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Abstract
Background Osteogenesis imperfecta (OI) is a genetic disorder characterized by low bone mass, bone fragility and 
short stature. There is a significant gap in knowledge regarding the growth patterns across different types of OI, and 
the prediction of height in individuals with OI was not adequately addressed. In this study, we described the growth 
patterns and predicted the height of individuals with OI employing multiple machine learning (ML) models. Accurate 
height prediction enables effective monitoring and facilitates the development of personalized intervention plans for 
managing OI.

Method This study included cross-sectional data for 323 participants with OI, and the median height Z-score for 
OI types I, III and IV were − 0.62 (-5.93 ~ 3.24), -3.97 (-10.44 ~ -0.02) and − 1.64 (-6.67 ~ 2.44), respectively. Based on 
the cross-sectional data of participants, the height curves across different gender and OI types were plotted and 
compared. Subsequently, feature selection techniques, specifically the filter and wrapper methods, were employed 
to identify predictive factors for the height of participants. Finally, multiple machine learning (ML) models were 
constructed for height prediction, and the performance of each model was systematically evaluated.

Results The analysis of height curves revealed that male with OI are significantly taller than female with OI from 
the age of 14 (p = 0.045), individuals with OI type III are statistically shorter than those with OI types I and IV starting 
from 3 years old (p = 0.006), and those with OI type IV are statistically shorter than those with OI type I from the 
age of 10 (p = 0.028). The application of filter and wrapper methods identified gender (p = 0.001), age (p < 0.001), 
Sillence types (p = 0.007), weight Z-score (p < 0.001) and aBMD Z-score (p = 0.021) as significant predictive factors 
for height. The optimal performance of predictive models was registered by gradient boosting classifier (GB) 
(bias = 5.783, accuracy = 92.59%, R2 = 0.828), random forest (RF) (bias = 6.155, accuracy = 90.12%, R2 = 0.788), ensemble 
machine learning (EML) (bias = 6.250, accuracy = 91.36%, R2 = 0.825) and deep neuron networks (DNNs) (bias = 6.223, 
accuracy = 90.12%, R2 = 0.821).
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Introduction
Osteogenesis imperfecta (OI) is a genetic disorder char-
acterized by low bone mass, bone fragility and short 
stature [1]. Approximately 90% of OI cases are due to 
mutations in the gene encoding type I collagen, a major 
protein component of the extracellular matrix. The 
remaining 10% involve genes related to the transcription 
and modification of type I collagen or the regulation of 
osteoblast differentiation and bone metabolism [2]. The 
classical Sillence classification, established in 1979 [3], 
categorized type I collagen-related OI into OI type I 
(mild), OI type II (perinatally lethal), OI type III (severe) 
and OI type IV (moderate).

Growth retardation and short stature are prominent 
in severe forms of OI and are also observed in mild to 
moderate cases. Researches reported that the length of 
individuals with OI were generally below compared with 
normative cases by birth [4, 5]. Other studies demon-
strated that final height is obviously restricted, especially 
in those with OI types III and IV [6–8]. While disease-
specific height parameters have been explored in con-
ditions like Down syndrome, Turner syndrome and 
Achondroplasia [9–11], there are few studies system-
atically describing the height parameter in the relatively 
common OI. To date, there was only one study with a 
large cohort of individuals with OI providing the height 
parameter, which contributed to the development of OI-
specific growth patterns [7].

In the realm of artificial intelligence (AI), which is 
defined as the simulation of human intelligence by 
machines, there has been rapid advancement in its appli-
cation within the medical field [12]. With the applications 
of AI in medicine setting developing quickly, machine 
learning (ML) predictive models was widely utilized in 
automated diagnosis and treatment field. Numerous 
studies have tried to make early diagnosis for Chronic 
diseases (CDs) using machine learning [13, 14]. In 
another study, machine learning was employed to accu-
rately estimate glomerular filtration rate [15]. In addition, 
we have achieved precise prediction of the length of hos-
pital stay (LOS) by principle component regression [16]. 
Despite these advancements, the application of AI in the 
study of OI remains limited.

