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Cancer-associated fibroblast subtypes
modulate the tumor-immune
microenvironment and are associated with
skin cancer malignancy

Agnes Forsthuber 1,5, Bertram Aschenbrenner 1,5, Ana Korosec1,5, Tina Jacob2,
Karl Annusver 2, Natalia Krajic 1, Daria Kholodniuk1, Sophie Frech 1,
Shaohua Zhu1, Kim Purkhauser 1, Katharina Lipp1, Franziska Werner3,
Vy Nguyen3, Johannes Griss 3, Wolfgang Bauer 3, Ana Soler Cardona3,
Benedikt Weber 1, Wolfgang Weninger3, Bernhard Gesslbauer4,
Clement Staud4, Jakob Nedomansky4, Christine Radtke4, Stephan N. Wagner 3,
Peter Petzelbauer 1, Maria Kasper 2,6 & Beate M. Lichtenberger 1,6

Cancer-associated fibroblasts (CAFs) play a key role in cancer progression and
treatment outcome. This study dissects the intra-tumoral diversity of CAFs in
basal cell carcinoma, squamous cell carcinoma, and melanoma using mole-
cular and spatial single-cell analysis. We identify three distinct CAF subtypes:
myofibroblast-like RGS5+ CAFs, matrix CAFs (mCAFs), and immunomodula-
tory CAFs (iCAFs). Large-cohort tissue analysis reveals significant shifts in CAF
subtype patterns with increasing malignancy. Two CAF subtypes exhibit
immunomodulatory properties via different mechanisms. mCAFs sythesize
extracellular matrix and may restrict T cell invasion in low-grade tumors via
ensheathing tumor nests, while iCAFs are enriched in late-stage tumors, and
express high levels of cytokines and chemokines to aid immune cell recruit-
ment and activation. This is supported by the induction of an iCAF-like phe-
notype with immunomodulatory functions in primary healthy fibroblasts
exposed to skin cancer cell secretomes. Thus, targeting CAF variants holds
promise to enhance immunotherapy efficacy in skin cancers.

Fibroblasts have been considered as rather simple structural cells,
which largely contribute to extracellular matrix deposition in con-
nective tissues and tissue repair, for a long time.However, they present
with an unprecedented plasticity and functional heterogeneity espe-
cially in pathological conditions, and exert a significant influence on
different cells in their microenvironment, thus, modulating different

processes. In cancer, fibroblasts have been established as a key com-
ponent of the tumor microenvironment (TME) affecting both cancer
progression and the response to therapies. Fibroblast heterogeneity
has been acknowledged previously as playing both tumor suppressive
as well as tumor supportive roles1–7. Recent studies even demonstrated
that also mutations in fibroblasts can lead to cancer8, further
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highlighting their impact on tumorigenesis. It also has become clear
that in a single tumor several fibroblast subtypes exist in parallel with
different functions9. Single-cell RNA sequencing (scRNA-seq) has
revealed manifold dermal fibroblast subpopulations in mouse and
human healthy skin10–12. Likewise, fibroblast heterogeneity has been
studied in many cancers such as breast cancer13,14, pancreatic ductal
adeno carcinoma15,16, colorectal cancer17,18, head and neck squamous
cell carcinoma19 and many more20. An in-depth analysis focused on
fibroblast heterogeneity in skin cancer is missing. Previous scRNA-seq
based studies of human melanoma, basal cell carcinoma (BCC) and
cutaneous squamous cell carcinoma (SCC) mainly focused on tumor
infiltrating lymphocytes and included only a few or no fibroblasts with
the exception of two recent studies investigating BCC21 and SCC22

(TableS1)21–29. In thepast years, scRNA-seq revealed a rangeof different
cancer-associated fibroblast (CAF) subsets with newly described mar-
kers in various tissues. Besides context-dependent and/or uniquely
described CAF subsets in certain types of cancer30–32, a common trait
among many of these studies is the presence of a CAF subtype with
immunomodulating characteristics, secreting IL6 and other proin-
flammatory cytokines, and a CAF subtype with a myofibroblast-like
phenotype defined by its widely accepted signature molecule alpha
smooth muscle actin (ACTA2)13,14,33–38.

In healthy skin, lineage tracing mouse models and functional
studies in mouse and human skin identified two major fibroblast
subsets, the papillary fibroblasts in the upper dermis and the reti-
cular fibroblasts of the lower dermis. They exhibit distinct roles
during skin development, wound healing, and fibrotic skin
disorders39–42. Whether these two subpopulations evolve into CAFs,
or impact skin tumor progression differently, is still an unresolved
topic. So far, all studies on skin CAFs focused on CAFs as a unit, their
overall marker gene expression, capability to stimulate migration of
tumor cells, secretion of soluble mediators, and their response to
anti-tumor therapies43–45, leaving a major gap in knowledge about the
presence of CAF subtypes, their association with tumor malignancy
and different functional roles.

In this work, we investigate the cellular ecosystem of BCC, SCC
and melanoma—with emphasis on fibroblast heterogeneity—using the
sensitive Smart-seq2 scRNA-seq technology (n = 10 tumors) andmRNA
staining in situ (n = 68 tumors). SCCs vary from well to poorly differ-
entiated tumors with increasing metastatic potential46,47, and
BCCs are locally tissue destructive and metastasize very rarely48,49.
Both cancer types arise from keratinocytes. In contrast, melanoma
originates from melanocytes, and comes with a high potential for
metastatic spread and poor survival rates, which have lately improved
mainly due to immunotherapies50,51. The combined analysis of healthy
skin and three distinct skin cancer types of different progression
stages enabled us to dissect similarities and differences of fibroblast
subsets in a premalignant and cancer context. Collectively, our work
deconstructs CAF heterogeneity in skin cancer. In particular, we show
that the mCAF subtype, which forms a dense extracellular matrix
network at the tumor-stroma border, likely plays a role in T cell mar-
ginalization, and propose that the iCAF subtype is an important reg-
ulator of immune cell recruitment and immune surveillance.

Results
Acollective single-cell atlas of primaryBCC, SCC, andmelanoma
to deconstruct skin cancer
To explore fibroblast heterogeneity and their cross-talk to tumor and
immune cells, we collected biopsies from four SCCs, three BCCs, three
melanomas and biopsies of sun-protected skin from five healthy
donors (Table S2). For the tumor samples, fresh 4mm punch biopsies
from the tumor center and from non-lesional adjacent skin (providing
sex- and age-matched healthy skin controls) were collected directly
after surgery. Since previous single-cell transcriptomic studies of skin

cancer included no fibroblasts or only low CAF numbers (Table S1),
instead of random droplet-based sampling of tumor-associated cells,
we chose a FACS-sorting approach to enrich for fibroblasts and to gain
highly sensitive scRNA-seq data. Upon dissociation of the tissues, the
sampleswereenriched for keratinocytes,fibroblasts, and immune cells
(Fig. S1A, B) via FACS-sorting cells directly into 384-well plates for
sequencing with the Smart-seq2 technology (Fig. 1A). In two healthy
control samples a random live-cell sorting approach was used,
explaining why keratinocytes are underrepresented in these samples
(Healthy I, Healthy II, Fig. 2A), which was compensated by a separate
keratinocyte enrichment protocol in healthy samples Healthy III-V
(Figs. 2A and S1A). In total, 5760 cells were sequenced, finally retaining
4824 cells at a median depth of 486146 RPKM/cell and a median of
3242 genes/cell after quality control and filtering (Fig. S1C). Cell
numbers per sample after quality filtering are shown in Fig. S1D.
Unsupervised clustering separated cells into fibroblasts, healthy and
malignant keratinocytes as well as melanocytes, immune cells, and
endothelial cells (Fig. 1B). Assignment of cell type identity was based
on commonly accepted signature gene expression: COL1A1 and
PDGFRA for fibroblasts, RERGL for vascular smooth muscle cells
(vSMC), KRT5, KRT14 and CDH1 (E-cadherin) for keratinocytes, PTPRC
(CD45) for immune cells, TYR, MITF and MLANA for melanocytic cells
and CDH5 for endothelial cells (Fig. 1B, C).

Tumor cells express a range of additional keratins
Second-level clustering of healthy and neoplastic keratinocytes resul-
ted in a clearly separated cluster of healthy keratinocytes (hKC) with
basal (KRT5, KRT14, COL17A1) and differentiating/suprabasal (KRT1,
KRT10) marker gene expression. The majority of cells in clusters
KC1–KC5 contained tumor cells from BCC and SCC samples, with
tumor cells expressing a range of additional keratins that are not
expressed by healthy skin keratinocytes (Fig. 2A and Table S2). For
example, BCC cells expressed KRT5, KRT14, and additionally KRT1752,
which are foremost clustering in KC2 and KC3. As expected for the
Hedgehog(Hh)-pathway-dependent BCC, we confirmed PTCH1/2 as
well as GLI1/2 overexpression in clusters KC2 and KC3 (Figs. 2A, S2A
and S2B)53. Cells from the SCC samples clustered in KC1, KC2, KC4 and
KC5. KC1—which primarily comprised cells of donor sample SCC III
(Figs. 2A and S2C)—expressed in addition to KRT5, KRT14, and KRT17
the typical SCC keratins like KRT6A and KRT16, and showed reduced
expression ofKRT1 andKRT1052 (Fig. 2A). Cells fromdonor sample SCC
IV, a SCC arisen from Bowen’s disease (Table S2), mainly clustered in
KC2, KC4, and KC5 that showed reduced expression of KRT1, KRT10.
KC2 and KC5 also displayed expression of KRT16 and KRT19, respec-
tively, which has been previously described for this SCC subtype52

