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Amolecular video-derived foundationmodel
for scientific drug discovery

HongxinXiang 1, Li Zeng1, LinlinHou1, Kenli Li1, Zhimin Fu2,3, YunguangQiu 4,5,
Ruth Nussinov 6,7, Jianying Hu 8, Michal Rosen-Zvi 9,10,
Xiangxiang Zeng1 & Feixiong Cheng 4,5,11,12

Accurate molecular representation of compounds is a fundamental challenge
for prediction of drug targets and molecular properties. In this study, we
present a molecular video-based foundation model, named VideoMol, pre-
trained on 120 million frames of 2 million unlabeled drug-like and bioactive
molecules. VideoMol renders each molecule as a video with 60-frame and
designs three self-supervised learning strategies on molecular videos to cap-
ture molecular representation. We show high performance of VideoMol in
predicting molecular targets and properties across 43 drug discovery bench-
mark datasets. VideoMol achieves high accuracy in identifying antiviral
molecules against common diverse disease-specific drug targets (i.e., BACE1
and EP4). Drugs screened by VideoMol show better binding affinity than
molecular docking, revealing the effectiveness in understanding the three-
dimensional structure of molecules. We further illustrate interpretability of
VideoMol using key chemical substructures.

Drugdiscovery is a complex and time-consumingprocess that involves
the identification of potential drug targets, the design and synthesis of
compounds, and the testing of compounds for efficacy and safety1,2.
For example, in traditional drug discovery, medicinal chemists and
pharmacologists select and optimize candidate compounds based on
knowledge and experience and verify them by screening cellular or
animal models3. Computational drug discovery that uses computa-
tional and artificial intelligence technologies to assist drug develop-
ment offers a promising approach to speeding up this process4,5. By
leveraging large datasets of biological and chemical information, these
computational approaches, such as foundation models6,7, can rapidly
identify new drug targets8, design candidate molecules9, and evaluate
the efficacy and properties of those candidates10, which substantially

reduces the time and cost of traditional drug discovery and
development.

Accurate molecular representation of hundreds of millions of
existing and novel compounds is a fundamental challenge for com-
putational drug discovery communities11,12. Traditional approaches
used hand-crafted fingerprints as molecular representations, such as
physicochemical fingerprints13, and pharmacophore-based
fingerprints14. Limited by domain knowledge, these traditional repre-
sentation approaches are subjective and immutable, devoid of ade-
quate generalizability. With the rise of deep learning and self-
supervised learning, automated molecular representation learning
approaches can extract representations frommolecular sequences15,16,
graphs17,18, and images19,20 by pre-training on large-scale molecular
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datasets19. These approaches showed a substantial performance
improvement in the various tasks of drug discovery7,19,21. Based on
recent advances in video representation learning and self-supervised
learning in computer vision22–24, self-supervised video-based pre-
trained models offer compelling opportunities to further improve
the performance of drug discovery.

In this study, we present a molecular video-based foundation
model (termed VideoMol) for molecular representation learning.
Specifically, VideoMol utilizes dynamic awareness and physicochem-
ical awareness to learn molecular representation from a vast quantity
of molecular 3D dynamic videos in an unsupervised manner. We
implemented a self-supervised pre-training framework to capture the
physicochemical information of compounds from 120 million frames
of 2 million molecular videos with diverse biological activities at the
human proteome. We demonstrate that VideoMol outperforms exist-
ing state-of-the-art methods in drug discovery tasks, including drug
target and multiple molecular property predictions.

Results
Framework of VideoMol
Molecules exist in nature and are constantly conformational dynamics,
making video the most direct representation method. The molecular
3D information can be directly observed from the video without the
help of manual feature extraction, such as the distance between pairs
of atoms and the angle formed between multiple atoms and so on. In
addition, we evaluated the advantages of different representations in
feature extraction capabilities and found that our proposed video
representation has obvious advantages over existing representations
with a 39.8% improvement rate on 8 basic attributes (Supplementary
Section C.2 and Supplementary Table 1). Therefore, these significant
differencesmotivate us to develop VideoMol for accurately predicting
the targets and properties of molecules in the form of videos derived
frommolecules. First, we generated conformations for 2 million drug-
like and bioactive molecules and rendered a dynamic video with 60
frames for each 3D molecules (120 million frames in total). Then, we
feed the molecular 3D videos into a video encoder to extract latent
features (Fig. 1a) and implement three pretraining strategies to opti-
mize the latent representation by considering changes of videos and
physicochemical information of molecules (Fig. 1b–d). Finally, we fine-
tune the pre-trained video encoder on downstream tasks (prediction
of molecular targets and properties) to further improve the model
performance (Fig. 1e). VideoMol achieves good interpretability
through the use of Grad-CAM (Gradient-weighted Class Activation
Mapping)25 to visualize the contribution of molecular videos to the
prediction results with heatmaps (see below). To comprehensively
evaluate the performanceof VideoMol, we selected four types of tasks:
(1) compound-kinase binding activity prediction, (2) ligand-GPCR (G
Protein-Coupled Receptors) binding activity prediction, (3) anti-SARS-
CoV-2 activity prediction, and (4) prediction of molecular properties.
Details of these datasets are provided in the Methods section and the
Supplementary Section A.1.

Performance of VideoMol
We first evaluated the performance of VideoMol with three types of
state-of-the-art molecular representation learning methods on 10
compound-kinase (classification task) and 10 ligand-GPCR (regres-
sion task) binding activity prediction datasets with balanced scaffold
split26. The state-of-the-art methods include: (1) sequence- (RNNLR,
TRFMLR, RNNMLP, TRFMMLP, RNNRF, TRFMRF

27, CHEM-BERT28), (2)
graph- (MolCLRGIN, MolCLRGCN

6), and (3) image-based models
(ImageMol19) (Supplementary Table 2). For 10 compound-kinase
interaction datasets, VideoMol achieves better AUC performance
than other methods across BTK (AUC = 0.861 ± 0.023), CDK4-
cyclinD3 (AUC =0.972 ± 0.039), EGFR (AUC= 0.905 ± 0.017), FGFR1
(AUC = 0.848 ± 0.027), FGFR2 (AUC = 0.988 ± 0.017), FGFR3 (AUC =

0.896 ± 0.039), FGFR4 (AUC = 0.852 ± 0.080), FLT3 (AUC =0.981 ±
0.026), KPCD3 (AUC =0.867 ± 0.036), and MET (AUC = 0.963 ±
0.026) with an average performance improvement of 5.9% ranging
from 1.8% to 20.3% (Fig. 2a and Supplementary Table 3). In particular,
VideoMol outperforms the state-of-the-art methods of ImageMol and
MolCLR with average improvements of 6.7% and 20.1%. For 10 ligand-
GPCR binding datasets, VideoMol achieves the best results on all
datasets with an average performance improvement by 4.5% on Root
Mean Squared Error (RMSE) ranging from 0.60% to 8.8% and 5.9% on
Mean Absolute Error (MAE) with a maximum of 11.4% (Fig. 2b and
Supplementary Table 4). VideoMol achieves average performance
improvement of 4.5% and 10.2% on RMSE, and 6.2% and 12.0% on
MAE for ImageMol and MolCLR, respectively.

