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Understanding the dynamics of the African swine fever virus during periods of intense replication is 
critical for effective combatting of the rapid spread. In our research, we have developed a fractional-
order SVEIR model using the Caputo derivatives to investigate this behaviour. We have established 
the existence and uniqueness of the solution through fixed point theory and determined the 
basic reproduction number using the next-generation matrix method. Our study also involves an 
examination of the local and global stability of disease-free equilibrium points. Additionally, we have 
conducted optimal control analysis with two control variables to increase the number of recovered 
pigs while reducing the number of those infected and exposed. We have supported our findings with 
numerical simulations to demonstrate the effectiveness of the control strategy.

Keywords  African swine fever, Caputo fractional derivative, Stability analysis, Optimal control, Numerical 
Simulation.

Animal illnesses, particularly international animal diseases, can have substantial economic consequences at the 
farm, regional, and national levels due to losses in livestock output and the high costs of prevention, control, 
or eradication strategies. The most significant and economically destructive swine disease in existence today is 
without a doubt African swine fever(ASF). A member of the Asfarviridae family of DNA viruses is the cause of 
ASF. The first instance was noted in Kenya in 1921, where the disease is still endemic in sub-Saharan Africa. It 
is now widespread around the world, affecting more than 50 nations, including the Republic of Korea, China, 
Malaysia, Germany, Bhutan, and India. It is also present in Africa, Europe, Asia, and the Pacific, which resulted in 
enormous losses1. Due to its high mortality rate and socioeconomic impact, ASF is a notifiable illness that poses 
a danger to the production and commerce of pork. High fever, unconsciousness, breathing issues, vomiting, 
diarrhoea, appetite loss, and reddish warts near the ear, mouth, legs, and groins constitute some of the symptoms 
of ASF. A variety of scientific disciplines have taken part in developing efficient control strategies to reduce the 
spread of ASF.

In the twenty-first century, mathematical biology has become increasingly valuable to researchers. One of 
its primary applications is understanding and managing contagious diseases through mathematical modelling. 
A significant development in epidemiological research is the utilization of mathematics to grasp the dynamics 
of infectious disease spread2–8. Mathematical principles also provide insights into interactions between disease 
vectors and their hosts. The widespread use of these models has been facilitated by the advent of new computing 
technologies.

Designing real-world models, particularly those of biological systems, depends extensively on fractional 
calculus. Given their capacity to simulate a wide range of complicated events, fractional order differential 
equations (FODEs) have attracted the interest of numerous academics across a variety of disciplines, including 
engineering, finance, and epidemiology9–17. For example, adaptive synchronization, mass equations, optimal 
control problems, equations of motion, and chemical reactions have all been studied using FODEs recently18,19. 
Through various iterative techniques, these problems can be solved numerically. The fractional order model 
addresses the limitations by introducing a non-integer derivative, which allows for memory effects and long-term 
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correlations in the system. This approach has been shown to provide a better fit to empirical data and to better 
capture the dynamics of infectious diseases. Therefore, the development of fractional order models represents 
an important advancement in epidemiological modeling. As a result, disease patterns may be described more 
precisely, and future outbreaks can be predicted more accurately. The effectiveness of FODEs in estimating actual 
data is one of its additional benefits. FODEs are frequently employed in place of traditional models because 
they frequently do not adequately fit the field data20. For instance, when compared to experimental data, the 
FODE model for the dengue disease outbreak was said to have done well21. Furthermore Caputo derivative 
approach is better suited for fractional modelling of epidemic diseases because it guarantees non-singular initial 
conditions, accounts for memory effects, provides a physical interpretation and is computationally efficient (see, 
for instance,22–43).

ASF virus has a huge negative impact on the GDP of several countries. As a result, finding a viable method 
to prevent the spread of this virus and control the disease is critical. Despite major scientific achievements, the 
World Organization for Animal Health (WOAH) highlights the importance of knowing the history and evolution 
of the African swine fever virus (ASFV) spread to develop strategies to reduce transmission. According to the 
literature, the transmission dynamics of ASF have received limited research in terms of mathematical modelling. 
Some studies have reported the impact of ASFV in the form of integer order derivative (see44). Currently, a small 
number of integer and non-integer systems have been established to test, investigate and comprehend the ASF 
virus1,44–46. In a relevant study, Barongo et al.44 present a stochastic model aimed at simulating the transmission 
dynamics of ASFV within a free-ranging pig population, considering different intervention scenarios.

The researchers utilized the model to evaluate the comparative impact of various prevention methods on death 
due to diseases. They incorporated a decay function on the transmission rate to simulate the implementation 
of biosecurity measures. Shi et al.45 introduced a basic fractional-order model to describe the transmission 
dynamics of African swine fever. They considered two cases: constant control and optimal control. In the former 
case, they established the existence and uniqueness of a positive solution, determined the basic reproduction 
number, and obtained sufficient conditions for the stability of two equilibria using the next-generation matrix 
method and Lyapunov LaSalle’s invariance principle. In the latter case, they focused on optimal control. By 
employing the Hamiltonian function and Pontryagin’s maximum principle, they derived the optimal control 
formula. Many scientists have constructed various models and conducted quantitative studies using Euler’s and 
Adam’s PECE methods to validate the theoretical findings. Kouidere et al.1,46 developed a classical and fractional 
model for ASFV. They conducted a sensitivity analysis of the model parameters to identify the parameters with a 
significant influence on the reproduction number R0. Based on their findings, the researchers proposed multiple 
strategies to effectively decrease the amount of diseased pigs and parasites.

In addition, the impact of fractional order and medical resources on system stability was investigated in47. 
The authors in48 developed fractional order models with media coverage, showing that timely media coverage 
and disinfection control measures are crucial for preventing the spread of African swine fever. For instance, 
the authors in49 analyzed a fractional order ASF model with saturation incidence, demonstrating that timely 
and effective disinfection measures are important to prevent disease spread. These models provide valuable 
insights for developing effective ASF prevention and control strategies. The vaccination strategy has recently 
been shown to be an effective technique for preventing disease transmission. Developing an effective vaccine 
for ASF has been challenging due to the complex nature of the virus. Vaccination is a widely utilized strategy 
of disease control. Vaccination serves as a booster to enhance and prolong the immune response, providing 
better protection against the disease50,51. The entire world has accepted the challenge of developing an ASFV 
vaccine. Through a successful partnership between Navetco, a Vietnamese company, and researchers from 
the United States Agricultural Research Institute (ARS), a momentous advancement has been realized. This 
joint endeavour has resulted in the development of NAVET-ASFVAC, an unprecedented vaccine designed 
to combat African swine fever (ASF). Notably, this vaccine stands as the world’s first commercially available 
solution of its kind, marking a significant milestone in the global effort to combat ASF. To model, investigate, 
and comprehend the ASFV, numerous mathematical models have been developed. Taking inspiration from the 
aforementioned studies, we created a Caputo fractional SVEIR model to investigate the effect of vaccination on 
ASFV transmission dynamics. To the best of our knowledge, no attempts have been made to examine the effect 
of vaccination on the ASFV model using the Caputo derivative. Our contributions aim to address this research 
gap and introduce new perspectives to the field of epidemiological modelling, providing valuable theoretical and 
numerical results for studying the ASFV model using Caputo derivatives. The main contributions and aspects of 
this paper are outlined below::

•	 Investigate the dynamical behavior of the Caputo fractional SVEIR model, which describes the transmission 
of ASF virus.

•	 Establish the stability analysis of the mentioned model.
•	 Perform the sensitivity analysis over the model parameters.
•	 Provide an optimal control strategy for an SVEIR model along with control interventions.Figure 1 depicts a 

schematic process of the proposed work.

In this paper, we have structured the content into several key sections. In Section “Preliminaries and methods”, 
we present basic concepts and preliminary studies. Moving on to Section “Formulation of the Caputo fractional 
SVEIR model”, we delve into the description of the Caputo fractional ASFV model. The discussion on the 
positivity and boundness of the system can be found in Section “Positivity and boundedness of solutions of the 
system”, while the exploration of existence and uniqueness results is located in Section “Existence and uniqueness 
results”. In Section “Equilibrium points, basic reproduction number and stability analysis of SVEIR model”, we 
focus on establishing the equilibria of the system and conducting a stability analysis of the basic reproduction 
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number. Furthermore, Section “Sensitivity Analysis” contains the sensitivity analysis of the model. Section 
“Optimal control analysis of a SVEIR model” introduces an optimal control strategy for an SVEIR model, and 
the application of Pontryagin’s maximum principle is thoroughly explored in the analysis of the optimal control 
components. Lastly, Section “Numerical simulation results for SVEIR model” comprises numerical simulations 
and accompanying discussions, and the article concludes with a summary of our research.