(Figs. 2A and S2C). Notably, KRT7, KRT18, and KRT19 were only
expressed by KC1 and KC5, which were primarily represented by cells
originating from SCC samples (Figs. 2A and S2C). It has been shown
that tumors co-opt developmental programs for their progression1. In
our dataset we find previously described keratins of the simple skin
epithelium of the first-trimester embryo such as KRT18 and KRT19
expressed in SCC cluster KC1 and KC5, or KRT8 expressed in BCC
cluster KC254 (Fig. 2A). Interestingly, also healthy keratinocytes con-
tributed with more than 25% to KC5, which likely represent luminal
cells from sebaceous or sweat glands expressing the marker genes
KRT7, KRT19, SFRP1, and DCD21. In KC4, keratinocytes from BCC, SCC,
melanoma as well as healthy skin clustered together. These cells did
not express unified classical keratinocyte markers (Fig. 2A) but pre-
sented with a scattered expression of different hair follicle-associated
keratins (data not shown). This expression pattern suggests that KC4
contains keratinocytes of the different anatomical structures of the
hair follicle in line with KC4 cluster’s position next to the BCC kerati-
nocytes (KC3) and the presence of PTCH1/2 andGLI1/2 expressing cells
(Figs. 2C and S2A-B).
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The tumor microenvironment strongly impacts non-malignant
cell types
Second-level clustering of melanocytes and melanoma cells revealed
one cluster of healthy melanocytes (hMC) derived from healthy skin
samples, and one separate cluster of non-malignant melanocytes
derivedmainly from SCC and BCC samples (tumormelanocytes, tMC).
This separate clustering can likely be explained by the influence of the
TME on the expression pattern of melanocytes in comparison to
melanocytes from healthy skin. The melanoma samples were sepa-
rated into four different donor-specific clusters: MEL1 and MEL2
coming from Melanoma I, MEL3 from Melanoma II, and MEL4 from
Melanoma III (Fig. 2B and Table S2). In order to explain this donor-
specific clustering, as well as to segregate malignant from non-
malignant cells, we inferred copy number variation (CNV) analysis on
our scRNA-seq data using the R package inferCNV19,27. We performed
CNV analysis formelanocytes andmelanoma cells, and a separate CNV
analysis for healthy and malignant keratinocytes, as previously
described19, using healthy stromal cells (fibroblasts, vascular smooth
muscle cells, and pericytes) as a reference (Figs. 2C and S3).Melanoma

cells, which are known for their high mutational load55, displayed
strong CNV patterns. Remarkably, these patterns were donor-specific
despite of sharing the same histological subtype (acral lentiginous
melanoma, ALM) and body location (heel/toe) (Table S1). Among BCC
and SCC samples, SCC III (forming cluster KC1) presented with the
strongest CNV pattern, which matched well with its histopathological
characterization of a poorly differentiated, aggressive type of SCC
(Table S2). In addition to the CNV analysis, we also utilized high PTCH1
and PTCH2 expression56,57 (PTCH1/2 high) in comparison to the healthy
skin cluster hKC to pinpoint BCC tumor cells (Figs. 2A and S2A, B). As
thenon-malignant cellsmixed across almost all donor samples, suchas
tMC or immune cells (Fig. 2B–D), we did not regress for donor dif-
ferences; thus, donor-specific tumor cell clustering in KC1 and
MEL1–MEL4 is likely the result of genomic aberrations and not an
effect of batch variations.

Subclustering of immune cells resulted in eight immune cell
clusters, including T and B cells, granulocytes, and antigen-presenting
cells (Figs. 2D and S2C). Interestingly, CD4 and CD8 T cells from
healthy samples (hTcells) formed a distinct cluster, adjacent to CD4

Fig. 1 | A single cell transcriptomic atlas of human BCC, SCC, melanoma, and
healthy skin. A Workflow of donor sample processing for Smart-seq2 scRNA-seq,
data analysis and verification. B UMAP projection of first-level clustering of 4824

cells from 15 donors (left). Clusters are labeled by cell types, which were identified
by commonly acceptedmarker genes (right).C Expression of topmarker genes for
the main cell types.
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Fig. 2 | Second-level clustering of non-mesenchymal cells and CNV analysis.
A, B UMAP projection of second-level clustering, violin plots of signature genes as
well as bar plots showing donor sample (n = 15 donors) distribution per cluster are
presented for healthy and neoplastic keratinocytes and melanocytes. C CNV ana-
lysis (based on inferCNVpackage) of tumor samples using stromal cells as reference
controls. UMAPs for healthy and neoplastic keratinocytes and melanocytes:
Malignant cells with a predicted CNV alteration are highlighted in red and
PTCH1/PTCH2 overexpressing cells without CNVs are highlighted in orange or

yellow, respectively. D UMAP projection of second-level clustering, violin plots of
signature genes as well as bar plots showing donor sample distribution per cluster
are presented for immune cells. The distribution of cytotoxic, helper, and reg-
ulatory T cells are depicted in separate cut-outs. EHeatmapof genes that reflect the
resting, activation, cytotoxic, co-stimulatoryor co-inhibitors status of T cell subsets
from healthy and tumor samples. KC-keratinocyte, MC-melanocyte, MEL-
melanomacells, hTcells-healthy T cells, tCD8-CytotoxicT cells, tCD4-Helper T cells,
Tregs-Regulatory T cells.
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(tCD4) and CD8 T cells (tCD8) from tumor samples (Figs. 2D and S2C).
This can be explained by a different activation status of T cells in
healthy or tumor samples: Increased expression of granzymes, per-
forin and IFNγ indicated T cell activation in CD8 T cells from tumor
samples versus healthy tissue (Fig. 2E). Regulatory T cells (Tregs),
CD4+IL2RA+FOXP3+, were found mixed with CD4 T cells from tumor
samples (tCD4) (Figs. 2D, E and S2C).

Fibroblasts from healthy skin cluster separately from CAFs
Second-level clustering of fibroblasts and vSMCs (2239 cells) resulted
in seven subclusters.We classified twomain clusters from healthy skin
samples called papillary fibroblasts (pFIB) and reticular fibroblasts
(rFIB), four CAF subclusters called matrix CAFs (mCAF), immunomo-
dulatory CAFs (iCAF), RGS5+ CAFs and pericytes (RGS5+ cells), unclas-
sifiable CAFs (ucCAF), and one vSMC cluster (Figs. 3A, S4A, S4B). We
used differentially expressed genes as well as commonly accepted
markers to define these subclusters. Reassuringly, fibroblasts from the
tumor-adjacent skin samples were found on the transition between
healthy and tumor samples, and within the RGS5+ and vSMC clusters
(Fig. S4A), indicating that CAFs may develop from skin-resident
fibroblasts (pointing towards field cancerization)58.

Importantly, several establishedmarkers for papillary and reticular
fibroblasts could be assigned to the two subclusters comprising cells
from healthy donors. COL6A5, COL23A1 andHSPB310, theWnt inhibitors
APCDD1 and WIF110,59, NTN1 and PDPN60 are commonly accepted mar-
kers for papillary fibroblasts andwere found to be expressed in the pFIB
cluster. DPP4 (CD26), which was described as a marker for papillary
fibroblasts byTabib et al.11, was expressed inboth subpopulations in our
data (Fig. S4C), as shownbyKorosec et al. and Vorstandlechner et al.12,41.
The healthy fibroblast subcluster rFIB expressed genes that are char-
acteristic for reticular fibroblasts: THY141, FMO1,MYOC, LSP111,MGP, and
ACTA260 as well as the preadipocyte marker genes PPARG and CD3641

(Fig. S4C). However, we could not confirm the expression of various
other published reticular fibroblastmarkers. The discrepancy ofmarker
expression in distinct datasets might result from tissue collection from
different body sites, tissue preparation, or sequencing technology.
Furthermore, severalmarkerswere identified in in vitro cultures,mostly
on protein level. Thus, we conclude that the healthy fibroblast cluster
pFIB represents papillary fibroblasts, and rFIB represents reticular
fibroblasts (Figs. 3A, B and S4C).

Different skin cancer types comprise both common and tumor-
type-specific CAF subsets
Subclustering segregated four CAF populations: mCAFs, iCAFs, RGS5+

cells, and ucCAFs. Matrix CAFs (mCAFs) exhibited increased expres-
sion of extracellular matrix components such as collagens (COL1A1,
COL1A2, COL3A1), Lumican (LUM), Periostin (POSTN) or Tenascin-C
(TNC) compared to all other fibroblast clusters (Fig. 3A, B). Immuno-
modulatory CAFs (iCAFs) presented with enhanced expression of the
matrix remodelers MMP1 and MMP3, the pro-inflammatory cytokines
IL6 and CXCL8 and the immune-suppressive molecule IDO1 among
their top ten differentially expressed genes (DEGs), thus suggesting an
immunoregulatory and cancer invasion-supportive phenotype
(Fig. 3A, B). Intriguingly, themCAF cluster harboredfibroblasts fromall
BCC and well-differentiated SCC samples (mainly SCC I and SCC IV),
whereas the iCAF cluster contained fibroblasts from all melanoma
samples, one poorly differentiated SCC (SCC III) and one BCC (BCC II).
While the presence of these subsets seems to depend on the skin
cancer type with iCAFs being associated with the most aggressive
tumors, RGS5+ cells were found in all tumor samples independently of
skin cancer type and malignancy (Figs. 3A, S4A and S4B). Notably,
mCAFs and iCAFs expressed different transcription factors (TFs;
Fig. 3C). In mCAFs, TFs associated with conserved develop-
mental pathways, including genes of the WNT pathway (CXXC5, TCF4),
transcriptional regulation of mesenchymal cell lineages (TWIST1,

TWIST2), and anti-inflammatory signaling (KCNIP3), were upregulated.
iCAFs expressed high levels of TFs that are related to immune
responses such as STAT1, IRF1, IRF9, or ARID5A. Of note, there is also a
difference in TF expression between SCC- and melanoma-
derived iCAFs.

Since RGS5+ cells expressed ACTA2 (in combination with COL1A1,
Fig. 4A), this subset likely represents activated fibroblasts that are
usually termed myofibroblasts in wounded or fibrotic tissues61, or
myoCAFs in different cancer types37. However, they also expressed
genes among their top DEGs that have been used as pericyte markers,
such as RGS5, KCNJ8, ACTA2, and MCAM (Fig. 3B)62–64. RGS5+ cells also
shared some markers with the vSMC cluster, such as ACTA2, TAGLN
and MCAM, which are markers for perivascular cells in various
tissues41,65. The vSMC population formed its separate cluster and
was clearly defined by RERGL, MYH11, CNN1 in addition to ACTA263

(Fig. 3A, B). Unclassifiable CAFs (ucCAFs) represented a minor popu-
lation with an inconclusive gene expression pattern and mixed cell
contribution from almost all tumor samples, which we therefore did
not consider further for in-depth discussion (Fig. 3A, B).

Trajectory inference shows two main differentiation routes for
CAFs from healthy cells
Trajectory analysis using Monocle2 and Monocle366,67 showed that
healthy fibroblasts follow two differentiation routes: either towards
mCAF/iCAF or towards RGS5+cells (Fig. 3D, E). Note that the vSMC
cluster was excluded from trajectory inference as we do not expect
them to differentiate from healthy fibroblasts and CAFs from a biolo-
gical point of view. The trajectory analysis also shows that iCAFs are a
differentiation endpoint, withmCAFs being an intermediate state, and
thus it may be possible that iCAFs develop from mCAFs. This might
also be supported by the fact that iCAFs express several mCAF genes
albeit at a lower levels, while mCAFs do not express iCAF markers
(Fig. S8A, B). Fibroblasts from tumor adjacent skin samples are pre-
ferentially found in the healthy fibroblast and the RGS5+ cells branches,
and a smaller fraction bridging to the mCAF branch, indicating that
they are in a transitory position between healthy fibroblasts and CAFs.

