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Abstract

Single nucleotide exact amplicon sequence variants (ASV) of the human gut microbiome were 

used to evaluate if individuals with a depression phenotype (DEPR) could be identified from 

healthy reference subjects (NODEP). Microbial DNA in stool samples obtained from 40 subjects 

were characterized using high throughput microbiome sequence data processed via DADA2 

error correction combined with PIME machine-learning de-noising and taxa binning/parsing of 

prevalent ASVs at the single nucleotide level of resolution. Application of ALDEx2 differential 

abundance analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic 

pathways. This multivariate machine-learning approach significantly differentiated DEPR (n = 

20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome taxa clustering 

and neurocircuit-relevant metabolic pathway network analysis for GABA, butyrate, glutamate, 

monoamines, monosaturated fatty acids, and inflammasome components. Gut microbiome 

dysbiosis using ASV prevalence data may offer the diagnostic potential of using human 

metaorganism biomarkers to identify individuals with a depression phenotype.
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Introduction

Depression is the leading cause of medical disability worldwide [1]. Reliably diagnosing 

individuals with depression, and understanding the biomedical and neurophysiological 

mechanisms underlying depression with its attending medical comorbidities, has the 

potential to radically transform diagnosis and treatment, substantially reduce disability-

adjusted-life-year impacts on the economy and quality of life, and mitigate stigma.

Depression is associated with gut dysbiosis that disrupts a microbiome/systemic 

pathophysiology/brain bidirectional axis, based on preclinical rodent models and human 

studies [2–16]. Notwithstanding this basic dogma, recent Pubmed meta-analyses of human 

depression-specific gut microbiome studies [6, 12] have assessed that there is no consensus 

identifying the particular net gut microbial ecology of taxa and attending metabolomic 

interactions of microbiota with their hosts’ physiology. This extends to lack of accord 

regarding differences in taxa relative abundances and diversity in depression, as compared 

with healthy reference subjects, although there is universal agreement that taxon significant 

differences do indeed exist. The literature is inconclusive regarding possible interplay 

between particular species and antidepressants use, experimentally limited to rodent models 

[16–20], although ketamine animal studies implicate a gut microbiome-associated anti-

inflammatory aspect to the antidepressant mechanism of this drug [15]. Thus, understanding 

specific biological mechanisms, identification of microbiome taxa and functional pathway 

patterns as biomarkers, and development of microbiota-centric medical interventions 

have been confounded by the literature’s wide variation in microbial compositional and 

abundance dataset analyses. These translational lapses hold for all the mental disorders, and 

particularly for depression [6].

Next generation sequencing has launched an expansion of microbiome studies, but 

often at the cost of data relevancy due to sequencing and pipeline shortcomings. 

The recent bioinformatics literature has challenged status quo microbiome analyses [21–

24], establishing—yet it is not yet widely appreciated—that the commonly used high 

throughput sequencing methods and popular software yield compositional datasets of 

relative operational taxonomic unit (OTU) abundances are inherently flawed due to 

differences in 16S rRNA gene sequencing platforms and bioinformatics methodologies, 

many of which do not account for covariate effects.

Metagenomic shotgun sequencing approaches using composition-based, abundance-based, 

or combined hybrid binning analyses, can, in many respects, improve on the 16S OTU 

approach to differentiating cohorts, due to of feature specificity assigned to microbial 

metabolic pathways and genes [25–28]. Nevertheless, the specificity of closed-database 

metagenomics in general is not ideal for definitive biomarker identification nor microbiota/

host interactive mechanisms, due to limitations incurred by the potential of sequencing 

errors and to confining microbial compositions within a defined catalog, often altering 

orthologous groups to conform to artificial enterotypes determined by Dirichlet analysis 

[29].
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Inappropriate use of such compositional data has subsequently resulted in conflicting 

conclusions in the literature due to pipeline errors and OTU clustering methods. Publications 

are often widely quoted as authoritative major advances leading the field regarding the role 

of gut microbiome in mental disorders and comorbid health issues, yet their unchallenged 

compositional data analyses can be flawed thereby leading to deep propagation of 

misinformation in the literature [30, 31].