Preliminaries and methods
Preliminaries
The following section of this paper addresses basic definitions and some results of the fractional-order derivatives.

Definition 2.1  13 The fractional integral of a continuous function f(t) on L1([0, T ],R) of order n− 1 < α ≤ n 
is defined as,

	
Iαf (t) =

1

Γ(α)

t∫

0

(t− s)α−1f (s)ds,

where n is a positive integer and  Γ(.) is the Gamma function defined by   Γ(α) =
∫ ∞

0

xα−1e−xdx, α > 0.

Definition 2.2  13 The Caputo fractional derivative for function f (t) ∈ Cn of order α is defined by,

	
CDαf (t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1fn(s)ds,

where n ∈ N  is such that n− 1 < α ≤ n and   Γ(.) is the Gamma function defined by    

Γ(α) =

∫ ∞

0

xα−1e−xdx, α > 0..

Fig. 1.  Schematic process of the proposed work.
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Definition 2.3  13 The Laplace transform of Caputo fractional differential operator of order α ∈ (n− 1, n] is 
given by,

	
L[Ct0D

αf (t)] = sαL[f (t)]−
n−1∑
k=0

sα−k−1f (k)(t0).

Definition 2.4  13 The Mittag -Leffler Functions Eα and Eα,β defined by the power series

	
Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α > 0; Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0.

 where Γ(.) is the Gamma function defined by   Γ(α) =
∫ ∞

0

xα−1e−xdx, α > 0.

Lemma 2.1  52Let x(t) ∈ R+ be a continuous function. Then, for any time t ≥ t0

	
Dα

[
x(t)− x∗ − x∗ ln

x(t)

x∗

]
≤

(
1− x∗

x(t)

)
Dαx(t),

x∗ ∈ R+, for all α ∈ (0, 1).

Theorem 2.1  53(Krasnoselskii’s fixed point theorem) Let Y be a non-empty set. Let C be a closed, convex, 
non-empty subset of Y and suppose there exist two operators A1,A2 such that 

	 (i)	� A1θ + A2θ ∈ C, for all θ ∈ C;
	(ii)	� A1 is a contraction;
	(iii)	� A2 is compact and continuous.Then there exists at least one solution θ ∈ C such that   A1θ + A2θ = θ.

Formulation of the Caputo fractional SVEIR model
We consider the Caputo sense nonlinear fractional order model for the African swine fever, in which the total 
population N(t) is assumed to comprise five compartments that include pigs susceptible S(t), the pigs vaccinated 
V(t), exposed pigs E(t), the pigs infected I(t) and the pigs recovered R(t), at time t (N = S + V + E + I +R). 
The transmission dynamics of the above population are represented by the following system of nonlinear Caputo 
fractional order differential equations (CFODE) as

	




CDαS(t) = Λ− β1SI − β2SV + σR− µS,
CDαV (t) = β2SV + ξβ1SI + ηI − σ2RV − µV,
CDαE(t) = β1(1− ξ − ν)SI − σ1EI − µE,
CDαI(t) = νβ1SI + σ1EI − (µ + γ)I − ηI,
CDαR(t) = γI − (µ + σ)R + σ2RV.

� (1)

The initial states are all positive. In this model, the parameter Λ represents the influx of pigs. The infection 
rate is represented by β1. Additionally, the immediate vaccination rate for infected pigs transitioning from the 
susceptible class is given by ξβ1. The rate at which infected pigs are capable of spreading the infection to others 
is denoted as νβ1. Meanwhile, the infected pigs that do not transmit the infection to others are categorized as 
part of the exposed class, with a transfer rate of β1(1− ξ − ν), where 1− ξ − ν signifies a positive transfer rate.

The rate of administering an effective precautionary dose against infection is denoted as β2. Some individuals 
recover either naturally or without the need for vaccination, represented by the rate γ. The possibility of recovering 
without prior infection introduces the potential for subsequent infections, expressed by the parameter σ. 
Vaccination administered to infected pigs is considered under the rate η. The transition of pigs to the recovered 
compartment due to the effectiveness of vaccination after a certain period is indicated by σ2. The transmission 
from exposed pigs to infected pigs is accounted for in the proportion of σ1. The parameter µ captures the natural 
death proportion of pigs. Here all the model parameter values are assumed to be positive constants. Further, the 
flowchart of the SVEIR model is shown in Fig. 2.

Positivity and boundedness of solutions of the system
To be biologically well-posed, the fractional-order model solution must be positive and bounded at all periods.

Theorem 4.1  In Caputo system (1), the variables have a positive value for every t ≥ 0 and Γ is positively invariant 

where Γ = {(S, V, E, I, R) ∈ R5
+ : 0 ≤ N ≤ Λ

µ
}.
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Proof  First, we show that S(t), V(t), E(t), I(t) and R(t) of (1) are always positive for every t≥ 0. Using the system 
(1), that we have,

	




CDαS(t)S=0 = Λ + σR ≥ 0,
CDαV (t)V=0 = ξβ1SI + ηI ≥ 0,
CDαE(t)E=0 = β1(1− ξ − ν)SI ≥ 0,
CDαI(t)I=0 = 0,
CDαR(t)R=0 = γI ≥ 0.

� (2)

From the above, and by using the Generalized mean-values theorem, the positivity of the model (1) is obvious. 
Next from the total population of the model (1), we get,

	
CDαN(t) = Λ− µN(t),

it indicates that

	
CDαN(t) + µN = Λ.

Now taking the Laplace and inverse Laplace transform on both side, we obtain,

	 N(t) ≤ N(0)Eα,1(−µtα) + ΛtαEα,(α+1)(−µtα).

According to the Mittag Leffler function:

	
Eα,β (z) = zEα,α+β(z) +

1

Γ(β)
; α, β ≥ 0.

Hence

	
N(t) ≤

[
N(0)− Λ

µ

]
Eα,1(−µtα) +

Λ

µ
.

Thus lim
t→∞

sup N(t) ≤ Λ

µ
, and hence the mentioned system (1) is bounded above by 

Λ

µ
. Finally we conclude that 

initial states are all positive functions implies the solution space Γ is positively invariant. □

Existence and uniqueness results
In the section, we determine the existence and uniqueness of the considered model (1) under the Caputo 
fractional derivative with the help of fixed point theory. The model (1) can be written as follows

	

CDαS(t) = A1(t, S, V, E, I, R); CDαV (t) = A2(t, S, V, E, I, R);
CDαE(t) = A3(t, S, V, E, I, R); CDαI(t) = A4(t, S, V, E, I, R);

CDαR(t) = A5(t, S, V, E, I, R).

� (3)

where

Fig. 2.  Schematic flowchart for SVEIR model.
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



A1(t, S, V, E, I, R) = Λ− β1SI − β2SV + σR− µS,

A2(t, S, V, E, I, R) = β2SV + ξβ1SI + ηI − σ2RV − µV,

A3(t, S, V, E, I, R) = β1(1− ξ − ν)SI − σ1EI − µE,

A4(t, S, V, E, I, R) = νβ1SI + σ1EI − (µ + γ)I − ηI,

A5(t, S, V, E, I, R) = γI − (µ + σ)R + σ2RV.

� (4)

Thus the Caputo model (1) takes the form

	

{
CDαω(t) = H (t, ω(t)), t ∈ J,

ω(0) = ω0.
� (5)

if

	




ω(t) = (S, V, E, I, R)
′
,

ω(0) = (S0, V0, E0, I0, R0)
′
,

H (t, ω(t)) = (Ai(t, S, V, E, I, R)
′
), (i = 1, · · · , 5).

� (6)

Here (·)′ represents the transpose operation. Now we can write (5) as by the fractional integral representation,

	




ω(t) = ω0 + J α
0 H (t, ω(t),

ω(t) = ω0 +
1

Γ(α)

 t

0

(t− ϱ)α−1H (ϱ, ω(ϱ))dϱ.
� (7)

Let S= C([0,b];R) be the Banach space of all continuous function from [0,b] to R provided with the norm defined 
by ∥ω∥ = sup

t∈J
|ω(t)|, where |ω(t)| = |S(t)| + |V (t)| + |E(t)| + |I(t)| + |R(t)| and S, V, E, I, R ∈ C([0, b]). 

Suppose that H ∈ C([J,R])and H : J× R5 → R is to be continuous and bounded in order to determine 
existence and uniqueness of solutions. Therefore, we assume that 

(A1)  There exists a constants Φ ∈ C ([0, b],R+) > 0, such that|H (t, ω)| ≤ Φ(t), for all (t, ω) ∈ J× R5.
(A2)  There exists a constants LH > 0, ∀t ∈ J  and each ω1(t), ω2(t) ∈ C , such that 

	 |H (t, ω1)− H (t, ω2)| ≤ LH |ω1 − ω2|.