ACTA2 and FAP in combination identify all CAF subpopulations
in skin tumor samples
Previous studies have used different single markers like ACTA2 or FAP
to identify or isolate CAFs in different tissues68. However, a query on
previously described CAF marker genes showed that, in our dataset,
most of them are either restricted to a distinct CAF subset, or found in
all fibroblast clusters including healthy fibroblasts, but do not solely
identify all CAF subsets (Fig. S4D). A good strategy to detect all CAFs
within skin tumor samples is combining the twomost frequently used
CAF markers ACTA2 and FAP. Although this combination also includes
vSMCs, it allows to enrich for all CAF subpopulations when used
together (Fig. S4D).

The RGS5+ cells are best described as a mixed population of
myoCAFs and pericytes
When we investigated the detailed gene expression profiles of the
distinct CAF subtypes we suspected that the RGS5+ cluster likely
comprises both myoCAFs and pericytes, therefore we chose the neu-
tral term “RGS5+ cells” for this cluster. In detail, RGS5+ cells expressed
ACTA2—the signature gene for myofibroblasts and myoCAFs—in com-
bination with COL1A1. The expression of PDGFRB, TAGLN, RGS5, DES
and the absence of PDGFRA suggests that this cluster also comprises
pericytes62–64 (Fig. 4A). Interestingly, the RGS5+ cluster also shows
expression of NOTCH3, EPAS1, COL18A1 and NR2F2, markers that were
used to describe so-called vascular CAFs (vCAFs), a CAF subset defined
by Bartoschek et al. in amousemodel for breast cancer69 (Fig. S5A). Of
note, endothelial markers such as CDH5, PECAM1, TIE1, or CD62 were
not expressed in the RGS5+ cluster (Fig. S5B).
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To characterize the nature of the RGS5+ cluster further, we stained
tumor sections for Transgelin (TAGLN), which is a prominently
expressed gene in this cluster. This tissue staining revealed TAGLN
protein along blood vessels as expected, but also within the tumor

stroma without direct contact with vessel-like structures (Fig. 4A).
Protein expression of Desmin (DES), a marker for pericytes and
vSMCs61,62 was restricted to vessels (Fig. 4A). DES was only expressed
by few cells on RNA level, which was not sufficient to identify a

Fig. 3 | Second-level clustering of fibroblasts and vascular smoothmuscle cells
(vSMCs) results in two heathy fibroblasts populations, four CAF subsets and
one vSMCcluster. AUMAPof second-level clustered fibroblasts and vSMCs. Violin
plots of signature genes and bar plots showing donor sample (n = 15 donors) dis-
tribution per cluster. B Heatmap of top ten differentially expressed genes per
cluster.CDifferentially expressed transcription factors betweenmCAFs and iCAFs.

B, C Source data of all significantly differentially expressed genes and transcription
factors including exact p values are provided in the Source Data file. D Trajectoy
analysis using Monocle2. Cells were highlighted according to clusters, category or
pseudotime. E UMAP colored in pseudotime showing trajectory results from
Monocle3.
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Fig. 4 | The RGS5+ cells are an inhomogeneous population of CAFs and peri-
cytes. A Feature and violin plots showing the expression of fibroblast and pericyte
marker genes in the RGS5+ cluster. Representative immunohistochemistry of
TAGLN, DES and CD31 in different regions of the tumor (intratumoral, peritumoral)
(n = 10 tumor samples from biologically independent donors). B Representative
images of COL1A1 (green), RGS5 (red), and PDGFRA (blue) RNAScope fluorescence

stainings in four different regions of FFPE tissue sections from donor sample SCC
IV, representative for the n = 10 independent tumor samples. DAPI nuclear stain is
shown in gray. Scale bar represents 20μm. C Myofibroblasts in a HNSCC dataset
from Puram et al.19 exhibit a very similar expression pattern in comparison to the
RGS5+ cluster in our dataset.
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separate pericyte cluster within the RGS5+ cells in our sequencing
dataset70,71. Next, we performed mRNA co-staining for RGS5, COL1A1,
and PDGFRA mRNA to validate our sequencing data and to verify the
stromal and perivascular presence of RGS5+ cells (Figs. 4B and S5C). In
tumor regions (Fig. 4B, region 1–3, and S4C, region 1-2), a positive
staining for RGS5was detected both at vessel structures andwithin the
stroma, in comparison to the peritumoral area, where RGS5 staining
was only found surrounding vessel-like structures (Fig. 4B, region 4).

To shed light on the discrepant classification of cells as being
myofibroblast-like CAFs or pericytes in tumor samples, we reana-
lyzed a publicly available head and neck squamous cell carcinoma
(HNSCC) dataset19 and put it in comparison with our dataset. Puram
et al.19 classified the tumor fibroblasts into CAFs, myofibroblasts and
intermediate (resting) fibroblasts. We extended their published
marker gene set by commonly accepted pericyte markers and found
those enriched in the myofibroblast cluster only, revealing a very
similar expression profile to our RGS5+ cell cluster (Fig. 4C). The fact
that this formerly defined myofibroblasts have been defined as
pericytes upon reanalysis by another group72, suggests that myofi-
broblasts and pericytes share a very close gene expression pattern
which indeed does not allow segregation by transcriptional profiling.
Thus, the absence of histological stainings in previously published
datasets impeded an accurate definition of those cells, and only the
combination of histological localization and gene expression allows
proper lineage designation. We conclude that the RGS5+ cell cluster
within our as well as the HNSCC dataset comprises both pericytes
and CAFs.

In situ validation and spatial localization of mCAF and iCAF
subsets
We verified the presence of iCAFs and mCAFs by mRNA staining
in situ in the same tumor samples that were sequenced as well as in
additional independent tumor biopsies (n = 68 tumors in total). We
used COL11A1 and PTGDS as markers for mCAFs, and MMP1 (and
several cytokines) as a marker for iCAFs, in co-stainings with the pan-
fibroblastmarker COL1A1 (Figs. 5A, B, 6C, S6 and S7). The distribution
of mCAFs and iCAFs in the tumor tissue follows different patterns:
mCAFs were found abundantly in large patches ensheathing tumor
nests, but also pervading the tumor in strands (Figs. 5A and S6A).
Importantly, mCAFs were especially enriched at the tumor-stroma
border of BCC andwell-differentiated SCC (Fig. S6A). Contrary, iCAFs
were found in smaller numbers intermingled betweenMMP1-COL1A1+

cells intratumorally in stromal nests and strands that pervade the
tumors or in patches at the invasive front (Figs. 5B, S6B). To verify
our scRNA-seq data suggesting that iCAFs are predominant in
aggressive tumors, we stratified the tumor samples into different
categories: nodular and infiltrative BCC, well-differentiated and
poorly-differentiated SCC, and low-grade (Tis and ≤T1) and high-
grade (≥T3) melanomas (n = 52). Large-field spatial visualization of
the CAF subpopulations in tumor tissue samples showed a clear
change in the CAF patterns from lower to higher malignancy, along
with a higher overall CAF density in the aggressive variants of the
respective skin cancer subtypes (Fig. 5C). To quantify this difference
in CAF subsets, the regions of interest (ROIs) were set within the
tumor as well as at the invasive front (Figs. 5C, D and S7A; see
Methods). The total CAF density significantly increased in infiltrative
BCC compared to nodular BCC, and in high-grade melanoma com-
pared to low-grade melanoma (Fig. 5D). Also the iCAFs displayed an
increase in number between nodular BCC and infiltrative BCC, and
low grade (≤T1) and high grade (≥T3) melanomas, respectively
(Fig. 5D). The SCC subtypes displayed a similar iCAF trend; however,
it was not statistically significant (see Discussion). This extended data
analysis, which also included infiltrative BCC and low-grade mela-
noma samples, confirmed the scRNA-seq data showing that iCAFs are
more abundant in more malignant skin cancer subtypes, particularly

in infiltrative BCC and high-grade melanoma. Interestingly, also the
mCAFs increased in abundance in infiltrative BCC compared to
nodular BCC, and high grade (≥T3) versus low grade (≤T1) melano-
mas (Fig. 5D, Discussion).

mCAFs form a barrier around tumor nests
We investigated the expression of matrix-associated genes (collagens,
laminins, lysyloxidases, and other ECM genes) and immune response
or cancer invasion-associated genes (MMPs, chemokines, interleukins,
and immunomodulatory genes) by module scores and found a sig-
nificant enrichment of matrix-associated genes in mCAFs and
immuno/invasiveness-associated genes in iCAFs (Fig. S8A and S8B).
Additionally, we interrogated for possible ligand-receptor interac-
tions: mCAFs exhibit a strong expression of collagens and other ECM
genes, whose receptors are found on healthy and neoplastic kerati-
nocytes and melanocytes as well as on immune cells
(Figs. S9A and S9B). COL11A1 protein staining revealed a dense net-
work of collagen fibers aligning the basement membrane of tumor
nests (Fig. 5E), indicating that mCAFs may control T cell margin-
alization as has been shown for COL11A1 expressing CAFs in lung
cancer73. Thus, we quantified the number of mCAFs and CD3+ cells in
the total cancer tissue (including tumor stroma) and the number of
CD3+ cells within tumor nests of several ROIs per sample of nodular
and infiltrative BCC samples (n = 15, 97 ROIs). The number of mCAFs/
mm² tissue negatively correlated with CD3+ cells/mm² within tumor
nests (Fig. 5F), suggesting that mCAFs may form a physical barrier to
inhibit T cell infiltration into tumor nests. Of note, while total CAF and
mCAF numbers negatively correlated with CD3 cells/mm² in tumor
nests, iCAF numbers did not (Linear regression: total CAFs: R² = 0.039;
mCAFs: R² = 0.040; iCAFs: R² = 0.009). Indeed, representative images
from overlaid CD3 and mCAF stainings (COL1A1+COL11A1+) showed
that infiltration ofCD3+ cells foremostoccurs at areaswhere stainingof
mCAFs is low or absent (Fig. 5F).