In the present study we avoid the dangers of closed-database OTU clustering, and of the 

downside of shotgun sequencing metagenomics, by instead demonstrating a novel machine-

learning pipeline that involves taxa binning and prevalences of exact amplicon sequence 

variants (ASV) [21]. Prevalence is defined as the proportion of individuals within a specific 

cohort who share an OTU or taxon at least once, regardless of abundance; it is a frequency 

of occurrence, in contrast to abundance which is the average fractional representation of a 

single OTU or taxon only when present. For example, using our (Prevalence Interval for 

Microbiome Evaluation (PIME) R package [32] a prevalence cutoff of 55% means that the 

taxa selected at this prevalence interval are found in 55% of the subjects.

We hypothesized that the prevalences of exact ASV within noisy gut microbiome data can 

readily identify pathophysiology-associated differences in gut signatures of microbial taxa 

and their metabolic pathway in people living with depression as compared with healthy 

reference subjects, at high resolution without resorting to OTU relative abundance clustering 

nor shotgun sequencing.

Materials and methods

Stool samples were obtained from 40 volunteer subjects, median age 34 y.o. distributed 

as groups of n = 20 subjects (ten females and ten males) meeting DSM-IV criteria for 

depression (DEPR) as outpatients seeking help at the University of Florida Department 

of Psychiatry, plus n = 20 healthy reference control subjects (14 females and 6 

males) without a diagnosed mental illness (NODEP). Subjects refrained from probiotics 

and antibiotics during 30 days prior to providing stool samples, and they reported 

no gastrointestinal disorders. Fifteen of the 20 DEPR subjects had clinically charted 

antidepressants that included fluoxetine, venlafaxine, duloxetine, lamotrigine, mirtazapine, 

gabapentin, citalopram, sertraline, or bupropion, while five DEPR subjects had charts that 

did not specify a particular antidepressant medication by name. The possible effect of 

antidepressant medication use on metadata clustering was examined, but this resulted in 

no outliers of any significant differences that influenced data interpretation, as shown with 

statistical details in “Results” below; therefore, data from all 20 DEPR patients were pooled 

and included in all subsequent analyses regardless of specific antidepressant or whether or 

not their chart specified an antidepressant. The University of Florida Institutional Review 

Board approved the study (clinicaltrials.govNCT02693327) for which participating subjects 

provided written informed consent and were remunerated.

Stool samples were collected with OMNIgeneGUT fecal collection kits (DNAGenotek, 

Ottawa, Ontario, Canada) and stored at −80 °C until DNA extraction. DNA from each 

sample was extracted from ~200 mg of stool using the E.Z. N.A Stool Extraction Kit 
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following the manufacturer’s protocol (Omega Bio-tek, Doraville, CA). Samples were 

randomized during extraction to avoid processing order bias, with the absence of processing 

and kit contamination verified by parallel blank negative controls. High DNA quality was 

determined by spectrophotometry. The region V3–V4 of 16S rRNA gene amplicons was 

amplified and sequenced with Illumina MiSeq (2 × 300 cycles run) as described previously 

[33].

The Illumina demultiplexed paired-end sequenced dataset was processed by the R package 

DADA2 [34] to correct for amplicon errors, to identify chimeras, and to merge paired-ends 

reads. The end product of DADA2 yielded a total of 2724 unique ASV each trimmed to 

400 nucleotides in length, cataloged, and tallied as the number of times each exact ASV 

was observed for each sample. A phyloseq R object was generated comprised of all 2724 

ASVs, a lookup table of taxonomy assignments to each ASVs obtained by using the naive 

Bayesian classifier method, and the ILVA ribosomal RNA gene database [35] version v132, 

plus subject sample metadata.

The DADA2-derived ASV dataset was initially analyzed by permutational analysis of 

variance (PERMANOVA) (Adonis R package), then the ALDEx2 R package [36, 37], as 

described below. This dataset was then treated using our PIME R package [32], which 

generated ASV prevalences by machine-learning, as validated by comparison with control 

Monte Carlo simulations with randomized variations of sequences. This prevalence-filtered 

dataset was then processed by ALDEx2, and output from the DADA2/PIME/ALDEx2 

workflow resulted in a denoised, filtered dataset comprised of 86 unique ASV sequences 

each 400 nucleotides in length (Supplementary Information Table 1-SI). PICRUSt2 [38] was 

employed for stringent predictions of functional metabolic pathways. As advantages over 

PICRUSt 1.0, the new PICRUSt2 pipeline inputs sequences as single nucleotide resolution 

ASVs, references ten times more genomes than PICRUSt1, and yields output as MetaCyc 

[39] pathway abundances referenced to shotgun metagenomics. ASV analyses included 

ALDEx2 differential abundances with Mann–Whitney and Bland–Altman plots, effects sizes 

distances, principal component analyses (PCA), and principal coordinates analyses (PCoA), 

network analysis, and pathway differences’ odds ratios. Software included Python and R 

packages, run either standalone on Mac OS X or Calypso online [40].

