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Visualizing the human olfactory
projection and ancillary structures
in a 3D reconstruction
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Visualizing in 3D the histological microanatomy of the human olfactory projection from the olfactory
mucosa in the nasal cavity to the olfactory bulbs in the cranial cavity necessitates a workflow for
handling a great many sections. Here, we assembled a 3D reconstruction of a 7.45 cm3 en-bloc
specimen extracted from an embalmed human cadaver. A series of 10 µm coronal sections was
stained with quadruple fluorescence histology and scanned in four channels. A trained anatomist
manually segmented six structures of interest in a subset of the sections to generate the ground truth.
Six convolutional neural networks were then trained for automatic segmentation of these structures in
1234 sections. A high-performance computing solutionwas engineered to register the sections based
on the fluorescence signal and segmented structures. The resulting 3D visualization offers several
novel didactic opportunities of interactive exploration and virtual manipulation. By extrapolating
manual counts of OSNs in a subset of sections to the calculated volume of the envelope of the entire
olfactory epithelium, we computed a total of ~2.7 million OSNs in the specimen. Such empirically
derived information helps assess the extent to which the organizational principles of the human
olfactory projection may differ from those in mice.

The human sense of smell has recently become the subject of intense
popular and scientific interest due to the frequent association of olfac-
tory dysfunctionwith SARS-CoV-2 infection1, often persisting long after
COVID-19 symptoms2. Olfactory dysfunction presents in almost all
patients with Parkinson’s disease3,4 and Alzheimer’s disease5–7 several
years prior to the onset of motor and cognitive impairments, together
with pathological changes in the olfactory bulb8–10. The sense of smell can
be seen as serving as a sensitive sentinel for these two common neuro-
degenerative diseases. Olfactory dysfunction is also correlated with
mortality11 and heart disease12. But, complicating matters, the human
sense of smell declines naturally with age13. Current concepts about the
human sense of smell are largely derived from studies on laboratorymice
and rats. Paling in comparison with the blooming literature on geneti-
cally engineered mice in recent decades is the snail’s pace of the primary
research literature on the histological microanatomy of the human
olfactory projection. It remains unclear to which extent the organiza-
tional principles of this microanatomy in humans resemble those
in mice.

The olfactory projection consists of olfactory sensory neurons (OSNs)
projecting their axons from the olfactory mucosa in the nasal cavity to the
olfactory bulbs in the cranial cavity (Fig. 1)14–16. The olfactory mucosa
comprises the olfactory epithelium and the underlying lamina propria,
separated by a basal lamina17–20. Its surface area is estimated grossly at
~500mm2 inhumans21, amounting to a fewpercent of the surface areaof the
nasalmucosa22, themajority of which is respiratorymucosa. AmatureOSN
extends a single dendrite apically to the lumen of the nasal cavity. On the
dendritic cilia, odorant receptors23 interact with odorous molecules from
the inhaled air. AmatureOSNprojects a single unmyelinated axon from the
olfactory epithelium through thebasal lamina into the laminapropriawhere
it fasciculates with other OSN axons into olfactory axon fascicles of pro-
gressively larger diameter24. These fascicles traverse the cribriform plate25

ipsilaterally as macroscopically visible fila olfactoria26,27, which together
make up the olfactory nerve, the first cranial nerve28,29. The fila olfactoria
innervate the glomerular array in the ipsilateral olfactory bulb. Within
glomeruli, OSN axons terminate and synapse with the dendrites of the
second-order neurons in the olfactory pathway. Immunohistochemical
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staining patterns of the human olfactory epithelium are similar to those in
mice and rats30. Immunohistochemical studies of the human olfactory bulb
have revealed basic characteristics similar to mice and rats31–34 and the
human interneuron populations are also in general agreement with those in
mice and rats35. But these similarities may be superficial, possibly even
deceptive.

Striking differences raise questions about extrapolating current con-
cepts about olfaction from mice to humans. For instance, a mouse glo-
merulus receives axonal input from OSNs that express the same odorant
receptor gene36–38 and are located in one of several zones of the olfactory
epithelium39. A mature mouse OSN expresses a single odorant receptor
gene40,41. With ~3600 glomeruli in a mouse olfactory bulb42 and 1141 intact
odorant receptor genes in the mouse genome43, OSNs expressing a given
odorant receptor gene project their axons on average to ~3 glomeruli per
olfactory bulb. However, the neat arrangement of the glomerular array seen
in mice and rats is missing in humans. Glomeruli in the human olfactory
bulb exhibit a broad range of shapes and sizes, precluding reliable counts of
glomeruli. One study came up with 2975–9325 glomeruli in a human
olfactory bulb33. With 389 intact odorant receptor genes in the human
genome43, OSNs expressing a given odorant receptor gene would thus
project on average to ~8–24 glomeruli, if the organizational principles are
the same as in mice.

The human olfactory projection can be visualized with a range of
imaging techniques at various levels of resolution such as magnetic reso-
nance imaging, computed tomography, andmicro-computed tomography,
but these techniques do not have microscopic resolution and do not afford
cell type-specific labeling with antibodies or other markers. Much of the
body of knowledge about the histological microanatomy of the human
olfactory projection comes from relatively small biopsies procured from
living subjects or from specimens harvested at autopsy. In the literature,
typically images are shown of a fewfields of view from a few stained sections
photographed under amicroscope. Themagnitude of the sampling error in
these approaches is not known. With the advent of high-resolution fluor-
escence whole-slide scanning inmultiple channels, histological datasets can
now be processed by deep-learning techniques to automatically obtain a

delineation or annotation (“segmentation”) of structures of interest in a
great many sections. Convolutional neural networks (CNNs), in particular
U-Net44, are considered the standard to perform deep-learning based
supervised automatic segmentation: aCNNis trained to segment a structure
of interest based on a finite number of segmentations performed manually
by an expert human observer generating the “ground truth”.

Here, we combined quadruple fluorescence histological staining with
deep learning (for segmentation) and high-performance computing (for
registration) to assemble a 3D reconstruction of a specimen extracted from
an embalmed human cadaver. Following manual segmentation by an
expert, automatic segmentation was performed by CNNs. The
computationally-expensive registration of the images was performed by a
high-performance computing cluster.

Results
Screening of en-bloc specimens extracted from embalmed
human cadavers
We extracted an en-bloc specimen containing the olfactory projection and
ancillary structures of bone and vasculature from 6 human cadavers that
were eachflushedwith 5 liters of saline solution and then embalmedwith 20
liters of Dodge Anatomical Arterial Michigan Mixture. This embalming
fluid is commonly used for cadavers in medical teaching. The extraction
entailed making incisions in the anterior cranial fossa in the form of a
quadrangle and extends inferiorly to encompass the superior turbinates
(Fig. 2), similar to techniques reported by others18,45–48. These specimens
consist of a complex 3D configuration of soft and hard tissues, including a
part of the anterior skull base and a portion of the nasal cavity,filledwith air.
After EDTA-mediated decalcification and embedding in paraffin, the six
specimens were each cut into a series of 10 µm coronal sections, yielding a
grand total of 11,805 sections. Tissue quality was assessed on every 150th
section by chromogenic staining and imaging under a brightfield micro-
scope (Supplementary Fig. 1). The specimen of case A1147, which had been
cut into 1923 sections, displayed the best structural preservation and
immunoreactivity. Anticipating a labor-intensive and computationally-
expensive workflow, we judged A1147 among the six specimens to be of
sufficient quality for assembling a 3D reconstruction. This specimen, hen-
ceforth referred to as “the specimen”, measured ~1.92 cm in the anterior-
posterior dimension, ~2.27 cm superior-inferior, and ~1.71 cm left-right,
corresponding to a volume of ~7.45 cm3.

Quadruple fluorescence histological staining and scanning
After tissue quality assessment and further validation, 1851 sections
mounted on 617 slides remained of the specimen. Next, these sections were
subjected to quadruple fluorescence histological staining for Hoechst 33342
(blue), Ulex europaeus agglutinin-1 (UEA1) (green), olfactory marker
protein (OMP) (red), and vesicular glutamate transporter-2 (VGLUT2)
(far-red).

Hoechst 33342, henceforth referred to as “Hoechst”, is a fluorescent
dye that stains DNA and thereby identifies the nuclei of all cells. UEA1 is a
plant lectin that binds to many glycoproteins and glycolipids containing α-
linked fucose residues and has been widely used as a broad marker in
histological studies. UEA1 stains mature and immature OSNs in rat49 and
human50 as well as basal cells in the olfactory and respiratory epithelium.
Biotinylated UEA1 was detected with fluorescently labeled streptavidin.
Immunochemistry visualized OMP, which has traditionally been used as a
marker of the olfactory projection51. This cytoplasmic protein is highly
expressed in maturing human OSNs in all their subcellular compartments,
from the dendrites all the way to the axon terminals within the glomeruli of
the olfactory bulb31,32,52. Lastly, immunochemistry visualized VGLUT2, a
marker ofOSNaxon terminalswithin the glomeruli33,34. The rationale of our
staining strategy was to inform the CNNs with a palette of fluorescent
signals with various levels of specificity, from generic (Hoechst) over broad
(UEA1) to highly specific (OMP and VGLUT2).

Slides were scanned in four channels using a PANNORAMIC
MIDI II fluorescence digital slide scanner to obtain a three-level z-

Fig. 1 | Photograph of an anatomical teaching model of a human head. Para-
sagittal view of the lateral wall of the right nasal cavity from a SOMSO® anatomical
teaching model showing the position of the olfactory bulb on the skull base and the
projection of fila olfactoria through the cribriform plate (crib). ant, anterior; sup,
superior.
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stack, which was consolidated into an extended focus. The 1851 sec-
tions of the specimen took ~2000 h of scanning time and 1234 sections
(66.67%) were of suitable quality to be incorporated into the 3D
reconstruction. Henceforth, these 1234 sections are referred to as
the “complete dataset”. Supplementary Fig. 2 shows the location of the
sections that were not available or excluded, and sections that
were excluded based on a given criterion. Figure 3 shows a scanned
image of a representative section, with annotations of the relevant
microanatomical structures.

Histology of the human olfactory projection and ancillary
structures
The file size of the complete dataset (~2.9 TB) required us to make a
selection among the many structures that could in principle be segmented
based on the information from the quadruple fluorescence staining. We
were interested in six structures, which are henceforth called “structures of
interest”: nasal epithelium, OSNs, glomeruli, olfactory bulbs, vasculature
(arteries), and bone. The nasal epithelium consists of the most part of
respiratory and olfactory epithelium and lines the air-filled lumen of the
nasal cavity. The olfactory bulbs can be outlined readily by their anatomical
shape and Hoechst staining.

Figure 4 shows high-magnification views of the rectangles
demarcated in Fig. 3. The respiratory epithelium lacks OSNs and
makes up the respiratory mucosa together with the underlying
lamina propria (Fig. 4a). The olfactory epithelium and the underlying
lamina propria constitute the olfactory mucosa, and OSNs can be
identified by combining OMP immunoreactivity and UEA1 staining
(Fig. 4b). Axons of OSNs fasciculate into olfactory axon fascicles
within the lamina propria (Fig. 4c). Glomeruli are irregularly shaped
structures mostly located near the surface of the olfactory bulb, and
OSN axon terminals within the glomeruli can be identified with
VGLUT2 immunoreactivity (Fig. 4d). Vasculature (arteries) can be
identified by UEA1 staining of the internal elastic lamina and
Hoechst staining of the elongated nuclei of smooth muscle cells
surrounding a luminal space (Fig. 4e). There is no vasculature within
the olfactory epithelium. Bone has a laminar appearance and is
devoid of nuclei (Fig. 4f).

Manual segmentation generates the ground truth
The next phase entailed the manual segmentation of the six structures of
interest by a trained anatomist, relying on shape and context of location, and
aided by the palette of fluorescence signals. Manual segmentation was
carried out in 26–57 sections and took ~1300 h. Simple and high-contrast
structures of interest such as vasculature took ~2 h of manual segmentation
per section, while complex structures of interest that spanned a large area
such as OSNs took ~12–16 h per section. Manual segmentation of the six
structures of interest generated an expert reference, called the ground truth.