iCAFs are the major source of cytokines in the TME and are
capable of activating T cells
iCAFs strongly expressed immunomodulatory genes, including TGFB3
and LGALS9, proinflammatory cytokines such as IL1B and IL6
(Figs. 6A and S8B). Additionally, iCAFs expressed high levels of a ple-
thora of chemokines in comparison to healthy or neoplastic kerati-
nocytes and melanocytes (Fig. 6A, upper heatmap), and thus likely
regulate the immune cell composition and influence immune surveil-
lance in the tumor as their receptors are found on many different
immune cells (Fig. 6A, B). Notably, iCAFs from melanoma samples
expressed high levels of CXCL1-8 but not CXCL9-13, whereas the
expression of CXCL9-13 is high in iCAFs of the SCC III and BCC II
samples. Only CXCL2 was equally high expressed in iCAFs from all
tumor samples (Fig. 6A). Similarly, IL1B was expressed at much higher
levels in iCAFs derived frommelanoma, while TGFB3 and LGALS9were
strongly expressed in iCAFs from BCC and SCC but not melanoma
(Fig. 6A).We alsomade a receptor-ligand interrogation with CellChat74

and confirmed several predicted interaction partners of iCAFs and
mCAFs as a signaling source (Figs. 6B and S9). We further confirmed
the CAF-derived expression of cytokines by mRNA stainings in situ
(Figs. 6C, S7B). CXCL2, CXCL8 and IL24 were selected for the analysis
because these three cytokines showed a good coverage across the
iCAF cluster, although cell- and sample-specific differences remain
(Fig. S7B, C). As visualized in the spatial plots of representative sam-
ples, cytokine-expressing CAFs are more abundant in the most
aggressive tumor variants (infiltrative BCC, poorly differentiated SCC,
and high-grade melanoma) (Fig. S7B). While the majority of nodular
BCC and low-grade melanoma harbored no or single dispersed
cytokine-expressing CAFs, several infiltrative BCC and high-grade
melanoma presented with multiple clusters of cytokine-expressing
CAFs (Fig. 6C), which is in line with the in situ quantification of iCAFs
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(Fig. 5C, D) and transcriptomic data (Fig. S4A). The difference in
cytokine-expressing CAF density and distribution was not as pro-
nounced between well and poorly-differentiated SCCs, although they
appeared to bemore frequent in late-stage SCC (Figs. 5C, 6C and S7B).
Furthermore, we confirmed that CAFs are a major source of cytokines
in the TME in an entirely independent single-cell transcriptomics
dataset of melanoma (n = 5) (Fig. S8C). These samples express

exceptionally high levels of CCL2, CXCL12, and CXCL14. Along these
lines, also CAFs from oral SCCs display stronger cytokine expression
than their respective tumor cells (Fig. S8D).

These results led us to hypothesize that the cancer cells of
invasive cancers (but not from non-invasive ones) may directly
impact the phenotype of tumor-adjacent fibroblasts. To test this, we
isolated primary dermal fibroblasts from healthy skin (NHDF) and
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treated them with conditioned medium collected from melanoma
and SCC cell lines (Fig. S10A). Intriguingly, the conditioned medium
(CM) of cultured cell lines derived from melanoma metastases
(VM08 and VM15 from lymph node metastases) or from a highly
aggressive SCC (SCC13)75 strongly induced the expression of differ-
ent cytokines and chemokines in NHDFs (Fig. 6D). Likewise, these
cytokines and chemokines were expressed at high levels by fibro-
blasts isolated from a primary melanoma without further treatment
(pMel CAFs; Fig. 6D). On the contrary, VM19 and VM25 cell lines,
which were derived from primary melanomas, did not induce cyto-
kine expression (except CXCL8 by VM25). The melanoma cell line
VM26 derived from a subcutaneous metastasis76 only induced higher
levels of CCL2 but not the other tested cytokines and chemokines.
Although the cancer cells expressed several cytokines themselves
(Fig. 6D), it was striking that the supernatant of these cancer cell lines
induced even more cytokines and chemokines in healthy fibroblasts.
Importantly, we confirmed the expression of several cytokines and
chemokines by fibroblasts and induced iCAFs on protein level with
LEGENDplex assays (Fig. S11). Of note, the increased expression of
cytokines and chemokines in NHDFs treated with VM08 and VM15
conditioned medium, at the RNA level was not consistently reflected
at the protein level. This is likely attributed to the fact that for the
LEGENDplex assay, cells were without stimulus for two days prior to
the analysis of their supernatant.

Intriguingly, while the conditioned medium from cancer cells
alone induced the expression of iCAF-related genes (cytokines, che-
mokines, Fig. 6D), the expression of ECM-related genes was not
induced (Fig. S10B). Thus, we conclude that the secretome of invasive
tumor cell lines can transform normal fibroblasts into iCAF-like, but
not mCAF-like cells in vitro.

Furthermore, naïve CD4 and CD8 T cells were co-cultured toge-
ther with NHDFs that were pretreated with conditioned medium from
VM15, VM26, VM19, VM25, or control medium, and with pMEL CAFs. In
parallel, naïve CD4 and CD8 T cells were co-cultured with the cancer
cells directly. We found that primary fibroblasts isolated from healthy
skin are capable of activating T cells (Figs. 7A–CandS12A), as shownby
increased percentages of proliferating CD4 and CD8 T cells (Fig. 7B)
and activated CD69 +CD4 and CD8 T cells (Figs. 7C, S12A, B). This
potential to activate T cells was enhanced when fibroblasts were
exposed to the secretome of specific cancer cells. Comparing cancer
CM-treated NHDFs to untreated NHDFs showed a further increase in
CD4 T cell proliferation with CM derived from VM15 and an increase-
trend with CM derived from VM26 (not statistically significant). Also,
CD8 T cell proliferation with CM derived from VM15, VM26, and
VM19 showed a comparable trend, albeit not statistically significant.
Early T cell activation was promoted by VM15- and VM19-derived CM
for CD4 T cells, and by VM15-derived CM for CD8 T cells (Fig. 7C). Late
activation of CD4 +T cells measured as percentage of CD45RO
+/CD62L- T cells at 96 h was significantly enhanced by CM derived

from VM15, VM26 and VM19 (Fig. S12C, D). Importantly, also CAFs
directly isolated from a primary melanoma without further treatment
(pMel CAFs) were potent in activating CD4 and CD8 T cells (Fig. 7B, C).

Taken together, in situ stainings of the marker genes identified in
our scRNA-seq screen showed that mCAFs and iCAFs are distinct CAF
populations that follow different distribution patterns in situ (Fig. 7D).
mCAFs are present in all tumors but seem to play an important role at
the tumor-stroma border as they form dense networks surrounding
tumornests of benign tumors, i.e., nodular BCCandwell-differentiated
SCC. In contrast, the number of iCAFs increases significantly in
aggressive tumors (especially infiltrative BCC and late-stage mela-
noma) and, thus, high abundance of iCAFs correlates with malignant
progression (Figs. 5D and 7D). Importantly, receptor-ligand analysis
revealed that iCAFs, which are associated with late-stage tumors,
express many immunomodulatory factors that bind to receptors
expressed primarily on neutrophils, T cells and NK cells. Notably, the
heat map in Fig. 6A shows that apart from immune cells, fibroblasts
synthesize the majority of cytokines and chemokines but not tumor
cells, indicating that not the cancer cells but the stromal cells (fibro-
blasts) are key players in immune cell recruitment and activation.
Indeed, we confirmed that fibroblasts treated with the secretome of
skin cancer cells are capable of activating T cells. Furthermore, since
mCAFs ensheath tumor nests and synthesize large amounts of ECM
proteins, it is likely that they are involved in T cell exclusion (Fig. 5E, F).

Discussion
Fibroblasts are important contributors to the TME. They can exert pro-
as well as anti-tumorigenic functions by stimulating tumor cell survival
and proliferation, modifying ECM stiffness, supporting metastasis,
influencing therapy response, regulating immune cell recruitment via
chemokine secretion and inflammatory responses38,77. Inter- and
intratumoral CAF heterogeneity has been appreciated ever since
scRNA-seq methods have become available. However, their different
functions in the TME remain largely inexplicit. The scRNA-seq-based
works that have been published for skin cancers, four melanoma
studies23,25–27, one SCC study24 and one study containing BCCs and
SCCs28, either only contained a very small number of fibroblasts or
fibroblast heterogeneity was not the focus of the analysis. Considering
the large knowledge about fibroblast diversity in healthy human
dermis10–12,41, a screen on the CAF heterogeneity in human skin tumors
was required to fill the missing gap, which we achieved with the pre-
sent work, especially since our dataset comprises the three major skin
cancer types, and because we validated our findings not only in other
published datasets but also by comprehensive spatial analysis of the
different CAF subsets in situ.

Wehave previously shown that healthyhumanskin comprises two
functionally distinct fibroblast subsets (papillary and reticular fibro-
blasts) which can be distinguished by the expression of CD90 (THY1)41.
The present scRNA-seq screen confirmed that CD90, which is still

Fig. 5 | mCAFs and iCAFs are characterized by the expression of ECM and
immunomodulatory genes, respectively. Representative images from (A) COL1A1
(green), COL11A1 (red), and PTGDS (blue) and (B) COL1A1 (green) andMMP1 (red)
RNAScope fluorescence stainings to identifiy mCAFs and iCAFs respectively in FFPE
tissue sections from n= 52 biologically independent tumor samples. DAPI nuclear
stain is shown in gray. Scale bar represents 20μm. C Spatial plots highlighting the
spatial distribution of total CAFs (COL1A1), iCAFs (COL1A1+MMP1+) and mCAFs
(COL1A1+COL11A1+) and respective H&E stainings on consecutive sections.
Dashed-lined boxes show approximate area of spatial plot in H&E stainings.
D Quantification of total CAFs (COL1A1+), iCAFs (COL1A1+MMP1+), and mCAFs
(COL1A1+COL11A1+MMP1−) in cells per mm2 in 52 independent tumor samples of
nodular (n=8) and infiltrative BCC (n=9), well (n=8) and poorly (n= 10) differ-
entiated SCC as well as low- (n= 8) and high-grade (n=9) melanoma. Fibroblast
numbers of at least five representative ROIs from each tumor were summed-up and

normalized to the tissue area to capture the whole tumor tissue. Data are presented
as box plots with median as center and whiskers ranging from minimum to max-
imum, bounds of boxes extend from the 25th to 75th percentiles. Statistical analysis
by two-sided Mann-Whitney test. *p <0.05, **p <0.01. E Representative images from
COL11A1 immunohistochemistry stainings (n= 10 biologically independent tumor
samples). Scale bar represents 100μm. F Image analysis of CD3+cells/mm2 in tumor
nests and total CAFs/mm2 (high-low cutoff 140 cells/mm2), mCAFs/mm2 (high-low
cutoff 40 cells/mm2), or iCAFs/mm2 (high-low cutoff 40 cells/mm2) in 97 ROIs from
nodular and infiltrative BCCs (n= 15 biologically independent tumor samples). Linear
regression analysis of log(CD3+cells/mm2) in tumor nests and log(CAFs/mm2).
Representative images of CD3 immunohistochemistry and COL1A1 (green) COL11A1
(red) RNAScope fluorescence stainings. Data are presented as mean values ± SEM.
Statistical analysis by unpaired two-sided t-test; *p<0.05.D, F Source data and exact
p values are provided in the Source Data file.
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Fig. 6 | Fibroblasts are an important source of chemokines in the tumor.
A Expression of immunomodulatory genes in iCAFs compared to healthy and
neoplastic keratinocytes and melanocytes and interrogation for respective recep-
tors in healthy and neoplastic keratinocytes and melanocytes as well as immune
cells (n = 15). B Circular plots of selected receptor-ligand pairs from CellChat ana-
lysis, showing mCAF/iCAF as source cells (n = 15 donors). C Representative images
of RNA ISH staining with probes against CXCL2, CXCL8, IL24, and COL1A1 of BCC,
SCC andmelanoma samples (n = 43 biologically independent tumor samples).D In
vitro cytokine expression of NHDF after exposure to conditioned medium from