Results

Initial comparison of microbial communities from DEPR vs. NODEPR using the entire 

unfiltered dataset of 2724 unique ASVs was assessed by multivariate PERMANOVA and 

Bray–Curtis distances, which yielded no significant difference (p = 0.654, R2 = 0.0289). A 

multivariate PERMANOVA-like differential abundance analysis of the 2724 ASV DADA2 

dataset was then assessed by employing the ALDEx2 R package, resulting in the Mann–

Whitney plot and Bland–Altman-type plot shown in Fig. 1a, b. According to the pattern and 

color of ASV points in Fig. 1a, b, no red prevalent data points and no significant differences 

between the groups were obtained using the full unfiltered 2724 ASV DADA2 dataset; the 

high number of black points indicates high relative abundance of taxa with low prevalence.
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Subsequently, the noisy full dataset of 2724 ASVs was filtered using our PIME R package 

[32]. PIME removed the within-group variations and captured only biologically significant 

differences which have high sample prevalence levels. PIME employs a supervised machine-

learning algorithm to predict random forests and estimates out-of-bag (OOB) errors, 

resulting in the Fig. 1c sets of ASV prevalence bins at 5% intervals. Here, high OOB 

errors indicate a given prevalence dataset bin is noisy representing a high relative abundance 

of taxa with low prevalence. Therefore in Fig. 1c the minimal OOB error = zero with 

the highest signal to noise ratio occurring within the 55% prevalence interval based on 

292,798 sequence comparisons. This 55% prevalence dataset was comprised of 86 ASVs 

(Supplementary Information Table 1-SI) that were used for all subsequent downstream 

analyses.

Using the 55% prevalence 86 ASV dataset, OOB errors were predicted by a Monte 

Carlo simulation of random forest classifications by running 100 bootstrap aggregations 

on each prevalence interval. The simulation results shown in Fig. 1d matches Fig. 1c, thus 

reinforcing the appropriate choice of utilizing the 55% prevalence empirical dataset (Fig. 

1c). In order to evaluate the likelihood of introducing bias while building the prevalence-

filtered datasets, the data were also randomly scrambled from the two subject groups and 

then run through the PIME error prediction algorithm again using 100 bootstraps. The 

resulting control randomization OBB errors were not significantly different from predicted 

value of 0.55 at all prevalence bins, as shown in Fig. 1e, confirming lack of false-positive 

type I errors. Thus, taken together the prediction simulation (Fig. 1d) and randomization 

control (Fig. 1e) simulation collectively validate our PIME algorithm [32] outcome of the 86 

ASVs (Fig. 1c).

The 55% prevalence dataset of 86 ASVs was then reintroduced into ALDEx2 analysis, as 

shown in the Mann–Whitney (Fig. 1f) and Bland–Altman-type (Fig. 1g) outcome plots. 

Unlike Fig. 1a, b, the data in Fig. 1f, g appear as red points representing taxa assigned as 

differentially abundant at q < 0.1, along with nondifferentially abundant gray points, but no 

black points that represent noise of high relative abundance taxa with low prevalence.

PCA [41] was executed using the unfiltered pre-PIME DADA2 dataset of 2724 ASVs and 

post-PIME-treated 86 ASVs. The pre-PIME 2724 sequence dataset could not be resolved 

into sample group clusters (p = 0.238, R2 = 0.02893) as shown in Fig. 1h. In contrast, 

in Fig. 1i the post-PIME-treated 86 ASV 55% prevalence dataset yielded PERMANOVA 

(Adonis) Bray–Curtis P < 0.001, R2 = 0.531, with PCA ordination readily resolved cluster 

differentiation of DEPR vs. NODEP, as shown with all points within the 95% confidence 

interval (CI) ellipses. These PCA results are consistent with the ADLEx2 Mann–Whitney 

and Bland–Altman results (Fig. 1f, g) and PERMANOVA described above.