We next turned to evaluate the performance of VideoMol with 18
popular and competitive baselines on 12 types of molecular property
prediction tasks with scaffold split: (1) molecular targets—beta-secre-
tase (BACE, a key drug target in Alzheimer’s disease) and anti-viral
activities in human immunodeficiency virus (HIV), (2) blood–brain
barrier penetration (BBBP); (3) drug metabolism and side effect
resource (SIDER); (4) molecular toxicities—toxicity using the Toxicol-
ogy in the 21st Century (Tox21) and Toxicity Forecaster (ToxCast); (5)
solubility—Free Solvation (FreeSolv) and Estimated Solubility (ESOL)—
and lipophilicity (Lipo); (6) quantum—Quantum Machine 7 (QM7),
QM8 andQM9.We compared VideoMol with 3 different types of state-
of-the-art methods, including 2D-graph- (InfoGraph29, GPT-GNN30,
ContextPred17, GraphLoG31, G-Contextual17, G-Motif18, AD-GCL32,
JOAO33, SimGRACE34, GraphCL35, GraphMAE36, MGSSL33, AttrMask17,
MolCLR6, Mole-BERT37), 3D-graph- (3D InfoMax38, GraphMVP39, Uni-
Mol40), and image-based methods (ImageMol19) (Supplementary
Table 2). In classification tasks, using the area under the receiver
operating characteristic (ROC) curve (AUC), VideoMol achieves ele-
vated performance across BBBP (AUC= 70.7% ± 1.5), Tox21 (AUC =
78.8% ±0.4), HIV (AUC = 79.4%±0.5), BACE (AUC= 82.4% ±
0.9), SIDER (AUC= 66.3% ± 0.9), ToxCast (AUC= 66.7% ±0.5), out-
performing other methods (Fig. 2c and Supplementary Table 5). In
regression task, VideoMol achieves better performance (low error
values) than FreeSolv (RMSE = 1.725 ± 0.053), ESOL (RMSE =0.866 ±
0.017), Lipo (RMSE = 0.743 ±0.009), QM7 (MAE = 76.436 ± 1.561), QM8
(MAE=0.01890 ±0.0020), and QM9 (MAE =0.00896 ±0.00003),
outperforming other methods (Fig. 2d and Supplementary Table 6).

We next turned to evaluate VideoMol on anti-SARS-CoV-2 viral
activity prediction. Specifically, we evaluated 11 SARS-CoV-2 biological
assays, which covers multiple therapeutic approaches such as viral
replication, viral entry, counter-screening, in vitro infectivity, and live
virus infectivity41. Compared with REDIAL-202041 (molecular
fingerprint-based method) and ImageMol19 (image-based representa-
tion method), we found that VideoMol achieved better ROC-AUC
performance (3CL = 0.709 ± 0.006, ACE2= 0.759± 0.025, hCYTOX=
0.765 ± 0.003, MERS-PPE_cs=0.828 ±0.027, MERS-PPE =0.814
±0.004, CPE = 0.747 ±0.013, CoV1-PPE_cs=0.836 ±0.029, CoV1-PPE =
0.737 ±0.007, Cytotox =0.761 ± 0.002, AlphaLISA = 0.841 ± 0.004,
TruHit=0.862 ±0.002) with an average 3.9% improvement ranging
from 3.3% to 7.8% compared with ImageMol and an average 8.1%
improvement ranging from0.6% to 17.5% comparedwithREDIAL-2020
(Fig. 2e and Supplementary Table 7).

We next turned to calculate the uncertainty intervals with 95%
confidence intervals (CI) of ImageMol and VideoMol using 10 ligand-
GPCR binding activity prediction datasets and 11 SARS-CoV-2 viral
activity prediction datasets. In details, we used the popular bias-
corrected and accelerated (BCa) bootstrap intervals42,43 to calculate
95% CI, which corrects for both bias and skewness of the bootstrap
parameter estimated by incorporating a bias-correction factor and an
acceleration factor. The results of the uncertainty interval show the
effectiveness of VideoMol with an average improvement ranging from
5.44%to 10.07%compared to ImageMol (SupplementaryTables8and9).
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In summary, VideoMol is an effective molecular video-based
representation learning method in multiple drug discovery tasks,
outperforming state-of-the-art methods (Fig. 2 and Supplementary
Tables 3–9).

Discovery of ligand-receptor interactions via VideoMol
We next turned to identifying novel ligand-receptor interactions via
VideoMol for 4 well-known human targets: beta-secretase 1 (BACE1),
cyclooxygenase 1 (COX-1), COX-2, and prostaglandin E receptor 4
(EP4), in order to assess the generalizability of themodel.We collected

the training data of these 4 targets from the ChEMBL database44 and
evaluated the performance of VideoMol on these targets with a ran-
dom split of 8:1:1 (Supplementary Table 10). Using ROC-AUC metric
evaluation, we found that VideoMol achieved high performance on
both validation set (BACE1 = 0.897, COX-1 = 0.849, COX-2 = 0.881 and
EP4 =0.773) and test set (BACE1 = 0.893, COX-1 = 0.901, COX-2 = 0.907
and EP4 = 0.899), outperforming ImageMol with an average improve-
ment rate of 6.4% in the validation set and an average improvement
rate of 4.1% in the test set (Fig. 3a). The t-SNE (t-distributed Stochastic
Neighbor Embedding)45 visualization in the latent space showed a clear