NHDFs, VM08, VM15, VM26, VM19, VM25, and SCC13 cells for 72 h in comparison to
the cytokine expression of the cancer cell lines VM08, VM15, VM26, VM19,
VM25, and SCC13, and to primary melanoma-derived CAFs (pMel CAFs). Data from
four independent experiments are presented as bar graphs showing mean
values ± SD, overlayed with individual data points of the independent experiments.
Statistical analysis by One-way-ANOVA and Tukey’s post hoc test for multiple
comparison on log-transformed data. Significant comparisons to NHDFs are
shown; Source data and exact p values are provided in the Source Data file.
*p <0.05, **p <0.01, ***p <0.001.
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Fig. 7 | Fibroblasts activate CD4+ and CD8+ T cells. A Experimental setup of T cell
assays shown in B and C. B Proliferation assessed by flow cytometry of CD4 or CD8
T cells upon co-culture with NHDFs pre-treated with conditioned medium from
cancer cells, primary melanoma-derived CAFs (pMel CAFs) or cancer cells.
CUpregulation of the early activationmarkerCD69onCD4orCD8T cells after 24h
of co-culture with NHDFs pre-treated with conditioned medium from cancer cells,
pMel CAFs or cancer cells. Data represented as fold change of percentages of cells
positive for the indicated markers normalized to NHDFs. B, C n = 6 biologically

independent samples for T cells only and untreated NHDFs, n = 5 biologically
independent samples for pMel CAFs, and n = 3 biologically independent samples
for T cells in co-culturewith VM15, VM26, VM19, VM25. Data are presented asmean
values ± SD. Statistical analysis in comparison to NHDFs or to T cells only by
unpaired two-sided Student’s t test and Welch’s correction; B, C Source data and
exactp values are provided in the Source Data file. *p <0.05, **p <0.01, ***p <0.001.
D Schematic summary of spatial distribution of distinct CAF subsets in human skin
cancer.
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frequently used as the sole fibroblastmarker to isolate or visualize skin
fibroblasts, is only expressed by the reticular subpopulation (Fig. S4C).
Although the majority of CAFs express THY1 (CD90) (Fig. S4D), our
data do not allow to conclude whether CAFs develop only from skin-
resident reticular fibroblasts or whether they acquire expression of
CD90 upon activation.

Of note, the RNA expression level of FAP in the scRNA-seq data
does not reflect the FAP protein expression on the fibroblasts entirely,
as we used FAP and CD90 surface expression to enrich for fibroblasts
by FACS (Figs. S1B and S4C).

In the skin cancer samples, we identified three distinct fibroblast
populations (excluding the small population of ucCAFs). Immuno-
modulatory CAFs (iCAFs) show a characteristic expression of proin-
flammatory cytokines (IL1B, IL6), chemokines (CXCR2 ligands) and
immunomodulating molecules (IDO1) and, thus, seem to be analog to
the previously described iCAFs in other cancer types (Figs. 3B, 6A, B)37.
Matrix CAFs (mCAFs), which we identified as a separate CAF popula-
tion, are not to be confused with myofibroblasts described in other
publications37. mCAFs exhibit increased matrix production but with-
out the expression of ACTA2 and myosin light chain proteins
(Figs. 3B, S8A, B).

Most interestingly, our dataset suggested that iCAFs and mCAFs
can likely be attributed to skin cancer types with higher (iCAFs) and
lower (mCAFs) metastatic potential. The only exception were fibro-
blasts from BCC II, which were found in the iCAF cluster even though
BCC II is histologically not different to the other two BCC samples
(Fig. S4B). Quantification of the distinct CAF subsets was particularly
challenging because of the varying nature of skin cancer. Skin tumors
display heterogeneous morphology both within a single tumor (i.e.,
superficial tumor areas versus invasive front) and among distinct can-
cer subtypes. Thus, the biological difference may not be well captured
in numbers. Large-field spatial visualizationof theCAF subsets in tumor
tissue samples showed an obvious difference in the CAF patterns from
lower to higher malignancy, along with a higher overall CAF density in
the more aggressive variants of the respective skin cancer subtypes
(Fig. 5C,D). In situ localization revealed that mCAFs are present in all
tumors but are detected in high density at the tumor-stroma border
especially in nodularBCCandwell-differentiated SCC. ThatmCAFs also
increase in number in late-stage tumors (Figs. 5, S6A and S7) is inter-
esting in connection with the results of our multiplex mRNA staining
in situ. Future spatial transcriptomic analysis could reveal if themCAFs
located at the tumor-stroma border have a distinct expression profile
compared to the mCAFs located within the stromal strands and with-
out direct contact to tumor cells. This may indicate, for example, dual
functions of mCAFs or a potential conversion of tumor ensheathing-
CAFs towards a “more aggressive” iCAF-like phenotype both of which
are an exciting future route to explore.

iCAFs are more abundant in malignant tumors, especially in
infiltrative BCC and in aggressive melanomas (Fig. 5B,C). Although
there is a trend that poorly differentiated SCCs harbor higher numbers
of iCAFs compared to well-differentiated SCCs, the difference is not so
clear between these two cancer subtypes. Analysis of larger patient
cohort with additional stratification into further subtypes may be
necessary to provide a clearer picture.

The RGS5+ cluster contains cells from all samples, including heal-
thy controls. According to differential gene expression, the RGS5+

cluster would commonly be termed as myofibroblasts/myoCAFs due
to the characteristic expression of ACTA2, MYH11, and COL1A1. How-
ever, the RGS5+ cluster also showed a marker profile that can be
attributed to pericytes (RGS5, PDGFRB, KCNJ8, TAGLN,MCAM) (Figs. 3B
and 4A). We demonstrate by in situ immunohistochemistry that RGS5+

cells are not only found in perivascular localization but are also dis-
tributed throughout the stroma in tumor regions. In contrast, in
unaffected skin, RGS5+ cells are restricted to a perivascular localization
(Fig. 4A, B). Thus, an exclusive definition as myofibroblasts/myoCAFs

or pericytes for this cluster seems to be inappropriate. The impossi-
bility to discernmyofibroblasts/myoCAFs from pericytes on RNA level
has been a general issue, as we found very similar expression patterns
of the myofibroblasts/pericytes in a HNSCC dataset, once defined as
myofibroblasts19, and once defined as pericytes72 (Fig. 4C). It has been
suggested that pericytes are able to leave the vessel wall and con-
tribute to the tumor stroma in a process called pericyte-fibroblast
transition (PFT)78. To our knowledge, PFT has not been shown in skin
cancer. A recent pan-cancer scRNA-seq study suggested that a small
CAF subset arose from endothelial cells. However, this was concluded
from transcriptional data but not confirmed in situ79. Whether RGS5+

CAFs originate from pericytes or skin-resident fibroblasts cannot be
concluded from this study. It is of higher importance thatRGS5+ACTA2+

CAFs arepresent in all tumor samples, whichmight represent a general
phenotype that is similar to activated fibroblasts expressing ACTA2 in
non-cancerous conditions, such as wound healing80,81. Notably, Grout
et al.73 recently described an MYH11+aSMA+(ACTA2+) and COL4A1
expressing CAF subset in non-small cell lung cancer that might be
involved in T cell exclusion. The RGS5+ CAFs in our study (which we
appointed a T cell-exclusion role from tumor nests) also expressed
MYH11, ACTA2, and COL4A1.

Reanalysis of published datasets from HNSSC18 and cutaneous
SCC21 confirms the presence of RGS5+ CAFs in both SCC types
(Fig. S13A, B), and revealed CAF subsets with expression patterns
similar to mCAFs and iCAFs in cutaneous SCC (Fig. S13B, CAF1 and
CAF2). In HNSCC, the CAF1 subset displayed expression of bothmCAF
and iCAF genes (Fig. S13A). However, in the cutaneous SCC dataset,
CAFs from one patient are overrepresented (>50% of total fibroblasts;
92% of CAF1 and 70% of CAF2 subsets), which impedes to deconstruct
if CAF1 or CAF2 are more or less abundant in moderate and well-
differentiated SCCs. We also confirmed the presence of all three CAF
subsets in an independent melanoma dataset (Fig. S8C). Moreover,
reanalysis of single-cell transcriptomic data of 5 infiltrative BCCs29

confirmed the presence of mCAFs and a small cluster of iCAFs
(Fig. S13C). Furthermore, the samples included a fibroblast cluster
expressing signature genes of reticular fibroblasts (Fig. S13C). Of note,
also in our dataset few cells from BCC and SCC contributed to the rFIB
cluster, most of them however from unaffected skin adjacent to the
tumors (Fig. S4A). However, RGS5+ cells were not included in their CAF
population but might be part of the pericyte population, which clus-
tered separately in their first level clustering29. Ganier et al. identified
two clusters of RGS5+ and TAGLN+ pericytes in healthy skin and BCC21.
Theydetected a selective expansionofRGS5+pericytes anda reduction
in TAGLN+ pericytes in BCC compared to healthy skin, and described
that the colocalization with vessel-like structures is lost in BCC, indi-
cating that these cells are similar to theRGS5 + TAGLN +CAFsdescribed
inour study. Furthermore, they detected fourfibroblasts subsetswhich
were designated as APOD+, SFRP2+, PTGDS+, and POSTN+. Intriguingly,
both POSTN+ and PTGDS +CAFs were detected around the tumor
islands, suggesting that these CAFs correspond to the mCAFs in our
study as we used COL11A1 and PTGDS to localize them in the tis-
sue (Fig. 5A).