The possible influence of antidepressant medication usage on taxa clustering of the 86 ASV 

dataset by the DEPR metadata phenotype was examined. This resulted in no outliers from 

the DEPR metadata by PCA analysis (PERMANOVA P = 0.355) (Fig. 1j), nor influence 

on clustering distances by Bray–Curtis dissimilarity network analyses (P > 0.05) (Fig. 1k). 

Therefore, data from all 20 DEPR patients were pooled and included as a single cohort 

in subsequent analyses regardless of specific antidepressant or whether or not their chart 
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specified an antidepressant. Potential influences of subject sex were also assessed; however, 

data parsed by male/female were not significantly different from random scrambling of sex 

(P > 0.05, data not shown).

Output from PIME/ALDEx2 yielded effect sizes for the 86 unique ASV sequences 

(Supplementary Information Table 2-SI), along with uncovering certain multiplicities of 

assigned taxa names assembled at the levels of Family, Genus, and species. The bar graph 

of Fig. 2a shows the taxa differential effect size values over the cutoff range of ≥0.5 for 

NODEP and ≤−0.5 for DEPR. ASV sequences of Supplemental Table 2-SI were assigned a 

unique code used for downstream assessment of the 55% prevalence dataset, regardless of 

whether multiple sequences could be assigned the same taxonomic name, and then parsed 

for redundant multiple copies (n > 1) or unique (n = 1) taxonomic names assigned to 

the ASVs as shown in Fig. 2b, c. Note the large ASV prevalence representation from the 

Firmicutes phylum that occurs in both DEPR and NODEP, particularly in Lachnospiraceae, 

Ruminococcaceae, and Bacteroidetes Families. And also note the diversity of taxa names 

assigned to the prevalent ASVs is greater for DEPR than for NODEP, as corroborated by 

Chao1 and Shannon alpha diversity analyses (data not shown). The data of Fig. 2 are further 

discussed below in the Discussion.

PICRUSt2 treatment of the 86 ASVs from the 55% prevalence dataset predicted 284 

MetaCyc microbiome metabolic pathways. Fig. 3a shows the network analysis revealing 

clustering of gut microbiome pathways common to DEPR, as segregated from clustering 

common to healthy control NODEP. The possible influence of antidepressant medication use 

on metabolic pathway clustering by the DEPR metadata phenotype was examined in Fig. 

3a, resulting in no outliers within the DEPR cluster by Bray–Curtis dissimilarity network 

analyses (P > 0.05). Therefore, pathway data from all 20 DEPR patients were pooled and 

considered as a single cohort (purple circles in Fig. 3a) regardless of specific antidepressant 

(assigned red in Fig. 3a) or whether or not their chart specified an antidepressant (assigned 

blue in Fig. 3a). Based on PICRUSt2 pathway data of Fig. 3a, odds ratios and AUC were 

generated, with the top most salient pathway differences shown in the forest plot of Fig. 

3b. Notably, these data highlight untoward pathways in subjects living with depression as 

contrasted with healthy pathways in reference subjects without depression.

Discussion

The machine-learning pipeline of the present study unmasked a novel and useful pattern 

of gut microbiota taxa variants’ prevalences and functionally relevant metabolic pathways 

associated with depression, as compared with healthy reference subjects. This is the first 

implementation of advanced error suppression at the level of single nucleotide resolution 

in compositional gut microbiome assignment to a major mental disorder and attending 

functional pathways phenotype, via a unique pipeline that incorporates DADA2 error 

correction [34] combined with de-noising and taxa binning of exact ASV prevalences 

generated by the R package PIME [32], followed by differential abundance analysis 

with effect sizes via ALDEx2 [36, 37]. The precedent for justifying exact sequences to 

differentiate microbial populations without OTU clustering has been established by large 

scale population diversity studies [21–24].
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Functional metabolic pathways

It is becoming recognized in the literature that the value of microbiome studies lies in the 

importance of the interactive ecology of microbial intermediary metabolism pathways over 

differences in taxonomy [42]. Patterns of metabolic pathways in gut microbiota taxa reflect 

their impact on distinguishing host physiology phenotypes, due to the interplay of microbial 

metabolism with host metabolome and physiology. The present ASV approach revealed 

the differentiation of untoward gut microbiota MetaCyc pathways in DEPR, in contrast to 

healthy pathways in NODEP reference subjects (Fig. 3a, b). These results are consistent with 

the distinguishing hallmarks of unfavorable shifts in metabolism and host inflammasome 

dysregulation associated with disruption of gut barrier reported for depression vs. healthy 

individuals, as we and others [6, 8, 11, 12, 43–47] have reported previously.