The nasal epithelium is a pseudostratified columnar epithelium and
was segmented based on the dense organized arrangement of nuclei of
ciliated respiratory cells, goblet cells, OSNs, sustentacular cells, and basal
cells, as well as the basal lamina, which separates the epithelium from the
lamina propria. Mature and immature OSNs were segmented together by
combining information from the OMP immunoreactivity and
UEA1 staining.WhenOSNswere sparse, they could be segmented at single-
cell resolution, but when they were densely packed, they were segmented as
groups. Therefore, as a whole, the OSN segmentation does not have single-
OSN resolution. Of note, the OSN segmentation encompasses OSNs across
their entire length of several cm: from the dendrites and cell bodies within
the nasal epithelium, along the axonal trajectory within the lamina propria,
through the cribriform plate, all the way to the axon terminals within glo-
meruli. The intersection of the nasal epithelium segmentation and the OSN
segmentation defines the olfactory epithelium, which was however not
segmented as such. Human glomeruli cannot be identified reliably as dis-
crete structures and there are numerous atypical glomerular-like
structures34. Therefore, as a whole, the glomerulus segmentation does not
have single-glomerulus resolution, precluding attempts to directly count the
total number of glomeruli. The glomerulus segmentationought to be seen as
the segmentation of the glomerular component of the olfactory bulb.

Training convolutional neural networks for automatic
segmentation
After obtaining the ground truth, six U-Net CNNs44 were trained for
automatic segmentation of the six corresponding structures of interest. A
graphics processing unit (GPU) cluster with 10 NVIDIA Tesla V100 32 GB
was used to train one CNN per GPU. During the training process, a CNN

Fig. 2 | The skull base of case A1147. Superior view of the anterior cranial fossa
showing the olfactory bulbs attached to the cribriform plate and the parts of the
olfactory tracts that remained after the bulk of the brain had been removed. In a gray-
scale duplicate image of the color photo, three fila olfactoria are indicated with white

arrows and the black dashed box approximates where the incisions were made to
extract the quadrangular en-bloc specimen. The left side of the images corresponds to
the left side of the head. ant, anterior; lat, lateral.
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Fig. 3 | Scanned image of a quadruple-stained coronal section. A representative
10 µm coronal section (#1057) stained fluorescently for Hoechst (gray), Ulex euro-
paeus agglutinin-1 (green), olfactory marker protein (magenta), and vesicular glu-
tamate transporter 2 (blue). The image was taken on a PANNORAMIC MIDI II
fluorescence digital slide scanner as an extended-focus three-level z-stack. The
dimensions of the image are ~1.0 cm wide by ~1.5 cm long. The perpendicular plate
of the ethmoid bone (septum) divides the left and right nasal cavities, and the upper
part of the perpendicular plate (crista galli) separates the two olfactory bulbs. The
nasal cavity is lined by nasal epithelium, the majority of which is respiratory epi-
thelium. The dorsal-superior aspect of the nasal cavity harbors olfactory epithelium,
as defined by the presence of OSNs. On the lateral aspect, the olfactory epithelium
covers the superior turbinate, and on the septal aspect, it extends below the position

equivalent to the curvature of the superior turbinate. Four thick white bars indicate
the inferior boundaries of the olfactory epitheliumon the superior turbinates and the
septum. Within the lamina propria, axons of OSNs group into olfactory axon fas-
cicles of progressively larger diameter that form macroscopically visible fila olfac-
toria, which traverse ipsilaterally the cribriform plate toward the ipsilateral olfactory
bulb. The lamina propria also contains a dense network of arterial vasculature (two
asterisks indicate accessory olfactory arteries). Rectangles (a–f) are displayed at
higher magnification in Fig. 4a–f; the position of the letter informs the orientation of
the high-magnification view. Small tissue folds in the nasal mucosa, mostly in the
epithelium, appear as bright white stripe-like patches. The left side of the image
corresponds to the right side of the head. lat, lateral; sup, superior.
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Fig. 4 | Histology of the olfactory projection and ancillary structures. High-
magnification views of the rectangles (a–f) demarcated in Fig. 3. a The respiratory
mucosa consists of respiratory epithelium and lamina propria separated by a basal
lamina (dashed line). Dark spaces reflect goblet cells (arrowheads). The faint signal
for OMP near the middle of the image is an artifact produced by a tissue fold. b The
olfactory mucosa consists of olfactory epithelium and lamina propria separated by a
basal lamina (dashed line). The olfactory epithelium contains immature OSNs
(arrows) and mature, OMP-immunoreactive OSNs (arrowheads). c Olfactory axon
fascicles, formed by OSN axons within the lamina propria, appear as longitudinal or
oblique sectional views (arrows) or as a cross-sectional view (arrowhead).

d Glomeruli (arrows) are innervated by axons of OSNs (double arrows). Most
glomeruli reside within the glomerular layer (dashed vertical line). Some invasive
glomeruli with an elongated appearance (arrowhead) reside deeper, within the
external plexiform layer (solid vertical line). eArterial vasculature is identified by an
internal elastic lamina (arrowhead) and a surrounding layer of elongated nuclei of
smooth muscle cells (I-beam line) that are parallel to the internal elastic lamina and
surround a luminal space (asterisk). The diamond indicates a vein. f Bone (dotted
line) is acellular, has a laminar appearance (arrowhead), and is not fluorescently
stained.
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receives as input the four channels of a subset of sections together with the
paired ground truth from the training dataset. The CNN learns to auto-
matically generate the output segmentation by combining the inputs,
mainly by convolution operations at different resolutions. Regions without
fluorescence signal help delineate the background pixels and thereby define
the boundaries of the foreground pixels, for instance, for nasal epithelium
(lining the empty space of the lumen of the nasal cavity) and for vasculature
(surrounding empty space, as most of the blood was removed by flushing
and embalming the cadaver).Hoechst andUEA1aremarkerswith a generic
and broad staining pattern respectively, and the OMP and VGLUT2
immunoreactive signals mark a specific cell type and subcellular compart-
ment respectively.

Initially, six consecutive sections from four regions (a total of 24 sec-
tions) evenly spaced throughout the specimenweremanually segmented for
all six structures of interest (Supplementary Fig. 2). Five sections with the
paired ground truth from each of these four regions were used for training
(the “training dataset”, a total of 20 sections) and one section for validation
(the “validation dataset”, a total of 4 sections). Tomonitor the performance
of the CNNs during training, the Dice similarity coefficient (DSC) and
binary cross-entropywere calculated on the validation dataset. TheDSC, an
intuitive measure of agreement between segmentations, is the ratio of the
intersectionbetween theCNNsegmentationand theground truthover their
union, i.e., the degreeof overlap, and ranges from0 to1 (thehigher the value,
the better, with 1 representing perfect agreement). The binary cross-entropy
is ametric from information theory and is inversely related to the agreement
between the CNN segmentation and the ground truth (the lower the value,
the better, with 0 representing perfect agreement). A bootstrap approach
was employed to iteratively improve the DSC and binary cross-entropy of
the CNNs. We judged the CNN segmentations on unseen sections (i.e.,
sections that were not part of the training dataset and of the validation
dataset) by overlaying them with the corresponding sections and visually
checking the accuracy of the structures segmented. We manually corrected
the sections with the lower-quality CNN segmentations and added them to
the training dataset, which was then used to further train the CNN. This
process was repeated until a DSC greater than 0.85 was achieved or there
were diminishing returns.

Different numbers of sections were used for training and validation of
the six CNNs for the six structures of interest (Supplementary Fig. 3). The
CNN for vasculature required the greatest number of sections for training
(45) and validation (10) (Fig. 5a). The CNN for OSNs was trained with 38
andvalidated against 6 sections (Fig. 5b).Dendrites and axons ofOSNswere
not resolved to the same high resolution as in the ground truth particularly
when many OSNs were packed together, resulting in systematic over-
prediction of the CNN segmentations for OSNs (inset of Fig. 5b, Supple-
mentary Fig. 4). TheCNNfor bonedidnot performwell initially—bonewas
missing and non-specific structures were included—but did perform
satisfactorily after further training (Fig. 5c). The CNN for glomeruli per-
formedwell with a training dataset of 25 sections and a validation dataset of
5 sections (Fig. 5d). Lastly, the CNNs for the olfactory bulb (Fig. 5e) and the
nasal epithelium (Fig. 5f) performed well with the initial training dataset of
20 sections and the validation dataset of 4 sections.

After the CNNs had been trained, the same 10 NVIDIA Tesla V100
32 GB configuration performed the automatic segmentations of the six
structures of interest for each of the 1234 sections of the complete
dataset.

After the complete dataset was segmented, a “sanity check”was carried
out by a trained anatomist assessing whether artifacts or aberrant anato-
mical structures had been generated. Finally, the CNNs were tested on two
additional manually segmented sections (#850 and #1401), the “testing
dataset” (Supplementary Fig. 2). These two sections were unseen by the
CNNs during training and validation; were randomly selected among sec-
tions that contained all six structures of interest; and had not been used
previously for any other purpose. The CNN segmentations of these two
sections were unknown to the trained anatomist who had generated the
ground truth segmentations. The resulting DSC and binary cross-entropy

values suggest that the CNNs were not overfitted to the training and vali-
dation datasets (Supplementary Fig. 3).

Image registration and visualization in 3D
The alignment of the images, called the “registration”, was the most
computationally-expensive phase and required a memory allocation in the
order of hundreds of GB. To this end, we made use of a high-performance
computing cluster at the New Zealand eScience Infrastructure. A total of
1082 central processing unit (CPU) hours from a cluster with 96 Intel Xeon
Gold 6136 @ 3.00 GHz (Skylake) was used to perform a multiresolution,
deformable registration of the 1234 sections, aligning the six structures of
interest using the four fluorescence channels.

The registration operations were performed by using the C++ Sim-
pleElastix library53 and involved two sequential steps: an intra-block regis-
tration, during which 247 blocks of five contiguous sections were registered
independently, followed by an inter-block registration, during which the
interfaces between two consecutive blocks of five sections were registered in
finer detail to yield a smooth alignment. This strategy has two advantages
over a direct registration of the complete dataset, which would entail per-
forming a registration of each section with the previous section. First, the
intra-block registration can be executed in parallel for all blocks, reducing
the total time elapsed. Second, the inter-block registration copes adequately
with the artifact of the so-called banana effect54 by performing an inter-
polation of the registration between comparable sections of adjacent blocks,
thereby smoothening the registration, with less distorted transition.

Finally, we displayed the 1234 registered sections as a 3D reconstruc-
tion by converting the files into a format that can be visualized in 3D with
ParaView55,56 (.nifti) and Neuroglancer57 (neuroglancer precomputed for-
mat). The Neuroglancer files were downsampled 16-fold to allow for fluent
visualization in a web browser.

The 3D visualization offers several didactic opportunities of interactive
exploration and virtual manipulation (Supplementary Movie 1). Next, still
views are shown for tilting the 3D reconstruction to observe it from an
oblique angle, and cutting a slice out of the 3D reconstruction (Fig. 6); slicing
the 3D reconstruction in freestyle and opening it (Fig. 7); and micro-
dissecting the 3D reconstruction akin to physically dissecting a cada-
ver (Fig. 8).

Gross anatomical organization, vasculature, and trajectory of
OSN axons
Figure 6 presents a selection of still views captured from Supplementary
Movie 1, with the corresponding time points indicated next to the clap-
perboards in the figure panels.

Tilting the 3D reconstruction and viewing it from an oblique angle
gives a first impression of the gross anatomical organization (Fig. 6, top
row). The left and right nasal cavities are linedwith nasal epitheliumand are
separated by the nasal septum, which has the perpendicular plate of the
ethmoid bone at its center (Fig. 6a). The cribriform (“sieve-formed”) plate of
the ethmoid bone rests in the axial plane between the nasal and cranial
cavities and the crista galli (“crest of the cock”) lies in the midsagittal plane
between the olfactory bulbs. The dimensions of the olfactory bulbs are
~10mm in the anterior-posterior dimension, ~2.4mm superior-inferior,
and~3.5mmmedial-lateral. Posteriorly, the olfactory bulbs taper into a thin
cylindrical shape—the beginning of the olfactory tract projecting to the
cerebral cortex. Rotating the 3D reconstruction along a vertical axis, the
dense vascularization of the lateral aspect of the left nasal cavity becomes
apparent (Fig. 6b). Several arteries have been given names14–16,58,59.