By well-known Krasnoselskii’s fixed point theorem, to establish that a solutions of the system (7) exists, which is 
equal with the suggested model (1).

Theorem 5.1  Given the assumption (A1)  together with the continuity of H  then (7) which is equivalent with the 
mentioned system (1) has atleast one solution when LH ∥ω1 (t0)− ω2 (t0)∥ < 1.

Proof  Now Let sup
t∈J

|Φ(t)| = ∥Φ∥ and η ≥ ∥ω0∥ + Θ∥Φ∥, and we consider Cη = {ω ∈ E : ∥ω∥ ≤ η}. Let us take 
two operators P1,P2 on Cη defined by,

	
(P1ω) (t) =

1

Γ(α)

∫ t

0

(t− ϱ)α−1H (ϱ, ω(ϱ))dϱ, t ∈ J,

and

	 (P2ω) (t) = ω (t0) , t ∈ J.

Thus, for any ω1, ω2 ∈ Cη, yields

	

∥(P1ω1) (t) + (P2ω2) (t)∥ ≤ ∥ω0∥ +
1

Γ(α)

∫ t

0

(t− ϱ)α−1∥H (ϱ, ω1(ϱ))∥dϱ,

≤ ∥ω0∥ + Θ∥Φ∥,
≤ η < ∞.

Hence P1ω1 + P2ω2 ∈ Cη. To show that P2 is contraction operator. For any ω1, ω2 ∈ Cη we obtains

	 ∥(P1ω1) (t)− (P2ω2) (t)∥ ≤ ∥ω1(t0)− ω2(t0)∥ .� (8)
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The operator P1 must also be continuous because the function H  is continuous. Moreover any t ∈ J  and 
ω1 ∈ Cη,

	 ∥P1ω∥ ≤ Θ ∥Φ∥ < +∞.� (9)

Hence P1 is uniformly bounded. Next, we need to prove the operator P1 is compact. Let 

sup
(t,ω)∈J×Cη

|H (t, ω(t))| = H ∗.

Then for any t1, t2 ∈ J  such that t2 ≥ t1 gives,

	

|(P1ω)(t2)−(P1ω)(t1)|

=
∣∣∣ 1

Γ(α)

∫ t2

0

(t2 − ϱ)α−1H (ϱ, ω(ϱ))dϱ− 1

Γ(α)

∫ t1

0

(t1 − ϱ)α−1H (ϱ, ω(ϱ))dϱ
∣∣∣,

≤H ∗

Γ(α)

∣∣∣
∫ t1

0

[(t2 − ϱ)α−1 − (t1 − ϱ)α−1]H (ϱ, ω(ϱ))dϱ

+

∫ t2

t1

(t2 − ϱ)α−1H (ϱ, ω(ϱ))dϱ
∣∣∣,

≤H ∗

Γ(α)

(
2(t2 − t1)

α + (tα2 − tα1 )
)
→ 0, as t2 → t1.

Hence, P1 is equicontinuous and also it is relatively compact on Cη. By applying the Arzela Ascoli theorem, P1 is 
compact on Cη because it is already proved that the operator is uniformly bounded and continuous. Thus using 
the Krasnoselskii’s fixed point theorem model (1) posses at least one solution on J. □

Theorem 5.2  The integral Eq. (7) which is equivalent with the mentioned system (1) has a unique solution under 
the assumption (A2)  provided that ΘLH < 1, where Θ = bα[(Γα + 1)−1].

Proof  Consider B : S → S defined by

	
(Bω)(t) =ω0 +

1

Γ(α)

∫ t

0

(t− ϱ)α−1H (ϱ, ω(ϱ))dϱ. � (10)

The operator B is obviously well defined and the only solution to the model (1)) is merely the fixed point of B. 
Let sup

t∈J
∥H (t, 0)∥ = A1 & H ≥ ∥ω0∥ + ΘA1. Therefore we need to show that BLH ⊂ LH .

Here LH = {ω ∈ S : ∥ω∥ ≤ H } is closed and convex. Now for any ω ∈ LH , obtains,

	

|Bω(t)| = |ω0| +
1

Γ(α)

∫ t

0

(t− ϱ)α−1|H (ϱ, ω(ϱ))dϱ|,

≤ ω0 +
1

Γ(α)

∫ t

0

(t− ϱ)α−1
[∣∣∣H (ϱ, ω(ϱ))− H (ϱ, 0) + H (ϱ, 0)

∣∣∣
]
dϱ,

≤ ω0 +
1

Γ(α)

∫ t

0

(t− ϱ)α−1[LH |ω(ϱ)| +A1]dϱ,

≤ ω0 +
(LH ∥ω∥ +A1)

Γ(α)

∫ t

0

(t− ϱ)α−1dϱ,

|Bω(t)| ≤ ω0 +
(LH H +A1)b

α

Γ(α + 1)
≤ ω0 + Θ(LH H +A1) ≤ H .

Hence the results follows, also given for any ω1, ω2 ∈ S we get

	

|(Bω1)(t)− (Bω2)(t)| =
∣∣∣ 1

Γ(α)

∫ t

0

(t− ϱ)α−1[H (ϱ, ω1(ϱ))− H (ϱ, ω2(ϱ))]
∣∣∣dϱ,

≤LH

Γ(α)

∫ t

0

(t− ϱ)α−1|ω1(ϱ)− ω2(ϱ)|dϱ,

|(Bω1)(t)− (Bω2)(t)| ≤ΘLH |ω1(ϱ)− ω2(ϱ)|.

As a result of the Banach contraction principle, the proposed model (1) has exactly one solution. □

Remark 5.3  By using the Krasnoselskii’s fixed point theorem and Banach tontraction principle the proposed 
model has a unique solution.
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Equilibrium points, basic reproduction number and stability analysis of SVEIR model
Equilibria and their stability
In this subsection, the equilibrium points of the Caputo fractional order system (1) is derived. Depends on the 
model parameter, the positive real equilibrium point exists. First, the equilibrium point E0 of the system (1) is 
given as

	
E0 :=

[Λ
µ
, 0, 0, 0, 0

]
.

Suppose the model parameters satisfies, R1 := Λβ2 − µ2 > 0, then the equilibrium point E1 of the system (1) 
exists, and is defined as

	
E1 :=

[ µ
β2
,
R1

µβ2
, 0, 0, 0

]
.

Similarly the model parameters satisfies the conditions R2 := Λσ2 − µσ > 0 and 
R3 := Λβ2σ2 − µ2σ2 − µ2β2 − µσβ2 > 0, then the another equilibrium point

	
E2 :=

[ R2

µσ2 + µβ2
,
µ + σ

σ2
, 0, 0,

R3

σ2(µσ2 + µβ2)

]

exists. Finally there exists a endemic equilibrium point. In this paper, the equilibrium point E2 is considered as 
disease free equilibrium(DFE) point of the system (1).

The model basic reproduction number
The basic reproduction number (BRN), which measures the average number of secondary infections caused by 
the introduction of one infected person into a fully susceptible community, typically governs the dynamics and 
stability of a disease model. In other words, it affects whether the illness spreads over the entire population or 
not. It is denoted by R0.

To calculate the BRN (R0) for the fractional order SVEIR model, we use the methods described in54. It can 
be obtained from the dominant eigen value of the matrix FV −1 where

	
F =

(
0 β1(1− ξ − ν)S

0 νβ1S

)
,V =

(
µ 0

0 (µ + γ + η)

)
,

Here the BRN (R0) can be found by using realistic DFE point value E2. Hence we obtain the basic reproduction 
number (R0) for the mentioned model (1) as follows,

	
R0 =

νβ1(Λσ2 − µσ)

(µ + γ + η)(µσ2 + µβ2)
.

Further, we define a notation for future study,

	
K0(S) =

νβ1S

(µ + γ + η)
.

Local stability analysis
In this part, we delve into a detailed discussion on the local stability of the equilibrium point (E0), (E1) and (E2) 
for system (1).

Theorem 6.1  The equilibrium point E0 is locally asymptotically stable if K0

(
Λ
µ

)
< 1 and R1 < 0 holds.

Proof  The Jacobian matrix J of the system (1) is obtained as follows

J =

	




−(β1I + β2V + µ) −β2S 0 −β1S σ

β2V + β1ξI (β2S − σ2R− µ) 0 ξβ1S + η −σ2V

β1(1− ξ − ν)I 0 −(σ1I + µ) β1(1− ξ − ν)S − σ1E 0

νβ1I 0 σ1I (νβ1S + σ1E − (µ + γ + η)) 0

0 σ2R 0 γ σ2V − (µ + σ)




.