Fig. 1 | Overview of the VideoMol foundational model. a Feature extraction of
molecular videos. First, we render2millionmoleculeswith conformers in3Dspatial
structure. We then rotate the rendered molecule around the x, y, z axes and gen-
erate snapshots for each frame of the molecule video. Finally, we feed the mole-
cular frames into a video encoder to extract latent features. b–d Three self-
supervised tasks for pre-training video encoder. The direction-aware pretraining
(DAP) task is used todistinguish the relationshipbetween pairs ofmolecular frames
(such as the axis of rotation, the direction of rotation, and the angle of rotation) by
using axis classifier (orange), rotation classifier (green) and angle classifier (blue).
The video-aware pretraining (VAP) task is used to maximize intra-video similarity

and minimize inter-video similarity. The chemical-aware pretraining (CAP) task is
used to recognize information related to physicochemical structures in molecular
videos by using chemical classifier (gray). e The finetuning of VideoMol on down-
stream benchmarks (such as binding activity prediction and molecular property
prediction). A multi-layer perceptron (MLP) is added after the pre-trained video
encoder for fine-tuning on four types of downstream drug discovery tasks (20
target prediction, 12 property prediction, 11 SARS-CoV-2 inhibitor prediction, and 4
virtual screening anddocking).We assemble the results (logits) of each frame as the
prediction result of molecular video (video logit).
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Fig. 2 | Performance of the VideoMol framework on multiple drug
discovery tasks. a The ROC (Receiver Operating Characteristic) curves of Ima-
geMol and VideoMol on 10 main types of biochemical kinases with balanced
scaffold split. The x-axis and y-axis represent FPR (False Positive Rate) and TPR
(True Positive Rate), respectively.bTheRMSE (RootMeanSquared Error) andMAE
(Mean Absolute Error) performance of ImageMol and VideoMol on 10 GPCR with
balanced scaffold split. c The ROC curves of ImageMol and VideoMol on 6 mole-
cular property prediction benchmarks with scaffold split. d The RMSE (FreeSolv,

ESOL, Lipo) and MAE (QM7, QM8, QM9) performance of ImageMol and VideoMol
with scaffold split. For each of presentation, the values of FreesSolv and QM7 are
scaleddown by a factor of 2 and 100, respectively, and the values of QM8 andQM9
are scaled up by a factor of 50 and 100, respectively. e The ROC-AUC (Area Under
the Receiver Operating Characteristic Curve) performance of REDIAL-2020, Ima-
geMol, and VideoMol on 11 SARS-CoV-2 datasets. Source data are provided as a
Source Data file.
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boundary between inhibitors and non-inhibitors on all 4 targets, sug-
gesting accurate representation of VideoMol to learn discriminative
information (Fig. 3b).

We further collected 16 BACE1 inhibitors (Supplementary
Table 11), 22 COX-1 inhibitors (Supplementary Table 12), 35 COX-2

inhibitors (Supplementary Table 13) and 8 EP4 inhibitors (Supple-
mentary Table 14) from the MedChemExpress database (https://www.
medchemexpress.com/, see Supplementary Section A.1). We found
that VideoMol successfully re-identified 15 BACE1 inhibitors (93.8%
success rate), 8 COX-1 inhibitors (36.4% success rate), 11 COX-2

Fig. 3 | Thevirtual screeningon four commondrug targets (BACE1, COX-1,COX-
2 and EP4). aThe ROC (ReceiverOperating Characteristic) curves of ImageMol and
VideoMol on validation set (the first row) and test set (the second row). b t-SNE (t-
distributed Stochastic Neighbor Embedding) visualization of latent features
extracted by VideoMol. c The drug discovery on BACE1, COX-1, COX-2, and EP4.
Blue and red points represent non-inhibitors and inhibitors from the ChEMBL
dataset, respectively. Black points indicate known inhibitors. The decision
boundary is drawn by training an SVMusing theChEMBLdataset, where blue to red
indicates that the probability of belonging to the inhibitor gradually increases.

d Virtual screening on known inhibitors of BACE1 (16 drugs), COX-1 (22 drugs),
COX2 (35 drugs), and EP4 (8 drugs). The x-axis and y-axis represent the number of
the drug and the predicted probability (inhibitors), respectively. The orange and
blue backgrounds represent inhibitor area andnon-inhibitor area, respectively. The
green and blue triangles represent inhibitors predicted by ImageMol and VideoMol
respectively. The green and blue circles represent non-inhibitors predicted by
ImageMol and VideoMol respectively. The numbers represent the precision of
ImageMol and VideoMol. Source data are provided as a Source Data file.
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inhibitors (34.3% success rate) and 6 EP4 inhibitors (75.0% success
rate) (Fig. 3c, d and Supplementary Tables 15–18). Compared with
ImageMol, VideoMol achieved significantly better generalizability on
these four external validation targets with an average precision
improvement of 38.1% ranging from 12.5% to 75.0%.

Discovery of BACE1 inhibitors from existing drugs via VideoMol
BACE1 (beta-site amyloid precursor protein cleaving enzyme 1), is a key
drug target in Alzheimer’s disease (AD) and there is lack effective small
molecular treatment for AD to date46. We next turned to screening
potential inhibitors via specifically targeting BACE1 from 2,500
approved drugs from the DrugBank database47 using VideoMol (Sup-
plementary Table 19). We downloaded the known X-ray crystal struc-
ture of BACE1 (PDB ID: 4IVS)with a co-crystallized inhibitorbearing the

indole acylguanidine core structure (Ligand ID: VSI)48 from the PDB
(Protein Data Bank)49 database. We evaluated grid score (a metric of
binding ability and the smaller valuedenotes thebetter score) between
ligand and receptor (PDB ID: 4IVS, Fig. 4a) by Dock6.1050. We illu-
strated the BACE1 inhibitor prediction results for both ImageMol and
VideoMol in Supplementary Table 20 and Supplementary Table 21. We
collected experimental evidence for the top 20 drugs predicted by
VideoMol and ImageMol from the published literatures.We found that
11 of the 20 drugs predicted by VideoMol were validated as potential
treatment for AD (55% success rate), whichwas higher than the 5 drugs
of ImageMol (25% success rate). (Fig. 4b). These reflected that Video-
Mol can learn more 3D information and chemical information to
ensure the high confidence of predictions. We further evaluated the
grid scores of the top 20 predicted drugs to the 4IVS crystal structure

