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SUMMARY

The computation and comparison of subjective values underlying economic choices rely on the 

orbitofrontal cortex (OFC). In this area, distinct groups of neurons encode the value of individual 

options, the binary choice outcome, and the chosen value. These variables capture both the choice 

input and the choice output, suggesting that the cell groups found in the OFC constitute the 

building blocks of a decision circuit. Here, we show that this neural circuit is longitudinally stable. 

Using two-photon calcium imaging, we record from the OFC of mice engaged in a juice-choice 

task. Imaging of individual cells continues for up to 40 weeks. For each cell and each session pair, 

we compare activity profiles using cosine similarity, and we assess whether the neuron encodes the 

same variable in both sessions. We find a high degree of stability and a modest representational 

drift. Quantitative estimates indicate that this drift would not randomize the circuit within the 

animal’s lifetime.
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In brief

Economic choices depend on the orbitofrontal cortex (OFC). In mice choosing between juice 

flavors, Zhang et al. record from individual neurons for up to 40 weeks. Activity profiles and the 

representation of decision variables are longitudinally stable. Hence, different cell groups in the 

OFC form a stable decision circuit.

INTRODUCTION

Economic choices entail computing the values of different options; a decision is then 

made by comparing values. Work in primates and rodents has shown that these mental 

processes rely on the orbitofrontal cortex (OFC). Lesion or inactivation of this area 

severely disrupts choices.1-4 Furthermore, electrical stimulation in monkeys showed that 

offer values represented in OFC are causal to choices5 and that neuronal activity in OFC 

directly contributes to value comparison.6 Neurophysiology studies examined neuronal 

activity in monkeys and rodents choosing between different juice types. Neurons in the 

OFC were found to encode different decision variables, including the value of individual 

offers, the binary choice outcome, and the chosen value.2,3,7,8 These variables capture 

both the choice input (offer value) and the choice output (choice outcome, chosen 

value). Moreover, population dynamics in OFC are consistent with the formation of a 

decision.9,10 Taken together, these lines of evidence suggest that different cell groups 

identified in OFC constitute the building blocks of a neural circuit in which economic 
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decisions are formed. The organization and the mechanisms governing this circuit are poorly 

understood. A fundamental question is whether this circuit is stable over extended periods 

of time; alternatively, the representation of decision variables might undergo substantial 

reorganization.11

Longitudinal studies of other neural circuits have reported a spectrum of results. In the 

parietal cortex of mice engaged in a virtual navigation task, variables encoded by individual 

cells underwent major reorganization over weeks.12 Interestingly, this drift was constrained 

by, but not strictly confined to, the null space.13 Representational drift was also found in 

visual14 and olfactory15 areas. In particular, longitudinal recordings in the primary visual 

cortex found relatively stable responses to artificial stimuli (gratings) but substantial drift in 

the representation of natural scenes.16-18 Place fields in the mouse hippocampus were found 

to be quite unstable.19 However, the neuronal propensity to spike was preserved over time,20 

and changes in spatial tuning were associated primarily with increased experience in the 

arena, as opposed to the mere passage of time.21 In the premotor area higher vocal center 

(HVC) of songbirds, the number and timing of spikes of individual neurons in relation to 

courtship songs remained remarkably stable over weeks.22 Similarly, in mice performing an 

olfaction-guided spatial memory task, responses in the medial prefrontal cortex remained 

stable for 3–4 weeks.23 With respect to orbital regions, neurons in the ventromedial OFC 

of mice undergoing Pavlovian conditioning responded stably for ≤6 days.24 Most relevant 

here, in monkeys performing economic choices, neurons in central OFC (homologous to the 

region examined here) presented a stable representation of decision variables across sessions 

within a day.25 However, it remains unclear whether this representation is also stable over 

longer periods of time. Importantly, behavioral choice patterns—i.e., the relative values (ρ)
of different goods and the choice accuracy (η)—can vary significantly from day to day.2,7 

One hypothesis is that this behavioral variability reflects instability in the decision circuit. 

Alternatively, choice variability could result from a stable decision circuit and simply reflect 

variability in the input to that circuit or fluctuations in the motivational state of the animal.

To shed light on these issues, we used two-photon (2P) calcium (Ca2+) imaging in 

combination with gradient-index (GRIN) lenses to record from the OFC of mice performing 

an economic choice task.2 Recordings in each animal continued for many weeks, and we 

could reliably image the same cells in many sessions. Neurons were analyzed separately 

in each session, and the results were compared across sessions. Activity profiles and the 

decision variables encoded by individual neurons remained remarkably stable over many 

weeks. We observed some neuronal changes associated with the degree of experience in the 

task. In addition, we found a limited representational drift associated with the passage of 

time. This phenomenon was statistically significant but quantitatively modest. Indeed, the 

time necessary for a complete reorganization of the neuronal circuit was estimated at >3.5 

years—longer than the animal’s lifetime. Our results suggest that day-to-day variability in 

choices is not due to instability in the decision circuit. The presence of a stable circuit within 

OFC provides the opportunity to examine the mechanisms underlying economic choices.
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RESULTS

Economic choices under the microscope

Mice were accustomed to head fixation under the 2P objective and then trained to make 

binary choices. The choice task closely resembled that used for neurophysiology studies 

in mice and monkeys.2,7 In each session, the mouse chose between two types of juice 

labeled A and B (A preferred) and offered in variable quantities. Offers were represented by 

olfactory stimuli. The odor identity represented the juice type, and the odor concentration 

represented the juice quantity. For each juice type, we used 4 or 5 quantity/concentration 

levels. The two odors were presented on the left and on the right, and the animal indicated 

its choice by licking one of two spouts placed near its mouth (Figure 1A). Offered 

quantities and their spatial configuration varied pseudo-randomly from trial to trial. Figure 

1B illustrates the trial structure (see STAR Methods).

Mice choices reliably presented a trade-off between juice type and juice quantity (Figure 

1C). For each session, we analyzed choices using logistic regressions (STAR Methods). This 

analysis provided measures for the ρ, the η, and the side bias (ε). Indicating with qA and qB

the juice quantities offered in each trial, ρ was the quantity ratio qB ∕ qA that made the animal 

indifferent between the two offers, η was proportional to the sigmoid steepness, and ε was 

a bias favoring one side over the other. Our whole dataset included 343 sessions from 13 

animals. Figures 1D-1F illustrate the distribution for ρ, η, and ε across sessions. Notably, the 

ε was generally modest ( ∣ ε ∣ < ρ), with a distribution roughly centered on zero.

We examined whether and how choices changed as a function of the animals’ experience 

in the task. For each mouse, we counted days starting with the first day it chose between 

different juice types. For each behavioral session, we performed a logistic analysis and 

derived measures for ρ, η, and ε. For each mouse and each parameter, we studied how values 

varied longitudinally by fitting them with an exponential function (STAR Methods). Figure 

S1 illustrates the results obtained for each mouse in the dataset. For some animals, one or 

more parameters showed a clear longitudinal trend. We found significant effects for 6 of the 

12 mice in which we could conduct this analysis, and 4 other mice showed similar trends 

that did not reach significance level (Table S1).

Importantly, ρ and ε ultimately capture aspects of the animal’s subjective preferences, and 

longitudinal trends of these parameters do not necessarily indicate a learning process or 

improved performance. In contrast, in a normative sense, η should be as large as possible 

(i.e., sigmoids should be as steep as possible).26 Thus, for a population analysis we focused 

on η. Pooling sessions from all animals, we fitted the whole dataset with a single exponential 

function. The longitudinal trend was statistically significant (Figure 2). In other words, 

performance improved over days of experience in the task. The time constant derived from 

the exponential fit was τ = 31 days.

Longitudinal imaging of OFC during choice behavior

We conducted 2P imaging while mice performed the choice task. Mice expressing GCaMP6f 

under a synapsin promoter were implanted with a GRIN lens targeting OFC (Figure 3A; 
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STAR Methods). In each animal, we recorded from multiple fields of view (FOVs) (in 

different sessions). Images from each session were segmented using the CaImAn package,27 

and the results were checked manually. In any FOV, we recorded from 12–225 neurons 

(median = 77 neurons) (Figures 3B and 3C). Across sessions, we recorded from 2–12 FOVs 

in each mouse. Thus, we could record from 140–850 individual neurons in each mouse.

Data for the present study were collected in 13 mice and 77 FOVs. For longitudinal analysis, 

we recorded from each FOV 2–16 times over a maximum span of 12–41 weeks. For each 

pair of sessions in which we visited the same FOV, we manually aligned the two sets 

of images using blood vessels and neurons with distinctive features as landmarks. Figure 

3D illustrates one example FOV visited 5 times over the course of 83 days. Images from 

different days were remarkably similar. To match individual neurons across pairs of sessions, 

we used a Bayesian procedure (see STAR Methods). Given a pair of sessions, we typically 

found that 60%–80% of cells identified in any session could be matched with cells identified 

in the other session. Figure 3E illustrates the results of this analysis for two sessions 11 

days apart. Notably, the majority of cells in this FOV could be matched across sessions. 