The Characteristic equation of J(E0) is 
∣∣∣J(E0)− λI

∣∣∣ =0 is given by
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∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ −β2Λ
µ 0 −β1Λ

µ σ

0 β2Λ
µ − µ− λ 0 ξβ1Λ

µ + η 0

0 0 −µ− λ β1(1−ξ−ν)Λ
µ 0

0 0 0 νβ1Λ
µ − (µ + γ + η)− λ 0

0 0 0 γ −(µ + σ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Therefore, the eigenvalues are

	
λ1 = −µ, λ2 = −µ, λ3 =

R1

µ
, λ4 = −µ− σ, λ5 = −

(
ηµ + γµ + µ2 − Λβ1ν

)

µ
.

Suppose the model parameters satisfies the inequality νβ1Λµ < (µ + γ + β2) and R1 < 0, then all the eigen values 
are real negative real parts. Hence the equilibrium point at E0 is locally asymptotically stable. □

Theorem 6.2  The equilibrium point E1  is locally asymptotically stable if K0

(
µ
β2

)
< 1 with R1 > 0 and R3 < 0 

holds.

Proof  The characteristic equation of J(E1) is 
∣∣∣J(E1)− λI

∣∣∣ =0 is given by

	

∣∣∣∣∣∣∣∣∣∣∣∣

−µ− R1
µ − λ −µ 0 −β1µ

β2
σ

R1
µ −λ 0 ξβ1µ

β2
+ η −σ2R1

µβ2

0 0 −µ− λ β1(1−ξ−ν)µ
β2

0

0 0 0 νβ1µ
β2

− (µ + γ + η)− λ 0

0 0 0 γ σ2R1
µβ2

− (µ + σ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The eigen values of J(E1) are given by the following:

	
λ1 = λ2 = −µ; λ3 = −R1

µ
; λ4 =

−
(
β2η + β2γ + β2µ− β1µν

)

β2
; λ5 =

R1σ2
β2µ

− (µ + σ).

Here the eigen values are all negative real parts. Thus the equilibrium point E1 is locally asymptotically stable 

when the inequality 
R1σ2
β2µ

< (µ + σ) and R1 > 0. □

Theorem 6.3  The DFE point E2  is locally asymptotically stable if R0 < 1 and min{R1, R2, R3} > 0 holds.

Proof  The Jacobian matrix J of the system (1) at the point E2 =
[

R2
µσ2+µβ2

, µ+σ
σ2

, 0, 0, R3
σ2(µσ2+µβ2)

]
, if R2 and 

R3 > 0 is given by

	

J(E2) =




−µ− β2(µ+σ)
σ2

− β2R2
µβ2+µσ2

0 − β1R2
µβ2+µσ2

σ
β2(µ+σ)

σ2
0 0 η + +R2β1ξ

µβ2+µσ2
−µ− σ

0 0 −µ β1R2(1−ξ−ν)
µβ2+µσ2

0

0 0 0 νβ1R2
µβ2+µσ2

− (µ + γ + η) 0

0 R3
µβ2+µσ2

0 γ 0




.

The characteristic equation of J(E2) is

	
(λ + µ)

(
λ +

νβ1R2

µβ2 + µσ2
− (µ + γ + η)

)(
λ3 + a1λ

2 + a2λ + a3
)
= 0.

It can be easily seen that the two eigen values are negative, when R0 < 1 and the other three eigen values can be 
obtained from the cubic equation. Where

	
a1 = µ +

β2(µ + σ)

σ2
; a2 =

(µ + σ)R3

µβ2 + µσ2
; a3 =

R3µ +R3σ

σ2
.

Hence by the Routh-Hurwitz condition the DFE point E2 is locally asymptotically stable if ai (i = 1, 2, 3) are 
positive and a1a2 − a3 > 0. Therefore we conclude that E2 is is locally asymptotically stable, if R0 < 1. □
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The above theorems indicate that if the model parameters satisfy the condition K0

(
Λ
µ

)
< 1 with R1 < 0, then 

the system reaches the equilibrium point E0 after a certain period. However, if R1 > 0, a second equilibrium 
point E1 emerges, which is stable when R3 < 0 and the condition K0

(
µ
β2

)
< 1 holds. Suppose, if R3 > 0, a 

disease-free equilibrium point E2 exists and is locally stable when the basic reproduction number R0 < 1. This 
indicates that once the disease-free equilibrium point exists, it remains locally stable if R0 < 1.

Global stability analysis
In this section, we establish the global stability of the equilibrium point (E0 and E1) for the Caputo fractional 
model (1) by using Lyapunov and LaSalle’s invariance principle method55.

Theorem 6.4  If R1 < 0 and β1Λ− µ2 < 0,  then the equilibrium point E0 is globally asymptotically stable.

Proof  We consider the Lyapunov function L = (S − S∗) + V + E + I +R. Applying the Caputo derivative for 
the aforementioned equation and applying the lemma (2.1) we have,

	

DαL =

(
1− S∗

S

)
DαS +DαV +DαE +DαI +DαR

=

(
β1Λ

µ
− µ

)
I +

(
β2Λ

µ
− µ

)
V − Λ2

µS
+ 2Λ− µS − σΛR

µS
− µ(E +R)

≤
(
β1Λ

µ
− µ

)
I +

(
β2Λ

µ
− µ

)
V − 1

µS

[
(Λ− µS)2

]

DαL ≤
(
β1Λ

µ
− µ

)
I +

(
β2Λ

µ
− µ

)
V ≤ 0 if β1Λ− µ2 < 0 and β2Λ− µ2 < 0.

Then we obtain CDαL(t) ≤ 0 for all t ≥ 0.

According to the LaSalle’s invariance principle55, it is clear that E0 is globally asymptotically stable. □

Theorem 6.5  The equilibrium point E1  is globally asymptotically stable if β1 < β2 and σ2R1 < µ2β2.

Proof  Let us define the Lyapunov function as L = (S − S∗) + (V − V ∗) + E + I +R. Then

	

DαL =

(
1− S∗

S

)
DαS +

(
1− V ∗

V

)
DαV +DαE +DαI +DαR

=Λ− µ(S + V + E + I +R)− ΛS∗

S
+ β1S

∗I + β2S
∗V − σRS∗

S
+ µS∗ − β2SV

∗

− ξβ1SIV
∗

V
− ηV ∗I

V
+ σ2RV ∗ + µV ∗

≤ 2Λ− Λµ

β2S
− SΛβ2

µ
− µE +

(
β1
β2

− 1

)
µI +

σ2RΛ

µ
− σ2Rµ

β2
− µR

≤
(
β1
β2

− 1

)
µI +

(
σ2Λ

µ
− σ2µ

β2
− µ

)
R

DαL ≤ 0 if β1 < β2 and
σ2
µ2β2

<
1

R1
.

Then we obtain CDαL(t) ≤ 0 for all t ≥ 0. The invariant set of system (1) on the set 
{(S, V, E, I, R) ∈ Γ :C DαL(t) = 0} is the singleton {E1}. Hence E1 is globally asymptotically stable. □

Sensitivity analysis
This section presents the sensitivity analysis for SVEIR Caputo model for ASFV. It is important to highlight 
that the impact of a parameter is most pronounced when its sensitivity index value is higher. The positive and 
negative signs in the analysis demonstrate the association between these parameters and the analyzed variables, 
specifically the basic reproduction number. Conducting a parameter sensitivity analysis will help identify the 
necessary measures to halt the transmission of ASFV.

The sensitivity index R0 with respect to the parameters are calculated using partial derivatives , and it can be 
obtain as follows:
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∂R0

∂Λ
=

β1νσ2
(β2µ + µσ2)(γ + η + µ)

> 0;
∂R0

∂β1
=

(ν(Λσ2 − µσ))

((β2µ + µσ2)(γ + η + µ))
;

∂R0

∂β2
= − (β1µν(Λσ2 − µσ))

((β2µ + µσ2)2(γ + η + µ))
;

∂R0

∂ν
=

(β1(Λσ2 − µσ))

((β2µ + µσ2)(γ + η + µ))
;

∂R0

∂σ
= − (β1µν)

((β2µ + µσ2)(γ + η + µ))
< 0;

∂R0

∂η
= − (β1ν(Λσ2 − µσ))

((β2µ + µσ2)(γ + η + µ)2)
;

∂R0

∂σ2
=

(β1ν(Λβ2 + µσ))

(µ(β2 + σ2)2(γ + η + µ))
> 0;

∂R0

∂γ
= − (β1ν(Λσ2 − µσ))

((β2µ + µσ2)(γ + η + µ)2)
.