Cutting out a 1mm-thick virtual coronal slice illustrates how the OSN
segmentation visualizes the trajectory of OSN axons across their entire
length of several cm (Fig. 6, bottom row).On the lateral aspect, the olfactory
epithelium does not extend inferiorly to the superior turbinate, but on the
septal aspect, it extends much more inferiorly (Fig. 6c). OSN axons group
together into olfactory axon fascicles ultimately forming fila olfactoria that
traverse the cribriform plate ipsilaterally and innervate the glomerular array
of the ipsilateral olfactory bulb (Fig. 6d).
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Fig. 5 | Comparison of the ground truth and convolutional neuronal network
segmentations. The overlap (white) represents the agreement between the ground
truth segmentation (magenta) and the CNN segmentation (cyan) in testing section
#1401. The segmentations are overlayed on the corresponding tissue (gray). Cyan
represents an overprediction (false-positive) and magenta an underprediction
(false-negative) by the CNN segmentation. The six structures of interest are ordered
in the decreasing number of sections used to train and validate the CNN.
a Vasculature segmentation (DSC = 0.808, binary cross-entropy = 0.0148). b OSN
segmentation (DSC = 0.760, binary cross-entropy = 0.0173). The inset shows a
higher magnification of the overlap at the level of the olfactory epithelium: finer

details, includingOSNdendrites and axons, are not detected properly, resulting in an
overprediction in the CNN segmentation (more cyan) in comparison to the ground
truth (white and magenta). c Bone segmentation (DSC = 0.885, binary cross-
entropy = 0.0121). An area of bone (white arrow) was not segmented in the ground
truth due to human error but picked up by the CNN. d Glomerulus segmentation
(DSC = 0.779, binary cross-entropy = 0.0017). A part of the left olfactory bulb is
shown. e Olfactory bulb segmentation (DSC = 0.967, binary cross-entropy =
0.0044). An area of the olfactory tract was detected by the CNN (white arrowhead).
f Nasal epithelium segmentation (DSC = 0.927, binary cross-entropy = 0.0053).

https://doi.org/10.1038/s42003-024-07017-4 Article

Communications Biology |          (2024) 7:1467 7

www.nature.com/commsbio


Fig. 6 | Still views of the 3D reconstruction. The head models with positional
indicators of anterior (ant), lateral (lat), and superior (sup) in the top right corners
indicate the angle of the still views on the 3D construction. The corresponding time
points in SupplementaryMovie 1 are indicated next to the clapperboards, asminutes
and seconds. Images were taken in ParaView. aAnterior-superior still view showing
OSNs (white) and the nasal epithelium (orange). At the anterior face of the speci-
men, the nasal epithelium was physically cut. The apical side of the nasal epithelium
is contoured by a white dotted line. The olfactory projection is supported by the
ethmoid bone (gray), which includes the cribriformplate (crib) and the nasal septum
(black-dashed line), and by a dense arterial vasculature (red). The proper olfactory
artery (double arrowhead) and the accessory olfactory arteries (arrowheads) are
indicated. The olfactory bulbs (yellow, with the contours indicated by awhite dashed
line) are partially obfuscated by bone. The olfactory tract (tract) extends posteriorly
from the olfactory bulb. b Lateral still view revealing the arterial vasculature (red):

the proper olfactory artery (double arrowhead), accessory olfactory artery (arrow-
head), anterior ethmoidal artery (hollow arrowhead), posterior ethmoidal artery
(feathered arrow), and the branches of the sphenopalatine artery (rectangular
brackets). A network of smaller branches of the anterior and posterior ethmoidal
arteries are observed along with the olfactory axon fascicles (double arrows). The
crista galli (black dashed line) separates the olfactory bulbs. The area demarcated
with a white dashed line and annotated with the letter c is the virtual coronal slice
shown in (c). c The ~1 mm-thick virtual coronal slice viewed in a coronal plane
reveals the microanatomical relationships between the nasal cavity and the olfactory
bulbs. OSNs reside in the superior aspect of the nasal epithelium. d A high-
magnification view of the dashed rectangle demarcated in (c). Axons of OSNs form
within the lamina propria olfactory axon fascicles of progressively larger diameter.
The fila olfactoria traverse ipsilaterally the cribriform plate (crib) toward the ipsi-
lateral olfactory bulb. OSN axons terminate within glomeruli (magenta).
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Olfactory epithelium, fila olfactoria, and foramina
Figure 7 presents another selection of still views captured from Sup-
plementaryMovie 1. The irregular and discontinuous topography of the
olfactory epithelium can be readily appreciated by slicing the 3D
reconstruction along a parasagittal plane in the left nasal cavity and
viewing the two resulting parts from an oblique angle (Fig. 7, top row)
and then opening it completely and viewing the two parts sideways
(Fig. 7, bottom row). A still view of the right part of the parasagitally
sliced 3D reconstruction reveals two broad areas of olfactory epithelium

on the septal aspect of the left nasal cavity, separated by a superior-
inferior running band of nasal epithelium devoid of OSNs (Fig. 7a). A
still view of the left part of the parasagitally sliced 3D reconstruction
displays the serrated contours of the olfactory epithelium on the lateral
aspect (Fig. 7b). A thick filum olfactorium is seen innervating the left
olfactory bulb posteriorly, close to an artery (Fig. 7c). Several fila
olfactoria can be discerned anteriorly (Fig. 7d). In the 3D reconstruction,
wemanually counted 10 fila olfactoria laterally and 7medially on the left
side, and 9 laterally and 8 medially on the right side—34 in total.

Fig. 7 | More still views of the 3D reconstruction. The headmodels with positional
indicators of anterior (ant), lateral (lat), and superior (sup) in the top right corners
indicate the angle of the still views on the 3D construction. The corresponding time
points in SupplementaryMovie 1 are indicated next to the clapperboards, asminutes
and seconds. Images were taken in ParaView. Slicing the 3D reconstruction virtually
along a parasagittal plane through the left nasal cavity exposes the nasal epithelium
(orange) lining the septal aspect (a) and the lateral aspect (b) of the left nasal cavity.
The distribution of OSNs (white) is irregular and the borders of the area occupied by
OSNs are serrated. At the anterior face of the specimen, the luminal surface of the
nasal epithelium of the left and right nasal cavities (white dotted lines) was physically
cut. The curvature of the superior turbinate (black dotted line; b) is visible in the
posterior aspect above a hole in the specimen. The perpendicular plate of the

ethmoid bone (septum, black dashed line; a) lies in a midsaggital plane. Fila olfac-
toria (arrows) traverse the cribriform plate (crib). The accessory olfactory artery
(arrowhead) is partially visible.High-magnification views of the dashed rectangles in
(b) show posterior fila olfactoria (c) and anterior fila olfactoria (d) (arrows) tra-
versing the cribriform plate through foramina (white dashed lines) toward the
olfactory bulb (yellow). Parasagittal still views of the septal aspect (e) and lateral
aspect (f) of the left nasal cavity highlight the irregular topography of OSNs within
the nasal epithelium. In the lateral aspect (f), OSNs do not extend below the cur-
vature of the superior turbinate (black dotted line). High-magnification views of the
dashed rectangles in (f) illustrate the difference inOSNdensity posteriorly (g, dense)
compared to anteriorly (h, less dense).
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Fig. 9 | Visualization of the 3D reconstruction in the Neuroglancer platform.
Neuroglancer is a WebGL-based, user-friendly viewer for 3D data. It hosts the
scanned images and segmentation data of the complete dataset of 1234 sections of
the olfactory en-bloc specimen extracted from case A1147. aThe x, y, and z positions
of the common origin of the colored axis lines in (e) are indicated at the left of the top
menu bar. b The layers panel displays each of the fluorescence channels and CNN
segmentations and controls the visibility of the channels and segmentations dis-
played in (e). c The help panel provides information on the keyboard shortcuts.
dThe settings panel enables the customization of the viewer. GPUandCPUmemory
usage can be adjusted.Helper tools such as axis lines and scalebar can be hidden from
view. The background color can be changed. eThemain visualization panel displays,
by default, four views with the layers indicated along the top. The coronal slice (top

left) displays the original orientation of the sections and segmentations. The axial
slice (top right) and sagittal slice (bottom right) are generated by virtual reslicing of
the 3D reconstruction. The complete 3D reconstruction (bottom left) can be rotated
in 360°. Top right arrows indicate anterior (ant), lateral (lat), and superior (sup).
Left-clicking the layers tabs toggles visibility and right-clicking activates the layer
control (f) for that selection. Toggling the buttons in the upper right corner expands
the view to a two-split or full-screen view. f The layer control panel allows for the
manipulation of the displayed color, opacity, brightness, and contrast for each of the
channels and segmentations. g QR code of the link to a compact (mobile-friendly)
view of the model hosted on the Neuroglancer platform, without information (b–d)
and (f) displayed. The link to the full view is https://mip.datavisualiser.cloud.edu.au/
neuroglancer/A1147/it13.

Fig. 8 | Foramina in the cribriform plate. Superior views. a The olfactory bulbs are
separated anteriorly by the crista galli and posteriorly by the perpendicular plate of
the ethmoid bone (black dashed line). Anteriorly, a few fila olfactoria (arrows) are
visible. b A virtual dissection of the olfactory bulbs exposes multiple fila olfactoria

traversing the cribriform plate and a network of arterial vasculature (red). c Isolating
the cribriform plate (gray) exposes the foramina (white dashed lines). There are 17
foramina on either side of the specimen, for a total of 34 foramina.
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Opening the parasagitally sliced 3D construction completely, akin to
opening a book and flattening the two adjacent pages, gives still views of
the septal aspect (Fig. 7e) and the lateral aspect (Fig. 7f) of the left nasal
cavity. The olfactory epithelium is denser posteriorly (Fig. 7g) than
anteriorly (Fig. 7h).

Counting foramina in the cribriform plate
Figure 8 shows a virtual microdissection of the 3D reconstruction, akin to
physically dissecting the specimen. A virtual microdissection conducted
above the cribriform plate provides still views of the foramina of the cri-
briform plate. Anteriorly, medial and lateral fila olfactoria can be discerned
coursing toward the olfactory bulbs (Fig. 8a). After removing the olfactory
bulb segmentation, more fila olfactoria are unveiled, ascending through
foramina of the cribriform plate, and a network of vasculature below the
cribriform plate is intermittently observed through the foramina (Fig. 8b).
Removing all other structures to isolate the cribriform plate from the

surrounding bone reveals the foramina (Fig. 8c). Exploring the 3D recon-
struction, we counted 17 foramina on each side—34 in total.

Interleaved sampling
Having processed the complete dataset of 1234 sections, we can evaluate the
outcome of using only a subset of sections at a given sampling rate, which is
called “interleaved sampling”. Note that, since each section was segmented
independently, the CNN segmentations themselves are not affected by the
interleaved sampling.

Quantitatively, we evaluated the impact of interleaved sampling
in terms of a percentage error—the absolute change in percentage
from the surface area or volume (Supplementary Fig. 5). At sampling
rate of 1 in 4, there was a minor error in the measures compared to
the complete dataset. At 1 in 32, the various measures still have an
error of less than 5%, except for the glomerular volume. Qualitatively,
we evaluated the outcome of registering two subsets, at sampling

Fig. 10 | The envelope of the morphologically enclosed olfactory epithelium.
a 10 μm coronal section (#1160) stained fluorescently for Hoechst (gray), Ulex
europaeus agglutinin-1 (green), olfactory marker protein (red), and vesicular glu-
tamate transporter 2 (blue). The interrupted white line represents the regions of the
nasal epithelium that contain OSNs. b Merge of Hoechst with the CNN segmen-
tation of OSNs (cyan). cMerge of Hoechst with the envelope of the olfactory epi-
thelium (yellow). d High-magnification view of the rectangle demarcated in (a).
Merge of Ulex europaeus agglutinin-1 (green) and olfactory marker protein (red)
illustrates howOSNs in the nasal epithelium can be identified and countedmanually.
The solid white line indicates what was measured by the trained anatomist to
determine the length of nasal epithelium that contains OSNs. The dashed white line

indicates the basal lamina. eHigh-magnification view of the rectangle demarcated in
(b). Merge with the CNN segmentation of OSNs (cyan). White represents overlap
between the ground truth and CNN segmentations of OSNs and cyan represents
overprediction by the CNN segmentation. The dashed white line indicates the basal
lamina. fHigh-magnification view of the rectangle demarcated in (c).Mergewith the
CNN segmentation of OSNs within the nasal epithelium, morphologically closed
along the apical-basal dimension by erosion and dilation, reveals the envelope of the
olfactory epithelium (yellow) that was used to calculate the volume of the entire
olfactory epithelium. The semi-circular “bites” in the contours of the envelope reflect
the morphological operation of erosion using a disk of a diameter of 80 µm as a
structuring element.
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rates of 1 in 4 and 1 in 16. We found that the degradation in the
quality of the visualization is still acceptable at 1 in 4 (Supplemen-
tary Fig. 6).