Considering all session pairs, the fraction of cells that could be matched across sessions 

decreased as the number of days between the two sessions increased but remained >50% 

even when recordings were 100 days apart (Figure 3F).

Activity profiles are longitudinally stable

After cell segmentation, we normalized the fluorescent trace for each cell and obtained the 

ΔF ∕ F signal. All analyses of neural activity were based on this signal. We first examined 

neuronal activity profiles. A trial type was defined by two offered quantities (qA and qB), their 

spatial configuration, and a choice. For each session, we examined ΔF ∕ F traces recorded in 

each trial. We joined two time windows aligned with the offer onset (from −600 to +1,600 

ms) and the first lick (from −600 to +600 ms). We then averaged traces across trials for 

each trial type. Finally, we concatenated the resulting mean traces across trial types and 

obtained the activity profile (see STAR Methods). We repeated this operation for each cell 

and each pair of sessions, including only trial types present in both sessions. Figures 4A-4C 

illustrate the activity profiles recorded for 3 example cells in two sessions ≥7 days apart. 

Notably, activity profiles differ substantially from cell to cell but appear quite stable for each 

cell. We quantified the likeness between pairs of activity profiles using cosine similarity 

(CS; see STAR Methods). Intuitively, activity profiles were vectors where each component 

corresponded to a time interval; CS was the cosine of the angle between two such vectors. In 

principle, CS could vary between −1 and 1, and CS = 1 if the two traces were identical. For 

the three example cells illustrated in Figures 4A-4C, we meaasured CS = 0.96, CS = 0.94, 

and CS = 0.90, respectively.

To assess how CS varied across the population and as a function of time, we proceeded as 

follows. Counting days starting from the first day of recording, for any two sessions, T1 

and T2 indicated the recording days (T1 ≤ T2), and ΔT = T2 − T1 was the time distance. We 

examined how CS varied as a function of both T1 (i.e., experience in the task) and ΔT (i.e., 

time passage). First, we considered the plane defined by T1 and ΔT, and we partitioned it 

in two-dimensional time bins of 2 × 2 weeks. Both T1 and ΔT ranged between 0 and 20 
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weeks (100 time bins total). Second, for each time bin, we considered neurons that had been 

recorded in two sessions with corresponding T1 and ΔT. Because of the large number of 

FOVs included in this study and the multitude of recording sessions obtained for each FOV, 

our dataset included a considerable number of cells for most bins (Figure 4E). Third, taking 

advantage of this rich dataset, we examined the distribution of CS obtained in each time bin.

Figure 4D illustrates the results for one representative time bin (n = 747 cells). Notably, 

the CS distribution was broad and almost entirely >0.5 (median CS = 0.677). Since our 

measures of ΔF ∕ F were nearly always >0, profile vectors were essentially confined to a 

single orthant of a high-dimensional space, which implies that CS was necessarily large. 

To gauge whether measures of CS were higher than one would expect by chance, we 

examined two control treatments. First, for any FOV recorded in two sessions, we arbitrarily 

mismatched the cell pairings by randomly coupling neurons from session 1 to neurons from 

session 2 (treatment: mismatched cells). We then proceeded with the computation of CSs 

and generated the resulting distribution. As expected, CSs were generally >0.5. However, the 

median of this distribution (median CS = 0.617) was significantly lower than that measured 

when neurons were matched (p = 2.26 × 10−38; Kruskal-Wallis test). Second, for any cell 

recorded in two sessions, we arbitrarily shuffled the activity profile by randomly permuting 

the components of the profile vector (treatment: shuffled times). Again, CSs obtained for 

this treatment were generally >0.5. However, the median of this distribution (median CS = 

0.616) was significantly lower than that measured for actual activity profiles (p = 1.37 × 

10−29; Kruskal-Wallis test).

We repeated these analyses for each time bin. Thus for every pair of T1 and ΔT, we 

obtained three measures of median(CS) corresponding to the three treatments (same cells, 

mismatched cells, and shuffled times). Heatmaps in Figures 4F-4H illustrate our results. 

Several points are noteworthy.

First, the median(CS) measured for the same cells was higher than that computed for either 

of the two control treatments. This was true for every value of T1 and ΔT, and the difference 

was statistically significant for most values of T1 and ΔT (Figures 4I and 4J; Kruskal-Wallis 

test). In other words, the activity profiles recorded for individual cells in different sessions 

were significantly more similar than expected by chance.

Second, a direct comparison of the two control treatments indicated that, for most time bins, 

the median(CS) values were statistically indistinguishable (Figure 4K). Importantly, the time 

shuffling procedure is non-biological and only preserves the fact that ΔF ∕ F is generally >0. 

Thus, one might expect that the median(CS) obtained for the time shuffled control would 

be substantially lower than that obtained for mismatched neurons. Conversely, the result of 

Figure 4K indicates a high degree of variability in the activity profiles of different cells.

Third, visual inspection of Figure 4F suggested that median(CS) increased as a function of 

T1 and decreased as a function of ΔT. To confirm this observation, we defined larger time 

bins of 6 × 6 weeks (Figure 5A). We refer to these as Bins. We then compared the CS 

distributions measured for different Bins. (1) To ascertain whether activity profiles varied as 

a function of T1, we compared CSs measured in Bin 1 (T1 = weeks 0–6; ΔT = weeks 0 − 6) 
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and Bin 2 (T1 = weeks 15–20; ΔT = weeks 0 − 6). Confirming our impression, median(CS) 

was significantly higher in Bin 2 than in Bin 1. In other words, the activity profiles of 

individual neurons became more reproducible as the animals became more experienced in 

the task. (2) To ascertain whether activity profiles varied as a function of ΔT, we compared 

CSs measured in Bin 1 (T1 = weeks 0–6; ΔT = weeks 0 − 6) and Bin 3 (T1 = weeks 0–6; 

ΔT = weeks 15 − 20). Indeed, median(CS) was significantly lower in Bin 3 than in Bin 1. In 

other words, the activity profiles of individual neurons became more dissimilar as a function 

of the time distance between sessions (representational drift).

Representational drift and longitudinal stability

To precisely quantify longitudinal drifts, we examined how CS varied as a function of ΔT
(time passage) and T1 (experience in the task) with a 1-day resolution. In drift-diffusion 

processes, distance from the initial position increases as the square root of time. Thus, to 

model longitudinal changes in CS in terms of a drift process, we performed the regression 

CS(ΔT) = a0 + a1 ΔT1 ∕ 2 (Figure 5B). We also computed b = median(CS) for the “mismatched 

cells” treatment. In this context, b can be regarded as the chance level for CS—i.e., the 

expected value for CS if the population underwent full reorganization. From the fitted 

parameters, we estimated the time necessary for full reorganization of the neural circuit 

given the drift rate, namely ΔTFR, as follows:

ΔTFR = ((b − a0) ∕ a1)2 = 1, 278 days .

In other words, the time necessary for a full reorganization was >3.5 years—longer than 

the animal’s lifetime. In conclusion, the representational drift observed in this neuronal 

population was statistically significant but quantitatively modest.

Control analyses based on an alternate definition of the activity profile (Figure S2) or 

restricted to task-related cells yielded similar results (Figure S3).

A similar analysis confirmed that CS increased as a function of T1 (Figure 5C).

Task performance and reproducibility of the activity profiles in individual animals

We next investigated whether the increase of CS as a function of the animal’s experience 

in the task was related with the trend observed in behavioral performance (Figure 2) and 

whether these phenomena and their possible correlation could be observed in individual 

animals.

First, pooling sessions from all animals, we found that CS and η were indeed significantly 

correlated (p = 0.04; Figure 5D).

Second, to assess whether the relation between CS and η was driven by the animal’s 

experience in the task, we considered for each mouse and each FOV the last recording 

session (behavioral plateau). Any other session preceded the last session, and we 

defined T3 as the time difference between the session of interest and the last session 

T3 = T − Tlast session(T3 < 0).
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Third, we regressed CS on η separately for each mouse (Figure S4A). Since the two 

measures were noisy, the linear term did not differ significantly from zero in most animals. 

That aside, we aimed to assess whether the resulting linear function captured a real 

relationship between CS on η and whether these measures and their relationship were related 

to T3. To do so, one would ideally define a single variable X incorporating CS, η, and 

their relationship and examine how X varies as a function of T3. Thus, for each animal and 

for each session, we computed the estimated CS' based on η and the fitted linear function 

(Figure S4A), and we defined X as the geometric mean between CS and CS'. We predicted 

that X and T3 would be positively correlated, and this prediction held true in the majority of 

individual mice (Figures 5E and S4B). The correlation between X and T3 reached statistical 

significance (p ≤ 0.01) in 5/12 animals.