Fig. 4 | Computational validationofVideoMol-predicted drugs onhumanbeta-
secretase 1 (BACE1). a The 4IVS crystal structure of BACE1. The gray tetragon
represents the area of the docking pocket. The grid score is calculated byDock6.10
(the smaller, the better). b Top 20 drugs prioritized by VideoMol and ImageMol to
be active against the BACE1 target. The x-axis and y-axis represent the drug and the
predicted probability (inhibitors), respectively. Green and blue represent Image-
Mol’s drugs and VideoMol’s drugs respectively.Minus/plus signs indicatewhether a
predicted drug is supportedby existing experimental data frompublish literatures.

c The docking results of the Top 20 drugs predicted by VideoMol. The x-axis and y-
axis represent the index and grid scores of the drug respectively. Light blue and
light orange areas indicate worse and better grid scores than the 4IVS (grid
score = −52.47), respectively. d Docking examples of 6 drugs (Gonadorelin,
Angiotensin II, Edotreotide gallium Ga-68, Cyanocobalamin, Isavuconazonium and
Elbasvir) with the best grid scores. The numerical value in the bracket represents
the grid score. The molecular structures shown here can be found in Supplemen-
tary Dataset 1. Source data are provided as a Source Data file.
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by using Dock6.10. Using the grid score of 4IVS crystal structure
(Fig. 4a) as a threshold, VideoMol prioritizes more drugs with better
grid scores of −52.47 (60%, 12 out of 20 drugs) compared to ImageMol
(20%, 4 out of 20 drugs) (Fig. 4c), revealing that VideoMol captures 3D
information compared to ImageMol derived from static 1D and 2D
image-based representation19. Finally, we selected 6 drugs with the
best grid score from the top 20 drugs for molecular docking simula-
tion (Fig. 4d). We found that 5 out of 6 drugs (83.3%) had been vali-
dated as potential treatment for AD based on existing published
experimental data (Supplementary Table 22).

Video visualization and model interpretability
Since each frame in the molecular videos represents the same mole-
cule, their projections in the feature space should be similar. To eval-
uate the discriminative power of VideoMol on molecular videos, we
randomly selected 100 molecular videos and extract features for each
frame in the videos. Subsequently, we used t-SNE to project each
feature into a two-dimensional space (Fig. 5a and Supplementary
Fig. 1). Frames from the same video are well clustered together, while
frames from different videos are clearly separated. We also quantita-
tively evaluated the DB (Davies Bouldin) index51 of these clusters.
VideoMol achieved a low DB index (the value is 0.197), indicating that
VideoMol has the ability to recognize different frames of the same
molecule.We randomly sample 10,000pairs ofmolecular frames from
the same and differentmolecular videos respectively and compute the
cosine similarity between these paired samples. As expected, there is a
high average similarity (88.3%) on intra-video and almost zero (0.5%)
on inter-video, indicating that VideoMol is robust to different 3D views
of the same molecule (Fig. 5b).

To investigate how the physicochemical information contribute
performance of VideoMol, we used t-SNE to visualize the representa-
tion of VideoMol with cluster labels from a chemical-aware pretraining
task.We randomly selected 10 clusters (1000 samples for each cluster)
for visualization. As shown in Fig. 5c, the representations extracted by
VideoMol produce clusters with sharp boundaries with a low DB
index =0.182, indicating that VideoMol learned physicochemical
knowledge well. We further visualized 30 additional clusters with
500 samples per cluster and found that different cluster labels still
produce strong clustering effect (Supplementary Fig. 2).

To inspect how VideoMol performs the inference process, we
used GradCAM25 to visualize attention heatmaps formolecular videos.
Figure 5d, e respectively shows the consistency and diversity of
VideoMol’s attention (green represents carbon atom C, blue repre-
sents nitrogen atom N, red represents oxygen atom O and cyan
represents fluorine atom). We found that as the video played, Video-
Mol was always able to attend to the same molecular substructure
(Fig. 5d), such as 2,5-Cyclohexadienone (composition of 6 carbon
atoms and 1 oxygen) in the first row, and carbon-oxygen structure in
the second row, which shows that VideoMol has consistency for dif-
ferent frames in the same video. In Fig. 5e, we see that VideoMol can
pay attention to diverse structural information as the video plays to
alleviate the missing structural information. For example, VideoMol
cannot attend to benzene-, cyclopentene-, hydroxylamine- and
benzenamine-structure through the use of Grad-CAM in the left frame,
whereas VideoMol can attend to these structures in the right frame.

To test that VideoMol can provide chemists with meaningful
knowledge related to predictive targets, we evaluate the interpret-
ability of VideoMol in prediction of BACE-1 inhibitors. We found that
VideoMol identified known chemistry knowledge related to BACE-1
inhibitors, such as fluorine52, 1,2,4-Oxadiazole53, chromene54,
pyridine55, cyclopentane56, tetrazole53 (Fig. 5f), which was verified by
wet experiments (all evidence can be found in Supplementary
Table 23). For instance, VideoMol maintained high attention on
fluorine when predicting a compound as an inhibitor of BACE-1, which
was validated by a previous experimental study52.

Ablation study
To study the impact of the pre-training strategies on VideoMol, we
train VideoMol with different pre-training tasks, including w/o pre-
training, only video-aware strategy, only direction-aware strategy and
only chemical-aware strategy, chemical&direction, chemical&video,
and direction&video (Supplementary Table 24). We found that pre-
training tasks can improve the performance of VideoMol on down-
stream tasks compared to VideoMol without pre-training with 27.1%
average RMSE improvement and 31.0% average MAE improvement.
Ablation experiments on single or double pre-training tasks show that
chemical-awareness is important and the pre-training tasks guide
VideoMol to learn meaningful chemical knowledge in the molecule.
We can also see a trend that with the integration of pre-training tasks,
the performance of VideoMol improves consistently in most evalua-
tions, indicating that these pre-training tasks complement each other.
Overall, the proposedpre-training tasks are effective for improving the
performance of VideoMol.