Public access via Neuroglancer
The complete dataset, downsampled 16-fold (~5.8 GB per channel and
~1.45 GB per CNN segmentation, voxel volume 17.559 × 17.559 × 10 µm),
is available online in a user-friendly format through Neuroglancer, a web-
based platform (Fig. 9). The user can pan through 2D views in the original
coronal plane, as well as in virtual axial and sagittal planes. The 3D visua-
lization canbe rotated in 360° and each channel andCNNsegmentation can
be viewed in customizable combinations.

Computing the total number of olfactory sensory neurons
The OSN segmentation does not have single-OSN resolution and therefore
does not allow us to directly obtain the total number of OSNs in the spe-
cimen. A complicating factor in countingOSNs in humans is that OSNs are
distributed non-uniformly across the nasal epithelium.

We computed the total number of OSNs in the specimen based on the
concept of an envelope of the olfactory epithelium, in five steps (Fig. 10).
First, using Fiji60, we counted the average number of OSNs per unit length
(mm) of olfactory epithelium as 78.31 ± 4.65 (mean ± SEM), with an
Abercrombie correction for overcounting, from manually counting 14,570
OSNs in 7 sections throughout the specimen. Second, further using Fiji, we
calculated the average thickness of the olfactory epithelium as
67.23 ± 0.90 µm (mean ± SEM), from 240 measurements at 20 locations
where OSNs were present, in 12 sections throughout the specimen. Third,
with a section thickness of 10 µm, we computed the OSN density as
116,472.64 ± 7118.24 (mean ± SEM) per mm3 of olfactory epithelium, with
the SEM calculated using Fieller’s theorem. Fourth, we calculated the
volume of the olfactory epitheliumas 22.97mm3 froman envelope obtained
by determining the intersection of the nasal epithelium segmentation and
the OSN segmentation and closing the holes along the thickness of the
epithelium with the morphological operations of erosion and dilation61.
Fifth, extrapolating theOSNdensity permm3 to the volume of the envelope
of the olfactory epithelium yielded a computed total number of
2,675,323 ± 163,486 (mean ± SEM) OSNs. The 90% confidence interval
from 2,406,390 to 2,944,259 was determined using the Delta method.

Taken together, by extrapolatingmanual counts ofOSNs in a subset of
sections to the calculated volume of the envelope of the entire olfactory
epithelium, we computed a total of ~2.7 million OSNs in the specimen.

Discussion
The en-bloc specimen of case A1147 measures ~1.92 cm in the anterior-
posterior dimension, ~2.27 cm superior-inferior, and ~1.71 cm left-right,
for a volume of ~7.45 cm3. A comparable en-bloc specimen from a 21-day-
oldmouse62measures~1 cmanterior-posterior, ~0.5 cmdorsal-ventral, and
~0.4 cm left-right, for a volume of 0.20 cm3. Thus, the dataset volumes
contain ~37-foldmore information in human compared tomouse.Manual
segmentation and processing of the terabytes-sized datasetwould have been
prohibitively labor-intensive. Instead, we trained CNNs and made use of a
high-performance computing infrastructure to process 1234 sections and to
manage the computational complexity posed by the registration of this
many images. Our computing approach efficiently manipulated the com-
plete dataset in a distributed manner across multiple processors and within
reasonable processing times. Our inter-block and intra-block multi-
resolution pyramid approach to themost computationally-expensive phase
of the project—the registration—overcame some of the file size limitations
while preserving the microanatomy in the resulting 3D reconstruction.

Consistent with the long history of research on the human regio
olfactoria21, we observed a complex topography of the olfactory epithelium
in the specimen. Some of the adjectives and prose that have appeared in the
literature are: degenerated, eroded, heterogeneous, intermixed, interrupted,
interspersed, non-continuous, non-uniform, patchy, porous, and
serrated18,19,21,30,63–70 and an archipelago71,72. Studies on the fetal human

olfactory epitheliumare far and few between45,64,69, and, like inmice and rats,
it presents as continuous and is outlined by a regular border with the
respiratory epithelium. This pristine topography appears to break down
already at 1–2 years of age in humans65. In future studies, markers can be
employed to identify sustentacular cells, enabling the segmentation of so-
called “aneuronal” olfactory epithelium: areas devoid of OSNs but still
containing sustentacular cells and basal cells30,66,69,73,74.

The OSN segmentation that we report here does not have single-OSN
resolution. We computed a total of 2,675,323 ± 163,486 (mean ± SEM)
OSNs in the specimen. This computed number could be a lower estimate
because some OSNs may not have been included in the specimen, parti-
cularly in the posterior aspect. Due to the idiosyncratic topography of the
human olfactory epithelium and the non-uniformdistribution ofOSNs, the
unknown sampling error made by analyzing small samples75–78 has pre-
cluded attempts in the literature at computing or even estimating the
numbers of OSNs in a human being.

There is currently no computational approach to reliably delineate
individual human glomeruli as units and count them34. The glomerulus
segmentation thatwe report here ought tobe seen as the segmentation of the
glomerular component of the olfactory bulb. Nonetheless, the following
quantitative considerations might be informative. A range of 2975 to 9325
glomeruli per human olfactory bulb was proposed in one study33. The
olfactory bulb with the largest number of glomeruli in that study33 had a
volume of 65.31 mm3, which is comparable to the volumes of 66.32 and
68.21mm3 that we measured in the specimen. Adopting their theoretical
reasoning33 that human glomeruli are spheres with an average diameter of
59.60 µm, our estimates for the specimen are 13,983 glomeruli left and
12,088 right, based on glomerular volumes of 1.55mm3 left and 1.34mm3

right. At an average diameter of 55.15 µm (their lower end33), our estimates
are 17,648 glomeruli left and 15,257 right; and at an average diameter of
65.13 µm (their higher end33), our estimates are 10,715 glomeruli left and
9263 right.Of note, small differences in the hypothetical average diameter of
glomeruli viewed as spheres result in large differences in the estimates of the
numbers of glomeruli, due to the third power of the radius in the formula for
the volume of a sphere.

When our computed count of 2,675,323 OSNs total is divided by our
estimate of 26,071 glomeruli total (19,978 at the higher end of average
glomerular diameters and 32,905 at the lower end), there would be an
average of ~103OSNs innervating a glomerulus (~134 and~81 at the higher
and lower ends, respectively), provided that OSN axons do not branch. In
21-day-old mice, we obtained an estimate of ~6,600,000 OSNs79, and with
~3600 glomeruli in a mouse olfactory bulb42, that amounts to ~917 OSNs
per glomerulus. Puzzlingly, there may thus be a difference of an order of
magnitude between humans and mice in terms of the average number of
OSNs per glomerulus. Thismajor quantitative differencemaywell translate
into major qualitative differences in the coding logic of olfactory sensory
processing between humans and mice. In this regard, it remains entirely
unclear, and experimentally difficult to determine, whether a human glo-
merulus is innervated homogeneously by axons of OSNs expressing the
same odorant receptor gene, as is the case in mice.

On the other hand, the subpopulations of OSNs expressing a given
odorant receptor gene may turn out to be surprisingly similar in humans
and mice. With 2,675,323 OSNs in the specimen and 389 odorant receptor
genes in the human genome43, there would be an average of 6877 OSNs per
odorant receptor gene. This number is comparable to the 5784 OSNs per
odorant receptor gene in mice: ~6,600,000 OSNs divided by 1141 odorant
receptor genes in the mouse genome43.

Going forward, interleaved sampling will reduce the time and
resources for the computationally-expensive phase of registration and will
increase the throughput of the workflow. An appreciation of the variability
among human subjects with normal olfactory function would provide a
baseline and framework for a quantitative approach to themicroanatomical
aspects of the pathobiology of olfactory dysfunction in the two most com-
mon neurodegenerative diseases, Parkinson’s and Alzheimer’s disease, as
well as of olfactory dysfunction that persists after a SARS-CoV-2 infection.
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By using other panels of antibodies or adding fluorescence channels, CNNs
could be trained to distinguish between mature and immature OSNs; to
identify sustentacular cells and ciliated respiratory cells; to segment lym-
phatic vessels; and to detect pathological accumulations like α-synuclein
(Parkinson’s) and phosphorylated tau (Alzheimer’s). A more distant
objective would be to assemble similar 3D reconstructions of the entire
human brain. At an interleaved sampling rate of 1 in 4 and with 4 fluor-
escencechannels per subset (Hoechst being a shared channel), a palette of 13
fluorescence markers would segment myriad structures of interest.

An obvious limitation of our study is that it is an n of 1. We do not
know how representative case A1147 is for the human species. Another
related, limitation is that the throughput is ultra-low. Our objective was
to provide a proof of principle for how to study histologically the
microanatomy of the human olfactory projection; this study ought to be
viewed as a case report. The specimen was from an aged individual, but
most individuals who bequeath their bodies for research are aged. Due to
the physical size of the scanned images and the computational demands
required to handle the dataset, we downscaled the images to a 1:4
resolution. With more computational power and computational
advances, a higher resolution will be attainable. Our methodology80 was
developed for the segmentation, registration, and reconstruction of a
specific specimen and should not be understood as a general metho-
dology for such specimens. Demonstrating generalizability requires
assessing how well the workflow performs with other specimens and
may require additional training andmodifications. Last but not least, the
most labor-intensive phase in terms of hands-on time was the ground
truth segmentation by a trained anatomist. This time-consuming phase
precludes the creation of a veritable pipeline and upscaling the sample
size by, say, an order of magnitude. Novel approaches to generating a
virtual ground truth must be explored.

Methods
Cadavers and specimens
Postmortem en-bloc specimens were collected at the Human Anatomy Lab
of The University of Auckland through the Human Body Bequest Pro-
gramme, which is governed by the New Zealand Police, and in compliance
with the Human Tissue Act 2008 from the New Zealand Parliament. Full
written informed consent was obtained from the family prior to any
procedure taking place. All ethical regulations relevant to human research
participants were followed. The donors had no documented history of
olfactory dysfunction and died in the prepandemic era. Upon arrival at the
Human Anatomy Lab, cadavers were embalmed via the common carotid
and femoral arteries, flushing first with 5 liters of saline solution followed
by ~20 liters of Dodge Anatomical Arterial Michigan Mixture. The brain
was removed from the cadaver in such a way that the olfactory bulbs
remained attached to the cribriform plate of the ethmoid bone. Incisions
were made posterior to the frontal sinus, anterior to the sphenoid bone,
and lateral to the olfactory bulbs, and a specimen containing the olfactory
projection and ancillary structures was extracted en bloc. The specimens
were further fixed with 15% formalin in 0.1M phosphate buffer for 24 h at
room temperature and decalcified with 0.45M EDTA in phosphate-
buffered saline (PBS) for 3 months at room temperature. The EDTA buffer
was changed every 4–6 weeks and the progress of decalcification was
manually checked for completion. The decalcified specimens were trim-
med of excess tissue, dehydrated in a graded ethanol series, cleared, and
infiltrated with molten paraffin wax. The paraffin blocks were cooled to
4 °C and cut serially into 10 µm coronal sections on a rotary microtome
(Leica Biosystems, Cat#RM2235), from the anterior to the posterior face of
the specimen. Sections were floated in a water bath (Leica Biosystems,
Cat#HI1210) at 38–40 °C, mounted on UberfrostPlus slides (InstrumeC,
Cat#VS5116W20F-PLUS), air-dried, and stored at room temperature. A
grand total of 11,805 sections were cut: A1130, n = 1500 sections (two
thirds of the specimen sectioned); A1144, n = 2097 (sectioned to comple-
tion); A1147, n = 1923 (to completion); A1161, n = 1953 (to completion);
A1164, n = 2100 (to completion); A1177, n = 2232 (to completion).