Here, we reported cross-sectional data from 323 sub-
jects with OI. Firstly, we proposed the height curves in 
different gender and OI types. Then, the significant pre-
dictive factors for the height of individuals with OI were 
identified. Finally, we construct and compare the per-
formance of multiple machine learning models aimed 
at predicting height, enhancing our understanding and 
management of OI through advanced computational 
techniques.

Methods
After the initial selection of features using both filter 
and wrapper methods, we applied ensemble machine-
learning (EML) and deep-learning (DL) models to pre-
dict the height of children with Osteogenesis Imperfecta 
(OI). The EML model integrated various algorithms, 
including the AdaBoost classifier (AB), Bootstrap aggre-
gating (Bagging), Decision Tree (DT), Extra Tree (ET), 
Gradient Boosting Classifier (GB), K-nearest Neighbor 
(KNN), Linear Regression (LR), Random Forest (RF), 
and Support Vector Machine (SVM). This ensemble 
approach was subsequently optimized using Grid Search 
(GS), which facilitated the fine-tuning of parameters to 
enhance model performance. In parallel, we developed a 
deep-learning model using the Keras framework within 
TensorFlow. This deep neural network (DNN) was spe-
cifically optimized with the Adaptive Moment Estimation 
(Adam) technique, aiming to refine the learning process 
and improve predictive accuracy. The comprehensive 
methodology encompassed feature selection, model con-
struction, training, optimization, and evaluation. These 
steps were meticulously designed to ensure robustness 
and reliability in height prediction for children with OI, 
as depicted in (Fig. 1).

OI data set
The cross-sectional data of this study encompassed 323 
participants with diagnosis of OI, date extracted for anal-
ysis including age at enrollment, gender, Sillence clas-
sification, height and weight at enrollment, area bone 
mineral density (aBMD) at enrollment, history of femoral 
rodding (yes or no) and history of tibial rodding (yes or 
no). The data were measured in accordance with a uni-
form method by a trained orthopedist. Age at enrollment 

Conclusion This study analyzed a large cohort of individuals with OI and provided detailed height patterns across 
different gender and OI types that are crucial for assessing overall growth. Gender, age, Sillence types, weight Z-score 
and aBMD Z-score were identified as predictive factors for height. The predictive models of GB, RF, EML and DNNs had 
higher accuracy to evaluate the height of individuals with OI. This study allows guardians and physicians to timely 
monitor the height parameters, and facilitate the creation of personalized intervention schedules tailored to the 
needs of individuals with OI.
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was set at a minimum of 3 years old and a maximum of 
24 years old. This study majored in exploring the most 
common children with only collagen genes mutation, 
children with other genes related to OI were excluded. 
Participants were classified into OI types I, III and IV 
according to clinical features, with genotypic information 
utilized for further verification when available. Height 
was measured as vertical distance from vertex to sole 
of the foot, which was performed by height measuring 
scale to the nearest 0.1 cm. The supine length was mea-
sured for subjects without ability of standing. Weight was 

measured using digital scale to the nearest 0.1 cm. aBMD 
was measured at the lumbar spine (L1-L4) using a DPX 
Bravo device (3030 Ohmeda Dr Madison, Wisconosin 
USA). Results for height, weight and aBMD at enrollment 
were transformed into age and gender-matched Z-scores 
according to national growth reference data [17]. The 
characteristics of participants included in the study were 
detailed in (Table  1). All data collected from Children’s 
Hospital of Soochow University were sorted and man-
aged by Tianjin Medical University General Hospital 

Fig. 1 The main steps of the predictive system. Filter is the method of identifying the features correlated with height. Wrapper is the method of selecting 
the best subset of features. AB: AdaBoost classifier, Bagging: Bootstrap aggregating, DT: Decision tree, ET: Extra Tree, GB: Gradient boosting classifier, KNN; 
K-nearest neighbor, LR: Linear Regression, RF: Random forest, SVM: Support vector machine
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from 2010 to 2021. The study was respectively approved 
by Medical Ethical Committee of participating hospital.