To test the effectiveness of molecular features captured by
VideoMol, we use VideoMol to extract the features of each frame in
themolecular video and calculate their mean value as themolecular
feature (called VideoMolFeat). For a fair comparison, we integrated
21 traditional molecular fingerprints, which are obtained by fin-
gerprint stitching and PCA (Principal Component Analysis)57

dimensionality reduction (called EnsembleFP). We then evaluated
the performance using the MLP (Multilayer Perceptron) imple-
mented by scikit-learn58 and kept the same experimental settings.
We found that VideoMolFeat achieved the best performance with
17.0% average RMSE improvement and 19.6% average MAE
improvement compared with EnsembleFP on 10 GPCR datasets,
which illustrates that a visual molecular feature is effective as a
superior alternative to traditional molecular fingerprinting (Sup-
plementary Table 25).

To explore the impact of different frame numbers on VideoMol,
we sampled 5, 10, 20, 30, and 60molecular frames from 5HT1A, AA1R,
AA2AR, CNR2, DRD2, and HRH3 datasets at equal time intervals. We
found that the performance of VideoMol is positively correlated with
the number of frames with an average performance improvement of
6.6% (5!10 frames), 3.9% (10!20 frames), 1.9% (20!30 frames),
4.0% (30!60 frames) on RMSE metric and 7.6% (5!10 frames), 4.6%
(10!20 frames), 2.3% (20!30 frames), 4.5% (30!60 frames) onMAE
metric, which shows that the increaseof framenumber enriches the 3D
information extracted by VideoMol and its performance may be
expected to be further increased by expanding the frame number
(Supplementary Table 26).

To verify the sensitivity of VideoMol to video generation sources,
we used two additional platforms to generate molecular videos, which
areOpenBabel59 andDeepChem60.We found that the video generation
source of different platforms has no significant impact on VideoMol
with an average performance of 0.755 ± 0.068 (Openbabel),
0.755 ± 0.072 (DeepChem), 0.742 ±0.064 (RDKit) in RMSE metric and
0.581 ± 0.057 (Openbabel), 0.576 ±0.060 (DeepChem), 0.566 ±0.053
(RDKit) inMAEmetric (Supplementary Table 27). Therefore, VideoMol
has low sensitivity to video generation sources from different
platforms.

To investigate whether VideoMol can identify conformational
changes of molecules, we used pre-trained VideoMol to extract fea-
tures of molecules with different conformers from 10 ligand-GPCR
binding activity prediction datasets and compared the cosine simila-
rities between different videos with different conformers. Since the
similarity between conformers is related to their RMSD (Root-Mean-
SquareDeviation) distance,we also calculated the similarity of features
in different RMSD intervals. We found that VideoMol is discriminative
for videos from different conformers (Supplementary Table 28). Fur-
ther, when the RMSD between two conformations is larger, the feature
similarity extracted by VideoMol shows a decreasing trend. Especially
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in the 90-100 percentile range, the feature similarity extracted by
VideoMol is always the lowest. These comprehensive observations
show that VideoMol can identify conformational differences
effectively.

Discussion
We have proposed a self-supervised video-processing-based pre-
training framework, VideoMol, that learns molecular representations
by utilizing dynamic awareness and physicochemical awareness. We

Fig. 5 | Biological interpretation and feature distribution of VideoMol.
a Visualization of each frame in 100 molecular videos (60 frames for each video).
Representations are extracted by VideoMol and dimensionally reduced by t-SNE.
Different colors represent frames in different cluster videos. DB index is ametric to
evaluate the clustering quality, and the larger the value, the better the clustering
performance. b Similarity distribution (n = 20,000 samples) of intra-video and
inter-video. Similarity is computed using a pair of frames from intra-video or inter-
video. The content in brackets indicates the average similarity of the distribution.
c t-SNE visualization (10,000 samples) of features extracted by VideoMol. Different

colors represent different cluster labels (this cluster label is obtained in the
chemical-aware pretraining task). d–f Grad-CAM visualization of VideoMol on
molecular frames. We use 0.6 as the threshold for visualization, that is, set the
importance lower than 0.6 to 0. In d, each row represents a molecular video. In
e, pairsofmolecular frames represent frameswhere structure ismissing and frames
where structure appears, respectively. In f each panel represents examples of key
structures related to BACE-1 inhibitory activities from frames of different mole-
cules. Source data are provided as a Source Data file.
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showed the high performance of VideoMol on various drug discovery
tasks, including predicting molecular target profiles (e.g., GPCRs,
kinases, SARS-CoV-2) and molecular properties (e.g., pharmacology,
biophysics, physical, and quantum chemistry). We evaluated the
effectiveness of VideoMol on4common targets (BACE1, COX-1, COX-2,
and EP4) from ChEMBL (Figs. 1a and 2b). We also verified the high
precision of VideoMol on the virtual screening of 4 targets (BACE1,
COX-1, COX-2 and EP4), which are consistent with ongoing clinical and
experimental data (Figs. 3c and 4d). Compared with ImageMol,
VideoMol achieved an average precision improvement of 38.1% on
these 4 targets, which showed that VideoMol is able to generalize to
external validation sets. Especially in the virtual screening of COX-1,
COX-2 and EP4 inhibitors, VideoMol achieved significant advantages,
demonstrating VideoMol can overcame data imbalance (imbalance
rates of 0.043 and 0.253 in COX-1 and COX-2 from ChEMBL) and data
scarcity (only 350 samples in EP4 from ChEMBL) scenarios.

On the interpretability ofVideoMol,we found that the attentionof
VideoMol is different on different frames of the same video in Fig. 5e,
which is due to occlusion of viewing angles problem that make useful
information often scattered in different views61. This showed the
advantage of molecular video, allowing VideoMol to learn more
molecular information by scanning each frame. In addition, it is worth
noting that VideoMol can perceive substructures in occlusion scenes
(such as the third column of the first row in Fig. 5d).