Chromogenic staining of sections for case selection
To determine the preservation and tissue quality of the specimens, sections
were sampledat an interval of 1500 µm(i.e., every 150th section) and stained
chromogenically. Slideswere dewaxed byheating to 60 °C for 1 h, immersed
2 × 20min in xylene, rehydrated in an ethanol series, followed by heat-
induced antigen retrieval using Tris-EDTA with Tween buffer (pH 9.0)
heated to 121 °C and left to cool for 2 h in a pressure cooker (Aptum
Biologics Ltd., Cat#2100 Antigen Retriever). Slides were washed for 10min
in PBS and endogenous peroxidases were blocked with 50% methanol/1%
H2O2 for 20min at room temperature. Slides were washed 3 ×10min in
PBS, blocked for 1 h at room temperature in PBS with 10% normal donkey
serum (Genetex, Cat#GTX73245), then incubated for 72 h at 4 °Cwith goat
anti-OMPantibody (1:10,000; FUJIFILMWakoShibayagi, Cat#019-22291-
WAKO) diluted in PBS with 1% normal donkey serum and 0.2% Triton.
Slides were washed 3 × 10min in PBS and incubated for 2 h at room
temperature with biotinylated donkey anti-goat secondary antibody
(1:1,000, Jackson ImmunoResearchLaboratories,Cat#705-065-003) diluted
in PBS with 1% normal donkey serum and 0.2%Triton. Slides were washed
3 ×10min in PBS before and after incubation in ExtrAvidin-Peroxidase
(1:1000; Sigma, Cat# E2886-1ML) for 1 h at room temperature. Visualiza-
tionwas carried outwith 3, 3-diaminobenzidine (DAB) chromogen (Sigma-
Aldrich, Cat#D5637) for 20min at room temperature. Slides were washed
with PBS, then with water. Slides were counterstained with Alcian blue (for
mucins) and Hematoxylin (for nuclei), as follows: after a 5min wash in
water, slideswere incubated inAlcian blue (1% in 3%acetic acid, pH2.5) for
10min, thenwithHematoxylin (Gill II, Leica Biosystems, Cat#3801520) for
1min, differentiated with 1% acid alcohol, blued in 1% lithium carbonate,
washed in water, dehydrated in an ethanol series followed by 3 ×30min
Xylene baths. Slides were coverslipped using the non-aqueous mounting
medium DPX new (Sigma-Aldrich, Cat#1.00579). These chromogenically
stained lines were inspected under a Nikon Eclipse NiE microscope with a
motorized stage, and tiled scans were captured using NIS elements software
and a Nikon DS-Ri2 brightfield camera.

Case A1147
The en-bloc specimen extracted from case A1147 had the most intact
morphological appearance among the six available specimens and was
selected for the 3D reconstruction. The medical history of this 88-year-old
male includes type 2 diabetes mellitus, hyperlipidemia, ischemic heart dis-
ease, and two-stroke events, but no documented history of olfactory dys-
function. Apathetic-type dementia was diagnosed three years before death
and progressed to severe dementia in the week before death. The cause of
deathwas sepsis and thepostmortemdelaywas~24 h.The enbloc-specimen
measured after trimming ~1.92 cm in the anterior-posterior dimension,
~2.27 cm superior-inferior, and ~1.71 cm left-right, corresponding to a
volume of ~7.45 cm3. This cadaveric tissue sample is referred to as “the
specimen”.

Fluorescence staining of sections of the specimen
A subset of 72 sections/24 slides of the original series of 1923 sections was
used for validation, as follows: 36 sections/12 slides for chromogenic
labeling, 6 sections/2 slides to check cilia quality, 6 sections/2 slides for
RNAscope, and 24 sections/8 slides for testing fluorescent stainings. The
remaining 1851 sections were subjected to quadruple fluorescence staining.
Slides were dewaxed, rehydrated in an ethanol series, followed by heat-
induced antigen retrieval using the antigen retrieval buffer Tris-EDTAwith
Tween (pH9.0) heated to 121 °C and left to cool for 2 h in a pressure cooker.
Slides were washed 3 ×10min in PBS and blocked for 1 h at room tem-
perature in 10% normal donkey serum. Slides were incubated for 72 h at
4 °C in a humidified chamber with primary antibodies goat anti-OMP
(1:2000) and guinea pig anti-VGLUT2 (1:1000; Frontier Science, Cat#V-
GluT2-GP-Af670-1) togetherwith biotinylatedUlex europaeus agglutinin-1
(UEA1) (1:2000; Vector Laboratories, Cat#B-1065), diluted in PBS with 1%
normal donkey serum and 0.2% Triton. Slides were washed 3 ×10min in
PBS and then incubated for 2 h at room temperature with fluorescently
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conjugated secondary antibodies Alexa Fluor Plus 594 donkey anti-goat
(1:500; ThermoFisher, Cat#A32758), Alexa Fluor 647 donkey anti-guinea
pig (1:500; Jackson ImmunoResearch Laboratories, Cat#706-605-148),
together with Alexa Fluor 488 streptavadin (1:500; ThermoFisher,
Cat#S32354) and Hoechst 33342 (1:20,000; MolecularProbes, Cat#H1399),
diluted in PBS with 1% normal donkey serum and 0.2% Triton. Slides were
washed 3 ×10min in PBS, coverslipped with antifade mountant ProLong
Diamond (ThermoFisher, Cat#P36961), sealed around the edges using nail
polish, and stored at 4 °C.

Scanning of sections of the specimen
The 1851 sections/617 slides were scanned as a three-level z-stack using a
PANNORAMICMIDI II fluorescence digital slide scanner (3DHISTECH)
with a 20× objective (0.8 NA) and a resolution of 0.274 µm per pixel. Filter
sets were: DAPI (F36-500), 377/50 nm Ex (excitation) and 447/60 nm Em
(emission); EGFP (F36-526), 482/18 nm Ex and 520/28 nm Em; TxRed/
mCherry/Alexa594 (F26-310), 560/40 nm Ex and 635/60 nm Em; and Cy5
(F46-006, AHF), 620/60 nm Ex and 700/75 nm Em. Files were saved as
JPEGEX, 12 bit, with 80% quality, taking ~15 GB per slide and ~12.2 TB in
total. The three sections on a slidewere annotatedwith the slide number and
A,B,C inCaseViewer (3DHISTECH).The extended focus (mergedz-stack)
of each of the four channels of each section was exported. The BigTIFF, 1:4
resolution (1.097 µm per pixel), grayscale, and lossless compression (~200
MB per channel per section) files were padded to 20,736 × 15,616 pixels so
that all images had the same dimensions. These files were renamed with
sequential identifiers 0001-1923. The padded 1:4 resolution is henceforth
referred to as “the original resolution”.

Of the original series of 1923 sections, 689 sections (35.8%) were not
incorporated in the complete dataset, for one of three reasons. First,
72 sections were used for validation, as explained above, leaving 1851 sec-
tions for fluorescence staining and scanning. Second, 32 of these 1851 sec-
tions (1.7%) did not image properly during the scanning. Third, the poor
quality of 585 of these 1851 sections (31.6%) would have impaired the
automatic segmentation and registration protocols. Of these 585 sections,
over 70% were excluded due to tissue damage (such as excessive deforma-
tion, sectioning damage, and missing pieces), and the remainder were lar-
gely excluded due to tissue folding over itself or the olfactory bulb sections
becoming detached (Supplementary Fig. 2). Most of the non-included
689 sections were from the posterior (40%) and anterior (28%) quarters of
the specimen.The largest sets of consecutivelynon-includedsections consist
of 16, 13, 11, 10, 10, 10, and 10 sections (total of 80 sections), representing
12% of the 689 sections that were not included. Most sets of consecutively
non-included sections consist of ≤5 sections (total of 467 sections), repre-
senting 68% of the 689 sections that were not included; of these, 191 non-
included sectionswere solitary in that thepreceding (anterior) and following
(posterior) sections were included. The remaining 142 sections (20%) are
from sets of consecutively non-included sections numbering between 6 and
9. The final number of included sections is 1234, representing 64.17% of the
original series of 1923 sections. These 1234 sections are referred to as “the
complete dataset”.

Manual segmentation to generate the ground truth
Six structures of interest were manually segmented into four sets of six
sequential sections that evenly sampled the specimen. These 24 sections
served to generate a reference dataset that formed the ground truth for
training the CNNs for automatic segmentation; 20 sections formed the
training dataset and 4 sections formed the validation dataset. After
initial training, up to 31 additional sections were segmented manually to
further train and validate the CNNs. Finally, two sections (#850 and #1401)
were manually segmented and served as testing sections to test the perfor-
mance of the CNN after the phase of training and validation (Supple-
mentary Fig. 3).

The six structures of interest were manually segmented using Amira
software (FEI, Hillsboro, OR, USA) on a Precision 7920 tower workstation
(DELL)with aWacom Intuos ProMedium tablet. Each structure of interest

was identified using the information available from all four stains: Hoechst,
UEA1, OMP, andVGLUT2. The structures of interest are nasal epithelium,
OSNs, glomeruli, olfactory bulbs, vasculature (arterial), and bone. For the
segmentation of the nasal epithelium, no distinction was made between
respiratory and olfactory epithelium. Tomanage display lag due to the large
file sizes after the images were loaded into Amira, sections were sliced into
six regions of interest that were extracted and segmented independently of
each other. Afterwards they were merged again (resampled) to form a
complete section.

In each section, all structures of interest were segmented using a
combination of thresholding and manual tracing. Interactive thresh-
olding was used to optimally display the structures of interest. A label
analysis was then applied with an analysis filter and a mask was gener-
ated using threshold-by-criterion tofilter objects too large or too small to
be the structure of interest. Additionally, using the arithmetic compu-
tation, values from channels were added and subtracted from each other
to offer alternative visualizations of specific structures of interest. In the
segmentation editor, each structure of interest was given a unique label
and the tools of masking, brush, lasso, and magic wand, were used
togetherwith threshold tools to complete the segmentation of a structure
of interest.

Automatic CNN segmentation
A 2DU-Net architecture was adjusted for the task to achieve a good trade-
off between manual segmentation effort and segmentation accuracy (Sup-
plementary Fig. 3). As the task of manual annotation is labor-intensive (up
to 34 h per section) and demands the sustained attention of a trained ana-
tomist, the number of ground truth sections, and therefore the size of the
dataset, needed tobekept relatively small. To achievehigh-accuracy training
with such a relatively small dataset, two strategies were followed: (i) a
bootstrap approach to actively check the network accuracy for each new
batch of manually segmented sections, and then add more sections if the
accuracy remained low; and (ii) shallower architectures to reduce the
degrees of freedom to be trained. Strategy (ii) favored the use of a 2DU-Net
with a minimal number of features at each resolution, resulting in the
architecture presented below.

The ground truth dataset of 24 sections was divided into a training and
validation split of 20 and 4. For each of the six structures of interest, an
independent CNN was trained using TensorFlow (v2) on Python 3. The
CNNs chosen for this study are based on the U-Net architecture44. A
bootstrap approach was employed starting with the initial training dataset
and where the trained CNN could not achieve the desired DSC, the lower-
quality sections in the complete dataset weremanually corrected and added
to the ground truth.The corrected sections togetherwith the original dataset
of 24 sections were then used to further train the CNN for the structure of
interest. This process was repeated until the desired DSC was achieved or
there were diminishing returns.

The CNNs take an input tensor of size 512 × 512 × 4, representing a
512 pixels width by 512 pixels height region of the section, and by four
channels (Hoechst, UEA1, OMP, VGLUT2). During training, the sections
were cropped randomly to allow for an even sampling of the entire section
with overlaps so that only the center pixels (which contain more informa-
tion for the CNN to make decisions on) were used for segmentation.

A 3 × 3 convolution kernel size was employed to extract local features
and a binary cross-entropy loss function was utilized to measure the dis-
crepancy between predicted and ground truth segmentations. The ADAM
optimizer in the TensorFlow framework was chosen to expedite the con-
vergence of the model, with a batch size of 32.