Features selection: a critical step in predictive models
Features selection is a prerequisite process of building an 
effective predictive model. After features extraction, our 
dataset comprised 3 continuous variables (including age, 
aBMD Z-score, weight Z-score) and 4 discrete variables 
(including gender, Sillence types, history of femoral rod-
ding and history of tibial rodding). According to previous 
studies, there is no single feature selection algorithm is 
universally optimalis universally optimal. We firstly used 
the filter to remove features significantly uncorrelated 
with height. Then the wrapper was applied to explore the 
best subset of features that remained after filtering.

(i) The filtering process: The filter is usually applied as 
a preprocessing step, with the aim of selecting the fea-
tures correlative with dependent variable. In this study, 
the correlation analysis was examined by Pearson’s coef-
ficient and spearman’s coefficient for continuous variable 
and discrete variable respectively. This analysis resulted 
in the retention of five features, while two were elimi-
nated due to their weak correlation with height (Table 2).

(ii) The wrapper method: The wrapper uses machine 
learning model to choose best subset of features. Initially, 
we generated 26 potential subsets (excluding those com-
posed solely of one feature) through random permuta-
tions of the five retained features. Subsequently, a linear 
regression model, enhanced by 10-fold cross-validation 

(CV), was employed to determine the subset that demon-
strated the best performance (Table 3).

 
CV (k) =

1

k

∑
k
i=1MAEi  (1)

 
MAE(i) = 1/n

∑n

(i=1)
|yi− yi|  (2)

Data division
The OI data set was divided into a training set, a validat-
ing set and a test set with a ratio of 3:1:2. The training set 
and validating set were mainly used for models training 
and optimization, and models evaluation was conducted 
in testing set.

Models training and optimization
Machine learning model
A single machine learning model might not reach the 
expected performance without theoretical data. Typi-
cally, ensemble machine learning (EML) achieved better 
capacity of prediction, as the combination of heteroge-
neous machine learning algorithms could alleviate the 
overall deviations of single model in different vector 
directions. In this study, we proposed an EML model by 
averaging the results of the nine single models, includ-
ing AdaBoost classifier (AB), Bootstrap aggregating 
(Bagging), Decision tree (DT), Extra Tree (ET), Gradi-
ent boosting classifier (GB), K-nearest neighbor (KNN), 
Linear Regression (LR), Random forest (RF) and Sup-
port vector machine (SVM). Then, the grid search (GS) 
was employed to explore the optimum hyperparameter 
through testing each value of parameters.

Deep learning model
The optimized DNN model consists of three layers, 
including input layer, one hidden layer and one output 
layer (Fig. 2). The input layer, equipped with 5 neurons, 
was responsible for reading the features in the OI data 

Table 1 Characteristics of the study population
Type I Type III Type IV

Gender (female/male) 107(44/63) 61(31/30) 155(58/97)
Age (years) 8.00(3.00 ~ 24.00) 12.00 (3.00 ~ 24.00) 9.00(3.00 ~ 23.00)
Height (cm) 124.0(91.0 ~ 180.0) 120.0(71.0 ~ 159.0) 127.0(86.0 ~ 173.0)
Height Z-score -0.62(-5.93 ~ 3.24) -3.97(-10.44~-0.02) -1.64(-6.67 ~ 2.44)
Weight (kg) 25.5(14.0 ~ 90.0) 28.0(8.5 ~ 70.0) 28.0(10.0 ~ 71.0)
Weight Z-score 0.06(-2.79 ~ 5.71) -2.32(-5.81 ~ 2.67) -0.71(-5.06 ~ 8.67)
aBMD (g/cm3) 0.55(0.26 ~ 1.02) 0.39(0.18 ~ 0.86) 0.44(0.19 ~ 0.99)
aBMD Z-score -0.70(-4.70 ~ 3.50) -4.20(-8.30 ~ 1.30) -2.50(-8.20 ~ 1.20)
History of femoral rodding(Yes/No) 107(32/75) 61(37/24) 155(72/83)
History of tibial rodding(Yes/No) 107(10/97) 61(19/42) 155(30/125)
The values are expressed as median (interquartile range, IQR)

Table 2 Correlation between height and features
Features P value
Gender p = 0.001*
Age p<0.001#