CAFs share common features with fibroblastic reticular cells
within lymph nodes, which generate ECM conduits to guide the traffic
of immune cells and the transit of potential antigens82. It is established
that CAFs participate in T cell exclusion from tumor nests83. Several
studies have reported reduced T cell infiltration in CAF-rich tumors
compared to their CAF-low counterparts84. mCAFs are detected at the
tumor-stroma interface and ensheath tumor nests, especially in nod-
ular BCC and well-differentiated SCC. As they synthesize a range of
ECM proteins including COL11A1, which we detected as dense fibers
surrounding tumor nests, we propose thatmCAFs play a crucial role in
T cell marginalization. Indeed, we detected a negative correlation
between T cell numbers present in tumor nests and the number of
mCAFs surrounding the tumor nests (Fig. 5F). A similar function was
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described for a subset of FAP+ αSMA+ lung CAFs expressing COL11A1/
COL12A1 or COL4A1 in human lung cancer73. Thus, targeting mCAFs
may improve the efficacy of immunotherapy in patients bearing T cell-
excluded tumors. Indeed, a whole tumor cell vaccine genetically
modified to express FAP significantly reduced cancer growth in a
murine model of lung cancer and melanoma by directly inhibiting
CAFs and simultaneously enhancing T cell infiltration85. Whether the
ECM barrier formed by mCAFs modulates marginalization of other
immune cells or inhibits or promotes tumor cell invasion, remains to
be explored.

The importance of immunomodulatory chemokines in cancer
progression is undisputable. The expression of CXCR2 ligands, CXCL1-
3 and CXCL5-8 by melanoma cells has been shown to control the
immune cell composition of the TME, to contribute to the ability to
escape tumor immune surveillance, to induce angiogenesis or
to define the preferred sites of melanoma metastases86–89. In the pre-
sent study, receptor-ligand analysis revealed that fibroblasts are the
major source for cytokines and chemokines (Fig. 6A, B) and not the
cancer cells themselves, thus highlighting the importance of fibro-
blasts in immune cell recruitment and cancer immune surveillance.

Intriguingly, while CXCL2 was expressed by fibroblasts from all
skin cancer types, melanoma-derived CAFs expressed high levels of
CXCL1-3, 5, 6 and 8 and IL1B as well as IL6, whereas the expression of
CXCL9-11 and 13 was high in non-melanoma CAFs (Fig. 6A). LGALS9,
which has been shown to interact with CD40 on T cells thereby
attenuating their expansion and effector function, was strongly
expressed inCAFs fromBCCandSCCbut notmelanoma. Furthermore,
HLA genes were highly expressed in CAFs but not normal fibroblasts
(Fig. S8B), suggesting a role for CAFs as antigen-presenting cells. CAF-
mediated cross-presentation of neo-antigens may directly suppress T
cell function90. Thesefindings indicate that although iCAFs are present
in melanoma and non-melanoma skin cancers, the expression of che-
mokines and possibly other immunomodulating genes is tumor type-
dependent. This is also reflected by the differentially regulated
expression of TFs in iCAFs derived from melanoma and cuta-
neous SCCs (Fig. 3C). We substantiated the presence of differential
crosstalk among tumor types and stages by testing the effect of con-
ditioned media from various cancer cell lines on healthy skin-derived
fibroblasts. Indeed, conditioned medium from metastasis-derived
melanoma cell lines induced an iCAF-like phenotype and cytokine/
chemokine expression, while conditioned medium of a primary mel-
anoma cell line did not change the cytokine/chemokine expression
(Fig. 6D). Furthermore, VM15 conditioned media, which consistently
enhanced cytokine transcript levels, also stimulatedT cell proliferation
and activation (Figs. 6D, 7B,C). Surprisingly, the secretome of the
subcutaneous metastasis-derived cell line VM2676 did not induce the
expression of the majority of the tested cytokines and chemokines
except for CCL2, whichmay be linked to differentmutations. However,
VM26-derived conditioned medium was still capable of activating
T cells, which is not surprising as the cytokines not induced by
VM26 shown in Fig. 6D are CXCR1/2 ligands that are known to recruit
innate immune cells but not T cells. Interestingly, while the secretome
of melanoma and SCC cell lines was capable of inducing an iCAF
phenotype, induction of a mCAF phenotype could not be achieved
in vitro. Thus, further investigations are necessary to define which
signals or culture conditions prime fibroblasts towards mCAF differ-
entiation in vitro and in situ. Likewise it remains elusive whether
solubleCAF-derived factorsor direct cell contact are essential for T cell
activation. At first glance, the observation that iCAFs are more abun-
dant in late-stage skin cancers may seem paradoxical, given their
demonstrated ability to activate T cells in vitro. However, it is impor-
tant to emphasize that the T cell activation assays offer only an initial
indication of the interaction between iCAFs and T cells. The tumor
microenvironment in advanced cancer stages is typically characterized
by immune evasion and dysfunction, including T cell exhaustion — a

state where T cells lose their effectiveness in responding to tumors. It
remains to be determined whether iCAFs, while capable of stimulating
initial T cell activation, may also contribute to the induction of T cell
exhaustion or influence the function of other immune cells, such as
macrophages or regulatory T cells, which could potentially support
tumor progression. Future investigations are needed to clarify the dual
role iCAFs may play in shaping the immune landscape within tumors,
particularly in balancing immune activation and suppression in
advanced disease stages.

In addition to thefibroblast heterogeneity in skin tumors, our data
highlight the tremendous effect of the TME on all cells within a tumor.
For example, melanocytes from BCC and SCC samples (tMC), which
are part of the non-neoplastic cells in these tumor types, cluster
separately from melanocytes that were derived from hMC
(Figs. 2B and S2C). This indicates that the altered gene expression
profile is likely induced by the TME. Further, our CNV analysis clearly
shows that samples from the same tumor subtype (Melanoma I–III:
Acral lentiginousmelanoma, ALM) and body location can greatly differ
at molecular level, which explains donor-specific clustering.

In summary, our work provides a cellular and molecular atlas of the
three most frequent skin cancer types comprising neoplastic epithelial,
mesenchymal, and immune cells. We further reveal and characterize
three distinct CAF subsets and show that their abundance and associated
signaling molecules and structural proteins critically impact the TME.
Therefore, determining the predominant CAF subset within tumor sam-
ples may improve future diagnostic strategies and thereby open new
avenues for better personalized therapies. Moreover, pharmacologically
targeting CAFs to reduce ECM density could enhance T cell trafficking
into tumor nests and, thus, the efficacy of checkpoint-inhibition therapy
as well as the penetration of agents that directly target cancer cells.

Methods
Ethical approval
The present study complies with all relevant ethical regulations at the
Medical University of Vienna and was approved by the Institutional
Review Board under the ethical permits EK#1695/2021, EK#1783/2020
and EK#1555/2016. Written informed patient consent was obtained
before tissue and blood collection in accordance with the Declaration
of Helsinki. Consent to publish clinical information potentially identi-
fying individuals was obtained and approved by the data-clearing
committee of the Medical University of Vienna.

Human healthy skin and tumor samples
Fresh 4mm punch biopsies from central tumor and unaffected skin
adjacent to tumors as well as 10 × 10 cm healthy skin samples from
abdominal plastic surgeries were subjected to cell isolation procedure
directly after surgery.

Healthy skin samples III-IV were cut into thin strips after removal
of the fat layer. Epidermis was separated from dermis by Dispase 2
(1:100, Roche #04942078001, 20mg/mL), digested in PBS at 37 °C for
onehour beforebeingpeeledoff. The epidermal sheetwasminced and
then subjected to enzymatic digestion in Trypsin-EDTA (GIBCO
#25300-054) for 20min at 37 °C in a shaking water bath (Epidermal
sheet protocol for enrichment of keratinocytes). Healthy skin dermis
and tumor samples were cut into tiny pieces and digested with Col-
lagenase 1 (1:100, GIBCO#17100-017, 50mg/mL), Collagenase 2 (1:100,
GIBCO #17101-015, 50mg/mL), Collagenase 4 (1:100, Sigma-Aldrich
#C5138, 50mg/mL), Hyaluronidase (1:100, Sigma-Aldrich #H3884,
10mg/mL) and DNAseI (1:250, Sigma-Aldrich #DN25, 5mg/mL) in
DMEM/10%FCS for one hour in a 37 °C water bath (Protocol for
enrichment of fibroblasts, keratinocytes and immune cells). After
enzymatic digestion, the cell suspension was filtered and washed in
PBS/10% FCS twice before subjecting it to FACS staining.

After Fc blocking (1:500, CD16/CD32 BD #553142, RRI-
D:AB_394656), cell suspensions were stained for 30min at 4 °C in the
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dark with CD45-BV605 (1:50, BioLegend #304042, RRID:AB_2562106),
ITGA6-PeCy7 (1:100, BioLegend #313622, RRID:AB_2561705), CDH1-
PeCy7 (1:200, BioLegend #147310, RRID:AB_2564188), FAP-APC (1:20,
R&D Systems #FAB3715A, RRID:AB_2884010), CD90-AF700 (1:30,
BioLegend #328120, RRID:AB_2203302) and CD31-FITC (1:30, BD
Biosciences #563807), CD106-Pacific Blue (1:100, BD Biosciences
#744309, RRID:AB_2742138), CD235ab-Pacific Blue (1:1000, BioLegend
#306611, RRID:AB_2248153) and DAPI. ITGA6+/CDH1+ keratinocytes,
FAP+/CD90+

fibroblasts, CD45+ immune cells and FAP-CD90- double
negative cells were single cell sorted directly into Smart-seq2 lysis
buffer in 384-well plates (BD Aria Fusion). After sorting, plates were
stored at −80 °C until they were sent for sequencing to the Eukaryotic
Single Cell Genomics Facility (ESCG) at SciLifeLab at the Karolinska
Institutet, Sweden.

Immunohistochemistry
Immunohistochemistry was performed on 4μm human FFPE sections
according to standard protocols. Antigen retrieval was conducted in
citrate buffer, pH 6.0, and 3%BSA/PBSTwas used for blocking. Primary
antibodies against CD90 (THY1) (1:200, rabbit monoclonal [EPR3133],
Abcam #ab133350, RRID:AB_11155503), FAP (1:200, rabbit monoclonal
[D3V8A], Cell signaling #13801, RRID:AB_2798316), TAGLN (1:12.000,
rabbit polyclonal, Thermo Scientific #PA5-27463, RRID:AB_2544939),
DES (1:2000, rabbit monoclonal [Y266], Abcam #ab32362, RRI-
D:AB_731901), CD31 (1:500, rabbit, Neomarkers, #RB10333-P1)), CD3
(1:200, rabbit, Abcam #ab16669, RRID:AB_443425) and COL11A1
(1:200, rabbit polyclonal, Abcam #ab64883, RRID:AB_1140613) were
diluted in 1%BSA/PBST and incubated over night. A biotinylated goat
anti-rabbit antibody (1:200, Vector BA-1000) was used as second step
and incubated for 30min at room temperature. Novocastra
Streptavidin-HRP (Leica Biosystems Newcastle #RE7104) and Dako
AEC+ High sensitivity substrate (Dako #K3469) were used for signal
enhancement anddevelopment. For counterstaining, hematoxylinwas
used. Slides were scanned with Aperio (Leica Biosystems).