From the analysis, it is evident that an increase in the total population leads to a rise in the number of infected 
individuals within the system. Conversely, recovering pigs from the susceptible compartment or administering 
vaccination significantly reduces the spread of infection. Furthermore, if the model parameters satisfy the 
condition Λσ2 − µσ > 0, an increase in the infection rate among pigs will complicate the system by facilitating 
further spread of the infection. Providing vaccinations to both susceptible and infected pigs is an effective 
strategy to mitigate the transmission of disease. From this study, we observed that controlling the vaccination 
rate η and the recovery rate σ plays a crucial role in effectively reducing the spread of infection.

Optimal control analysis of a SVEIR model
In this section, we apply optimal control theory techniques to develop an effective strategy for limiting the 
transmission of ASF virus in pigs. In order to incorporate the efficiency of vaccination using a control measure for 
the system (1), we introduce two controls variables namely u1 and u2. Here the tightening bio-security measures 
at a given time t served as the first control, as denoted by u1(t) and the second control u2(t), represented the 
efficient disinfectant at t. However, iron fencing can be an important component of a bio-security plan to help 
prevent the contact and spread of the virus on pig farms. Implement a rigorous sanitation program to reduce the 
risk of introducing or spreading ASF. This includes regularly cleaning and disinfecting all equipment and vehicles 
that come into contact with pigs or their environment. These measures work together to create a comprehensive 
approach that helps to minimize the risk of ASF transmission and protect the health of the pigs on the farm.

Optimal control theory is a mathematical framework used to find the best control strategies for a given 
system, typically by optimizing an objective function. In the context of epidemic diseases, optimal control theory 
can be applied to model the spread of the disease and determine effective intervention strategies to mitigate its 
impact56–61. Agarwal et al.62 and Ding et al.63 have significantly enhanced the theory of optimal control within 
the field of fractional calculus through their valuable contributions. Pontryagain’s maximal principle (see64) is a 
cornerstone of the fundamental concept of optimal control in the realm of fractional calculus.

The system of equations is modified after the inclusion of the time-dependent control is as follows:

	




CDαS(t) = Λ− β1SI − β2SV + σu2(t)R− µS,
CDαV (t) = β2SV + ξβ1SI + ηu1(t)I − σ2RV − µV,
CDαE(t) = β1(1− ξ − ν)SI − σ1EI − µE,
CDαI(t) = νβ1SI + σ1EI − (µ + γ)I − ηu1(t)I,
CDαR(t) = γI − (µ + σu2(t))R + σ2RV,

� (11)

with the initial states S(0),  V(0),  I(0),  E(0) and R(0) are all non negative.

Remark: The SVEIR model with control variables u1 and u2 is proposed after noticing the importance of model 
parameter from the sensitivity analysis of the basic reproduction number. 

These two control functions are both limited and Lebesgue integrable on [0, Tf ], where Tf  is the fixed time 
interval length to which controls are applied.

Our goals here are to reduce the number of infected pigs by increasing recovered pigs population and 
reducing exposed and infected pigs, as well as to reduce the costs associated with controls. It can be quantitatively 
described by optimizing the cost functional:

	
J(u1, u2) =

∫ Tf

0

[
A1E(t) + A2I(t) +

c1
2
u21(t) +

c2
2
u22(t)

]
dt.� (12)

Where A1 and A2 represents the positive weights and c1 and c2 are the measure of relative cost of the intervention 
strategies of the control u1 and u2 respectively. Objective is to find the control parameters u∗1 and u∗2, such that,

	
J(u∗1, u

∗
2) = min

u1,u2∈U
J(u1, u2).� (13)

Here the control set U is defined by,

	 U = {(u1, u2)/0 ≤ umin ≤ ui(t) ≤ umax ≤ 1, i = {1; 2}/t ∈ [0, Tf ]} .� (14)
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Characterization of optimal control functions
Pontryagin maximum principle is used to derive the necessary condition for optimality conditions for our 
system. In order to do this we define Hamiltonian H of the problem (12) at time t is defined by,

	

H(t) = A1E(t) + A2I(t) +
c1
2
u21(t) +

c2
2
u22(t) + λC

1 D
αS(t) + λC

2 D
αV (t)

+λC
3 D

αE(t) + λC
4 D

αI(t) + λC
5 D

αR(t).
� (15)

Here λ′
js are the co-state variables for j = 1, 2 . . . 5. with the co-state equations as follows:

	

Dα
Tf
λ1(t) = −∂H(t)

∂S(t)
; Dα

Tf
λ2(t) = −∂H(t)

∂V (t)
; Dα

Tf
λ3(t) = −∂H(t)

∂E(t)
;

Dα
Tf
λ4(t) = −∂H(t)

∂I(t)
; Dα

Tf
λ5(t) = −∂H(t)

∂R(t)
.

Necessary optimality conditions
Theorem 8.1  The optimal controls u∗1 and u∗2 and corresponding solutions of the state Eq. (11) are S∗, V ∗, E∗, I∗ 
and R∗  then there exists co-state variables λ1, λ2, λ3, λ4 and λ5 satisfying the following:

	

Dα
Tf
λ1(t) = −∂H(t)

∂S(t)
=− λ1(t)

[
β1I − β2V − µ

]
− λ2(t)

[
β2V + ξβ1I

]

− λ3(t)
[
β1(1− ξ − ν)I

]
− λ4(t)

[
νβ1I

]

Dα
Tf
λ2(t) = −∂H(t)

∂V (t)
=λ1(t)

[
β2S

]
− λ2(t)

[
β2S − σ2R− µ

]
− λ5(t)

[
σ2R

]

Dα
Tf
λ3(t) = −∂H(t)

∂E(t)
=− A1 + λ3(t)

[
σ1I + µ

]
− λ4(t)

[
σ1I

]

Dα
Tf
λ4(t) = −∂H(t)

∂I(t)
=λ1(t)β1S − λ2(t)

[
ξβ1S + ηu1(t)

]
− λ3(t)

[
β1(1− ξ − ν)S − σ1E

]

− A2 − λ4(t)
[
νβ1S + σ1E − µ− γ − ηu1(t)

]
− λ5(t)

[
γ
]

Dα
Tf
λ5(t) = −∂H(t)

∂R(t)
=− λ1(t)

[
σu2(t)

]
+ λ2(t)

[
σ2V

]
+ λ5(t)

[
µ + σu2(t)− σ2V

]
,

 with the transversality condition λ1(Tf) = λ2(Tf) = λ5(Tf) = 0 and λ3(Tf) = −A1, λ4(Tf) = −A2.  Moreover 
the objective function J is minimized within the region U by the optimal controls  u∗1 and u∗2 are given by,

	

u∗1(t) =min

{
max

{
0,
(λ4 − λ2) ηI

∗(t)

c1

}
, 1

}
;

u∗2(t) =min

{
max

{
0,
(λ5 − λ1) σR

∗(t)

c2

}
, 1

}
.

Proof  Let us define the Hamiltonian function as follows:

	

H(t) =A1E(t) + A2I(t) +
c1
2
u21(t) +

c2
2
u22(t) + λ1(t)

[
Λ− β1SI − β2SV + σu2(t)R− µS

]

+ λ2(t)
[
β2SV + ξβ1SI + ηu1(t)I − σ2RV − µV

]
+ λ3(t)

[
β1(1− ξ − ν)SI − σ1EI − µE

]

+ λ4(t)
[
νβ1SI + σ1EI − (µ + γ)I − ηu1(t)I

]
+ λ5(t)

[
γI − (µ + σu2(t))R + σ2RV

]
.

By employing Pontryagin’s maximum principle, we can derive the adjoint equations and transversality conditions 
for all t within the interval [0, Tf ]. We obtain the co state equations as follows:
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Dα
Tf
λ1(t) = −∂H(t)

∂S(t)
=− λ1(t)

[
β1I − β2V − µ

]
− λ2(t)

[
β2V + ξβ1I

]

− λ3(t)
[
β1(1− ξ − ν)I

]
− λ4(t)

[
νβ1I

]

Dα
Tf
λ2(t) = −∂H(t)

∂V (t)
=λ1(t)

[
β2S

]
− λ2(t)

[
β2S − σ2R− µ

]
− λ5(t)

[
σ2R

]

Dα
Tf
λ3(t) = −∂H(t)

∂E(t)
=− A1 + λ3(t)

[
σ1I + µ

]
− λ4(t)

[
σ1I

]

Dα
Tf
λ4(t) = −∂H(t)

∂I(t)
=λ1(t)β1S − λ2(t)

[
ξβ1S + ηu1(t)

]
− λ3(t)

[
β1(1− ξ − ν)S − σ1E

]

− A2 − λ4(t)
[
νβ1S + σ1E − µ− γ − ηu1(t)

]
− λ5(t)

[
γ
]

Dα
Tf
λ5(t) = −∂H(t)

∂R(t)
=− λ1(t)

[
σu2(t)

]
+ λ2(t)

[
σ2V

]
+ λ5(t)

[
µ + σu2(t)− σ2V

]

For t ∈ [0, Tf ] the transversality condition λ1(Tf) = λ2(Tf) = λ5(Tf) = 0, and λ3(Tf) = −A1, λ4(Tf) = −A2. 
Further using Pontryagin’s maximum principle we obtain the optimality controls u∗1(t) and u∗2(t)

	
∂H(t)
∂u1(t)

= 0 ⇒ c1u1 + (λ2 − λ4)(ηI) = 0;
∂H(t)
∂u2(t)

= 0 ⇒ c2u2 + (λ1 − λ5)(σR) = 0. � (16)

From the minimum of the cost functional J we obtain the optimal controls u∗1 and u∗2 as follows

	

u∗1(t) =min

{
max

{
0,
(λ4 − λ2) ηI

∗(t)

c1

}
, 1

}
;

u∗2(t) =min

{
max

{
0,
(λ5 − λ1) σR

∗(t)

c2

}
, 1

}
.