Sillence types p = 0.007*
Weight Z-score p<0.001#

aBMD Z-score p = 0.021#

History of femoral rodding p = 0.532*
History of tibial rodding p = 0.596*
* Pearson correlation coefficient (PCCs), # Analysis of variance (ANOVA)
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set, and Standard Scaler method was used for standard-
ization of the data. The hidden layer, containing of 570 
neurons, served as classifier that maps samples to each 
corresponding neuron. This layer utilized a random 
uniform kernel initializer and relu activation function. 
The output layer consists of one neuron, formulated as 
follows:

 Yi = ω(X1)αiX1 + ω(X2)αiX2 + . . .+ ω(Xj)αiXj + b  (3)

In which yi is the output of the i-th node of the hidden 
layer, ω(Χj)αi represents the weight of j-th input feature to 
the i-th neuron of the hidden layer, andΧj is the j-th input 
feature, b is the bias.

The Model.fit facilitated the training of the DNN 
by adjusting the weights of the neurons based on the 
input data. The adaptive moment estimation (Adam) 
was employed to optimize the DNN model. It is an easy 
implementation and efficient computing optimization 
method based on adaptive lower-order moment esti-
mates. Different from the Stochastic Gradient Descent 

(SGD), Adam can easily search the optimum hyperpa-
rameters for our DNN models by iteratively updating 
the network weights, in addition, the learning rate of 
parameters in each iteration is within a certain range, and 
the overall parameter value is relatively stable. To pre-
vent overfitting, early stopping was implemented to halt 
training once a predefined performance threshold was 
achieved.

Parameters in DNN
Hidden Layer. Since single large hidden layer was ade-
quate for a continuous mapping from one finite space to 
another, one fully connected layer was selected in this 
study with relatively small samples.

Number of hidden layer neurons. There was no recog-
nized method to determine the number of neurons in the 
hidden layer. Inappropriate less neurons will reduce the 
accuracy of the model, nevertheless too many neurons 
in hidden layer will exhaust computing resource. The 
number of neurons has adapted from 50 neurons to 700 
neurons, and the optimal number of neurons was finally 
set at 570 with the lowest mean absolute error (MAE) 
(Table 4).

The Number of Iterations. The DNN model converges 
when the number of iterations reaches 200 times with the 
error reaching the goal at 0.001.

Evaluating models
The performance of the models were assessed using three 
primary metrics: bias, accuracy, and R2. Bias refers to the 
Mean Absolute Error (MAE), which quantifies the aver-
age magnitude of the errors in predictions, irrespective 
of their direction. Accuracy is defined as the proportion 
of predictions where the predicted height deviates by no 
more than 10% from the actual measured height. R2, or 
the coefficient of determination, measures the propor-
tion of variance in the observed data that is predictable 
from the model inputs, thus indicating the fitting degree 
of the predictive models.

Statistical methods
Statistical results were analyzed by using the software 
SPSS 25 (IBM Corporation, Armonk, New York). Nor-
mality of distribution was evaluated using the Shap-
iro-Wilk tests. Continuous variables were described as 
median and interquartile ranges, and were compared 
among the groups using the Kruskal-Wallis test with 
Bonferroni’s post hoc comparisons for more than two 
groups because of the asymmetric distribution of data 
after the normality test. In order to compare the growth 
patterns in different gender and OI types, data were 
divided into one-year intervals, with the lowest bin at 3 
years and the highest bin at 24 years, to acquire the age at 

Table 3 Correlation between height and features
Subset Features R2 CV 

score
1 Gender, Age, Sillence types, Weight Z-

score, aBMD Z-score
0.773 8.569

2 Gender, Age, Sillence types, Weight Z-score 0.771 8.621
3 Gender, Age, Sillence types, aBMD Z-score 0.699 10.139
4 Gender, Age, Weight Z-score, aBMD 