RNAScope
RNAScope was conducted by using Multiplex Fluorescent Reagent Kit
v2 from Advanced Cell Diagnostics, ACD Bio-Techne (#323135),
according to the manufacturer’s protocol, with probes for COL1A1
(#401891-C2), COL11A1 (#400741-C3), PTGDS (#431471-C1), MMP1
(#412641-C1), RGS5 (#533421-C3) and PDGFRA (#604481-C1). For
fluorescence staining, the TSA dyes Fluorescein, Cy3, and Cy5
(Akoyabio) and DAPI as nuclear stain were utilized. The Multiplex
Fluorescent Reagent Kit v2 and the RNAscope® 4-Plex Ancillary kit
were combined for 4-plex stainings against CXCL2 (#425251), CXCL8
(310381-C2), IL24 (404301-C3) and Col1A1 (401891-C4), or against
MMP1 (#412641-C1), Col11A1 (#400741-C2), RGS5 (#533421-C3) and
COL1A1 (#401891-C4). Opal™fluorophores (Opal 520 orOpal780,Opal
570, Opal 620, and Opal 690) were utilized in the 4-plex staining’s.
Images were captured by Vectra Polaris™ and image analysis was
conducted with HALO® image analysis platform.

Quantification of total CAFs, iCAFs, and mCAFs in tumor
sections
To analyze and quantify the various CAF populations in tumor sections,
we utilized the HALO® image analysis platform. The cell types included
total CAFs (COL1A1+), iCAFs (COL1A1+MMP1+), and mCAFs (COL1A1+

COL11A1+ MMP1−), which were identified by specific marker combina-
tions. Tumor sections from nodular (n=8) and infiltrative BCC (n =9),
well (n =8) and poorly (n = 10) differentiated SCC, as well as low (n=8)
and high (n =9) grade melanoma were analyzed. A minimum of five
representative regions of interest (ROIs) per sample were selected,
excluding scarred or ulcerated areas to ensure accurate quantification.
The HALO v3.6.4134 software with the HighPlex FL v4.2.14 plugin was
employed for image analysis, with signal intensity thresholds set for

each channel to differentiate positive from negative cells. Representa-
tive spatial plots were generated from analyzed sections in HALO®.

T cell exclusion from tumor nests
BCC samples (n = 15) were stained for immunohistochemistry (IHC)
with antibodies against CD3, followed by staining of consecutive sec-
tions using the RNAscope 4-Plex Multiplex Fluorescent Reagent Kit to
COL1A1,MMP1, Col11A1, and RGS5. HALO® image analysis platformwas
used to perform image analysis and quantification. Regions of interest
(ROI) were selected, where CD3+ cells were present in the stroma
surrounding the tumor nests. A machine learning classifier, which was
then trained to differentiate between tumor and stromal tissue, was
applied to the ROIs.We quantified the number of CD3+ cells in the total
tissue area or only in the tumor nests within the ROI. The sections were
then co-registered with the RNAscope staining, and the numbers of
CAFs (COL1A1+ cells) and matrix CAFs (COL1A1+COL11A1+MMP1-RGS5-)
were quantified. The cell counts were then normalized to cells/mm².

Fibroblast activation by conditioned medium of cancer cells:
transcriptomic and proteomic analysis
Normal healthy dermal fibroblasts (NHDF) and fibroblasts from a pri-
mary melanoma were isolated as described above and cultured in
DMEM containing 10% FBS and 50 µg/ml Gentamycin in a humidified
incubator at 37 °C and 5% CO2.

Generation of conditioned medium (CM) from cancer cell lines.
Melanoma cell lines (VM08, VM15, VM19, VM25, VM26)76 were cultured
in RPMI1640 (GIBCO #11875093) containing 10% FBS (GIBCO
#26140079), 2mM L-glutamine (GIBCO #25030081) and 50U/ml
streptomycin/penicillin (GIBCO #15070063). SCC1375 cell line
(RRID:CVCL_4029)was cultured inDMEMGlutamax containing 10% FBS,
2mM L-glutamine (GIBCO #25030081), 50U/ml streptomycin/penicillin
(GIBCO #15070063), 5 µg/ml insulin and 10 µg/ml transferrin. When cells
reached 70-80% confluency, they were washed with PBS, and DMEM/
10% FBS was added. Conditioned medium (CM) was collected 48hours
later, centrifuged with 300 g for 10minutes and stored at −20 °C.

Fibroblast activation assay. NHDF and cancer cells were seeded into 6
well plates for 24 hours. Then, medium of the NHDF was exchanged
with CM derived from cancer cells or NHDF as a control. Cells were
harvested 72 hours later. RNA was isolated with the Qiagen RNeasy
Mini Kit (Qiagen #74106). RevertAid H Minus First Strand cDNA
Synthesis Kit (Thermo Scientific #K1631) was used to prepare cDNA
after a DNaseI digestion step (Thermo Scientific #EN0521). Taqman
2xUniversal PCR Master Mix (Applied Biosystems #4324018) and
Taqman probes for GAPDH (Hs99999905), CXCL1 (Hs00236937_m1),
CXCL2 (Hs00601975_m1), CXCL3 (Hs00171061_m1), CXCL5 (Hs01099
660_g1), CXCL6 (Hs00605742_g1), CXCL8 (Hs00174103_m1), CCL2
(Hs00234140_m1) and IL24 (Hs01114274_m1), Lumican (Hs0092
9860_m1), Col11A1 (Hs01097664_m1), Col4A1 (Hs00266237_m1),
LOXL2 (Hs00158757_m1), Fibromodulin (Hs05632658_s1) and Col12A1
(Hs00189184_m1) were used in the qPCR.

LEGENDplex Assay: For proteomic analysis cancer CM or control
medium was removed from fibroblasts after 72 h incubation. Cells
were washed in PBS and fresh DMEM/10% FCS was added for 48 h.
Supernatants were collected, centrifuged to remove cell debris and
subjected to protein analysis using LEGENDplex kits (Human Essential
Immune Response #740930 and Human Proinflammatory Chemokine
Panel #740985, BioLegend). Data analysis was done in GraphPad Prism
version 8.0.0 for Windows, GraphPad Software, San Diego, California
USA, www.graphpad.com.

T-cell activation assay
Naïve T cell isolation. Human peripheral blood obtained fromhealthy
individuals with informed consent at the Department of Dermatology,
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Medical University of Vienna, was collected in heparinized tubes and
immediately processedbymixing 1:1with PBS, then layeredover Ficoll-
Paque™ PLUS (Cytiva). After density gradient centrifugation at 500 × g,
20 °C, for 20min, the PBMC layer was transferred, and washed with
PBS, and CD4+ and CD8 +T cells were isolated using the human CD4+
and CD8+ T cell isolation kits (Miltenyi Biotec), according to the
manufacturer’s protocol. The isolated CD4+ and CD8 +T cells were
stained with a mix of antibodies for 20min at 4 °C in the dark: CD4-
FITC (1:400, [RPA-T4], BioLegend#300501, RRID:AB_314070), CD8-PE-
Cy7 (1:100, [HIT8a] BD Biosciences Cat# 555635, RRID:AB_395997),
CD25-APC (1:100, [BC96], BioLegend Cat# 302609 (also 302610),
RRID:AB_314279), CD14-APC-Cy7 (1:100, [M5E2], BioLegend Cat#
301820 (also 301819), RRID:AB_493695), CD45RO-PacificBlue (1:100,
[UCHL1], BioLegend Cat# 304215 (also 304216), RRID:AB_493658),
CD127-PE (1:100, [A019D5], BioLegend Cat# 351340 (also 351303,
351304), RRID:AB_2564136), CD16-PerCP-Cy5.5 (1:500, [3G8], (BioLe-
gend Cat# 302028 (also 302027), RRID:AB_893262)). Cells were
washed with PBS and resuspended in RPMI1640 without phenol red
(Gibco) containing a 1:1000 dilution of 7-AAD viability dye (BioLe-
gend). Naïve CD4 or CD8 T cells were sorted with the BD FACSAria™ II
Cell Sorter based on CD4 +CD127 + CD14-CD16-CD45RO-CD25- or
CD8 +CD127 +CD14-CD16-CD45RO-CD25-. The collected T cells
were stained with a proliferation dye (1:500, eBioscience, V450) for
8min at 37 °C, followed by washing with RPMI1640 media (Gibco)
containing 10% FBS, 1% penicillin/streptomycin (Gibco), and 2mM
L-glutamine (Gibco).

Experimental setup and FACS analysis. 2000 fibroblasts/CAFs or
melanoma cells were seeded into 96-well plates using DMEM or
RPMI1640 media (Gibco), containing 10% FBS, 1% penicillin/strepto-
mycin (Gibco), and 2mM L-glutamine (Gibco), respectively. After 24 h,
the medium of NHDFs was replaced with a conditioned medium
derived from either NHDFs or cancer cells. Following 72 h incubation
at 37 °C, cells were washed with PBS, and 50 µL of RPMI containing
10% FBS, 1% penicillin/streptomycin (Gibco), 2mM L-glutamine and
12.5 µL/mL Immunocult CD3/CD28 T cell activator (Stemcell) was
added. Then 50 µL of RPMI containing 40,000T cells at a ratio of 1
(CD8) to 1.5 (CD4) were added. The cells were harvested by scraping
after 24h or 96h and subjected to FACS analysis for the assessment of
T cell proliferation (24 h) and expression of CD69 (24 h), CD45RO
(96h) and CD62L (96 h) on CD4 or CD8 T cells (negative of fibroblast
markers CD90 and FAP). Cells were stained in PBS/10%FCS and incu-
bated for 20min at 4 °C in the dark: CD4-FITC (1:400, [RPA-T4], Bio-
Legend #300501, RRID:AB_314070), CD8-PE-Cy7 (1:100, [HIT8a] BD
Biosciences Cat# 555635, RRID:AB_395997), CD69-PE (1:100, [FN50],
BioLegend Cat# 985202, RRID:AB_2924641), CD90-AF647 (1:100,
[5E10], BioLegend Cat# 328115 (also 328116), RRID:AB_893439), FAP-
APC (1:100, [427819], R&D Systems Cat# FAB3715A-025), CD45RO-
PacificBlue (1:100, [UCHL1], BioLegend Cat# 304244 (also 304205,
304206), RRID:AB_2564160), CD62L- PerCP-Cy5.5 (1:100, [DREG56],
Elabscience Cat# E-AB-F1051A). Following incubation, cells were
washed and resuspended in PBS with Fixable Viability Dye eFluor™ 780
APC-Cy7 (eBioscience) for subsequent analysis using CytoFlex LX Flow
Cytometer (Beckman Coulter).