The architecture comprises an encoder, a bottleneck, a decoder, and an
output layer. The bottleneck connects the outputs of the encoder to the
inputs of the decoder and, in turn, the output layer post-processes the
outputs of the decoder. At the same time, the encoder has skip connections
to the decoder as proposed in the original U-Net architecture44 (see the
concatenation operators in the description below). The encoder, bottleneck,
decoder output layer architectures are as follows:
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· Encoder layer 1: Block composed of two 2D convolution operators
with a 3 × 3 kernel extracting 8 features each, followed by a batch normal-
ization and a 2 × 2 max pooling operations.

· Encoder layer 2: Block composed of two 2D convolution operators
with a 3 × 3 kernel extracting 16 features each, followed by a batch nor-
malization and a 2 × 2 max pooling operations.

· Encoder layer 3: Block composed of two 2D convolution operators
with a 3 × 3 kernel extracting 32 features each, followed by a batch nor-
malization and a 2 × 2 max pooling operations.

· Bottleneck: Block composed of two 2D convolution operators with a
3 × 3 kernel extracting 64 features each, followed by a batch normalization
and a 2D transpose convolution operator with a 2 × 2 kernel.

· Decoder layer 3: Block composed of a concatenation operator fusing
the Encoder layer 3 (the before max pooling operation) and the Bottleneck
outputs, followed by two 2D convolution operators with a 3 × 3 kernel
extracting 32 features each, a batch normalization operator and a 2D
transpose convolution operator with a 2 × 2 kernel.

· Decoder layer 2: Block composed of a concatenation operator fusing
the Encoder layer 2 (the before max pooling operation) and the Decoder
layer 3 outputs, followed by two 2D convolution operators with a 3 × 3
kernel extracting 16 features each, a batch normalization operator and a 2D
transpose convolution operator with a 2 × 2 kernel.

· Decoder layer 1: Block composed of a concatenation operator fusing
the Encoder layer 2 (the before max pooling operation) and the Decoder
layer 3 outputs, followed by two 2D convolution operators with a 3 × 3
kernel extracting 8 features each and a batch normalization operator.

· Output layer: Block composed of a 2D convolution operator with a
3 × 3 kernel extracting 2 features followedby softmax activation yielding the
class probability of each pixel.

All images were utilized in their original resolution except for the
olfactory bulb, which was downsampled fourfold (4.390 µm per pixel).
Because the olfactory bulb is one order of magnitude larger than the other
structures of interest, only its large-scale features are useful in the recogni-
tion tasks, and for the training of this CNN, the downsampled resolution
gave faster and more accurate results than the original resolution. All 2D
convolution operators use rectified linear unit (ReLU) as activation
functions.

To reduce the experimental variation effect resulting from the staining
and imaging process, an intensity augmentation was performed by ran-
domly raising or lowering the channel intensities at each training step. We
draw values from a uniform distribution of [−0.01, +0.01] to add to each
individual channel during training. With the maximum intensity being 1,
the distribution is informed by the intensity variation range of the images.
The intensity was only augmented for less than how much it varied across
the complete dataset. The objective was to force the CNN to learn that only
the relative intensity between the neighboring pixels affects the segmenta-
tion results and that the overall intensity of a channel is not relevant. The
CNN could then make consistent predictions across the complete dataset
despite variations in channel brightness.

We trained the CNN for ~100 epochs for five structures of interest and
~400 epochs for the olfactory bulb. Preliminary training runs enabled an
estimate of thenumber of epochs itwould take for theCNNtobe trained. By
the end of the training, the binary cross-entropy on the validation dataset
had stopped improving for at least 10 epochs. The 100 epochs were divided
into three stages with an initial learning rate of 1.0E-04 (large), decreased
gradually to 5.0E-05 (medium), and finally to 1.0E-05 (small). A CNN was
trained for ~35 epochs at each learning rate. TheCNNfor the olfactory bulb
was trained in two stages of 200 epochs, with large and small training rates.
We decreased the learning rate so that the CNN could initially explore the
solution space with a sufficiently large step size and, once a local minimum
was found, converge to thisminimumtoachieve theoptimal solutionwithin
the region. Note that this varying learning rate is different from the built-in
adaptive step size in the ADAMoptimization algorithm. At the end of each
stage, the best-performing set of weights in the validation dataset was
selectedas the initial trainingmodel for thenext stagewith a smaller learning

rate. To mitigate overfitting, a dropout rate of 0.2 was applied before each
max-pooling operation in the encoder. With binary segmentation being
performed, the CNN outputs a floating-point number between 0 and 1 for
each pixel, which represents the probability for it to be a foreground or a
background pixel, and this number is used to calculate the binary cross-
entropy (the lower, the better).

A threshold value is needed to determine the cut-off between fore-
ground and background. Due to the disproportional foreground vs. back-
ground pixel counts, the dataset is imbalanced. Therefore, the following
metrics were analyzed to determine classification accuracy: Precision = true
positives/(true positives + false positives), Recall = true positives/(true
positives+ false negatives), andDSC= (2*Precision *Recall)/(Precision+
Recall). The definition of DSC between two masks X and Y is

DSC X;Yð Þ ¼ 2 � jX \ Yj
Xj j þ jYj ð1Þ

where Xj j is the number of 1-valued pixels in a mask, and X \ Y is the
intersection of 1-valued pixels between X and Y. In (1), X is ground truth
segmentation andY isCNNsegmentation.Precisionmeasures thequality of
correct classification and Recall measures the quantity of correct
classification. The DSC represents the intersection of the CNN segmenta-
tion and the manual segmentation divided by the union of the two and is a
balance between Precision and Recall. We determined the classification
threshold by choosing the cut-off value that gives the best DSC in the
validationdataset. The threshold associatedwith the best-performingmodel
was then used as the final threshold for that CNN.

The CNN segmentation and 3D reconstruction were assessed for
aberrant and erroneous structures as well as continuity between sections by
a trained anatomist. To test that theCNNswere performing as expected and
were not overfitted to the training and validation datasets, a further two
sections unseen by the CNNs were segmented by a trained anatomist,
creating a second groundtruth dataset for testing the CNNs in an unbiased
manner.

Anatomy-based registration
Tissue deformations during the processes of fixation, sectioning, and
staining result in global and local misalignments across sections. To register
the individual sections and visualize the specimen in 3D, a two-step regis-
tration process was implemented. The first step (intra-block registration)
registers fixed blocks of five sequential sections, and the second step (inter-
block registration) interpolates the registration between adjacent blocks. In
the intra-block registration, the complete dataset was divided into blocks of
five sections and each block was registered independently. All blocks were
submitted to a high-performance computing cluster and processed in
parallel across 96 available Intel Xeon Gold 6136 CPUs. The inter-block
registration process ensures that a smooth and more realistic transition of
the anatomical structures through the axis of acquisition is obtained, coping
with the so-called “banana effect”—a registration artifact that causes an
artificial straightening of a curved object when reconstructing it using only
cross-sectional information54.

For both steps, two consecutive registration operations were performed:
an intensity-based registration using the four channels of the entire section
for pre-registration, followed by a mask-based registration using only the
vasculature and nasal epithelium segmentations (obtained from the CNNs)
for a fine-grained registration. Vasculature and nasal epitheliumwere chosen
because they have a relatively continuous structure across the specimen. The
individual image registration operations were performed by using the open-
source C++ SimpleElastix library53, which is built on top of the Insight
Toolkit (https://itk.org). Our code uses the Python API of the library.

For each intra-block registration, the block reference section for

registration was identified, X̂
intra
k , as the section with the highest DSC of

vasculature and nasal epithelium with respect to the other sections in the
block. To this end, a combined vasculature and nasal epitheliummask was

https://doi.org/10.1038/s42003-024-07017-4 Article

Communications Biology |          (2024) 7:1467 15

https://itk.org/
www.nature.com/commsbio


defined as

Xc
i ¼ Xv

i _ Xe
i

whereXv
i andX

e
i are themasks for the vasculature and nasal epithelium for

the i-th frame in the complete dataset and _ is the Boolean OR operator.
Using the combinedmasks, the reference sectionwas chosen as the onewith
the highest DSC agreement in the block, i.e., X̂

intra
k ¼ Xl where

l ¼ argmax
i2Bk

X

j2Bk

DSC Xc
i ;X

c
j

� �
; Bk ¼ fj2Nj5ðk� 1Þ≤ j< 5kg

and Bk is the set of the five section indices for the k-th block and DSC is
defined by

DSC X;Yð Þ ¼ 2 � jX \ Yj
Xj j þ jYj

Using the reference section as the target, all the remaining sections in
each block were registered using amultichannel block-matching strategy to
align the four channels and six CNN segmentations of the sections. During
this procedure, a rigid registration was performed followed by a non-rigid
(B-Spline) registrationwith amultiresolution pyramid approach (16 and 13
levels for rigid and non-rigid respectively). Furthermore, random coordi-
nate sampler, linear interpolator, mutual information, and gradient descent
optimizer were used for selecting data points, interpolating intensity values,
evaluating the alignment, and optimizing the transformation parameters,
respectively.

This result was then used to initialize amask-based registration for the
block to fine-tune the registration based on the contours of the vasculature
and nasal epithelium. In this process, we registered the combined vascu-
lature and nasal epithelium masks (Xc

i ) instead of the channel intensities,
using a non-rigid (B-Spline) registration with a three-level resolution pyr-
amid and a random sparse mask sampler. The justification for only using
three levels in the mask registration is to force the focusing on the smaller
structures in the sections, otherwise, this mask-based step may undo the
registration made by the previous intensity-based step.

At this point, we have locally registered each block in isolation and
there will be an inconsistent registration between the block interfaces. To
solve this issue,we proceeded to register each block using the pair of sections
(one from each block) with the closest matching in terms of DSC. Specifi-

cally, we identified the pair X̂
inter
fix ; X̂

inter
mov

� �

k;kþ1
as X̂

inter
fix ¼ Xî; X̂

inter
mov ¼ Xĵ

where

î; ĵ ¼ argmax
i;jð Þ;i2Bk ;j2Bkþ1

DSC Xc
i ;X

c
j

� �

X̂
inter
fix is a section in the anterior block and X̂

inter
mov is a section in the

posterior block. Then, we registered the pair X̂
inter
fix ; X̂

inter
mov

� �

k;kþ1
using a

rigid registration followed by a non-rigid (B-Spline) registration with a
multiresolution pyramid approach (16 and 13 levels for rigid and non-rigid
respectively). This registration yields the mapping ϕkðxÞ defined as the

displacement at each pixel x performed in section X̂
inter
mov to best register with

X̂
inter
fix , i.e., the registration done on the pixel x in X̂

inter
mov is x þ ϕkðxÞ. Thus, we

registered the N sections between X̂
inter
fix and X̂

inter
mov using the mappings

ϕ1k; ϕ
2
k; . . . ; ϕ

N
k defined as

ϕikðxÞ ¼
i� 1
N

ϕkðxÞ

As a result, we obtained a linear interpolation of the sections between
X̂
inter
fix and X̂

inter
mov , yielding a smooth registration at the interface between

blocks k and k+ 1. We refer to this process as the inter-block registration
between blocks k and k+ 1. We performed the inter-block registration on
all blocks in sequential order, thereby obtaining a smooth registration of the
complete dataset.

To determine the robustness of the anatomy-based registration when
information from interleaved sampling is used, these processes were repe-
ated using every 4th section and every 16th section of the complete dataset,
representing ~16% and ~4% of the specimen.

Visualization of the 3D reconstruction
The registered sections were visualized in Neuroglancer57, a web-based
visualization interface for volumetric data that enables interaction with the
images and3Dreconstruction. Prior to visualization, the channels andCNN
segmentationswere converted intoNeuroglancer’s supported precomputed
data format using thePython script available in their codebase.Additionally,
the 3D surface meshes of the segmentation volumes were pre-generated in
Neuroglancer’s mesh format with the marching cubes algorithm from the
Python library of Neuroglancer. The image volumes were then divided into
3D blocks at multiple resolutions to enhance smooth and interactive cross-
sectional visualization of 3D image data. Additionally, the open-source data
analysis and visualization application ParaView55,56 was used to generate
virtual slices and visualizations of the 3D reconstruction. ParaViewwas also
used for the generation of a graphical animation shown in Supplementary
Movie 1. The 3Dheadmodels in Figs. 1–3, Figs. 5–10, Supplementary Fig. 1,
4, 6, and Supplementary Movie 1 are from BodyParts3D, The database
center for life science licensed under CC attribution-share alike 2.1 Japan.