Z-score
0.736 8.729

5 Gender, Sillence types, Weight Z-score, 
aBMD Z-score

0.122 17.236

6 Age, Sillence types, Weight Z-score, aBMD 
Z-score

0.771 8.676

7 Gender, Age, Sillence types 0.675 10.811
8 Gender, Age, Weight Z-score 0.717 8.709
9 Gender, Age, aBMD Z-score 0.649 10.076
10 Gender, Sillence types, Weight Z-score 0.122 17.169
11 Gender, Sillence types, aBMD Z-score 0.060 17.892
12 Gender, Weight Z-score, aBMD Z-score 0.121 17.202
13 Age, Sillence types, Weight Z-score 0.769 8.779
14 Age, Sillence types, aBMD Z-score 0.690 10.358
15 Age, Weight Z-score, aBMD Z-score 0.729 8.626
16 Sillence types, Weight Z-score, aBMD 

Z-score
0.100 17.380

17 Gender, Age 0.557 10.827
18 Gender, Sillence types 0.052 17.772
19 Gender, Weight Z-score 0.121 17.123
20 Gender, aBMD Z-score 0.056 17.783
21 Age, Sillence types 0.670 10.948
22 Age, Weight Z-score 0.712 8.766
23 Age, aBMD Z-score 0.631 10.299
24 Sillence types, Weight Z-score 0.099 17.332
25 Sillence types, aBMD Z-score 0.026 18.138
26 Weight Z-score, aBMD Z-score 0.097 17.345
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which the curves of each category begin to show statisti-
cal differences.

Results
The characteristics of participants included in the study 
were depicted in Table 1. Overall, 323 participants (133 
females and 190 males) were included, consisting of 107 

with OI type I, 61 with OI type III and 155 with OI type 
IV, and the overall age range was 3–24 years old.

Height Z-score in OI
The median (interquartile range (IQR)) Z-score of 
height in OI types I, III and IV respectively were 
− 0.62 (-5.93 ~ 3.24), -3.97 (-10.44 ~ -0.02) and − 1.64 
(-6.67 ~ 2.44) (Table 1). As expected, the overall height of 
all OI types was short compared with healthy children, 
participants with OI type III had significantly dimin-
ished height compared with OI types I and IV, and indi-
viduals with OI type IV had mildly significant decreased 
height compared with OI type I. The scatter plot and 
fitting curve were made for comparing height pattern 
between gender and OI types (Fig. 3). Males with OI are 
significantly taller than females with OI at the age of 14 
(p = 0.045), and the gap becomes larger with age increas-
ing. Individuals with OI type III are shorter than those 
with OI types I and IV at the age of 3 (p = 0.006), and the 
gap increases with age. Individuals with OI type IV are 
shorter than those with OI type I when they are 10 years 
old (p = 0.028), and the difference increases with age.

Table 4 The number of neurons for DNN
Number of 
neurons

Mean absolute 
error (MAE)

Number of 
neurons

Mean 
absolute 
error 
(MAE)

20 8.358 570 6.223
180 7.932 571 6.241
280 6.895 572 6.631
480 6.653 573 6.442
560 6.621 574 6.388
565 6.545 575 6.361
566 6.462 580 6.541
567 6.426 600 6.624
568 6.338 680 6.870
569 6.287 880 7.828

Fig. 2 The architecture of the optimized DNN model. χi is the input features, αi is the neuron in hidden layer, y is the output of the model
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Fig. 3 Scatter plot and Fitting curve in OI. The fitting curves applied to estimate growth pattern in different gender and OI types were constructed using 
the Hyperbola, the function in non-parametrically fitting approaches from Prism 8 software. Data were binned into two groups to construct the fitting 
curves of height and age, with male and female separated. Data were binned into three groups to construct the fitting curves of height and age, with 
Sillence I, III and IV separated. * p < 0.05, ** p < 0.01
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Predictive factors of the height
Usually, optimal predictive factors allow better predic-
tive performance. In this study, we firstly applied the 
correlation method for feature filtering. Results show-
ing that Gender (p = 0.001), age (p < 0.001), Sillence types 
(p = 0.007), weight Z-score (p < 0.001) and aBMD Z-score 
(p = 0.021) were significantly correlative with height, 
whereas history of femoral or tibial rodding (p = 0.532, 
p = 0.596, respectively) performed low correlation with 
height. Then, 10-folds cross-validation was used to select 

the best subset of features, demonstrating that the subset 
of gender, age, Sillence types, weight Z-score and aBMD 
Z-score was the final predictive factors of height with 
lowest CV score at 8.569.