This completes the proof. □

Numerical simulation results for SVEIR model
This section provides an overview of the numerical methods employed in our study. In subsection (9.1), we 
utilized the FRK4M to solve the discretized form of Caputo system (1) through numerical computation. 
Furthermore, in subsection (9.2), we apply the forward backward sweep method (FBSM) using the FRK4M to 
solve the optimality system (11). These methods provide precise numerical solutions over extended time intervals. 
MATLAB software is employed for simulations, utilizing the specified initial conditions and parameters.

Fractional Runge Kutta method of the fourth order
This FRK4M, an extension of the classical Runge-Kutta technique, is particularly adept at handling systems 
involving fractional differential equations65–68. To demonstrate the utilization of the FRK4M in solving the 
model presented in (1), we begin by considering the general form of the fractional differential equation (FDE),

	

Dαg(t) = f (t, g(t)), 0 < α ≤ 1, 0 < t ≤ T,

g(0) = g0.
� (17)

To formulate the numerical scheme for the FRK4M , we partition the interval [0, T] into n equal subintervals 

using points t0, t1, · · · , tn, where t0 = 0, tj = jh for j = 1, 2, · · · , n, and tn = T, with h =
T

n
 representing the 

step size. The formulation of the FRK4M numerical scheme is represented as follows:

	

K1 = h∗f (tn, gn) , K2 = h∗f

(
tn +

h

2
, gn +

K1

2

)
, K3 = h∗f

(
tn +

h

2
, gn +

K2

2

)
,

K4 = h∗f (tn + h, gn +K3) , gn+1 = gn+
1

6
(K1 + 2K2 + 2K3 +K4) , where h∗ =

hα

Γ(α + 1)
.

Now, we observe the approximated solutions for S(t), V(t), E(t), I(t) and R(t) utilizing a step size of 0.01 for various 
values of the fractional order 0 < α ≤ 1. The initial values are S(0) = 1.5, V (0) = 0.3, E(0) = 0.8, I(0) = 1, and 
R(0) = 0.2 along with the parameter values utilized are as specified in Table 1.

Parameter Λ β1 β2 σ µ ξ η σ1 σ2 ν γ

Value 1 0.26 0.2 0.9 0.09 0.2 0.2 0.1 0.3 0.4 0.1

Table 1.  Model parameter values.
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We performed numerical simulations with initial values and specified parameters as in Table 1 for the system (1) 
using both classical and a range of fractional order values, encompassing α = 0.75, 0.85, and 1.

It’s great to see the different dynamics represented in the figures. The visual depiction in Fig. 3 effectively 
showcases how the fractional disease model provides a deeper understanding of the disease behaviour. In 
Fig.  3a, the evolution of susceptible pigs over time, varying both classical and different fractional orders of 
α, is presented, demonstrating the impact of varying fractional orders of α on the proportion of susceptible 
pigs. Figure 3b illustrates the changes in vaccinated pigs over time, showing how they increase and then slowly 
decline due to the α values. Figure 3c–e depict the dynamical behaviour of exposed pigs over time, confirming a 
significant increase in the proportion of exposed, infected, and recovered pigs.

Parameter Λ β1 β2 σ µ ξ η σ1 σ2 ν γ

Value 1 0.42 0.2 0.2 0.2 0.1 0.2 0.1 0.3 0.1 0.7

Table 2.  Model parameter values.

 

Fig. 3.  Visualizes the dynamical behaviour of all pigs population with respect to days for a integer and non-
integer values of α = 0.75&0.85.
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FBSM using FRK4M
FBSM represents a highly efficient iterative method for addressing optimality systems. Building upon the 
foundation of FRK4M, we have enhanced FBSM to tackle our FOCP. The procedure commences with an initial 
estimation of the control variable. Subsequently, the state equations are solved forward in time simultaneously, 
while the adjoint equations are solved backwards in time. The control variable is updated using the newly 
computed state and adjoint values, and this iterative process continues until convergence is achieved.

Next, we discuss the numerical simulations of FOCP of the mentioned system (1). We have acquired the 
solutions of the optimality system using the algorithm discussed, employing the state variables with in the initial 
values as S(0) = 3, V (0) = 1, E(0) = 0.3, I(0) = 2, R(0) = 0.2 and the parameter values listed in Table 2.

The numerical simulations are presented in the Fig. 4. In Fig. 4a–e, it is evident that the implementation of 
control measures leads to a greater increase in the number of susceptible pigs, vaccinated pigs, Exposed pigs, 
Infected pigs and recovered pigs compared to the scenario without any control measures. The profile of the 
control variables u1 and u2 are depicts in Fig. 5.

The following is the algorithm used for the numerical simulations to obtain the optimal solution for the 
proposed system:

Algorithm

	 Step 1:	� Fix the model parameters and set h, t0 = 0, T and N = T
h .

Fig. 4.  Graphical representation for S, V, E, I and R compartments with and without optimal controls for a 
integer and non-integer values of α = 0.75&0.85..
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	 Step 2:	� Initialize the state variable g(t).
	 Step 3:	� Set the α value.
	 Step 4:	� Consider the initial condition g0. For each time step n = 0, 1, 2,…, N compute the next value of gn+1.
	 Step 5:	� Perform the Runge kutta method for the proposed state system to obtain the solution without control.
	 Step 6:	� Initialize the co-state variables.
	 Step 7:	� Perform the state system with control parameters in a forward time loop.
	 Step 8:	� Perform the co-state system in the Runge-kutta method over a time backward loop.
	 Step 9:	� Modify the control variable by the optimility condition.
	Step 10:	� Calculate the tolerance of error. Iterate until the error is less than prescribed value
	Step 11:	� If loop breaks, repeat from the step 3 for different α.
	Step 12:	� Plot the output.
	Step 13:	� End.

Figure  4a reveals that, under control measures, the susceptible pig population is elevated in comparison 
to the situation where no control measures are in place. The findings presented in Fig.  4b show that when 
implementing the control inputs u1 and u2 are put into action, the number of vaccinated pigs population is 
higher rate compared to the situation where no control measures are in respective places. The outcomes shown 
in Fig. 4c and d strongly indicate the impact of control measures on the populations of exposed and infected pigs. 
Implementing control parameters results in a substantial decrease in the populations of exposed and infected 
pigs. Consequently, this reduction in the population of exposed and infected pigs is associated with an increase 
in the population of recovered pigs as shown in Fig. 4e . Finally from Fig. 4a–e, we can see a notable decline in 
the populations of exposed and infected pigs when control strategies are put into effect, and by the end of the 
control period, there is a corresponding increase in the populations of vaccinated and recovered pigs. Therefore, 
optimal control proves its effectiveness in reducing the populations of exposed and infected pigs within the 
desired time frame. In Fig.  5, we can observe the control strategies represented by u1 and u2. As shown in 
Fig. 5a, there is an initial implementation of tightening biosecurity measures, aimed at isolating vaccinated pigs 
to prevent infections and minimize viral transmission within the farm. These measures are gradually relaxed 
as the intervention progresses towards its conclusion. In Fig. 5b, we see a different strategy where an effective 
disinfectant is initially administered to all pigs, with the possibility of increasing its usage over time as the 
number of recovered pigs rises. Timely vaccination efforts facilitate the transition of pigs from the susceptible 
(S) compartment to the vaccinated (V) compartment, thereby reducing the exposed and infected populations. If 
u1(t) is applied consistently and effectively, the susceptible population will decrease rapidly, while the vaccinated 
population will grow, slowing the spread of the disease. Similarly, disinfection efforts governed by u2(t) help to 
reduce virus transmission in the environment, lowering the numbers of exposed (E) and infected (I) pigs over 
time. Proper sanitation significantly curbs the spread of ASF, ensuring that fewer susceptible animals become 
exposed or infected.