We highlighted several improvements of VideoMol over state-of-
the-art: (1) VideoMol achieves high performance on various bench-
mark datasets (including property prediction and target binding
activity prediction), outperforming the state-of-the-art representation
learning methods (Supplementary Tables 3–9); (2) VideoMol over-
comes class imbalance and data scarcity scenarios and achieves high
accuracy and strong generalization in virtual screening on 4 common
targets (BACE1, COX-1, COX-2 and EP4) (Fig. 3, SupplementaryTable 10
and Supplementary Tables 15–18); (3) VideoMol captures 3D infor-
mation and is good at predicting ligands with high binding capacity to
receptors (Supplementary Tables 21 and 22 and Fig. 4); (4) the repre-
sentation of VideoMol is robust to inconsistent views of the molecule
(Fig. 5a, b) and contains rich and meaningful physicochemical infor-
mation (Fig. 5c); (5) VideoMol has good interpretability, which is
intuitive and informative for identifying chemical structures or sub-
structures related tomolecular properties and target binding, and can
solve the occlusion of viewing angles problem (Fig. 5d–f). Further-
more, to explore the effect of frame number on VideoMol, we extract
frames in videoswith equal spacing.We found that the performance of
VideoMol can gradually improve with the number of frames, which
shows that the combination of different frames can enrich the feature
representation of molecules (Supplementary Table 26).

VideoMol is a novel molecular representation learning frame-
work, which is significantly different from previous sequence-, graph-
and image-based molecular representation learning methods. Video-
Mol treated molecules as dynamic videos and learned molecular
representations in a video processing manner, which means that a
large number of video representation learning technologies can be
used for learning molecular representation23,62. Compared with our
previous ImageMol, VideoMol had several substantial upgrades,
including: (1) the content of molecular visual representation is upgra-
ded from 2D pixel information to 3D pixel information; (2) molecular
pre-training is upgraded from image-based learning to video-based
learning; (3) the fingerprint information included is upgraded from the
previous 1 fingerprint (MACCS key) to 21 fingerprints (Supplementary
Table 29). Since VideoMol involves research fields such as image
representation learning, video representation learning, andmulti-view
representation learning, it has greater research potential and moti-
vates more researchers for greater performance improvement.

We acknowledged several potential limitations of VideoMol.
While molecular video can achieve performance improvements, it will

increase the computational complexity. Although the multi-view fine-
tuning strategy can reduce the computational complexity, the choice
of view is still a problem. Like other 3D-basedmolecular representation
methods38,39,63, VideoMol does not take the diversity of conformers
into account, but it can easily be improved by modeling consistency
between different conformers. Several potential directions may fur-
ther improve VideoMol: (1) Use of more biomedical data to train a
larger version of VideoMol, noting that this would increase demand on
computing resource; (2) Under resource constraints, use of pruning
strategies (including data pruning and model pruning) to reduce the
computational complexity of VideoMol; (3) Due to the rich physical
and chemical information integrated in VideoMol, the distillation
based on VideoMol is a meaningful research direction, which uses
VideoMol as a teacher model to guide the learning of other student
models (such as sequence-based models, graph-based models, etc.);
(4) Use of better video processing methods and ensemble learning
methods to integrate information between different frames is also an
important direction to improveperformance.Using a simple extension
to VideoMol, we can allow the model to learn the correlations and
variances between different conformations in the samemolecule from
videos of dynamic changes, thereby further playing an important role
in molecular dynamics scenarios.

We believe that it is promising to represent molecules and per-
form inferences through videos as molecular imaging techniques
continue to advance. In summary, the introduction of VideoMol on the
one hand enriches the form ofmolecular representation in the field of
computational drug discovery, and on the other hand inspires people
to learn and understand the molecules from different perspectives.

Methods
Molecular conformer generation
When pre-training, we directly use the conformational information
provided in PCQM4Mv2 database64. However, during fine-tuning,
molecules in downstream tasks do not contain corresponding con-
formational information, so we obtain molecular conformers through
amulti-stage generationmethod.We first remove the hydrogen atoms
from the molecule and use MMFFOptimizeMolecule() in RDKit with
MMFF94 (Merk Molecular Force Field 94) and a maximum number of
iterations iter = 5000 to generate conformers in a pre-determined
coordinate system. Then, we judge whether the generated conformer
has converged. If the conformer does not converge, we increase the
maximum number of iterations by iter = iter × 2 and repeat this pro-
cess 10 times until convergence. Finally, if RDKit fails to generate a
conformer or the conformer has not converged after 10 attempts, we
directly use the 2D conformation instead. In addition, when the server
resources are sufficient, we also use iter = 1, 000,000,000 to directly
generate conformers instead of multi-stage generation.

Molecular video generation
After obtaining molecular conformers, these conformers undergo
counterclockwise rotations R � rð Þ (� 2 x, y, z

� �
) about the positive x, y,

and z axes to generate nf snapshots (Fig. 1a), where r is from 1 to 20
and nf =60 snapshots are generated for all axes. Specifically, the
matrix represents a counterclockwise rotation about the positive
z-axis by r-th angle, which can be formalized as:

Rz rð Þ=
cos rϕ � sin rϕ 0

sin rϕ cos rϕ 0

0 0 1

2
64

3
75 ð1Þ

where ϕ= π
10. We generate a molecular frame vji =R

3× 224× 224 (the j-th
frame of the i-thmolecule) for each snapshot using PyMOL (A software
for visualization and rendering ofmolecular 3D structures)65 with stick-
ball mode, where 3 represents the three channels (RGB or BGR) and
224 represents width and height. The key command used to render
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molecules in PyMOL is bg_color white;hide (hydro);set stick_ball,on;set
stick_ball_ratio,3.5;set stick_radius,0.15;set sphere_scale,0.2;set valen-
ce,1;set valence_mode,0;set valence_size, 0.1. Since PyMol generates
640×480 frames by default, we need to post-process them to get
224 × 224 frames. Specifically, we expand the 640×480 frame to
640×640 by adding white pixels around it and resize it to 224× 224.
Finally, these 60 frames are stitched sequentially to generate
molecular videos V = fv1, v2, :::, vnjvi 2 Rnf × 3× 224× 224g (where n repre-
sents the number of molecules).

Strategies for pre-training VideoMol
Pretraining aims to improve the model’s ability to focus on crucial
information in the molecular video, enablingmoremeaningful feature
extraction.

In this paper, to obtain information in molecular videos from
different perspectives, we consider three pre-training tasks (Fig. 1b–d):
video-aware pre-training, direction-aware pre-training, and chemical-
aware pre-training. Specifically, video-aware pre-training equips the
model with the ability to distinguish different molecular videos, such
as whether the two frames are from the same video. Direction-aware
pre-training enables the model to discriminate the relationship
between each frame, such as the angle of difference between two
frames. Chemical-aware pre-training helps the model mine
physiochemical-related information in videos.