In the present results (Fig. 3) DEPR-associated pathways of butyrate degradation and 

GABA degradation were prominent in the gut microbiome of DEPR. In contrast, NODEP 

was prominently represented by multiple Lachnospiraceae NK4A136 and Lachnospiraceae 
UCG-001 ASVs (Fig. 2, Table 2-SI), which represent butyrate producing species associated 

with the physiological and behavioral health benefits of this short chain fatty acid 

(SCFA) [10, 13, 48, 49]. In a mouse model of depression, Lachnospiraceae UCG-001 and 

Lachnospiraceae NK4A136 abundances were significantly enhanced by the antidepressant 

fluoxetine in a subgroup of mice that behaviorally responded to fluoxetine, but these 

species were not enhanced in the subgroup that did not respond to antidepressant treatment 

[19]. Our pipeline effect size results (Fig. 2, Table 2-SI) also indicated high prevalences 

of Roseburia spp, Bacteroides spp, Faecalibacterium spp—in particular, Faecalibacterium 
prausnitzii—in both DEPR and NODEP, explainable by the notion that SCFA metabolism is 

highly strain-specific and diet-dependent [20, 50]. Faecalibacterium prausnitzii is the single 

most common human gut bacterium, with relative abundance dependent on prebiotic diet 

composition [50, 51].

Inflammation and dysregulation of glutamate, monoamines, and GABA neurotransmission 

have been associated with the pathophysiology of depression and comorbid neuropathic 

pain [6, 13, 52–54]. The results (Fig. 2, Table 2-SI) indicated a mixture of taxa 

representing species that have potential for GABA production (Parabaceroidetes merdre 
and certain strains of Alstipes spp, Bacteriodes spp, Eubacterium spp, and Escherichia 
spp) or GABA consumption (select strains of Flavonifractor plautii, Pseudomonas 
spp, and Acinetobacter spp) [9, 12], with somewhat greater prevalence of GABA 

producing taxa in DEPR compared to NODEP. Indeed, the odds ratio data of Fig. 

3b favor subjects with depression possessing gut microbiota GABA degradation and 

reduced biosynthesis via: “L_arginine_putrescine_and_GABA_degradation_superpathway”, 

“L_arginine_and_ornithine_degradation_superpathway”, and “L_argi 

nine_degradation_AST_superpathway”. Conversely, in healthy reference subjects without 

depression the Fig. 3b odds ratio favored “L_glutamine_and_glutamate_biosynthesis” which 

promotes GABA production.

The data of Fig. 3 reflect microbiota alterations in small molecules and other amino 

acid pathways associated with depression, such that threonine, tryptophan, and leucine 

that can activate mTOR-mediated intestinal inflammation, while arginine and ornithine 
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suppress gut inflammation [55]. Under proinflammatory gut bacteria conditions, high levels 

of tryptophan are converted to kynurenine at the expense of reduced serotonin synthesis, 

whereupon kynurenine crosses blood–brain barrier and is converted to neurotoxic kynurenic 

and quinolinic acids which have been correlated with depressive symptoms [56]. Microbial 

degradation of allantoin in DEPR, and D-galactuonate degradation NODEP in our subjects 

are consistent with animal models [57, 58].

Proinflammatory gut bacteria that generate Kdo2-lipid were favored in DEPR (Fig. 2). 

Kdo2-lipids are the primary component of LPS that activates host TLR4-MD2 signaling and 

myeloid differentiation [59], enterobacterial common antigen that is linked to LPS via Kdo2 

[60], and iron-sequestering biofilm-enhancing enterobactin [61]. The large effect size for 

Enterobacteriaceae in DEPR (Fig. 2a, Table 2-S1) is consistent with LPS-related morbidity 

of strains that disrupt intestinal barrier and invokes inflammation from proinflammatory 

cytokine responses [50] in humans with depression [62]. The high ASV prevalence of 

Roseburia intestinalis in our NODEP subjects (Fig. 2) is consistent with prior studies 

showing that the flagellin of this species reduces intestinal inflammation by suppressing 

IL-17 in the host [63]. The pathway data (Fig. 3) favored enhancement of oleate and 

palmitoleate, which are inversely correlated with depression [64, 65]. Overall gut microbiota 

fatty acid beta oxidation was favored in DEPR (Fig. 3b).