Performance of EML and DNN models of height prediction
After feature selection, all subjects were randomly 
divided into training set, valid set and test set with a 
ratio of 3:1:2. To diminish the overfitting, 10 folds cross-
validation (CV) was used to compare the performance of 
every model, in which data were divided into k subsets so 
that training model with k-1 subjects and testing models 
on the remainder repeatedly.

The results of performance of models were shown 
in (Table  5). The fitting curve of ML and DNN were 
shown in (Figs. 4 and 5, respectively). In single machine 
learning, the highest performance is registered by GB 
and RF (bias = 5.783, accuracy = 92.59%, R2 = 0.828) and 
(bias = 6.155, accuracy = 90.12%, R2 = 0.788), respectively. 
The performance of the ensemble machine learning 
(bias = 6.250, accuracy = 91.36%, R2 = 0.825) was better 
than single machine learning (p< 0.05) except for GB 
and RF. The DNN have reached the same optimal perfor-
mance (bias = 6.223, accuracy = 90.12%, R2 = 0.821) com-
pared with GB, RF and EML (p> 0.05) (Fig. 6).

Table 5 The performance comparison of models
Model Bias Accuracy R2

Single machine learning AB 7.100 85.19% 0.720
Bagging 6.588 87.65% 0.783
DT 8.346 82.72% 0.657
ET 9.753 72.84% 0.645
GB 5.783 92.59% 0.828
KNN 7.538 85.19% 0.704
LR 8.025 82.72% 0.625
RF 6.155 90.12% 0.788
SVM 9.676 74.07% 0.543

Ensemble machine learning 6.250 91.36% 0.825
Deep neural networks 6.223 90.12% 0.821
AB: AdaBoost classifier, Bagging: Bootstrap aggregating, DT: Decision tree, ET: 
Extra Tree, GB: Gradient boosting classifier, KNN; K-nearest neighbor, LR: Linear 
Regression, RF: Random forest, SVM: Support vector machine

Fig. 4 The fitting curve of machine learning models. The fitting curve of each machine model were shown, including (a) AdaBoost classifier. (b) Bootstrap 
aggregating. (c) Decision tree (d) Extra Tree. (e) Gradient boosting classifier. (f) K-nearest neighbor. (g) Linear Regression. (h) Random forest. (i) Support 
vector machine. The red lines represent true value and green lines represent predictive value. The left image represents the valid dataset and right image 
represent the test dataset
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Discussion
It is well known that impaired linear growth is salient 
hallmark of individuals with OI, but there is a lack of sys-
tematic studies on height parameters in OI. In this study, 
through reporting a large cross-sectional data of indi-
viduals with OI in China, we identified the height param-
eters in different gender and OI types, and ultimately 
integrated a detailed assessment of these data into clinical 

management. Moreover, we identified key predictive fac-
tors for height and developed multiple machine learning 
models to predict height variations in OI, enhancing the 
practicality of monitoring growth and facilitating timely 
interventions.

As expected, the negative effect of OI on height was 
found in our cohort, and the mostly affected crowd was 
OI type III, followed by OI types IV and I. This aligns 

Fig. 6 The performance comparison of models. The performance of each model is compared according to bias (a), accuracy (b) and R2 (c)

 

Fig. 5 The loss and fitting curve of optimized learning model. (a) The loss curve of DNN model, the loss value decreases with iteration increasing, and the 
DNN model converges at 200 iterations. The fitting curve of DNN model at 40 (b), 120 (c) and 200 (d) iterations, respectively. Red line represents predictive 
value and blue line represents true value
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with earlier studies, Lund et al. first reported height 
Z-score of OI are compromised compared with unaf-
fected relatives in 1999 [8]. Similarly, Vetter et al. docu-
mented the height and weight of type III patients were 
statistically lower than those with OI types I and IV in 
a cohort including 127 children [18]. Besides, our study 
found the significant gap of height between gender in OI 
was emerged at the age of 14, and the significant differ-
ence of height between OI types was found at the age of 3 
(OI type III vs. OI types I and IV) and at the age of 10 (OI 
type I vs. OI type IV).