These results suggest that neuronal activity profiles became more reproducible as mice 

gained experience in the task and that this trend induced higher behavioral accuracy.

Neuronal encoding of decision variables

We next examined the variables encoded by individual neurons in OFC. This analysis was 

similar to that previously conducted for spiking activity.2,7 We defined five time windows 

aligned with different behavioral events (Figure 1B; STAR Methods). Again, a trial type 

was defined by two offered quantities, their spatial configuration, and a choice. For each 

cell, time window, and trial type, we averaged ΔF ∕ F over trials. A neuronal response was 

defined as the activity of one neuron in one time window as a function of the trial type. Each 

FOV was analyzed based on a single session (i.e., each cell contributed only once to this 

analysis). Thus our dataset included 6,620 neurons from 13 animals and 73 FOVs (see STAR 

Methods).

The analysis proceeded in steps. First, we examined the activity of each cell in each time 

window with an ANOVA (factor: trial type; p < 0.01). Neurons that satisfied the criterion in 

≥1 time windows (n = 932 cells) were identified as task-related and included in subsequent 

analyses. Second, we examined how neuronal responses varied as a function of the trial type. 

Qualitatively, different responses seemed to encode different variables, including the value 

of individual offers, the spatial configuration of the offers, the chosen value, and the chosen 

side (Figures 6A-6D). For a quantitative analysis, we defined 12 candidate variables possibly 

encoded by neurons in OFC (STAR Methods; Table S2). We then regressed each task-related 

response separately against each variable. If the regression slope differed significantly from 

zero (p < 0.05), then the variable was said to explain the response, and we noted the 

corresponding R2. If a response was explained by more than one variable, we identified the 

variable providing the best explanation (maximum R2). Thus, we generated a population 

table for the number of responses best explained by each variable in each time window 

(Figure 6E). We aimed to identify a small number of variables that would explain most 

of the neuronal dataset. Following previous studies,2,7 we selected variables using two 

procedures, namely stepwise and best subset (see STAR Methods). Both procedures selected 

the same 7 variables, namely position of A, offer value A, offer value B, offer value ipsi, 

offer value contra, chosen side, and chosen value (Figures 6F-6H; see discussion).
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On the basis of these results, we classified each neuron by assigning it to the variable 

providing the best explanation across time windows (maximum total R2). Task-related cells 

that were not explained by any variable were classified as untuned.

The encoding of decision variables is longitudinally stable

We aimed to assess whether individual neurons encoded the same variable over extended 

periods of time. For each FOV, we selected two sessions based on the behavioral 

performance and the number of cells (see STAR Methods). We labeled them as session 

1 (earlier) and session 2 (later), and we identified neurons that had been recorded and were 

task-related in both sessions. Repeating this operation for all FOVs provided a dataset of 649 

cells. We then examined the classification obtained for each neuron in each session.

The responses recorded for any given neuron in the two sessions often appeared qualitatively 

similar (Figure S5). For a population analysis, we constructed a contingency table where 

rows and columns represented the variables encoded in sessions 1 and 2, respectively, and 

entries were cell counts (Figure 7A). Cells maintaining their functional role would populate 

the main diagonal. Conversely, neurons encoding different variables in the two sessions 

would be off diagonal. Neurons that encoded one variable in one session and were untuned 

in the other session would populate the rightmost column or the bottom row.

Because different variables were encoded with different frequencies, the numbers in Figure 

7A are not immediately interpretable. Thus, for each entry in the table, we also computed 

the corresponding odds ratio (OR; STAR Methods). For each entry in Figure 7B, OR = 1 

was the chance level, and OR > 1 or OR < 1 indicated that the cell count was higher or lower 

than expected by chance, respectively. Two aspects of Figure 7B are most remarkable. First, 

all diagonal entries were significantly >1. In other words, the neuronal representation of 

each variable was significantly more stable than expected by chance. Second, a reasonable 

hypothesis might be that, over the course of many weeks, some neurons become tuned to the 

task while other neurons leave the pool. To the contrary, all entries in the rightmost column 

and bottom row of Figure 7B were at or significantly below chance level. In other words, 

cells were typically tuned in both sessions or not tuned at all. In summary, the encoding of 

decision variables in the OFC was very stable (see also Figure S6).

Figure 7 included only two sessions for each FOV. However, our dataset was substantially 

richer because we recorded from the same FOV 2–16 times over the span of 12–41 weeks. 

Thus, we conducted a longitudinal assessment of the encoding stability. For each FOV 

and each pair of sessions, we generated a contingency table and an OR table similar to 

those displayed in Figure 7. Encoding consistency was ultimately captured by the diagonal 

nature of the OR table. To quantify this trait, we used the diagonalization index (DI; STAR 

Methods, Equation 9). We examined how the DI varied as a function of the time distance 

(ΔT). Our analyses indicated that (1) for any ΔT, the consistency in classification was 

significantly higher than that expected by chance, and (2) DI did not significantly decrease 

as a function of ΔT (Figure S7).
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DISCUSSION

Neurophysiology studies in primates and rodents suggested that different groups of neurons 

in OFC constitute the building blocks of a decision circuit. To investigate the structure 

and, thus, the decision mechanisms, we developed a protocol for 2P Ca2+ imaging in mice 

performing an economic choice task. Imaging of OFC was performed through GRIN lenses. 

The protocol provided very stable signals in the sense that we were able to record from the 

same FOV and the same neurons repeatedly for up to 40 weeks. Taking advantage of this 

preparation, we examined the degree of longitudinal stability in neuronal activity profiles 

and the representation of decision variables. Several results are noteworthy.

First, we explicitly examined longitudinal changes in behavioral choice patterns. An earlier 

study noted that capuchin monkeys can effectively choose between pairs of foods never 

encountered together before,28 suggesting that economic choice is a natural behavior. Work 

in other species29-31 and anecdotal observations in macaques support this view. For example, 

when we train monkeys in a standard juice choice task,7 we familiarize animals with the 

trial structure using only one juice type; subsequently, we introduce choices between two 

different juice types. Typically, animals present non-trivial trade-offs from the very first 

session in which two juice types are offered against each other. Importantly, the notion that 

economic choice is a natural behavior does not exclude that performance in the choice task 

might improve with experience. Here, we conducted a longitudinal analysis to that effect. 

Ultimately, task performance is quantified by η.26,32 For given ρ, a larger η (i.e., a steeper 

sigmoid) means that there are fewer trials in which the animal chooses the lower value. 

We found that η increased over the course of a few weeks. In principle, this trend could be 

due to multiple factors. (1) While choosing between two juices, mice must decode the offer 

stimuli — i.e., two odors presented in variable concentrations on the two sides of the nose. 

Although mice have a sophisticated olfactory system, it seems likely that the perceptual 

component of the task was somewhat challenging for them and that, over the course of 

many sessions, animals improved the ability to decode olfactory stimuli. (2) Performance 

in the choice task certainly required some degree of mental focus. It is quite possible that, 

over sessions, mice became increasingly capable of focusing on the choice task for many 

trials. This point is particularly salient if one considers that, in binary choices, there is 

nominally no error (animals always receive some juice quantity). Supporting the notion of 

increasing mental focus, the number of trials any animal could perform in any one sitting 

typically increased with experience. (3) Finally, the decision mechanisms might become 

more efficacious over time. Longitudinal training improves performance in a variety of 

natural functions, including perception and motor control; by the same token, longitudinal 

training could improve performance in decision making. Future research should gauge the 

relative weights of these factors.

Second, we identified a set of variables encoded by individual neurons in OFC. These 

include variables associated with individual offers (offer value A, offer value B, offer 

value ipsi, offer value contra), their spatial configuration (position of A), and the choice 

outcome (chosen side, chosen value). This finding strongly resonates with the results of 

neurophysiology studies in primates7 and mice.2 One difference is that the set of variables 

identified here includes both juice-based and spatial variables, while previous work in mice 
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found a prevalence of spatial variables.2 We will address this apparent discrepancy in a 

separate report.

Third, longitudinal analyses provided evidence for high stability in the activity profiles of 

individual cells and the representation of decision variables. Specifically, activity profiles 

became more reproducible as the animals became more experienced in the task. To some 

extent, activity profiles also drifted as a function of time passage. However, this drift was 

quantitatively modest, and the estimated time necessary for full reorganization exceeded 

the lifetime of the animal. Concurrently, the encoding of decision variables did not reveal 

any systematic drift. Considering that only a fraction of OFC neurons appear task-related 

in any given session, a reasonable hypothesis was that, over the course of many weeks, 

some neurons would leave the active pool while other neurons would become tuned to 

the task. Another reasonable hypothesis was that the functional role of any given cell 

would evolve over time. Our results argue against both hypotheses. Notwithstanding the 

fact that classification procedures were somewhat noisy (see below), neurons in OFC 

were typically tuned consistently across sessions or not tuned at all. Furthermore, neurons 

typically encoded the same variables across sessions. These findings strongly support the 

notion of a stable decision circuit. Thus, our results set the stage to examine the connectivity 

of this neural circuit and, ultimately, the winner-takes-all mechanisms underlying economic 

decisions.