Taxa

In addition to functional pathway differences, assigned taxa names and taxa linear 

discriminant analysis estimates of effect size differences between depressed human subjects 

vs. healthy control subjects have been used in previous gut microbiome compositional 

studies based on OTU relative abundances or shotgun sequencing metagenomics [6, 8–10, 

44, 47, 48, 66–68]. Our ASV results (Figs. 1j, k and 2a–c, and Table 2-SI) are in accord 

with the reported general trend in increased OTU relative abundances of taxa associated with 

human depression and rodent models of depression with respect to Acidaminococcaceae, 
Enterobacteriaceae, Rikenellaceae, and Coriobacteriaceae Families, and in particular of 
Blautia sp, Alistipes sp, Parabacteroides spp, Phascolarctobacterium sp, Oscillibacter spp, 
Rosburia spp, Flavonifractor sp, and Holdemania sp [10, 11, 44, 45, 48]. Regarding trends 

for OTU relative abundances depleted in DEPR and increased in NODEP, select species of 

Faecalibacterium spp, Ruminococcus spp, Lachnospiraceae spp, and Bacteroides spp have 

been reported [9, 10, 44, 48], as also observed in our ASV prevalence results (Fig. 2, Table 

2-SI). Previous reports have negatively correlated Faecalibacterium spp OTU abundances 

with magnitude of depression symptom severity [10, 69], while our results (Fig. 2, Table 

2-SI) identified separate particular Faecalibacterium spp ASVs for DEPR and NODEP. 

Elevated Parabacteroidetes is associated with anhedonia in rat models [70], consistent with 

our results (Fig. 2a–c, Table 2-SI).

Fig. 2 and Table 2-SI indicated that in NODEP nearly 75% of the prevalent taxa with 

effect sizes >0.5 are Lachnospiraceae spp, with the balance of prevalent taxa represented by 

Bacteroides spp and Ruminococcaceae family. The top prevalence effect size for NODEP 

(Fig. 2a) was Faecalibacterium CM04-06 of the Ruminococcaceae family. Both DEPR 

and NODEP yielded large prevalences of ASVs tagged to Ruminococcaceae. This is not 
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unexpected because beneficial vs untoward health effects of Ruminococcaceae are highly 

species- and strain-specific and diet-induced, due to variations in their fiber hydrolyzing 

enzyme profiles [20, 50]. Strain-dependence abundances in DEPR is reportedly associated 

with elevated R. flavefaciens which abrogates effects of antidepressants [18], and elevated 

select members of Bacteroidetes phylum, but with net decreases in Firmicutes in both 

human studies and in rat depression models employing relative OTU abundances alone 

[45] or in conjunction with LC/MS metabolomics [11]. Getachew et al. [15] reported that 

antidepressant ketamine reduced levels of Ruminococcus spp in rats. These OTU reports 

are in contrast to the high degree of representation of ASV assigned to Lachnospiraceae, 

Ruminococcaceae, and Bacteroidaceae in both DEPR and NODEP (Fig. 2, Table 2-SI).

Our ASV prevalence data (Fig. 2, Table 2-SI) indicated an overall greater diversity of taxa 

prevalences in DEPR, in concordance with a 16S closed-OTU approach of Jiang et al. 

[10], but in contrast to other reports of alpha diversity or richness with no difference in 

humans [44] or reduction with a rat depression model [45]. It has been posited that the 

many dimensions of “diversity” of a given ecosystem composition are not per se an index of 

“better” vs. “worse” [71].

Physiological anthropology of depression

Mood disorders exhibit familial transmission, but the exact genetics remain unresolved 

despite ongoing studies analyzing nearly 200 candidate human maker genes [43]. People 

are essentially metaorganisms comprised of ~1014 prokaryotic cells plus roughly the same 

number of eukaryotic cells—host physiology is the co-evolutionary consequence of the 

interplay among human plus bacterial genomes and metabolomics. The present study 

emphasizes the importance of gut microbiome prevalences on host depression phenotype 

behavior and metabolic pathways; it is the prevalence—in contrast to relative abundance—of 

certain bacterial metabolic functions steered by microbiome genes that ultimately shapes 

host-microbiota relationships. Specific human genetic loci shape heritable patterns of gut 

microbiome taxa prevalences in the host [72]. The Christensenellaceae family is the single 

most heritable gut microbial taxon, typically correlated with various healthy phenotypes 