The predictive factors for height of individuals with OI 
was not completely clarified. Lauren et al. compiled lon-
gitudinal data from 100 children and found that gender 
and OI subtypes, rather than mutated collagen genes, sig-
nificantly affected the height of individuals with OI [19]. 
In their studies, male are taller than female at all ages, 
and individuals with OI type III are shorter than those 
with OI types I and IV. Although several studies reported 
that being overweight is common feature in severe OI 
types [20–22], the literature is sparse on the correlation 
between weight and height in OI. The significant cor-
relation between weight and height was found in our 
study. Bisphosphonate therapy is recognized as standard-
of-care for individuals with OI. Zeitlin et al. observed 
significant height gain in response to 4-year of pami-
dronate treatment in children with moderate to severe 
OI [23]. Similarly, studies concluded that other cyclical 
anti-osteoporosis therapy also increased height Z-score 
in children with OI [24, 25]. But recent meta-analyses 
implied no significant effect of bisphosphonate therapy 
on height [26]. In our cohort, 90% received cyclical anti-
osteoporosis therapy, and the various anti-osteoporosis 
therapy was given at different ages and over different 
periods of time, thereby limiting our aims of exploring 
the effect on height. Instead, we found aBMD Z-score 
was highly correlated with height of OI. Collectively, we 
attempt to construct predictive models of height using 
these factors significantly correlated with height, includ-
ing gender, age, Sillence types, weight Z-score and aBMD 
Z-score.

Machine learning (ML) offers a robust framework for 
deriving insights from data features without explicit pro-
gramming. ML models coupled with medical data can 
guide all medical administrators, medical staff, patients 
and their families. ML has great potential as a supple-
mentary source of medical information in guiding the 
process of diagnosis and medical decision making. After 
identifying the significant predictive factors of height, 
multiple machine learning models were established. 
Precise prediction of the height of OI allows guardians 
and physicians to timely monitor the growth param-
eters so that the personalized intervention schedule can 
be made for the individual patient. A single machine 

learning model might not reach the expected perfor-
mance without theoretical data. Ensemble machine 
learning, combining several single mathematic mod-
els, was proposed for improving precision of predictive 
results, as the bias of single models in different direc-
tions would be balanced. Xun Li et al. completed pre-
diction of glomerular fltration rate (GFR) by ensemble 
learning with high precision [15]. Besides, Yang, J J et al. 
demonstrated that the ensemble learning outperformed 
the single models in cataract detection tasks[28]. In our 
study, the performance of the ensemble machine learn-
ing was better than single models except for GB and RF. 
Further, we believe the precision of ensemble machine 
learning can be improved with using senior combina-
tion than average. Recently, the deep neural network has 
made big success in medical setting, but the advantages 
of DNN were handling complex data with many covari-
ates, such as image, text, and speech recognition. As for 
tabular data and simple regression in our study, the DNN 
performance no better outcomes for height prediction. 
Consequently, after balancing the precision of predictive 
model and computing resource, the single models (GB 
and RF) and ensemble learning model can be efficient on 
height prediction for individuals with OI. Despite these 
advancements, our study has limitations, primarily due 
to its retrospective nature and the representation of only 
Chinese patients with OI. The inability to capture com-
prehensive clinical data may have led to the omission of 
other relevant height-related factors. Moving forward, a 
multi-center clinical study would help to generalize these 
findings and overcome the current study’s limitations.

Conclusion
In this study, we offered linear growth patterns in differ-
ent gender and OI types, which can be helpful in making 
disorder-specific growth curve. Then, several significant 
predictors of height were identified and multiple predic-
tive models were proposed. The performance of predic-
tive models was compared by MAE, Accuracy and R2, 
which is straightforward to physicians than other believe 
valuation metrics. Based on our study, we believe the 
models we proposed could contribute to timely monitor-
ing of growth and early intervention in setting of OI.
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