It is interesting to consider our findings in relation to the literature on representational 

drift. Previous studies reported a broad spectrum of findings—substantial drift was found in 

sensory and parietal areas,12,14-18 and a stable representation was observed in a premotor 

region of zebra finches,22 while observations in the hippocampus were mixed.19-21 Our 

results place the representation of economic decision variables in OFC on the stable side of 

this spectrum. Under the assumption that brain regions controlling high cognitive functions 

are more flexible and/or less rigidly organized,33 our findings might appear somewhat 

counterintuitive. At the same time, the fact that decision variables in OFC are encoded 

categorically34-36 likely contributes to the stability of this neuronal representation. Indeed, 

a neuron drifting from one decision variable to another would have to undertake a quantum 

leap, qualitatively different from what might take place, for example, in primary visual 

cortex. In a computational perspective, some degree of stability seems necessary for a circuit 

performing a winner-takes-all process.

Limitations of the study

Measures of mean(DI) (Figure S7) indicate that our classification procedures are noisy. 

Indeed, our success rate can be estimated at mean(DI)1 ∕ 2 ≈ 55 %. A previous study in 

monkeys25 using a similar approach provided an estimated success rate of ≈80%. The 

difference might be due to two factors, namely that (1) the mouse OFC represents more 

variables (making the classification more challenging) and (2) mice completed fewer trials 

each day. Future studies shall address this issue, for example, by classifying each cell based 

on multiple sessions.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by 

the lead contact, Camillo Padoa-Schioppa (camillo@wustl.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• The data described in this paper and the Matlab code used for the analysis 

are available at Mendeley Data https://data.mendeley.com/datasets/7cg46th7vz/1 

(https://doi.org/10.17632/7cg46th7vz.1).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experimental procedures were approved by the Washington University Institutional 

Animal Care and Use Committee (IACUC).

The study was conducted on N = 13 mice (6 males, 7 females) expressing 

the genetically encoded Ca2+ indicator GCaMP6f under a pan-neuronal promoter. 

N = 10 C57BL/6J animals (B6; Jackson Laboratory, stock #000664) were 

injected the pAAV.Syn.GCaMP6f.WPRE.SV40 (Addgene, stock #100837) virus.37 

N = 2 Rasgrf2-2A-dCre animals (Jackson Laboratory, stock #022864) and N 
= 1 PV-Cre animal (Jackson Laboratory, stock #008069) were injected a 1:1 

mixture of pAAV.Syn.GCaMP6f.WPRE.SV40 (Addgene, stock #100837) virus37 and 

pAAV.CAG.LSL.tdTomato (Addgene, stock #100048) virus.38 In every mouse strain, we 

aimed to express GCaMP6f under human synapsin (hSYN) promoter. During the imaging 

experiments, animals were 2.5–7 months old.

METHOD DETAILS

Surgical procedures—All recordings focused on the left hemisphere. In a single surgery, 

we injected the virus(es), implanted a gradient-index (GRIN) lens, and fixed a head bar 

to the skull. During surgery, anesthesia was provided by 0.8–1.5% isoflurane in 2 L/min 

medical air. A heating pad maintained the body temperature at 37°C. Buprenorphine 

Sustained-Release (SR) (1 mg/kg, subcutaneous (s.c.) injection) was injected for long-term 

(2 days) pain relief, and dexamethasone (2 mg/kg, intramuscular (i.m.) injection) was 

injected to limit inflammation. We also injected 2% lidocaine hydrochloride locally at the 

incision site to reduce pain. Sterilized saline (37°C, 0.50 mL, intraperitoneal (i.p.) injection) 

was injected at the end of the surgery to avoid dehydration. We first retracted the skin 

overlying the left and right hemisphere of the mouse to expose the skull overlying frontal 
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and parietal cortices. We then performed a 2–3 mm diameter craniotomy spanning OFC. 

Table S3 details the target locations in OFC for each mouse. After removing the skull, we 

injected the GCaMP6f virus (or a mix of GCaMP6f and LSL-tdTomato viruses) into the 

brain at two locations (AP: +0.15 mm, ML: −0.15 mm; reference point: target location) and 

(AP: −0.15 mm, ML: +0.15 mm, reference point: target location) with a Hamilton syringe 

(Hamilton stock #65458-02). At each location, we injected 100 nL in the tissue at DV depth 

ranging −0.1 to +0.1 mm with 0.05 mm step size (reference point: target location). The 

injection speed was 20–40 nL/min and we waited 3 min between steps. Because this type 

of syringe has a bevel at the needle tip, we corrected the injection depth by adding 0.7 mm 

(= distance between the tip of the needle and the opening’s center). After withdrawing the 

needle, we slowly inserted a 1 mm diameter GRIN lens (Inscopix ProView lens probe, stock 

#1050–004605, magnification factor = 1.2, numerical aperture (NA) = 0.5 in air) into the 

brain and down to OFC (AP: 0 mm, ML: 0 mm, DV: −0.15 to −0.3 mm; reference point: 

target location). The 0.15–0.3 mm (see Table S3) were subtracted to correct for the fact that 

this GRIN lens has a working distance ranging 100–300 μm. This procedure was performed 

with a GRIN lens holder (Inscopix) at the speed of 0.6 mm/min. During lens insertion, to 

give some opportunity for the brain to rebound, we retracted 0.2 mm upon first reaching 

depths of 1, 1.5, and 2 mm. Once in place, the GRIN lens was secured to the skull using 

C&B Metabond dental cement (Parkell stock #S380). Finally, we attached a custom head bar 

to the skull using dental cement. After surgery, mice were given dexamethasone (2 mg/kg, 

i.m.) for inflammation and carprofen (5 mg/kg, s.c.) for pain, if needed. Animals were given 

7-14 days to recover before we started training or imaging sessions.

Our procedures for GRIN lens insertion is standard for studies that image deep tissue 

including OFC.24,40 One concern might be whether the presence of a GRIN lens affected 

the behavior and/or neuronal activity in OFC. Two observations mitigate this possible issue. 

First, the behavioral performance of animals implanted with a GRIN lens was very similar to 

that we previously measured in non-implanted mice2 and to that recorded by other authors 

in rats.3,41 Second, neuronal responses recorded here using calcium imaging were generally 

similar to those previously recorded in mice2 and rats3 using neurophysiology. For these 

reasons, we are confident that the lens implantation did not significant alter OFC function.

Histology—To verify the locations of GRIN lens implantation and GCaMP6f expression, 

after completing all the in vivo imaging experiments, we performed trans-cardiac 

perfusion42 to harvest the mouse brains. Mice were anesthetized deeply with ketamine/

xylazine cocktail (10 mg/kg, i.p. injection) and then perfused with phosphate-buffered 

saline (PBS) (mixed with heparin with ratio of 100:1) and 4% paraformaldehyde (PFA). 

We removed the head bar and GRIN lens. Brains were then extracted from the skull and 

embedded into 15% then 30% sucrose/PBS solution at 4°C for several days, until they 

sunk into the bottom of the solution. We then covered the brains with O.C.T. compound 

(Tissue-Tek) and froze them at −80°C. Brains were sliced in 40 μm thick coronal sections 

using cryostats (Leica Biosystems, CM1950) and cover-slipped with antifade mounting 

medium with DAPI (Vector Laboratories, VECTASHIELD). Brain slices were imaged 

through inverted microscopy (Leica DMI6000B) with 2.5X, 5X and 10X objectives (Leica 

Plan Apo). Slice imaging results were compared to the Allen Mouse Brain Atlas (Coronal 
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Atlas) from AP: +2.60 mm to +2.80 mm. We used the lesion gap caused by the GRIN lens 

as a landmark to check whether recorded FOVs were within OFC, accounting for the GRIN 

lens range of working distances.

Choice task and training protocol—The choice task closely resembled that used 

for non-human primates7 and was nearly identical to that described in a previous mouse 

neurophysiology study.2 During training or imaging sessions, mice were head-fixed and 

placed in a customized tube under the microscope. In each session, the animal chose 

between two different juices labeled A and B (juice A preferred) and offered invariable 

quantities. In each trial, we delivered two odor stimuli (octanal and octanol) simultaneously 

from the left and right of the mouse nose (Figure 1A). The odor identities represented 

the juice type, and the odor concentration represented the juice quantity. For juice A, we 

used 5 different concentrations to represent 5 quantities (1–5 drops). For juice B, we used 

4 or 5 different concentrations to represent 4 (2,3,4,7 drops) or 5 quantities (2–6 drops 

or 1,2,3,5,6 drops), respectively. The association between odors and juices was balanced 

across mice (in 8 animals, juices A/B were paired with octanal/octanol, respectively; in 5 

animals, the association was reversed). The offered quantities were linearly related to the 

odor concentration (e.g., odor levels 1 to maximum number of ppm linearly represented 

quantity 1 to maximum number of juice). Offered quantities qA and qB (and the corresponding 

odor concentrations) varied pseudo-randomly from trial to trial. For any two quantities, the 

spatial configuration of the offers (left/right) varied pseudo-randomly from trial to trial.