Conclusions
In this research, we have developed a Caputo fractional order mathematical model to describe the transmission 
behaviours of the ASFV within the SVEIR framework. Our study encompasses an analysis of solution positivity 
and boundedness of the system. we computed the basic reproductive number R0 for our SVEIR model. 
Following that, we derive conditions that ensure the DFE point exhibits both local and global asymptotic 
stability. The sensitivity study was performed on this model by using R0. Furthermore, we introduced a FOCP 
and derived the necessary optimality conditions using the Pontryagin maximum principle. To gain insights into 
the system behaviour, we conducted numerical simulations employing the FRK4M method, and we solved the 
resulting optimality system numerically by developing the FBSM with FRK4M. Through the implementation of 
control variables such as enforced biosafety measures and the use of effective disinfectants, we can effectively 
manage and curb the spread of the African swine fever virus. Also, we conclude from the simulation results, the 

Fig. 5.  Optimal control trajectory of u1&u2 with integer and non-integer values of α = 0.75&0.85.
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incorporation of vaccination compartments into our model represents a novel approach compared to existing 
ASFV models1,44–49. The important features of our work are as follows:

•	 The proposed fractional-order model presents notable benefits by accounting for memory effects, enhancing 
flexibility and precision, capturing non-local dynamics, and offering improved tools for control and optimi-
zation.

•	 Our findings demonstrate its remarkable effectiveness, highlighting it as the optimal strategy for disease erad-
ication.

•	 The graphical results demonstrate that the model yields greater adaptability and richer outcomes. These at-
tributes make fractional-order models better suited for modeling complex, real-world systems compared to 
traditional integer-order models.

•	 This approach enhances the accuracy of predictions regarding disease spread and control measures, allowing 
for more effective prevention and intervention strategies.

Limitations of the current work

•	 Future studies employ actual ASFV case data to optimize parameter values in the model. Moreover, we aim to 
expand the model to incorporate a more complex and realistic network framework.

•	 A stochastic modeling approach that accounts for uncertainty in the dynamics of ASFV could also be ex-
plored.

•	 Time delays are a widely recognized feature of epidemic models. In our future research, we intend to broaden 
this study by including time delays.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 22 August 2024; Accepted: 29 October 2024

References
	 1.	 Kouidere, A., Balatif, O. & Rachik, M. Analysis and optimal control of a mathematical modeling of the spread of African swine 

fever virus with a case study of South Korea and cost-effectiveness. Chaos, Solitons Fractals 146, 110867 (2021).
	 2.	 Mahroug, F. & Bentout, S. Dynamics of a diffusion dispersal viral epidemic model with age infection in a spatially heterogeneous 

environment with general nonlinear function. Math. Methods Appl. Sci. 46, 14983–15010 (2023).
	 3.	 Djilali, S., Bentout, S. & Tridane, A. Dynamics of a generalized nonlocal dispersion SIS epidemic model. J. Evol. Equ. 24, 1–24 

(2024).
	 4.	 Soufiane, B. & Touaoula, T. M. Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. 

Appl. 434, 1211–1239 (2016).
	 5.	 Djilali, S., Bentout, S., Kumar, S. & Touaoula, T. M. Approximating the asymptomatic infectious cases of the COVID-19 disease in 

Algeria and India using a mathematical model. Int. J. Model. Simul. Sci. Comput. 13, 2250028 (2022).
	 6.	 Bentout, S. & Djilali, S. Asymptotic profiles of a nonlocal dispersal SIR epidemic model with treat-age in a heterogeneous 

environment. Math. Comput. Simul. 203, 926–956 (2023).
	 7.	 Bentout, S. Analysis of global behavior in an age-structured epidemic model with nonlocal dispersal and distributed delay. Math. 

Methods Appl. Sci. 47, 7219–7242 (2024).
	 8.	 Hariharan, S., Shangerganesh, L., Debbouche, A. & Antonov, V. Dynamic behaviors for fractional epidemiological model featuring 

vaccination and quarantine compartments. J. Appl. Math. Comput. 1–21 (2024).
	 9.	 Guo, Y. & Li, T. Fractional-order modeling and optimal control of a new online game addiction model based on real data. Commun. 

Nonlinear Sci. Numer. Simul. 121, 107221 (2023).
	10.	 Padder, A. et al. Dynamical analysis of generalized tumor model with Caputo fractional-order derivative. Fractal Fract. 7, 258 

(2023).
	11.	 Vieira, L. C., Costa, R. S. & Valério, D. An overview of mathematical modelling in cancer research: Fractional Calculus as modelling 

tool. Fractal Fract. 7, 595 (2023).
	12.	 Baleanu, D., Diethelm, K., Scalas, E. & Trujillo, J. J. Fractional calculus: models and numerical methods (2012).
	13.	 Kilbas, A., Srivastava, H. & Trujillo, J. Theory and applications of fractional differential equations (2006).
	14.	 Djilali, S., Chen, Y. & Bentout, S. Dynamics of a delayed nonlocal reaction–diffusion heroin epidemic model in a heterogenous 

environment. Math. Methods Appl. Sci. (2024).
	15.	 Djilali, S., Bentout, S., Zeb, A. & Saeed, T. Global stability of hybrid smoking model with nonlocal diffusion. Fractals 30, 2240224 

(2022).
	16.	 Bentout, S., Djilali, S., Touaoula, T. M., Zeb, A. & Atangana, A. Bifurcation analysis for a double age dependence epidemic model 

with two delays. Nonlinear Dyn. 108, 1821–1835 (2022).
	17.	 Chen, W.-C. Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36, 1305–1314 (2008).
	18.	 Jiang, C., Zada, A., Şenel, M. T. & Li, T. Synchronization of bidirectional n-coupled fractional-order chaotic systems with ring 

connection based on antisymmetric structure. Adv. Differ. Equ. 2019, 1–16 (2019).
	19.	 Xua, C., Liaob, M., Farman, M. & Shehzade, A. Hydrogenolysis of glycerol by heterogeneous catalysis: A fractional order kinetic 

model with analysis. MATCH Commun. Math. Comput. Chem. 91, 635–664 (2024).
	20.	 Ahmad, S. et al. Fractional order mathematical modeling of COVID-19 transmission. Chaos Solitons Fractals 139, 110256 (2020).
	21.	 Hamdan, N. I. & Kilicman, A. A fractional order SIR epidemic model for dengue transmission. Chaos Solitons Fractals 114, 55–62 

(2018).
	22.	 Ullah, I., Ahmad, S., ur Rahman, M. & Arfan, M. Investigation of fractional order tuberculosis (TB) model via Caputo derivative. 

Chaos Solitons Fractals142, 110479 (2021).
	23.	 Jajarmi, A. & Baleanu, D. A new fractional analysis on the interaction of HIV with CD4+ T-cells. Chaos Solitons Fractals 113, 

221–229 (2018).
	24.	 Ucar, E., Özdemir, N. & Altun, E. Fractional order model of immune cells influenced by cancer cells. Math. Model. Nat. Phenom. 

14, 308 (2019).
	25.	 Evirgen, F. Transmission of Nipah virus dynamics under Caputo fractional derivative. J. Comput. Appl. Math. 418, 114654 (2023).

Scientific Reports |        (2024) 14:27185 17| https://doi.org/10.1038/s41598-024-78140-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	26.	 Atangana, A. & Qureshi, S. Mathematical modeling of an autonomous nonlinear dynamical system for malaria transmission using 
Caputo derivative. Fract. Order Anal. Theory Methods Appl. 225–252 (2020).

	27.	 Suganya, S. & Parthiban, V. A mathematical review on Caputo fractional derivative models for Covid-19. AIP Conf. Proc. 2852, 
110003 (2023).

	28.	 Xu, C. et al. Theoretical exploration and controller design of bifurcation in a plankton population dynamical system accompanying 
delay. Discret. Contin. Dyn. Syst.-S (2024).

	29.	 Xu, C. et al. Bifurcation investigation and control scheme of fractional neural networks owning multiple delays. Comput. Appl. 
Math. 43, 1–33 (2024).

	30.	 Xu, C., Farman, M. & Shehzad, A. Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel. 
Int. J. Biomath. 2350105 (2023).

	31.	 Xu, C. et al. New results on bifurcation for fractional-order octonion-valued neural networks involving delays. Netw.: Comput. 
Neural Syst. 1–53 (2024).

	32.	 Yang, Y., Qi, Q., Hu, J., Dai, J. & Yang, C. Adaptive fault-tolerant control for consensus of nonlinear fractional-order multi-agent 
systems with diffusion. Fractal Fract. 7, 760 (2023).

