAFormer50 95.4 87.7 90.1 80.0

Ours 95.4 88.7 90.5 81.7

Table 7.  Comparison with the state-of-the-art methods on the Market-1501 and DukeMTMC-ReID datasets.
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Visualization analysis
In this section, we analyze the proposed method from two perspectives: attention mechanism visualization and 
ranking results visualization.

	1.	� Attention Heatmap Visualization: As shown in Fig. 12, (a) displays the original image, (b) represents the 
heatmap based on the Vision Transformer, and (c) illustrates the heatmap generated by the proposed AIR-
HF method. This section presents a comparison of the attention heatmaps between the proposed AIRHF 
algorithm and the baseline network, the Vision Transformer model. The AIRHF method, by considering 
the importance of image patches and utilizing aLHE, demonstrates a significant improvement in extracting 
discernible features of pedestrians compared to the traditional Vision Transformer model, particularly when 
it comes to items like backpacks. Additionally, it effectively reduces the network’s focus on occluded infor-
mation.

	2.	� Visualization of Pedestrian Image Retrieval Results Ranking: The ranking results of the proposed method 
are illustrated in Fig. 13, where the far-left image represents the query image, and the right side displays the 
10 closest matching results. Green indicates correct retrieval results, while red signifies incorrect ones. The 
results demonstrate a high level of accuracy in the retrieval outcomes. From the results, it is clear that the 
overall performance of the algorithm is quite good; however, it occasionally makes errors when faced with 
complex backgrounds or when pedestrians have a high degree of similarity. These errors are likely attrib-
uted to feature loss during the processes of sparsification and feature selection. In summary, although the 
proposed method performs well under typical conditions, the inherent trade-off between computational 
efficiency and feature retention signifies some degree of information loss. This may lead to occasional mis-
identifications under challenging conditions. Future work can focus on alleviating these issues to further 
enhance the robustness of the system.

Conclusion
This paper presents a local representation learning algorithm based on feature fusion. The algorithm includes the 
ODAS, AL-WIE, and LHE modules. The ODAS module constructs a set of occlusions to ensure that they do not 
appear in the test set, thereby augmenting the training dataset by pasting them onto the original images, which 
enhances the network model’s ability to perceive occluded information.

Furthermore, compared to previous sparse attention approaches, the proposed AL-WIE is more suited for 
the research of occluded pedestrian re-identification. As the network training progresses through iterations, the 
attention interaction gradually focuses on crucial image patches, achieving a balance between performance and 
computational cost. Additionally, AL-WIE incorporates multi-scale information into image patches of varying 
sizes, enabling it to adaptively capture different scale information present in the input images.

The LHE module is subsequently introduced to extract spatial correlation features of sequences under the 
guidance of global semantics, while hierarchical feature learning is employed to mine discriminative local 
information. Finally, comprehensive experiments were conducted on large-scale datasets, demonstrating that 
the proposed model relies on a relatively low amount of computation and trainable parameters, providing 
insights and references for applications with high real-time requirements.

Fig. 12.  Attention heatmaps based on different Vision Transformer model.The images of pedestrians in this 
figure are from the Occluded-DukeMTMC dataset. ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​l​i​g​h​​t​a​s​/​O​c​c​l​u​d​e​d​-​D​u​k​e​M​T​M​C​-​D​a​t​a​s​e​
t​​​​​.​​​​
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Data availability
The datasets generated and/or analyzed during the current study are available in this repository. ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​
o​m​/​g​g​s​s​z​z​1​2​3​/​P​e​r​s​o​n​-​r​e​i​d​-​D​a​t​a​s​e​t​​​​ . Specific contents include: Occluded-DukeMTMC: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​l​i​g​h​​t​
a​s​/​O​c​c​l​u​d​e​d​-​D​u​k​e​M​T​M​C​-​D​a​t​a​s​e​t​​​​​. Partial-ReID:url:JDAI-CV/Partial-Person-ReID(github.com) ​P​a​r​t​i​a​l​-​i​L​I​D​S​
: https://drive.google.com/file/d/1ErCEQsNHSHpgZF3-​​NNj6​_OH322vpk8g​n/vi​ew?​usp=sharing Market-1501: 
https://github.com/sybernix/market1501 ​D​u​k​e​M​T​M​C​:​​​​h​t​t​p​s​:​​/​/​d​r​i​v​​e​.​g​o​o​g​​l​e​.​c​o​m​/​f​i​l​e​/​d​/​1​j​j​E​8​5​d​R​C​M​O​g​R​t​v​J​5​R​
Q​V​9​-​A​f​s​-​2​_​5​d​Y​3​O​/​v​i​e​w​​​​​.​​
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