Odors were presented for 2.4 s (offer period). Immediately thereafter, a 0.2 s tone was 

played (go signal). In each trial, the animal indicated its choice by licking one of two spouts. 

The animal had to indicate its choice within 5 s. The lick was detected by a battery-operated 

touch circuit,43 and the chosen juice was immediately delivered. Juice delivery typically 

took 150–1050 ms (~150 ms/per drop). If the animal did not respond within 5 s, the trial 

was aborted. Licks preceding the onset of the go signal were ignored and did not result in 

any juice delivery. In forced choice trials (~35% of trials), only one odor was presented on 

one side (one correct response). If the animal licked the wrong spout, a 2–5 s white noise 

sound was played. The exact length of the white noise sound varied across sessions but was 

fixed within each session. Between two trials, we activated a vacuum system that removed 

the odors remaining from the previous trial. The inter-trial interval (ITI) varies in the range 

2.5–5 s.

On any given day, mice typically performed the choice task for 30 min (1 session; 170–270 

trials) and received ~0.7–1.3 mL liquid. Juice pairs were varied across mice and included: 

(A) 15% sucrose vs. (B) water; (A) apple juice vs. (B) blueberry juice; (A) apple juice vs. 

(B) water; (A) 15% sucrose vs. (B) cranberry juice; (A) 15% sucrose vs. (B) grape juice; (A) 

water vs. (B) apple juice; (A) pomegranate juice vs. (B) water; (A) apple juice vs. (B) white 

grape juice; (A) white grape juice vs. (B) water; (A) grape juice vs. (B) cranberry juice; (A) 

15% sucrose vs. (B) cranberry juice; (A) 15% sucrose vs. (B) peppermint tea; (A) elderberry 

juice vs. (B) white grape juice; (A) elderberry juice vs. (B) water; (A) 15% sucrose vs. (B) 

elderberry juice.
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Training in this task typically took 2.5–4 months and proceeded as described by Kuwabara 

et al.2 Briefly, in the first phase of training, animals were presented only one odor in 

each trial– either octanal (associated with juice A) or octanol (associated with juice B) – 

on the left or on the right. To obtain the juice, they had to lick the corresponding spout 

(forced choices). Over sessions, we introduced different odor concentrations corresponding 

to different juice quantities. Once performance reached 80% correct, we moved to the 

second phase of training, in which we delivered both odors simultaneously and the animal 

had to choose between the two options (binary choice). Each training phase typically took 

1–1.5 months. Throughout the training period, the animal weight was maintained at 75%–

85% of baseline.44 Neural recordings started from the beginning of the second phase.

Procedures for two-photon calcium imaging—2P Ca2+ imaging was performed with 

an Ultima system (Prairie Technologies) built on an Olympus BX61W1 microscope. A 

mode-locked laser (Mai Tai DeepSee Ti:Sapphire laser, Spectra-Physics) tuned to 920 nm 

was raster scanned at 7–11 Hz for excitation while emitted GCaMP6f fluorescence was 

collected through a green filter (525/70 nm). Laser power at the sample was 20–60 mW. 

Dwell time was set to 3.2–4 μs. To increase the imaging speed, resolution along the y axis 

was reduced by a factor of 2. The final pixel size was 2.29 × 4.58 μm. We used a 20 ×0.45 

NA objective (Olympus LCPLN20×IR objective). Thus in each animal we could image a 

cylinder of 850 μm diameter and 350 mm depth. By varying the focal depth, we could image 

from multiple fields of view (FOVs). For data collection, we restricted the imaging to depths 

between 120 and 370 μm, with 90% of FOVs placed between 180 and 330 μm. Within a 

FOV, we often selected a smaller region of interest, to achieve an imaging frequency of ≥7 

Hz. Throughout this paper, we refer to this region of interest as the FOV.

QUANTIFICATION AND STATISTICAL ANALYSIS

Logistic analysis of choice data—All the analyses of behavioral and neuronal data 

were performed in MATLAB (MathWorks). Choice patterns were analyzed using logistic 

regressions.32 For each session, we focused on binary choice trials (i.e., we excluded forced 

choices) and we built the following logistic model:

PB = 1 ∕ (1 + exp( − X))
X = a0 + a1 log(qB ∕ qA) + a2(δA, right − δB, right)

(Equation 1)

In Equation 1, PB is the probability of choosing juice B; qA and qB are the offered 

quantities; δA, right = 1 if juice A was offered on the right and 0 otherwise, and δB, right = 1 − δA, right. 

From the fitted parameters a0 and a1, we computed the relative value of the two juices 

ρ = exp( − a0 ∕ a1), the choice accuracy η = a1, and the side bias ε = − a2 ∕ a1. Intuitively, 

ρ is the quantity ratio qB ∕ qA that makes the animal indifferent between the two juices 

(Figure 1C). The parameter η captures the choice accuracy (or choice consistency), also 

referred to as inverse temperature; it is proportional to the sigmoid steepness and inversely 

related to choice variability. The parameter ε quantifies a bias favoring one of the two 

sides; specifically, ε < 0 and ε > 0 indicate a choice bias favoring the left and right offers, 

respectively.
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In general, the side bias measured in our experiments was relatively modest ( ∣ ε ∣ < ρ). 
Thus in the analysis of neuronal activity, we defined candidate variables based on the 

relative value, disregarding the side bias. To increase our statistical power in computing 

these variables, we built a reduced logistic model:

PB = 1 ∕ (1 + exp( − X))
X = a0 + a1 log(qB ∕ qA)

(Equation 2)

From parameters fitted with Equation 2, we computed the relative value ρ = exp( − a0 ∕ a1)
and the sigmoid steepness η = a1. However, for some of the analyses, we imposed restrictive 

criteria, including only sessions with ∣ ε ∣ ≤ 1 (cosine similarity analysis and odd ratios 

analysis; Fig. 4; Fig. 7) or ∣ ε ∣ ≤ 0.5 (population analysis; Fig. 6).

Longitudinal analysis of choice behavior—We conducted a longitudinal analysis of 

choice behavior. For each mouse, we counted days starting with the first in which the animal 

chose between two different juices (T = 0). For each session, we derived the parameters ρ, η, 

and ε from the logistic fit (Equation 1). For each animal and each parameter, we removed 

outliers (i.e., data points that differed >3 standard deviations from the mean, see Figure 2A), 

and we fitted the remaining values with an exponential function:

X(T) = a + b exp( − c)

(Equation 3)

In Equation 3, T indicates the day of the session and X = ρ, η, or ε. For each fitted parameter 

a, b, and c, we obtained a 95% confidence interval. Fitted parameter a captured the plateau 

value (for T ∞, X a). If the 95% confidence interval for either parameter b or c did not 

include 0, there was evidence for a significant longitudinal trend; in this case, c was the 

inverse time constant of this trend.

We performed this analysis for each animal and each behavioral parameter ρ, η, and ε. One 

animal (M1062) was excluded from the analysis because we only had data from 4 sessions. 

We also conducted a population analysis focusing on the choice accuracy η and pooling 

sessions from all 13 mice. We removed outliers (data points that differed >3 standard 

deviations from the mean) and we fitted the whole dataset with a single exponential function 

(Equation 3).

Cell segmentation and session registration—Cell segmentation was conducted 

using the CaImAn package.27 First, we performed a frame-to-frame non-rigid motion 

correction to remove potential movement of individual neural signals. Then we extracted and 

estimated the neuronal fluorescent signal with constrained non-negative matrix factorization 

(CNMF). We set the criteria to identify a neuron: the signal-to-noise ratio should be > 

1. After that, we manually checked individual neurons and excluded those without a donut-

shaped cell morphology. This manual checking process is blind of cell’s functional property 

(i.e., the encoded variable), but only relied on the shape of its spatial footprint. For each cell 
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identified with these procedures, we normalized the fluorescence trace F at each time point 

to a fixed baseline generated from the sum of the 20th percentile of the average F signal 

and background signal (generated from CNMF) within each cell region and within a 200 

frames time window. This normalization resulted in the ΔF ∕ F signal, which was used for all 

subsequent analyses.

Data for this study came from 13 mice and 77 FOVs. For each mouse, recording started 

on the first day of the second training phase – i.e., when the animal first chose between 

different juice flavors. Each FOV was recorded in 2–16 sessions (mean = 5.95, std = 2.64). 