Single-cell RNA sequencing
scRNA-seq was conducted by the Eukaryotic Single Cell Genomics
Facility (ESCG) at SciLifeLab, Sweden according to the Smart-seq2
protocol91. Demultiplexed reads were aligned to the human genome
(hg19 assembly) and the ERCC spike-in reference using STAR v2.4.2a in
two-pass alignment mode92. Uniquely aligned reads were transformed
into reads per million kilobase (RPKM) using rpkmforgenes()93. RPKM
values were summed up when several isoforms of a gene were
detected.

Single-cell RNA sequencing data processing
Low-quality cells were removed by using thresholds for RPKM values
and number of genes expressed per cell. The lower threshold was
referred to empty-well controls, the upper threshold was set based on
unusually high RPKM-values of clearly visible outliers. We considered
goodqualitywhen aminimumof400genes andRPKM-values between
150.000 and 8.000.000 per cell were reached. Finally, 4824 cells were
retained after quality control.

Subsequent data analysis was carried out by using R3.6.2 and the
Seurat package v3 (Stuart*, Butler*, et al., Cell 2019). RPKM values for
each gene per cell were normalized and natural-log transformed
(NormalizeData: normalization.method = ”Log-Normalize”). The 2000
most variable genes were identified (FindVariableGenes: selection.-
method = ‘vst’), the data scaled and principal component analysis
(PCA) was performed. The first 20 principal components 1:20, reso-
lution 0.2 and Seurat default parameters were used for UMAP gen-
eration of first-level clustering. Subsequently, clusters for second-level
clustering were selected based on commonly known signature gene
expression: Healthy keratinocytes, SCC and BCC (KRT5, KRT14), mel-
anocytes andmelanoma cells (MLANA), immune cells (CD45) as well as
fibroblasts and vSMCs (COL1A1, RERGL).

Differentially expressed genes were identified by the Seurat
function FindAllMarkers. For generation of UMAPs, violin and bar
plots, ggplot2 v3.3.2 were used.

Copy number variations for estimation of malignancy
InferCNV of the Trinity CTAT Project (https://github.com/
broadinstitute/inferCNV) was used to calculate CNVs for healthy and
malignant keratinocytes and separately for melanocytes and mela-
noma cells in comparison to stromal cells. For CreateInfercnvObject,
healthy stromal cells (Healthy donor cells from Fibroblast&vSMC sec-
ond level clustering, which includes fibroblasts, vSMCs, and pericytes)
were used as reference for CNV estimation. InferCNV operations were
performed by infercnv::run using min_cells_per_gene = 3, cutoff = 1,
cluster_by_groups = T, denoise = T, HMM=T, analysis_mode = sub-
clusters, hclust_method = ward.D2, tumor_subcluster_partition_
method = random_trees. Estimation of malignancy was performed as
previously described27, using a Pearson correlation cutoff of 0.45 or
0.40 and a sum of squares (SoS) cutoff of 0.017 or 0.026 for healthy
and malignant keratinocytes or melanocytes and melanoma cells,
respectively. In the CNV estimation plots for melanocytes and mela-
noma cells (Fig. S3B) we highlighted melanocytes derived from cluster
hMC (melanocytes derived from healthy skin) and tMC (melanocytes
derived from SCC, BCC and melanoma adjacent from unaffected skin
samplesadjacent to melanoma) where most of the cells are nicely
found in the lower quadrants as expected (CNV- and undefined).

CNV estimation based on RNA expression only detects genomic
aberrations that affects larger chromosomal sections. Thus, we also
analyzed the expression of certain genes in keratinocytes from BCC
and SCC samples in comparison to healthy keratinocytes. For deter-
mining neoplastic keratinocytes in BCC samples we used PTCH1 and
PTCH256,57 (Fig. S2A, B).

Trajectory analysis
We usedMonocle266 (v2.28, R4.0.0) and Monocle367 (v0.2.1, R3.6.2) to
perform trajectory analysis. For both methods, we extracted RPKM
data, phenotypedata, and feature data from the Seurat object (second-
level clustering of fibroblasts without vSMC) from which we created a
newCellDataSet(lowerDetectionLimit = 0.1, expressionFamily = tobit())
or a new_cell_data_set() object using default parameters.

For Monocle2, we converted our RPKM data into mRNA
counts using relative2abs() and generated the New-
CellDataSet(lowerDetectionLimit = 0.5, expressionFamily = negbi-
nomial.size()) object again. As quality filtering and clustering were
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already performed in Seurat, we directly constructed single cell tra-
jectories using all significantly (adjusted p-value < 0.01) regulated
DEGs (FindMarkers()) as input parameters for ordering cells. For
calculating pseudotime, we used healthy skin cells from controls as
our starting point. Cells were plotted using plot_cell_trajectory()
colored by “clusters”, “category” and “pseudotime”.

For Monocle 3, we manually added clusters, UMAP and PCA
parameters to the new_cell_data_set() object and calculated the tra-
jectory graph with learn_graph(object, use_partition = F). For calcu-
lating pseudotime we used healthy skin clusters (pFIB and rFIB) as
root_cells and used plot_cells(color_cells_by = “pseudotime”) to pre-
sent the data.

Heatmaps
ComplexHeatmap v2.2.0 function was used to represent gene expres-
sion of single cells ormean gene expression per cluster in heatmaps as
z-scores.

Receptor–ligand analysis
For receptor-ligand pairing the previously published method devel-
oped by Simon Joost was used, but with additional adjustments for
run-time and parallel computing94. Receptor-ligand interactions were
analyzed between fibroblast clusters, immune cell clusters, neoplastic
and healthy keratinocyte and melanocyte clusters.

A signature gene list, containing potential ligands and receptors
of each cluster, was generated by the Seurat function FindMarkers() at
the level of second-level clustering. Potential ligand-receptor interac-
tions were identified by querying the combined receptor-ligand data-
base from Ramilowski et al.95 and Cabello-Aguilar et al.96.

For each cluster pair, the number of identified receptor-ligand
pairs was compared to the number of pairs obtained from an equally
sized randomly sampled pool of receptors and ligands. This was
repeated 10.000 times to test for significantly enriched interactions
(p ≤0.05 for Benjamini–Hochberg-corrected p-values). An additional
prerequisite for a valid receptor-ligand pairing was the presence of at
least 2.5% cells of the same donor in both of the potentially interacting
clusters (eg. iCAFs interacting with tCD4 requires at least 2.5% cells
from the same donor in each of the clusters).

Used packages: python 3.7.6, pandas 1.0.1, numpy 1.18.1, mat-
plotlib 3.2.2. Receptor–Ligand heatmaps were generated with seaborn
0.11.0 using mean z-scores per donor per cluster.

Additionally, we verified receptor-ligand interactions with
CellChat74. The communication probability was calculated according
to default parameters. We present selected receptor-ligand pairs as
circular plots using the function netVisual individual(source.use =
c(“mCAF”, “iCAF”), layout = chord).

Module score
Module Scores were calculated by AddModuleScore() function from
Seurat, and genes sets were represented as violin plots. Individual genes
of a gene set are shown in heatmaps. Genes that showed absolutely no
expression in any cluster were excluded from heatmaps and module
score calculation (chemokines: CCL4, CCL14, CXCL7; cytokines: IL9,
IL31; MMPs: MMP26). Statistical analysis was done by non-parametric
Wilcox rank-sum test using ggplot2 function stat_compare_means().

Melanoma scRNAseq validation dataset
For the melanoma validation dataset, pre-treatment samples (n = 5)
were collected from stage IV melanoma patients as part of a trial
investigating anti-CD20 treatment in a therapeutic setting (10.1038/
s41467-017-00452-4). After biopsy of a lesion, single-cell suspensions
were immediately frozen. Thawed suspensions were subjected to
scRNA-sequsing theChromiumSingleCell Controller and SingleCell 5’
Library & Gel Bead Kit v1.1 (10X Genomics, Pleasanton, CA) according

to the manufacturer’s protocol. Sequencing was performed using the
Illumina NovaSeq platform and the 150bp paired-end configuration.

Preprocessing of the scRNA-seq data was performed using Cell
Ranger version 6.1.2 (10x Genomics). Expression data was processed
using R (version 4.2.1) and Seurat (version 4.0.5). Cells with less than
1,000 genes or more than 10% of relative mitochondrial gene counts
were removed. Thedatawasprocessed following Seurat’s scTransform
workflow. Sample-specific batch effects were corrected using Har-
mony. Clusters were identified using Seurat’s “FindNeighbors” and
“FindClusters” functions, using the first 32 dimensions of the
Harmony-corrected embedding and a resolution of 1.5. Cell types were
subsequently identified based on canonical markers. Heatmaps and
module scores were generated as described above.

Publicly available dataset
We reanalyzed the publicly available human HNSCC dataset
(GSE103322) using R3.6.2 and the Seurat package v319. As described by
the authors, we regressed for the variable processedbyMaximaenzyme.
The cell annotation, which was provided in themetadata file, was used
to select the cells for clustering of the fibroblasts. Based on markers
that were described by the authors, the clusters for CAFs, myofibro-
blasts and intermediate fibroblasts were assigned. A heatmap (Com-
plexHeatmap v2.2.0) was generated presenting gene expression as
means of z-scores per cluster using the same genes as shown in the
heatmap in Fig. S2C of the original publication, but extended it by
commonly accepted pericyte and vSMC markers.

Additionally, we identified our marker genes for mCAFs, iCAFs,
RGS5+ cells and healthy fibroblasts in the fibroblast population of the
HNSCC dataset (GSE103322)19, cutaneous human SCC (GSE144240)24

andhuman invasiveBCC (GSE181907)29 and represented it in heatmaps
showing gene expression as means of z-scores.

For the human cutaneous SCC (GSE144240) dataset, fibroblast
cell annotation was provided by the authors.

For the human invasive BCC dataset, cell annotations for the
fibroblast subclusters (FC1-FC4), as described in the original paper29

were provided by the authors upon request. As some marker genes
were expressed in very few cells, we used a cutoff of at least 2% of cells
expressing the gene in order to include it into the heatmap.

For reanalysis of this datasets, we used R3.6.2, Seurat package v3
and ComplexHeatmap v2.2.0.

Reporting summary
Further information on research design is available in Nature Portfolio
Reporting Summary linked to this article.

Data availability
The scRNAseq data generated in this study have been deposited in the
European Genome-Phenome Archive under accession code
EGAS50000000365 and the GEO data under the accession code
GSE254918. The raw data are available under restricted access for
patient protection, access can be obtained by a request to EGA.
Expression matrices are available at GEO. Additionally, we provide an
online tool on ourwebpage (www.lichtenbergerlab.org) to explore our
dataset. The humanHNSCC, cSCC, and BCC publicly available datasets
used in this study are available in the GEO database under accession
code GSE103322, GSE144240, and GSE181907. The remaining data are
available in the article, Supplementary Information and Source Data
file. Source data are provided as a Source Data file. Source data are
provided with this paper.
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