Volume calculations
Quantification of the volumes of OSNs, glomeruli, and olfactory bulbs was
performed by counting the number of voxels of the structure of interest in
theCNNsegmentations. The sumof voxels across all 2D sectionsmultiplied
by the voxel volume (1.097 µm× 1.097 µm× 10 µm) gave the total volume
of the structure of interest in 3D. The volume calculation in non-included
sections was approximated as the linear interpolation of the nearest pre-
ceding (anterior) and following (posterior) included sections. In that
manner, the complete dataset of 1234 sections was filled back to 1923 sec-
tions and quantifications could be made for the entire specimen.

Septal-lateral and left-right divisions
In each section, the bone segmentation and the midpoint of the two
olfactory bulbs were used as a guide to draw a spline to separate the left and
right halves of the section and to define the left and right nasal cavities and
left and right olfactory bulbs. Each nasal cavity was further split into the
septal and lateral aspects by drawing a spline that traces points picked along
the luminal side of the nasal epitheliumon the septumand that cuts through
the nasal epithelium in the olfactory cleft at the intersection with a line
drawn from the center of the olfactory bulb.

Computing the total number of OSNs in the specimen
First, a total of 14,570 OSNs were manually counted across seven sections
thatwere randomly selected fromthe complete datasetusing the cell counter
plugin of Fiji ImageJ2 version 2.3.0/1.53n. An Abercrombie correction was
applied to adjust for overcounting. We computed the average thickness of
the olfactory epitheliumbymaking 240measurements at 20 locationswhere
OSNs were present, in 12 sections throughout the specimen. Nucleus dia-
meter, length, and thickness of olfactory epitheliumweremeasuredwith the
line tool in Fiji60. We determined the volume of the olfactory epithelium by
expanding theOSN segmentation that intersectedwith the nasal epithelium
segmentation to the full thickness of the nasal epithelium segmentation,
closing the holes along the apical-basal dimension by applying the approach
of morphological closing by erosion and dilation61 using as structuring
element a disk with a diameter of 80 µm, which is similar to the thickness of
thenasal epithelium. (Note that the envelopeof the olfactory epitheliumthat
is hereby obtained has a volume that is greater than the volume of the
subcellular parts of the OSNs that are located within the olfactory
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epithelium.) To validate our automatic method of morphologically closing
the olfactory epithelium (generating the “olfactory epithelium envelope”),
we manually measured in 15 randomly selected sections the length of
olfactory epitheliumper section (adding up all the linear pieces whereOSNs
were present) and used a paired t-test to compare these manual measure-
ments to the automatic measurements in the corresponding sections
(P ≥ 0.83, not significant). The surface area of the olfactory epithelium was
calculated by dividing the volume of the olfactory epithelium envelope by
the average thickness of the olfactory epitheliumand the SEMwas estimated
from the SEM of the thickness using the Delta method.

Quantification with interleaved sampling
In a 10 µm tissue section, each 1.1 µm× 1.1 µm pixel in a single 2D CNN
segmentation also contains volume information, resulting in a voxel of
1.097 µm × 1.097 µm× 10 µm. The voxel volume was adjusted accordingly
to accommodate non-included sections. Quantification was carried out
using theCNN segmentationswith the results presented as length, area, and
volume. To determine the error that would have been introduced by a
reduced sampling rate of the specimen, quantifications were repeated using
interleaved datasets that contained every 4th, every 16th and every 32nd
section of the complete dataset (representing ~16%, ~4%, and ~2% of the
specimen) and the errors are presented as a percentage difference from the
results generated using the complete dataset (~64% of the specimen).

Statistics and reproducibility
Comparisons between the total volume of the six structures of interest and
the interleaved volumes are presented as a percentage change from the
complete dataset volume. For the comparisons between the segmentations
of the trained anatomist and the CNN, the values of DSC and binary cross-
entropy of the validation dataset are presented as the mean ± SEM. The
comparison between the trained anatomist’s measurement of the epithe-
lium length and the calculated epithelium length, combining the mea-
surement of the epithelium thickness (mean ± SEM) and the volume of the
olfactory epithelium envelope (absolute number), was made using a paired
t-test. OSN density was determined by dividing the manual cell counts of
OSNs per unit length of olfactory epithelium (mean ± SEM) by the average
thickness of the olfactory epithelium (mean ± SEM). OSN density is pre-
sented asmean ± SEM,with the SEMcalculatedusingFieller’s theorem.The
Deltamethodwasused to calculate the SEMand90%confidence interval for
the total number of OSNs in the specimen using the OSN density
(mean ± SEM) and the volume of the olfactory epithelium envelope
(absolute number).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The complete dataset of the en-bloc specimen of case A1147 is available
online in a user-friendly format through Neuroglancer57, a web-based plat-
form, at https://mip.datavisualiser.cloud.edu.au/neuroglancer/A1147/it13.

Code availability
All original code has been deposited at Zenodo80 and is publicly available, at
https://doi.org/10.5281/zenodo.7865523.

Received: 10 January 2024; Accepted: 4 October 2024;

References
1. Killingley, B. et al. Safety, tolerability and viral kinetics during SARS

CoV-2 human challenge in young adults. Nat. Med. 28, 1031–1041
(2022).

2. Boscolo-Rizzo, P. et al. Psychophysical assessment of olfactory and
gustatory function in post-mild COVID-19 patients: a matched case-

control study with 2-year follow-up. Int. Forum Allergy Rhinol. 13,
1864–1875 (2023).

3. Doty, R. L., Deems, D. A. & Stellar, S. Olfactory dysfunction in
parkinsonism: a general deficit unrelated to neurologic signs, disease
stage, or disease duration. Neurology 38, 1237–1244 (1988).

4. Haehner, A., Hummel, T. & Reichmann, H. Olfactory loss in
Parkinson’s disease. Parkinsons Dis. 2011, 450939 (2011).

5. Doty, R. L., Reyes, P. F. & Gregor, T. Presence of both odor
identification and detection deficits in Alzheimer’s disease.Brain Res.
Bull. 18, 597–600 (1987).

6. Murphy, C., Gilmore,M.M., Seery, C. S., Salmon, D. P. & Lasker, B. R.
Olfactory thresholds are associated with degree of dementia in
Alzheimer’s disease. Neurobiol. Aging 11, 465–469 (1990).

7. Moberg,P. J. et al.Olfactory identification in elderly schizophreniaand
Alzheimer’s disease. Neurobiol. Aging 18, 163–167 (1997).

8. Braak, H. et al. Staging of brain pathology related to sporadic
Parkinson’s disease. Neuobiol. Aging 24, 197–211 (2003).

9. Murray, H. C. et al. The unfolded protein response is activated in the
olfactory system in Alzheimer’s disease.ActaNeuropathol. Commun.
8, 109 (2020).

10. Stevenson, T. J. et al. synuclein inclusions are abundant in non-
neuronal cells in the anterior olfactory nucleus of the Parkinson’s
disease olfactory bulb. Sci. Rep. 10, 6682 (2020).

11. Ekström, I. et al. Smell loss predicts mortality risk regardless of
dementia conversion. J. Am. Geriatr. Soc. 65, 1238–1243 (2017).

12. Roh, D. et al. The association between olfactory dysfunction and
cardiovascular disease and its risk factors in middle-aged and older
adults. Sci. Rep. 11, 1248 (2021).

13. Papazian, E. J. & Pinto, J. M. Olfactory loss and aging: connections
with health and well-being. Chem. Senses 46, bjab045 (2021).

14. Lang, J. Clinical Anatomy of the Nose, Nasal Cavity and Paranasal
Sinuses (Thieme Medical Publishers, 1989).

15. Leblanc, A. Olfactory nerves (I). In: The cranial Nerves (Springer Berlin
Heidelberg, 1995).

16. Leblanc, A. Olfactory nerves (I). In: Encephalo-Peripheral Nervous
System (Springer Berlin Heidelberg, 2004).

17. Moran, D. T., Rowley, J. C., Jafek, B. W. & Lovell, M. A. The fine
structure of the olfactory mucosa in man. J. Neurocytol. 11,
721–746 (1982).

18. Morrison, E. E. & Costanzo, R. M. Morphology of the human olfactory
epithelium. J. Comp. Neurol. 297, 1–13 (1990).

19. Morrison, E. E. & Costanzo, R. M. Morphology of olfactory epithelium
in humans and other vertebrates.Microsc. Res. Technol. 23,
49–61 (1992).

20. Salazar, I., Sanchez-Quinteiro, P. A., Barrios, W., López Amado, M. &
Vega, J. A. Anatomy of the olfactory mucosa. Handb. Clin. Neurol.
164, 47–65 (2019).

21. von Brunn, A. Beiträge zur mikroskopischen Anatomie der
menschlichen Nasenhöhle. Archiv f. mikrosk. Anatomie 39,
632–651 (1892).

22. Garcia, G. J. et al. Dosimetry of nasal uptake of water-soluble and
reactivegases: afirst studyof interhumanvariability. Inhal. Toxicol.21,
607–618 (2009).

23. Buck, L. & Axel, R. A novel multigene family may encode odorant
receptors: a molecular basis for odor recognition. Cell 65,
175–187 (1991).

24. Khan, M. et al. Anatomical barriers against SARS-CoV-2
neuroinvasion at vulnerable interfaces visualized in deceasedCOVID-
19 patients. Neuron 110, 3919–3935 (2022).

25. Vasvári, G.,Reisch,R.&Patonay,L. Surgical anatomyof thecribriform
plate and adjacent areas.Minim. Invasive Neurosurg. 48, 25–33
(2005).

26. Cardali, S. et al. Microsurgical anatomic features of the olfactory
nerve: relevance to olfaction preservation in the pterional approach.
Neurosurgery 57, 17–21 (2005).

https://doi.org/10.1038/s42003-024-07017-4 Article

Communications Biology |          (2024) 7:1467 17

https://mip.datavisualiser.cloud.edu.au/neuroglancer/A1147/it13
https://doi.org/10.5281/zenodo.7865523
www.nature.com/commsbio


27. Soriano, R. M., Solares, C. A., Pradilla, G. & DelGaudio, J. M.
Endoscopic study of the distribution of olfactory filaments: a
cadaveric study. Am. J. Rhinol. Allergy 35, 226–233 (2021).

28. López-Elizalde, R. et al. Anatomy of the olfactory nerve: a
comprehensive review with cadaveric dissection. Clin. Anat. 31,
109–117 (2018).

29. Crespo, C., Liberia, T., Blasco-Ibáñez, J. M., Nácher, J. & Varea, E.
Cranial pair I: the olfactory nerve. Anat. Rec. 302, 405–427 (2019).

30. Holbrook, E. H., Wu, E., Curry, W. T., Lin, D. T. & Schwob, J. E.
Immunohistochemical characterization of human olfactory tissue.
Laryngoscope 121, 1687–1701 (2011).

31. Nakashima, T., Kimmelman, C. P. & Snow, J. B. Olfactory marker
protein in the human olfactory pathway. Arch. Otolaryngol. 111,
294–297 (1985).

32. Smith, R. L., Baker, H., Kolstad, K., Spencer, D. D. & Greer, C. A.
Localization of tyrosine hydroxylase and olfactory marker protein
immunoreactivities in the human and macaque olfactory bulb. Brain
Res. 548, 140–148 (1991).

33. Maresh, A., RodriguezGil, D.,Whitman,M.C. &Greer, C. A. Principles
of glomerular organization in the human olfactory bulb—implications
for odor processing. PLoS ONE 3, e2640 (2008).

34. Zapiec, B. et al. A ventral glomerular deficit in Parkinson’s disease
revealed by whole olfactory bulb reconstruction. Brain 140,
2722–2736 (2017).

35. Smith, R. L., Baker, H. & Greer, C. A. Immunohistochemical analyses
of the human olfactory bulb. J. Comp. Neurol. 333, 519–530
(1993).

36. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87,
675–686 (1996).

37. Treloar, H. B., Feinstein, P.,Mombaerts, P. &Greer, C. A. Specificity of
glomerular targeting by olfactory sensory axons. J. Neurosci. 22,
2469–2477 (2002).