[72]. Notably, our results (Table 2-SI) indicated ASV prevalence of Christensenellaceae 
R-7 group in the NODEP cohort (effect size 0.47), in contrast to DEPR. These data taken 

together with PCA discriminatory taxa clustering of NODEP subjects vs. DEPR (Fig. 1i–k) 

collectively imply the heritability of resistance to depression. Thus, anthropological group 

cohesion cultural factors such as food and dietary habits, mating preferences that sustain 

closed groups, and environmental communal exposure to a common set of commensal 

bacteria may propagate bacterial species of depression. Or conversely, perhaps certain gut 

microbiota may have usurped human hosts as unwitting prokaryotic propagation vessels by 

shaping mood and sickness behavior as an evolutionary survival advantage by withdrawing 

their hosts from environmental harms or from competing infectious pathogenic bacteria.

Conclusion

In conclusion, the present study describes a novel gut microbiome machine-learning 

approach to potentially differentiate people with depression from healthy reference controls. 
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The process employs DADA2, ALDEx2, PIME, and PICRUSt2 R packages to evaluate 

prevalent ASVs from human gut microbiome 16S rRNA amplicon sequences at the level of 

single nucleotide resolution. This machine-learning technique approach may reduce pitfalls 

of OTU relative abundance clustering and shotgun metagenomics. By employing prevalent 

ASVs, this study led to an ability to distinguish 20 individuals with depression from 20 

healthy reference subjects. Results are supported by multivariate analyses’ PERMANOVA 

P < 0.001, effect sizes ≥0.5, PCA ordination, network analyses, and odds ratios, which 

collectively conformed to current dysbiosis and pathophysiologic hypotheses of depression 

associated with neurocircuit-relevant neurotransmitter pathways, inflammation, and gut–

brain dysregulation. Furthermore, the differential patterns of unique ASVs assigned to 

taxonomy and metabolic pathways associated in individuals with depression and healthy 

controls were generally consistent with prior OTU relative abundance and metagenomics 

studies, with disparities attributable to the taxonomic MetaCyc assignment of species- and 

strain-specific microbiota metabolomics. This is the first published report using this gut 

microbiome machine-learning approach and its utility as a high throughput sequencing 

technique of the gut microbiome to identify individuals with depressive symptoms 

different from healthy reference subjects. Its application in the clinical setting may lend 

to personalizing treatments based on ASV in patients with depression by decreasing 

neurobiological heterogeneity, as based on the current DSM-5 diagnostic framework. Larger 

studies are needed to delineate the extent to which different symptoms of depression and 

influences of antidepressants may correspond with functional metaorganisms tethered to 

underlying neurobiological dysfunction.
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Fig. 1. ASV prevalences and metadata analyses.
a Mann–Whitney plot of ALDEx2 output using complete DADA2 dataset of 2724 Illumina 

demultiplexed paired-end unique DNA sequences (Supplementary Information Table 1-SI) 

without PIME treatment. b Bland–Altman MA-type plot of same dataset described for a. 

c PIME prevalence bins and out-of-bag (OOB) errors for intervals 5–95%. Based on the 

criterion of greatest number of random forest sequence combinations at the minimal OBB 

error = zero, the 55% interval with 86 AVSs (listed in Supplementary Information Table 

2-SI) was ultimately employed for all subsequent downstream analyses. d PIME OOB 
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error predictions at each prevalence interval, showing box plots of treatments randomly 

assigned to the 86 ASV dataset samples. These simulated predictions match the empirical 

data of c. e Scrambled control validation of the PIME simulations of d, assessed by running 

randomized variations of OOB errors for each prevalence bin, resulting in box plots with 

OOB errors at all bins hovering at the predicted value of 0.55. Each plot in d and e was 

generated by machine-learning using the 55% prevalence dataset of 86 ASVs run through 

100 bootstrap iterations of Monte Carlo simulations of random forest classifications on each 

prevalence interval in 5% increments. f Mann–Whitney plot of pipeline output from DADA2 

that derived from the PIME 55% prevalence dataset of 86 ASV seqs, then subsequently 

processed with ALDEx2. g Bland–Altman MA-type plot of same dataset described for d. a, 

b, f, and g each point represents a unique microbial taxon exact amplicon sequence variant 