For each FOV and each pair of sessions, we registered images and matched neurons using 

a Bayesian procedure.39 First, we aligned the images of the two FOVs by projecting their 

neuronal footprints onto the same image and finding the rotations and translations that yield 

the highest cross-correlation between their projections. Then we modeled the distributions 

of centroid distances and spatial correlations as a weighted sum of the distributions of two 

subpopulations of cell-pairs, representing same cells and different cells. Using Bayes’ rule, 

we obtained the probability (Psame) for any pair of neighboring cells from different sessions to 

be the same cell, given their spatial correlation and centroid distance. Finally, we imposed 

a threshold of Psame > 0.5 (following previous work39). Cell pairs that satisfied this criterion 

were identified as matching. Using these procedures, we typically found that 60%–80% of 

cells from any given session could be matched with cells recorded in the same FOV in 

another session.

Cosine similarity analysis of activity profiles—Referring to the choice task, an offer 

type was defined by two offered quantities (qA, qB); a trial type was defined by two offered 

quantities, their spatial configuration, and a choice. Because neural activity was recorded at 

different imaging frequency in different sessions, for the analysis of activity profiles, we first 

interpolated each cell’s time course and resampled it at 20 Hz. We focused on the ΔF ∕ F
signal recorded in two time windows aligned with the offer onset (−600 ms, +1600 ms) and 

the first lick (−600 ms, +600 ms). For each trial, we joined these two time windows and 

obtained a single trace. We then averaged traces across trials for each trial type. The activity 

profile was defined as the concatenation of mean traces obtained for different trial types. 

Importantly, when comparing the activity profiles recorded for one cell in two sessions, we 

only included trial types present in both sessions.

The likeness of activity profiles was quantified using cosine similarity (CS). For any neuron 

i recorded in sessions 1 and 2, we indicated the two activity profiles as AP i, 1 and AP i, 2, 

respectively. The CS was defined as:

CSsame cells = AP i, 1 ⋅ AP i, 2
∣ AP i, 1 ∣ ⋅ ∣ AP i, 2 ∣

(Equation 4)

where ‘‘ ⋅ ’’ indicates a vector product and ‘‘ ∣ x ∣ ’’ indicates the Euclidean norm of the 

vector x.

Zhang (张曼宁) et al. Page 17

Cell Rep. Author manuscript; available in PMC 2024 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because our measures of ΔF ∕ F were mostly >0, AP vectors were effectively confined to a 

single orthant of a high-dimensional space. Consequently, CS was expected to be high. To 

obtain chance level estimates for CS, we generated two benchmark treatments. First, given 

two sessions 1 and 2, we randomly paired each neuron of session 1 with a neuron of session 

2 (treatment: mismatched neurons). Indicating with i and j two randomly paired neurons in 

the FOV, we computed:

CSmismatched cells = AP i, 1 ⋅ AP j, 2
∣ AP i, 1 ∣ ⋅ ∣ AP j, 2 ∣

(Equation 5)

We repeated this operation 10,000 times and we obtained a distribution for CSmismatched cells. 

Second, for each (matched) neuron i, we shuffled the activity profile in session 2 by 

randomly permuting the vector components (treatment: shuffled times). We then computed:

CSshuffled times = AP i, 1 ⋅ AP i, 2, sℎuffled
∣ AP i, 1 ∣ ⋅ ∣ AP i, 2, sℎuffled ∣

(Equation 6)

We repeated this operation 10,000 times for each cell, and we obtained a distribution for 

CSshuffled times.

Longitudinal analysis of cosine similarity—For longitudinal analyses, we counted 

days for each animal starting the first day in which they chose between different juices 

(see above). Recordings continued for 12–41 week, depending on the animal. For any 

two sessions 1 and 2, we indicate with T1 and T2 the days in which they took place 

(always T1 ≤ T2). We also defined ΔT = T2 − T1. On some occasions, we ran two sessions 

back-to-back in the same day (ΔT = 0). For a longitudinal analysis of activity profiles, we 

examined CS as a function of the experience in the task (T1) and the time difference between 

two sessions (ΔT). We partitioned the (T1, ΔT) parameter space in 2-week x 2-week bins. 

For given T1 and ΔT, we considered the distribution of CSs obtained across animals and 

FOVs, and we computed the median(CS). Thus we obtained values of median(CS) as a 

function of T1 and ΔT. These operations were repeated for the three treatments (same 

neurons, mismatched neurons, shuffled times). Statistical comparisons between distributions 

of CSs were conducted using the Kruskal-Wallis test. To increase the statistical power, for 

some analyses we defined larger time intervals (6-week x 6-week), referred to as Bins (see 

results).

To precisely quantify longitudinal drifts in neuronal activity profiles, we examined how 

CS varied as a function of T1 and ΔT with a 1 day temporal resolution. In drift diffusion 

processes, the drifting variable is stochastic and the expected distance from the initial 

position increases with the square root of time. Thus we model CS(T) with a square root 

function:
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CS(T) = a0 + a1 T1 ∕ 2

(Equation 7)

where T = T1 or ΔT. This analysis indicated that the time to full reorganization would 

exceed the animal’s typical life time. For a control, we also modeled CS(T) win an 

exponential function and obtained very similar results.

Cosine similarity, choice accuracy, and task experience in individual animals
—We examined the relationship between cosine similarity (CS), choice accuracy (η), and 

experience in the task in individual animals. For each mouse, we performed a linear 

regression of CS onto η. Then, for each session, we computed CS’, which was defined 

as the cosine similarity estimated based on η and on the fitted linear relationship (Figure 

S4). For each session we computed the variable X defined as the geometric mean of CS 

(measured) and CS’ (estimated) – in formulas, X = (CS CS’)1 ∕ 2. Finally, we studied the 

relation between the variable X and the time to the last session (T3). This relation was 

examined using linear regressions for individual animals and an ANCOVA (independent 

lines). Importantly, sessions with very few neurons (<10th percentile) and sessions for which 

the measure of CS’ was an outlier were excluded from this analysis. Outliers were identified 

using the interquartile criterion.45 Defining IQR as the interquartile range, values below the 

first quartile minus 1.5*IQR or above the third quartile plus 1.5*IQR were identified as 

outliers and excluded.

Neuronal encoding of decision variables—We conducted a series of analyses to 

identify the variables encoded by individual neurons in OFC using the same procedures 

previously adopted for the analysis of spike counts.2,7 Previous work in monkeys and 

rodents found that neurons in OFC present categorical encoding,34-36 and that different 

groups of cells in this area encode different variables.2,3,7,8,35,46-49 Importantly, these 

variables are often highly correlated (e.g., offer value and chosen value). In this situation, 

to identify the variables encoded by the population, it is necessary to construct an analysis 

that (a) includes many candidate variables and (b) incorporates a principled algorithm for 

variable selection. The analysis adopted here was designed exactly for this purpose (for 

details, see [7]) and has been used in numerous studies.2,3,7,8,35,46,47 For these analyses, we 

selected one session per FOV based on two criteria: (1) we only considered sessions with 

∣ ε ∣ ≤ 0.5 and (2) among these sessions, we selected the one with the largest number of 

recorded cells. Neural activity (ΔF ∕ F) was examined in five time windows: pre-offer (0.6–0 

s before the offer onset), post-offer (0.4–1 s after the offer onset), late delay (1–1.6 s after 

the offer onset), pre-juice (0.6–0 s before juice delivery onset), post-juice (0–0.6 s after juice 

delivery onset) (Figure 1B). Notably, these time windows were almost identical to those 

previously defined in neurophysiology studies in monkeys and mice2,7 (here we used 600 

ms windows instead of 500 ms windows because GCaMP6 signals are slow compared to 

neurophysiology traces50). Again, atrial type was defined by two offered quantities, their 

spatial configuration, and a choice. For each cell, each time window, and each trial type, 

we averaged the ΔF ∕ F activity the time window and over trials. A neuronal response was 
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defined as the average activity of one neuron in one time window as a function of the trial 

type.

Task-related responses were identified with an ANOVA (factor: trial type; p < 0.01). 

Neurons that passed this criterion in at least one time window were identified as task-

related and included in subsequent analyses. Following previous studies, we defined twelve 

candidate variables that neurons in OFC might encode (Table S2). We performed a linear 

regression of each response passing the ANOVA criterion on each variable, and obtained 

the corresponding R2. If the regression slope differed significantly from zero (p < 0.05), 

the variable was said to explain the response. If the regression slope was indistinguishable 

from zero, we arbitrarily set the corresponding R2 to zero. Neuronal responses were often 

explained by more than one variable; the variable providing the best fit was that with the 

highest R2.