38. Low, V. F. & Mombaerts, P. Odorant receptor proteins in the mouse
main olfactory epithelium and olfactory bulb. Neuroscience 344,
167–177 (2017).

39. Zapiec, B. & Mombaerts, P. The zonal organization of odorant
receptor gene choice in the main olfactory epithelium of the mouse.
Cell Rep. 30, 4220–4234 (2020).

40. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor
codes for odors. Cell 96, 713–723 (1999).

41. Saraiva, L. R. et al. Hierarchical deconstruction of mouse olfactory
sensory neurons: from whole mucosa to single-cell RNA-seq. Sci.
Rep. 5, 18178 (2015).

42. Richard, M. B., Taylor, S. R. & Greer, C. A. Age-induced disruption of
selective olfactory bulb synaptic circuits. Proc. Natl. Acad. Sci. USA
107, 15613–15618 (2010).

43. Barnes, I. H. et al. Expert curation of the human and mouse olfactory
receptor gene repertoires identifies conserved coding regions split
across two exons. BMC Genom. 21, 196 (2020).

44. Ronneberger, O., Fischer, P. &Brox, T. U-Net: convolutional networks
for biomedical image segmentation. In: Navab, N., Hornegger, J.,
Wells, W., Frangi, A. (eds)Medical Image Computing and Computer-
Assisted Intervention.MICCAI 2015. Lecture Notes in Computer
Science, 9351 (Springer, 2015). https://doi.org/10.1007/978-3-319-
24574-4_28.

45. Nakashima, T., Kimmelman, C. P. & Snow, J. B. Structure of human
fetal and adult olfactory neuroepithelium. Arch. Otolaryngol. 110,
641–646 (1984).

46. Paik, S. I., Lehman, M. N., Seiden, A. M., Duncan, H. J. & Smith, D. V.
Human olfactory biopsy: the influence of age and receptor
distribution. Arch. Otolaryngol. Head Neck Surg. 118, 731–738
(1992).

47. Nibu, K. et al. Olfactory neuron-specific expression of NeuroD in
mouse and human nasal mucosa. Cell Tissue Res. 298, 405–414,
https://rdcu.be/daxzF (1999).

48. Shimizu, S. et al. A histochemical analysis of neurofibrillary tangles in
olfactory epithelium, a study based on an autopsy case of juvenile
Alzheimer’s disease. Acta Histoch. Cytoch. 55, 93–98 (2022).

49. Barber, P. C. Ulex europeus agglutinin I binds exclusively to primary
olfactory neurons in the rat nervous system. Neuroscience 30,
1–9 (1989).

50. Nagao,M.,Oka,N.,Kamo,H., Akiguchi, I. &Kimura, J.Ulexeuropaeus
I and glycine max bind to the human olfactory bulb. Neurosci. Lett.
164, 221–224 (1993).

51. Margolis, F. L. A brain protein unique to the olfactory bulb. Proc. Natl
Acad. Sci. USA 69, 1221–1224 (1972).

52. Nakashima, T., Tanaka, M., Inamitsu, M. & Uemura, T.
Immunohistopathology of variations of human olfactorymucosa. Eur.
Arch. Otorhinolaryngol. 248, 370–375 (1991).

53. Marstal, K., Berendsen. F., Staring, M. & Klein, S. SimpleElastix: a
user-friendly, multi-lingual library for medical image registration. In:
Proc. IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 574–582 ((Las Vegas, 2016).

54. Malandain, G., Bardinet, E., Nelissen, K. & Vanduffel, W. Fusion of
autoradiographs with an MR volume using 2-D and 3-D linear
transformations. NeuroImage 23, 111–127 (2004).

55. Ahrens, J. P., Geveci, B. & Law, C. C. ParaView: an end-user tool for
large-data visualization. In: Hansen, C. D., Johnson, C. R. (eds.) The
Visualization Handbook 717–731 (Elsevier Butterworth-
Heinemann, 2005).

56. Ayachit, U. The ParaView Guide: a Parallel Visualization Application
(Kitware, Inc., 2015).

57. Maitin-Shepard, J. et al. google/neuroglancer: (v2.23). Zenodo
https://zenodo.org/records/5573294 (2021).

58. Favre, J. J., Chaffanjon, P., Passagia, J. G. & Chirossel, J. P. Blood
supply of the olfactory nerve. Meningeal relationships and surgical
relevance. Surg. Radiol. Anat. 17, 133–138 (1995).

59. Hendrix, P. et al. Arterial supply of the upper cranial nerves: a
comprehensive review. Clin. Anat. 27, 1159–1166 (2014).

60. Schindelin, J. et al. Fiji: an open-source platform for biological-image
analysis. Nat. Methods 9, 676–682 (2012).

61. Solle, P. Erosion and dilation. In:Morphological Image Analysis.
63–103 (Springer Berlin Heidelberg, 2004).

62. Barrios, A.W., Núñez,G., SánchezQuinteiro, P. &Salazar, I. Anatomy,
histochemistry, and immunohistochemistry of the olfactory
subsystems in mice. Front. Neuroanat. 8, 63 (2014).

63. Engström,H. &Bloom,G. The structure of the olfactory region inman.
Acta Otolaryngol. 43, 11–21 (1953).

64. Naessen, R. The identification and topographical localisation of the
olfactory epithelium inmanandothermammals.ActaOtolaryngol. 70,
51–57 (1970).

65. Naessen, R. An enquiry on the morphological characteristics and
possible changes with age in the olfactory region of man. Acta
Otolaryngol. 71, 49–62 (1971).

66. Holbrook, E. H., Leopold, D. A. & Schwob, J. E. Abnormalities of axon
growth in human olfactory mucosa. Laryngoscope 115,
2144–2154 (2005).

67. Escada, P. Localization anddistributionof humanolfactorymucosa in
the nasal cavities. Acta Med. Port. 26, 200–207 (2013).

68. Holbrook, E. H., Rebeiz, L. & Schwob, J. E. Office-based olfactory
mucosa biopsies. Int. Forum. Allergy Rhinol. 6, 646–653 (2016).

69. Fitzek, M. et al. Integrated age-related immunohistological changes
occur in human olfactory epithelium and olfactory bulb. J. Comp.
Neurol. 530, 2154–2175 (2022).

70. Oliva, A. D. et al. Aging-related olfactory loss is associated with
olfactory stem cell transcriptional alterations in humans. J. Clin.
Investig. 132, e155506 (2022).

71. Khan,M. et al. Visualizing in deceasedCOVID-19patients howSARS-
CoV-2 attacks the respiratory and olfactory mucosae but spares the
olfactory bulb. Cell 184, 5932–5949 (2021).

https://doi.org/10.1038/s42003-024-07017-4 Article

Communications Biology |          (2024) 7:1467 18

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://rdcu.be/daxzF
https://rdcu.be/daxzF
https://zenodo.org/records/5573294
https://zenodo.org/records/5573294
www.nature.com/commsbio


72. Clijsters, M. et al. Protocol for postmortem bedside endoscopic
procedure to sample human respiratory and olfactory cleft mucosa,
olfactory bulbs, and frontal lobe. STAR Protoc. 5, 102831 (2024).

73. Tanos, T. et al. Isolation of putative stem cells present in human adult
olfactory mucosa. PLoS One 12, e0181151 (2017).

74. Nishijima, H. et al. Rapid fluorescent vital imaging of olfactory
epithelium. iScience 25, 104222 (2022).

75. Pinna, F. D., Ctenas, B., Weber, R., Saldiva, P. H. & Voegels, R. L.
Olfactory neuroepithelium in the superior and middle turbinates:
which is the optimal biopsy site. Int. Arch. Otorhinolaryngol. 17,
131–138 (2013).

76. Kachramanoglou, C., Law, S., Andrews, P., Li, D. & Choi, D. Culture of
olfactory ensheathing cells for central nerve repair: the limitations and
potential of endoscopic olfactory mucosal biopsy. Neurosurgery 72,
170–178 (2013).

77. Garcia, E. C. et al. Safety and efficacyof superior turbinate biopsies as
a source of olfactory epithelium appropriate for morphological
analysis. Eur. Arch. Otorhinolaryngol. 277, 483–492 (2020).

78. Garcia, E. C. et al. Biopsy of the olfactory epithelium from the superior
nasal septum: is it possible to obtain neurons without damaging
olfaction? Braz. J. Otorhinolaryngol. 88, 787–793 (2022).

79. Bressel, O. C., Khan, M. & Mombaerts, P. Linear correlation between
the number of olfactory sensory neurons expressing a given mouse
odorant receptor gene and the total volume of the corresponding
glomeruli in the olfactory bulb. J. Comp. Neurol. 524, 199–209 (2016).

80. Low, V. et al. Visualizing the human olfactory projection and ancillary
structures in a 3D reconstruction. Zenodo https://zenodo.org/
records/7865523 (2023).

Acknowledgements
We acknowledge the use of New Zealand eScience Infrastructure (NeSI)
high-performance computing facilities, consulting support, and training
services. These facilitiesare funded jointly byNeSI’scollaborator institutions
and through theResearch Infrastructureprogramof theMinistryofBusiness,
Innovation&Employment ofNewZealand. The computational pipelines and
methods are part of INMENSO LTD. We thank Satya Amirapu for paraffin
processing and producing custom molds for the en-bloc specimens. We
thank Laura Van Gerven and Pablo Sánchez Quinteiro for insightful com-
ments on themanuscript. C.L., S. Shu, and S. Safaei were supported by the
Aotearoa Foundation.M.A.C. acknowledges the generous financial support
of Cure Parkinson’s NZ, and P.M. of the Max Planck Society.

Author contributions
V.F.L. performed the study design; managed the overall workflow, tissue
selection,processing, analysis, andground truth segmentations; composed
the figures; and wrote the first draft of the manuscript. C.L. and M.O.
implemented thecode foralignment, 3D reconstruction, andvisualization.S.
Shu andG.M.T. developed the predictionmodel/deep-learning pipeline and
the estimation models for OSN counting. M.O. co-led the development of
the image analysis workflow and developed the image extraction pipeline.

M.O. and G.M.T. developed the framework for the image alignment and
registrationprocess.M.K.contributed toslide scanningandstudydesign. S.
Safaei led the design of the quantitative analysis pipeline. G.M.T. and C.L.
co-led the high-performance computing implementation and deployment
related to alignment, segmentation, and quantitative analysis tasks. M.A.C.
acquired the human tissue samples; designed the study protocol; analyzed
results; and co-wrote the manuscript. P.M. contributed to the design of the
studyprotocol, theorganizationof the slide scanning, anddata analysis; and
finalized the manuscript. All authors approved the final version of the
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-07017-4.

Correspondence and requests for materials should be addressed to
Maurice A. Curtis or Peter Mombaerts.

Peer review informationCommunications Biology thanks Tim Pearce and
Hai Yao for their contribution to the peer review of this work. Primary
Handling Editors: Shan Raza and Joao Valente.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-07017-4 Article

Communications Biology |          (2024) 7:1467 19

https://zenodo.org/records/7865523
https://zenodo.org/records/7865523
https://zenodo.org/records/7865523
https://doi.org/10.1038/s42003-024-07017-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Visualizing the human olfactory projection and ancillary structures in a 3D reconstruction
	Results
	Screening of en-bloc specimens extracted from embalmed human cadavers
	Quadruple fluorescence histological staining and scanning
	Histology of the human olfactory projection and ancillary structures
	Manual segmentation generates the ground truth
	Training convolutional neural networks for automatic segmentation
	Image registration and visualization in 3D
	Gross anatomical organization, vasculature, and trajectory of OSN axons
	Olfactory epithelium, fila olfactoria, and foramina
	Counting foramina in the cribriform plate
	Interleaved sampling
	Public access via Neuroglancer
	Computing the total number of olfactory sensory neurons

	Discussion
	Methods
	Cadavers and specimens
	Chromogenic staining of sections for case selection
	Case A1147
	Fluorescence staining of sections of the specimen
	Scanning of sections of the specimen
	Manual segmentation to generate the ground truth
	Automatic CNN segmentation
	Anatomy-based registration
	Visualization of the 3D reconstruction
	Volume calculations
	Septal-lateral and left-right divisions
	Computing the total number of OSNs in the specimen
	Quantification with interleaved sampling
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