Considering the efficiency and scalability of VideoMol, we per-
form independent feature extraction on each frame in molecular

videos. Specifically, for the j-th frame vji of the given i-th video, we feed

it into the video encoder to obtain the frame feature hj
i. In pre-training,

given a batch of n molecular videos v 2 fSi = 1, ::,nfSj = 1, ::,nf vjigg, we

randomly sample two frames vhead 2 fvhead1 , . . . , vheadn g and vtail 2
fvtail1 , . . . , vtailn g from each video, where vhead and vtail have the same

axis of rotation. Then, we input vhead and vtail to video encoder to

extract latent features hhead 2 Rd and htail 2 Rd , where d is the hidden
dimension. Finally, the batch of data in the form of feature matrix

H = hhead
1 ,htail

1

h i
, hhead

2 ,htail
2

h i
, . . . , hhead

n ,htail
n

h ih i
2 Rn×d × 2 is con-

structed for the following pre-training.

Identifying the differences between videos is important for the
model to learn discriminative information betweenmolecules because
a video only describes one molecule. Meanwhile, different frames in a
video describe different views ofmolecules in 3D space, which leads to
unstable representation of themodel when extracting different frames
from the same video. Therefore, we propose a video-based pre-train-
ing task, called video-aware pretraining (VAP), tomodel the inter-video
frame similarity and intra-video frame dissimilarity, i.e., frames from
the same video should be close together, while frames from different
videos should be far apart. Specifically, our approach uses contrastive
learning to train molecular video representations, contrasting positive
pairs of latent vectors against negative pairs. Given a batch of frame
latent matrix H, the H* 2 R2n×d is obtained by flattening H. We define
two frames from the same molecular video as positive pair and the
others as negative. Therefore, the samples that can form positive pairs
with the i-th sample inH* are itself and the ðn+ iÞ%2n½ �-th sample. Thus,
our VAP objective is formalized based on InfoNCE loss as follows:

LV = argmin
θ

1
2n

�
X2n�1

i=0

log
eh

*
i � h*

n+ ið Þ%2n
� �T

=τ

P2n�1
j =0 Ii≠je

h*
i � h*

j

� �T
=τ

2
64

3
75 ð2Þ

where h*
i is the i-th latent vector inH*, τ is the temperature parameter,

and θ is the parameters of the video encoder.
Correlating two snapshots from a continuously rotating object is

trivial for humans, whichbenefits from the humanability to reason and

imagine the 3D structure of objects based on prior knowledge. For
example, humans can easily associate occluded regions when they
only observe limited unoccluded local regions. Therefore, to equip the
model with such ability, we propose direction-aware pretraining
(DAP), which consists of three prediction tasks: i) axis, ii) rotation, and
iii) angle prediction. First, a residual matrix H� is generated by sub-
stracting the first channel with the second, e.g.

H� = hhead
1 � htail

1 ,hhead
2 � htail

2 , . . . ,hhead
n � htail

n

h i
2 Rn×d . Then, the

features h� of each row in the residualmatrixH� are passed separately
through three classifiers (Multi-Layer Perceptrons), namely axis clas-
sifier f axis, rotation classifier f rotation, and angle classifier f angel . The
classifiers are trained to predict the axis of rotation yaxis (x-, y-, or
z-axis), the direction of rotation yrotation (clockwise or counter-
clockwise), and the angle of rotation yangle (an integer from 1 to 19) of

htail with respect to hhead , respectively. Cross-entropy loss is used for
these MLPs, and the DAP losses are defined as follows:

L� H
�, y�

� �
= argmin

θ, Wy�

1
n � K �

�
Xn
n = 1

XK �

k = 1

yk�,n log f
k
� hn

� �" #
ð3Þ

where � represents one of the prediction tasks (i.e., axis, rotation,
angle), y� is the ground truth of corresponding prediction task in
vector form, Wy�

is the parameters of the classifier predicting y�, K � is
the number of corresponding categories, and θ is the parameters of
the video encoder.

The chemical knowledge is important for improving the perfor-
mance of drug discovery19. Here, we introduced a Multi-Chemical
Semantics Clustering (MCSC) with 20 additional fingerprint descrip-
tors (details are provided in Supplementary Section B.1 and Supple-
mentaryTable 29), called Chemical-aware pretraining (CAP), to further
extract more physicochemical information. In details, we first extract
21 molecular fingerprints for all molecules, and reduce the dimen-
sionality of each fingerprint to 100 dimensions using PCA (Principal
Components Analysis)66. We stitch together the reduced molecular
fingerprints to get the MCSC fingerprint p 2 Rn× 2100. Then, we use
k-Means to cluster MSCS fingerprints (molecules with similar MCSC
distances were grouped together) and assign a corresponding pseudo-
label yCAP to each cluster. We chose k = 100 as the appropriate number
of clusters. Finally, we employed a chemical classifier, which is MLP
withWC as its parameters, to predict the pseudo-labels from the latent
frame vectors hhead and htail . The cost function of the CAP task can be
formalized as follows:

LC = argmin
θ, WC

1
2n

Xn
n= 1

‘ WC � hhead
n , yCAP

� �
+ ‘ WC � htail

n , yCAP
� �� �

ð4Þ

where ‘ is the multinomial logistic loss or the negative log-softmax
function, and θ is the parameters of the video encoder.

Pre-training process
To pre-train VideoMol, we sample 2 million unlabeled molecules and
their corresponding conformers from the PCQM4Mv2 (a public access
database on quantum chemistry, Supplementary Section A.1 for
details), and generate molecular videos with 60 frames. We randomly
sample 90%ofmolecular videos for training and the remaining 10% for
evaluation in pre-training stage. The pre-training of VideoMol includes
three important components, which are video encoder selection, data
augmentation and pre-training process, respectively.

In video encoder selection, encouraged by the surprising perfor-
mance of vision transformers (ViT)67 in computer vision, we use a 12-
layer ViT as the video encoder of VideoMol. For each frame in the
video, the video encoder splits it into 16 × 16 patches as input and
extracts 384-dimensional features. See Supplementary Table 30,
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Supplementary Section A.2 and Supplementary Section B.2 for more
details of hyperparameters and model in pre-training stage.