	33.	 Li, H. & Wu, Y. Dynamics of SCIR modeling for COVID-19 with immigration. Complexity 2022, 9182830 (2022).
	34.	 Zhao, Y., Sun, Y., Liu, Z. & Wang, Y. Solvability for boundary value problems of nonlinear fractional differential equations with 

mixed perturbations of the second type. AIMS Math. 5, 557–567 (2020).
	35.	 Wang, Y., Yang, J. & Zi, Y. Results of positive solutions for the fractional differential system on an infinite interval. J. Funct. Spaces 

2020, 5174529 (2020).
	36.	 Zhang, B., Xia, Y., Zhu, L., Liu, H. & Gu, L. Global stability of fractional order coupled systems with impulses via a graphic 

approach. Mathematics 7, 744 (2019).
	37.	 Wang, J., Lang, J. & Li, F. Constructing Lyapunov functionals for a delayed viral infection model with multitarget cells, nonlinear 

incidence rate, state-dependent removal rate. J. Nonlinear Sci. Appl. 9, 524–536 (2016).
	38.	 Baleanu, D., Qureshi, S., Yusuf, A., Soomro, A. & Osman, M. Bi-modal COVID-19 transmission with Caputo fractional derivative 

using statistical epidemic cases. Part. Diff. Equ. Appl. Math. 100732 (2024).
	39.	 Tassaddiq, A., Qureshi, S., Soomro, A., Arqub, O. A. & Senol, M. Comparative analysis of classical and Caputo models for 

COVID-19 spread: Vaccination and stability assessment. Fixed Point Theory Algorithms Sci. Eng. 2024, 2 (2024).
	40.	 Srivastava, H. M. & Saad, K. M. A comparative study of the fractional-order clock chemical model. Mathematics 8, 1436 (2020).
	41.	 Li, P., Shi, S., Xu, C. & Rahman, M. U. Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-

Satsuma equation. Nonlinear Dyn. 112, 7405–7415 (2024).
	42.	 Suganya, S. & Parthiban, V. Optimal control analysis of fractional order delayed SIQR model for COVID-19. Eur. Phys. J. Spec. Top. 

1–13 (2024).
	43.	 Subramanian, S. et al. Fuzzy fractional Caputo derivative of susceptible-infectious-removed epidemic model for childhood 

diseases. Mathematics 12, 466 (2024).
	44.	 Barongo, M. B., Bishop, R. P., Fèvre, E. M., Knobel, D. L. & Ssematimba, A. A mathematical model that simulates control options 

for African swine fever virus (ASFV). PLoS ONE 11, e0158658 (2016).
	45.	 Shi, R., Li, Y. & Wang, C. Stability analysis and optimal control of a fractional-order model for African swine fever. Virus Res. 288, 

198111 (2020).
	46.	 Kouidere, A., Balatif, O. & Rachik, M. Fractional optimal control problem for a mathematical modeling of African swine fever 

virus transmission. Moroc. J. Pure Appl. Anal. 9, 97–110 (2023).
	47.	 Shi, R., Li, Y. & Wang, C. Analysis of a fractional-order model for African swine fever with effect of limited medical resources. 

Fractal Fract. 7, 430 (2023).
	48.	 Shi, R., Zhang, Y. & Wang, C. Dynamic analysis and optimal control of fractional order African swine fever models with media 

coverage. Animals 13, 2252 (2023).
	49.	 Shi, R. & Zhang, Y. Stability analysis of a fractional-order African swine fever model with saturation incidence. Animals 14, 1929 

(2024).
	50.	 Ameen, I., Baleanu, D. & Ali, H. M. An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with 

a combination of vaccination and treatment. Chaos Solitons Fractals 137, 109892 (2020).
	51.	 Mahata, A., Paul, S., Mukherjee, S., Das, M. & Roy, B. Dynamics of Caputo fractional order SEIRV epidemic model with optimal 

control and stability analysis. Int. J. Appl. Comput. Math. 8, 28 (2022).
	52.	 Vargas-De-León, C. Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. 

Simul. 24, 75–85 (2015).
	53.	 Verma, P., Tiwari, S. & Verma, A. Theoretical and numerical analysis of fractional order mathematical model on recent COVID-19 

model using singular kernel. Proc. Natl. Acad. Sci., India, Sect. A 93, 219–232 (2023).
	54.	 van den Driessche, P. & Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of 

disease transmission. Math. Biosci. 180, 29–48 (2002).
	55.	 LaSalle, J. The stability of dynamical systems. in Regional conference series in applied mathematics, SIAM, Philadelphia, 1976. 

Khalid Hattaf Department of Mathematics and Computer Science, Faculty of Sciences Ben M’sik, Hassan II University, PO 
Box7955 (2012).

	56.	 Sowndarrajan, P. T., Shangerganesh, L., Debbouche, A. & Torres, D. F. Optimal control of a heroin epidemic mathematical model. 
Optimization 71, 3107–3131 (2022).

	57.	 Hariharan, S. & Shangerganesh, L. Optimal control problem on cancer–obesity dynamics. Int. J. Biomath. 2450032 (2024).
	58.	 Hussain, T. et al. Sensitivity analysis and optimal control of COVID-19 dynamics based on SEIQR model. Results Phys. 22, 103956 

(2021).
	59.	 Kheiri, H. & Jafari, M. Optimal control of a fractional-order model for the HIV/AIDS epidemic. Int. J. Biomath. (2018).
	60.	 Vellappandi, M., Kumar, P., Govindaraj, V. & Albalawi, W. An optimal control problem for mosaic disease via Caputo fractional 

derivative. Alex. Eng. J. 61, 8027–8037 (2022).
	61.	 Mohammadi, S. & Hejazi, R. Optimal fractional order PID controller performance in chaotic system of HIV disease: Particle 

swarm and genetic algorithms optimization method. Comput. Methods Differ. Equ. 11, 207–224 (2023).
	62.	 Agrawal, O. P. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 

(2004).
	63.	 Ding, Y., Wang, Z. & Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. 

Technol. 20, 763–769 (2012).
	64.	 Kamocki, R. Pontryagin maximum principle for fractional ordinary optimal control problems. Math. Methods Appl. Sci. 37, 1668–

1686 (2014).
	65.	 Milici, C., Drăgănescu, G. & Machado, J. Introduction to fractional differential equations (2018).
	66.	 Sweilam, N., AL-Mekhlafi, S., Almutairi, A. & Baleanu, D. A hybrid fractional COVID-19 model with general population mask 

use: Numerical treatments. Alex. Eng. J. 60, 3219–3232 (2021).
	67.	 Ibrahim, Y., Khader, M., Megahed, A., Abd El-Salam, F. & Adel, M. An efficient numerical simulation for the fractional COVID-19 

model using the GRK4M together with the fractional FDM. Fractal Fract. 6, 304 (2022).
	68.	 Milici, C., Machado, J. T. & Draganescu, G. Application of the Euler and Runge-Kutta generalized methods for FDE and symbolic 

packages in the analysis of some fractional attractors. Int. J. Nonlinear Sci. Numer. Simul. 21, 159–170 (2020).

Scientific Reports |        (2024) 14:27185 18| https://doi.org/10.1038/s41598-024-78140-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Acknowledgements
The authors would like to thank for the facilities provided by Department of Mathematics, Vellore Institute of 
Technology, Chennai Campus and Department of Applied Sciences, National Institute of Technology Goa.

Author contributions
S.S and H.S: Conceptualization; methodology; writing – original draft; formal analysis; software. P.V and S.L: 
Methodology; investigation; visualization; validation; supervision; writing – review and editing; software

Funding
Open access funding provided by Vellore Institute of Technology. The authors declare that no funds, grants, or 
other support were received during the preparation of this manuscript.

Declerations

Competing interests
The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval
Not applicable.

Additional information
Correspondence and requests for materials should be addressed to V.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024 

Scientific Reports |        (2024) 14:27185 19| https://doi.org/10.1038/s41598-024-78140-9

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Transmission dynamics of fractional order SVEIR model for African swine fever virus with optimal control analysis
	﻿﻿Preliminaries and methods
	﻿Preliminaries

	﻿﻿Formulation of the Caputo fractional SVEIR model
	﻿﻿Positivity and boundedness of solutions of the system
	﻿﻿Existence and uniqueness results
	﻿﻿Equilibrium points, basic reproduction number and stability analysis of SVEIR model
	﻿Equilibria and their stability
	﻿The model basic reproduction number
	﻿Local stability analysis
	﻿Global stability analysis

	﻿﻿Sensitivity analysis
	﻿﻿Optimal control analysis of a SVEIR model
	﻿Characterization of optimal control functions
	﻿Necessary optimality conditions

	﻿﻿Numerical simulation results for SVEIR model
	﻿Fractional Runge Kutta method of the fourth order
	﻿FBSM using FRK4M
	﻿Algorithm


	﻿Conclusions
	﻿Limitations of the current work

	﻿References