(ASV). Red points represent taxa assigned as differentially abundant at q < 0.1; gray points 

are abundant, but not nondifferentially abundant; black points are rare and not differentially 

abundant. Based on f and g, the 55% interval with 86 AVSs was ultimately employed for 

all subsequent downstream analyses. h Principal component analysis (PCA) of entire 2724 

sequence dataset from the pipeline of DADA2 plus ALDEx2 but not treated using PIME, 

revealing no metadata clustering by PERMANOVA (Adonis) Bray–Curtis p = 0.654, R2 

= 0.02893. i PCA of the 55% prevalence dataset of highly prevalent 86 ASVs from the 

complete DADA2/ALDEx2/PIME pipeline, revealing significant clustering of metadata by 

PERMANOVA (Adonis) Bray–Curtis with P < 0.001, R2 = 0.531, with group clusters shown 

within predicted 95% CI ellipses. Each dataset in h, i was log2 transformed, centered and 

scaled, and run with Bray–Curtis distances with the pca3d subroutine of the prcomp R 

package [41]. j Lack of antidepressant influence on DEPR cohort taxa clustering by PCA. 

Metadata were assigned as: five DEPR subjects with no specific antidepressant listed on 

their chart (blue), 20 DEPR subjects pooled regardless of antidepressant use (red; 15 DEPR 

subjects with charted use of an antidepressant plus five DEPR with no specifically listed 

antidepressant), or 20 NODEP subjects (green). There were no outliers from the clustered 

20 subject pooled DEPR cohort (PERMANOVA P = 0.355) which were collectively isolated 

from NODEP (P < 0.001) relating to the 86 prevalent taxa. k Bray–Curtis dissimilarity 

network analysis of 86 prevalent taxa and lack of antidepressant influence on cohort 

distances. Pearson correlation algorithm was employed with positive taxa nodes placed with 

dissimilarity ordination distances connected by principal coordinates analysis (PCoA) edge 

placement (false discovery rate, FDR P < 0.05), with similarity cutoff at 0.25. Node sizes 

and colors are proportional to relative magnitude within the dataset. Note taxa clustering 

and purple color blend resulting from the overlay of DEPR subjects whose charts listing an 

antidepressant (red) on DEPR subjects whose charts did not list a specific antidepressant 

(blue), and of which pooled DEPR metadata were collectively segregated from clustered 

NODEP (green).
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Fig. 2. ASV and taxa prevalences for DEPR vs. NODEP.
a ALDEx2 effect sizes for taxons assigned from ASVs. Displayed cut-offs are effect 

size ≥0.5 (NODEP) or ≤−0.5 (DEPR). b DEPR ASVs and taxons. c NODEP ASVs and 

taxons. a–c The DADA2/ALDEx2/PIME pipeline output 55% prevalence dataset taxa names 

were assigned to each 86 unique ASV, regardless of whether multiple sequences could be 

assigned the same taxonomic name, based on the naive Bayesian classifier method and the 

SILVA ribosomal RNA gene database [35] version v132. Redundant multiple copies (N > 

1) or unique (N = 1) taxonomic names for the ASVs are shown at the levels of Family, 
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Genus, and species. The full set of all ALDEx2 effect sizes ASV sequences are listed in 

Supplementary Information Table 1-SI and Table-2SI.

Stevens et al. Page 18

Mol Psychiatry. Author manuscript; available in PMC 2024 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Metabolic pathway segregation of DEPR vs. NODEP.
a Bray–Curtis dissimilarity network analysis of microbiome metabolic pathways, and lack 

of antidepressant influence on cohort distances. Data are 284MetaCyc pathways predicted 

by PICRUSt2 using the DADA2/ALDEx2/PIME 55% bin prevalence taxa dataset of 86 

ASVs. Pearson correlation algorithm was employed with pathway nodes placed by PCoA, 

showing significant (FDR P < 0.05) positive associations connected by edges, with similarity 

cutoff at 0.25. Node sizes and colors are proportional to relative magnitude within the 

dataset. Note pathway clustering and purple color blend resulting from the overlay of DEPR 

subjects whose charts listed an antidepressant (red) on DEPR subjects whose charts did not 

list a specific antidepressant (blue), and of which pooled DEPR metadata were collectively 

segregated from clustered NODEP. b. Odds ratios in forest plot of select microbiome 

metabolic pathway data of Fig. 2a. Based on the PICRUSt2 MetaCyc pathway data, odds 

ratios and AUC were generated, with salient pathway differences shown. Note the untoward 

pathways associated with depression pathophysiology phenotype in DEPR, in contrast to 

healthy pathways in NODEP.
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