Data augmentation is a simple and effective method to improve
the generalization and robustness of model and is widely used in
various artificial intelligence tasks. Because molecular videos contain
structural and geometric information about compounds, augmenta-
tion methods that affect this information, such as RandomRotation
and RandomFlip, cannot be used. Here, we have chosen four data
augmentation methods: (1) CenterCrop with a size of 224; (2) Ran-
domGrayscale with 30% probability of occurrence; (3) ColorJitter with
brightness, contrast, saturation of ð0:6, 1:4Þ and 30% probability of
occurrence; (4) GaussianBlur with a kernel size of 3, sigma of (0.1, 2.0)
and 30% probability of occurrence. Molecular videos are sequentially
processed by these augmentations and normalized using Normalize
with ImageNet default mean (0.485, 0.456, 0.406) and default stan-
dard deviation (0.229, 0.224, 0.225). These augmentationmethods are
provided by the PyTorch library68.

Since the pre-training process involves multiple optimization
objectives (e.g. LV ,Laxis,Lrotation,Langle and LC), we use a weighted
multi-objective optimization algorithm to allow the model to benefit
from each pre-training task, whose core idea is to use variable weights
related to loss of task to control the pre-training tasks that the model
focuses on. Specifically, wecompute the lossweights by λ� =

L�
LALL

×ntask

(LALL =LV +Laxis +Lrotation +Langle +LC), where λ� represents any one
ofLV ,Laxis, Lrotation,Langle andLC and ntask = 5 represents the number
of tasks. The final weighted multi-task loss can be formalized as:

Lweighted = λVLV + λaxisLaxis + λrotationLrotation + λangleLangle + λCLC ð5Þ

Finally, we use the weighted loss function Lweighted to optimize the
parameters of VideoMol by using mini-batch stochastic gradient des-
cent. See Supplementary Section A.2, Supplementary Section B.2, and
Supplementary Table 30 for more pre-training details and see Sup-
plementary Section C.1 and Supplementary Figs. 3 and 4 for pre-
training logging.

Fine-tuning process
After pre-training,we add an externalmulti-layer perceptron (MLP) after
the video encoder for fine-tuning of downstream tasks. In the MLP, the
number of output neurons in the last layer is equal to the number of
downstream tasks ntask . In details, given a batch of n molecular videos
with nf frames v 2 fSi = 1, ::,nfSj = 1, ::,nf vjigjv

j
i 2 R3× 224× 224g, we input

each frame vji in molecular videos v into video encoder to extract latent
features h 2 fSi= 1, ::,nfSj = 1, ::,nf hj

igjh
j
i 2 Rdg, where d is the hidden

dimension. Then, we further forward-propagate latent features into the
external MLP to obtain the logit l 2 fSi = 1, ::,nfSj = 1, ::,nf ljigjlji 2 Rdg
(relevant to downstream tasks) of each frame. Since different frames of
the same video describe the same molecule, we average the logit of
frames from the same video as the final logit of the molecule
y 2 fSi= 1, ::,nfyigjyi 2 Rntask g. Finally, we use cross-entropy loss to opti-
mize classification tasks andMSE (Mean Square Error) or Smooth L1 loss
to optimize regression tasks.

Downstream details
We first describe datasets and splitting methods. In binding activity
prediction task, we use 10 kinase targets in compound-kinase binding
activity prediction and use 10 GPCR targets in ligand-GPCR binding
activity prediction, which can be obtained from ImageMol19 (Supple-
mentary Table 31 for statistical details). We use the same splitting
method as ImageMol in kinase and GCPR targets, which uses a
balanced scaffold split to divide the dataset into 80% training set, 10%
validation set and 10% test set. In molecular property prediction task,
we conduct experiments on 12 common benchmarks from the
MoleculeNet69 (SupplementaryTable 32). Followingpreviousworks6,63,
we split all property prediction datasets using scaffold split, which

splits molecules according to molecular substructure with 8:1:1. The
scaffold split is a challenging splitting method for evaluating the
generalization ability of models to out-of-distribution data samples.
The balanced scaffold split ensures the balance of the scaffold size in
the training set, validation set and test set. In anti-SARS-CoV-2 activity
prediction task, we use the same data splitting as REDIAL-202041 and
ImageMol on 11 SARS-CoV-2 activity prediction tasks (Supplementary
Table 33).

We next describe metrics of evaluation. As suggested by Mole-
culeNet, weuseROC-AUCas the evaluationmetric for the classification
task, including 6 property predictions (BBBP, Tox21, HIV, BACE, SIDER
and ToxCast). For the regression prediction of the remaining 6 mole-
cular properties, we use RMSE (Root Mean Squared Error) and MAE
(Mean Absolute Error) to evaluate FreeSolv, ESOL, lipophilicity and
QM7, QM8, QM9, respectively. For compound-GPCR binding activity
prediction, we report RMSE and MAE metrics. For compound-kinase
binding activity prediction and anti-SARS-CoV-2 activity prediction
task, we report ROC-AUC metric. Specifically, mean and standard
deviations of MoleculeNet are reported with 10 different random
seeds andmean and standard deviation of other datasets are reported
with 3 different random seeds. See Supplementary Tables 34 and 35
and Supplementary Section A.3 for more details of fine-tuning stage.
See Supplementary Section C.3 and Supplementary Table 36 for the
details of computational requirements of VideoMol.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original datasets used in this project can be found at the following
links: 2million pre-training dataset: https://ogb.stanford.edu/docs/lsc/
pcqm4mv2/; 10 GPCRs: https://figshare.com/articles/dataset/10_
GPCRs/26941483 (Supplementary Table 31); 10 kinases: https://lincs.
hms.harvard.edu/kinomescan/ (SupplementaryTable 31); 12molecular
property prediction datasets: https://1drv.ms/f/s!
Atau0ecyBQNTgRrf1iE-eogd17M-?e=m7so1Q (Replace the BBBP in
the hyperlink with another dataset name to download other datasets)
(Supplementary Table 32); 11 SARS-CoV-2 targets: https://opendata.
ncats.nih.gov/covid19/assays (Supplementary Table 33); Source data
are provided with this paper. All processed data are publicly available
at https://github.com/HongxinXiang/VideoMol or https://github.com/
ChengF-Lab/VideoMol. Source data are provided with this paper.

Code availability
All codes and the trained models are available at https://github.com/
HongxinXiang/VideoMol or https://github.com/ChengF-Lab/
VideoMol or Zenodo70.
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