To identify a limited number of variables that could explain most of the neuronal population, 

we proceeded with a variable selection analysis. As in previous studies, we used a 

stepwise procedure and a best-subset procedure.7,51 The stepwise procedure selects at each 

iteration the variable providing the maximum explanatory power, considering time windows 

separately. Once a variable is selected, all the responses explained by that variable (including 

those that would be explained by some other variable with a higher R2) are removed from 

the dataset. The residual dataset is then examined, and a new variable is selected. The 

marginal explanatory power of a variable is defined as the fraction of responses that are 

explained by that variable and that are not explained by any other selected variable. The 

algorithm continues until the marginal explanatory power of newly selected variables is <2% 

of the total. Importantly, at each iteration we verify that the marginal explanatory power of 

each selected variable satisfies this criterion. Previously selected variables whose marginal 

explanatory power drops below 2% in the presence of a newly selected variable would be 

eliminated from the selected subset. In practice, however, this situation did not occur for the 

present data.

Importantly, the stepwise procedure does not guarantee optimality. In contrast, the best-

subset procedure is exhaustive. For k = 2, 3, …, the procedure examines all the possible 

subsets of k variables, computes the total explanatory power (i.e., the number of responses 

collectively explained), and then selects the subset providing the maximum explanatory 

power. In this study, the two procedures yielded the same results.

Based on the results of the variable selection analysis, we classified each neuron by 

assigning it to the variable providing the largest total R2 across time windows. This 

sum was restricted to the time windows for which the cell passed the ANOVA criterion. 

Task-related cells that were not explained by any variable were classified as untuned. 

Subsequent analyses on the longitudinal stability of neuronal functional roles were based on 

this classification.

Stability in the representation of decision variables: Analysis of odds ratios—
We conducted a series of analyses to assess whether the variable encoded by any given cell 

remained stable over extended periods of time. Intuitively, our approach was as follows. For 
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each FOV and any two sessions, we focused on cells identified (matching) and task-related 

in both sessions. For each cell, we considered variables encoded in the two sessions; if in 

one session the cell was task-related but did not encode any variable, the cell was classified 

as untuned for that session. On this basis, we constructed for each FOV and for any two 

sessions a contingency table where rows and columns corresponded to 8 possible classes (7 

variables plus untuned) recorded in the two sessions, and entries indicated cell counts. In this 

table, neurons with consistent encoding populated the main diagonal.

Based on this general idea, we conducted a population analysis as follows. First, for each 

FOV in our dataset, we selected two sessions based on two criteria: (1) we imposed ∣ ε ∣ ≤ 1, 

and (2) we selected the two sessions with the largest number of matching, task-related cells. 

Second, we pooled data across FOVs and examined the resulting table of cell counts (Figure 

7A). Third, to assess whether cell counts measured for any pair of variables was above or 

below chance level, we computed the corresponding table of odds ratios (OR).52 Indicating 

with C the table of cell counts, for any entry (p, q), OR was defined as follows:

a1, 1 = Cp, q

a1, 2 = ∑
j ≠ q

Cp, j

a2, 1 = ∑
i ≠ p

Ci, q

a2, 2 = ∑
i ≠ p, j ≠ q

Ci, j

OR = a1, 1 a2, 2
a1, 2 a2, 1

(Equation 8)

We computed OR for each entry and obtained the full table (Figure 7B). Importantly, for 

each entry, the chance level was OR = 1. Conversely, OR>1 (OR<1) indicated that the cell 

count for that entry was above (below) chance. For each entry, we used Fisher’s exact test 

(two tails)53 to assess whether the departure from chance was statistically significant.

Analysis of diagonalization index—The degree of stability in the neuronal 

representation of decision variables was captured by the relative weight of the diagonal 

in the OR table. To quantify this weight, we used the diagonalization index (DI), defined as 

follows. For a d x d nonnegative matrix A,

DI = ∑
i = 1…d

Ai, j/ ∑
i = 1…d

∑
j = 1…d

Ai, j

(Equation 9)

Of note, DI ranges between 0 and 1, and DI = 1 corresponds to a perfectly diagonal 

matrix – i.e., faultless stability. More generally, the closer DI is to 1, the more stable is the 

representation.
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If all variables were encoded by a similar fraction of cells, the chance level for DI would be 

1 ∕ n, where n is the number of variables (including untuned). However, different variables 

were encoded with different frequencies. Thus to obtain chance level estimates for DI, we 

generated a control measurement. Given two sessions 1 and 2, we randomly paired each 

neuron of session 1 with a neuron of session 2 (treatment: mismatched cells). We then 

generated the contingency table and calculated DI. We repeated this procedure 10,000 times 

and we averaged the DIs. For longitudinal analyses, we repeated this procedure for each pair 

of sessions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mice choose between different juice flavors based on subjective values

• Using two-photon calcium imaging, neurons in OFC are recorded for up to 40 

weeks

• The activity profiles of individual cells are longitudinally stable

• The decision variables encoded by individual cells are longitudinally stable
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Figure 1. Choice task and behavioral performance
(A) Experimental apparatus. The animal was head fixed under the microscope objective. 

Two odors, each representing one of two offered juices, were presented simultaneously from 

the left and right. The mouse indicated its choice by licking one of two spouts.

(B) Trial structure. Following an inter-trial interval (ITI; 2.5–5 s), odors were delivered from 

the two odor ports. The offer period lasted 2.4 s and ended with an acoustic tone (0.2 s; go 

signal). The animal indicated its choice within 5 s. Immediately after the first lick following 

the go signal, the corresponding juice was delivered. During the subsequent ITI, a vacuum 

system removed all remaining odors from the field.

(C) Example sessions and choice patterns. In each plot, offer types are represented on the x 

axis. The y axis indicates the percentage of trials in which the animal chose juice B. Sigmoid 

curves were obtained from logistic regressions. Relative value (ρ), choice accuracy (η), and 

side bias (ε) are indicated for each session. (D–F) Population histograms for behavioral 

parameters. In (F), the dashed lines highlight ∣ ε ∣ = 0.5 and ∣ ε ∣ = 1 (see STAR Methods).
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Figure 2. Longitudinal analysis of choice accuracy
We pooled 343 sessions from 13 mice (entire dataset). Each circle represents one session, 

and the red line was obtained from an exponential fit. Two outliers (green circles) were 

excluded from the fit. Referring to Equation 3, the fitted parameters (95% confidence 

interval) were a = − 0.75( − 1.03, − 0.46), b = 0.03(0.005, 0.06), and c = 1.90 (1.78, 2.02). Thus, 

the behavioral performance, quantified by choice accuracy η, improved significantly as mice 

became more expert in the task.
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Figure 3. Longitudinal two-photon imaging of OFC
(A) Viral expression and lens location. Left: coronal slice (anterior-posterior = +2.65 mm) 

obtained from a mouse 2 months after a surgery in which we injected AAV-Syn-GCaMP6f 

in the OFC and implanted a 1 mm diameter GRIN lens. Cell nuclei were stained by 

DAPI (white), and cells expressing GCaMP6f are contained in the green injection site. The 

location of the GRIN lens is clearly visible. The borders of OFC are highlighted (white 

dotted line) by matching them with a coronal section obtained from the Allen Brain Atlas 

(2011; right). The focal plane (red dotted line) was calculated based on the lens working 

distance.

(B) Example FOV. Imaging segmentation revealed the presence of n = 169 cells. White 

contours show neuronal locations. Red contours show 12 example cells illustrated in (C). A, 

anterior; M, medial. Scale bar, 100 μm.

(C) ΔF ∕ F traces (one trial) of 12 example neurons (numbered top to bottom). Vertical lines 

indicate different behavioral events. Red/blue dots indicate left/right licks.

(D1–D5) Example FOV recorded in five sessions over 83 days. Images remained remarkably 

stable throughout the recordings. Scale bar, 100 μm.

(E1 and E2) Images for days 1 and 11 obtained after cell segmentation and cell matching. 

Orange contours indicate matching cells (n = 98 cells). White contours indicate unshared 

cells (n = 63 cells for day 1; n = 33 cells for day 11).
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(F) Longitudinal stability. We recorded 18 sessions from one single FOV over 100 days. The 

image illustrates the fraction of shared cells (number of shared cells/mean of cell numbers 

between FOVs) for every pair of sessions as a function of the time distance.
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Figure 4. CS analysis
(A) Example cell. We examined the cell activity in two sessions (days 31 and 75). Single-

trial traces were obtained by joining two time windows aligned with the offer onset and 

the time of first lick. In each session, we averaged traces over trials for each trial type, 

and we concatenated the mean traces obtained for different trial types. The resulting signal 

is referred to as the activity profile. We repeated this operation for both sessions, and we 

computed the cosine similarity (CS) between the two activity profiles. Here, activity profiles 

recorded in sessions 1 and 2 are shown in green and pink, respectively. Gray dashed lines 

separate trial types. Details about the trial types are indicated below the x axis: numbers 

indicate offered quantities (qB: qA); diamonds and circles indicate that the animal chose juice 

A and juice B, respectively; and red and blue indicate that the animal chose left and right, 

respectively. For this neuron, CS = 0.96.

(B) Example cell recorded on days 122 and 129 (CS = 0.94).

(C) Example cell recorded on days 1 and 63 (CS = 0.90).

(D) Distribution of CS for the three treatments (same cells, mismatched cells, shuffled 

times). Here, T1 = weeks 5–6, ΔT = weeks 7 − 8, and n = 747 cells. For each distribution, 

the orange vertical line indicates the median. We measured median(CSsame) = 0.677, 

median(CSmismatched) = 0.617, and median(CSshuffled) = 0.616. The median measured for the CSsame
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distribution is significantly higher than that measured for the CSmismatched distribution (p = 2.26 

× 10−38, Kruskal-Wallis test) and that measured for the CSshuffled distribution (p = 1.37 × 

10−29, Kruskal-Wallis test).

(E) Number of cells matched across sessions as a function of T1 and ΔT. Session pairs were 

divided in bins of 2 × 2 weeks. Here, the number of cells available in each bin are illustrated 

with a heatmap (see color legend). Each entry in the table indicates the number of cells 

recorded with the corresponding T1 (x axis) and ΔT (y axis). Bins with ≤ 10 cells were 

removed from this figure.

(F–H) Measures of median(CS) as a function of T1 and ΔT same cells, mismatched cells, 

and shuffled times. In each image, median(CS) is illustrated with a heatmap. The black 

dashed rectangle highlights the bin illustrated in (D).

(I–K) Statistical comparison of different treatments. (I) illustrates the p values obtained 

comparing the distributions of CSs measured for “same cells” and “mismatched cells” 

treatments. (J) and (K) are for the other two comparisons. All p values (see color bar) are 

from a Kruskal-Wallis test.
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Figure 5. Longitudinal trends of cosine similarity
(A) Median(CS) as a function of T1 and ΔT (same as Figure 4F); 6 × 6 week Bins used 

for longitudinal comparisons are highlighted. Median(CS) was significantly higher in Bin 2 

than in Bin 1 (p = 1.55 × 10−115) and significantly lower in Bin 3 than Bin 1 (p = 0.05, 

Kruskal-Wallis test).

(B) CS decreases with time passage (ΔT). To have comparable numbers of cells for different 

values of ΔT, we restricted this analysis to pairs of sessions with T1 ≤ 6 weeks. For 

each day, we computed median(CS). Here, the radius of each circle is proportional to 

the number of cells. We fitted data with a drift model CS(ΔT) = a0 + a1ΔT1 ∕ 2 (weighing 

data points by the number of cells) and obtained a0 = 0.6835 and a1 = − 1.697 10−3 day−1 ∕ 2. 

Red dashed lines indicate the 95% confidence interval. For the same population, we also 

computed b = median(CSmismatched cells) = 0.622821 (green dashed line). Thus, we estimated the 

time necessary for full reorganization, ΔTFR = 1, 278 days.

(C) CS increases with task experience (T1). This analysis was restricted to pairs of sessions 

with ΔT ≤ 6 weeks. The red line was obtained from the fit CS(T1) = a0 + a1 T11 ∕ 2. The green 

dashed line indicates the median(CS) obtained for mismatching cells.

(D) CS and choice accuracy (population). Each dot represents one session, and the line was 

derived from a linear regression (p = 0.04). The color of the dot represents T3 (see color 

bar). In the inset, dots represent 25-day bins, and colors indicate T3.
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(E) CS, choice accuracy, and experience in the task (individual animals). Axes represent T3 

(x axis) and variable X (y axis), and each data point represents one session. Different colors 

indicate different animals, and solid lines were derived from an ANCOVA (independent 

lines). For 11 of 12 animals, the two measures were positively correlated.
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Figure 6. Decision variables encoded in OFC
(A) Example cell encoding the offer value B. Left: offer types are ordered by the quantity 

ratio qB ∕ qA (x axis). Black dots represent the choice pattern. Color symbols represent the 

neuronal activity (ΔF ∕ F). Diamonds and circles are for trials in which the animal chose 

juice A and juice B, respectively. Red and blue are for trials in which the animal chose the 

offer on the left and right, respectively. Right: the same neuronal response is plotted against 

the binary variable offer value B. The cell activity increased as a function of qB. The dark 

gray line was obtained from a linear regression.

(B) Example cell encoding the position of A. The activity of this cell was roughly binary—

low and high when juice A was offered on the left and right, respectively.

(C and D) Example cells encoding the chosen value and the chosen side. Neuronal responses 

illustrated here are from (A) late delay, (B) late delay, (C) post-juice, and (D) pre-juice time 

windows. All conventions are as in (A).

(E) Population analysis. Each response passing the ANOVA criterion was regressed against 

each of the 12 variables. The images illustrates for each time window (row) the number 

of responses best explained by each variable (column). Here, numbers and shades of gray 

indicate cell counts.
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(F) Variable selection and stepwise procedure. The top image is the same as in (E). In the 

first iteration, we identified the variable that explained the highest number of responses 

(chosen side). We removed from the pool all the responses explained by that variable 

(35.73% of the total). The residual pool is illustrated in the second image. The procedure 

was then repeated. At each iteration, we identified the variable that explained the largest 

number of responses in the residual pool (highlighted by a green asterisk). If the marginal 

explanatory power was ≥2%, then we retained the variable and removed from the pool all 

the responses explained by that variable. The procedure continued until all newly selected 

variables failed the 2% criterion.

(G) Percentage of explained responses and stepwise procedure. The x axis indicates the 

number of variables (iterations). On the y axis, 100% corresponds to the number of 

responses passing the ANOVA criterion; the dotted line corresponds to the number of 

responses collectively explained by the 12 variables included in the analysis.

(H) Percentage of explained response and best-subset procedure. The same format as in 

(G) is used. In (E), variables selected by both the stepwise and best-subset procedures are 

highlighted in green.
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Figure 7. The encoding of decision variables is longitudinally stable
(A) Contingency table (n = 649 cells). Rows and columns represent the variables encoded in 

sessions 1 and 2, respectively; entries and gray shades are cell counts.

(B) Odds ratios (ORs). For each entry, Fisher’s exact test assessed whether the departure 

from chance (OR = 1) was statistically significant. Pink and blue asterisks indicate that the 

cell count was significantly above and below chance, respectively (*p < 0.05, **p < 0.01, 

and ***p < 0.001).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

pAAV.Syn.GCaMP6f.WPRE.SV40 Chen et al.37 Addgene AAV1; 100837-AAV1

pAAV.CAG.LSL.tdTomato Oh et al.38 Addgene; 100048

Chemicals, peptides, and recombinant proteins

Isoflurane Covetrus 029405

Buprenorphine Sustained-Release (SR) Wedgewood pharmacy 79926-058-17

Dexamethasone Mylan Pharmaceuticals 67457-422-00

Lidocaine hydrochloride Aspen veterinary resources 16479689

Sterilized saline (0.9%) Pfizer 00409-4888-50

Carprofen Rimadyl Rimadyl injectable carprofen

DAPI mounting solution Vector Laboratories VECTASHIELD H-2000

C&B Metabond dental cement Parkell S380

Ketamine Dechra https://www.dechra-us.com/our-products/us/companion-
animal/cat/prescription/ketamine-hydrochloride-injection

Xylazine Dechra https://www.dechra-us.com/our-products/us/equine/horse/
prescription/rompunxylazine-injection-100-mg-ml

Paraformaldehyde (PFA) Thermo Fisher scientific 28908

Octanal Sigma 05608

Octanol Sigma W280011

Critical commercial assays

Hamilton Neuros syringe Hamilton Hamilton: 65458-02

Inscopix ProView lens probe Inscopix 1050-004605

Cryostats Leica Leica Biosystems, CM1950

LabVIEW National Instruments https://www.ni.com/en/support/downloads/software-
products/download.labview.html#544096

Inverted microscopy Leica DMI6000B

Mai Tai DeepSee Ti:Sapphire laser Spectra-Physics https://www.spectra-physics.com/en/f/mai-tai-deepsee-
ultrafast-laser

20 ×0.45 NA objective Olympus LCPLN20×IR objective

BX61W1 microscope Olympus BX61W1

Prairie Ultima Two-photon in vivo rig Bruker Ultima

Deposited data

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: B6; 129S-Rasgrf2tm1(cre/folA)Hze/J The Jackson Laboratory JAX: 022864

Mouse: B6; 129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory JAX: 008069

Software and algorithms

MATLAB Mathworks https://www.mathworks.com/products/matlab.html

CaImAn package Giovannucci et al.27 https://github.com/flatironinstitute/CaImAn-MATLAB

ImageJ (Fiji) ImageJ https://imagej.net/software/fiji/

CellReg algorithm for matching cells across days Sheintuch et al.39 https://github.com/zivlab/CellReg
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