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Abstract

Objectives—Todetermine the association of anti-seizure medication (ASM) treatment with 

outcomes in acute ischemic stroke (AIS) patients undergoing continuous electroencephalography 

(cEEG).

Methods—Retrospective analysis of AIS patients admitted between 2012 and 2019. The 

following are the inclusion criteria: age ≥ 18 years and ≥ 16 h of cEEG within the first 7 days 

of admission. ASM treatment exposure was defined as > 48 h of treatment after the first 24 h 

of cEEG. The primary outcome measure was 90-day mortality, and the secondary outcome was 

90-day functional recovery (Modified Ranking Scale 0–3). Propensity scores were used to adjust 
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for baseline covariates and presence of epileptiform abnormalities (seizures, periodic and rhythmic 

patterns).

Results—One hundred thirteen patients met the inclusion criteria; 39 (34.5%) were exposed 

to ASM. ASM treatment was not associated with 90-day mortality (propensity adjusted HR 

1.0 [0.31–3.27], p = 0.999) or functional outcomes (adjusted HR 0.99 [0.32–3.02], p = 0.989), 

compared to no treatment.

Conclusions—In our study, ASM treatment in AIS patients with cEEG abnormalities was 

not significantly associated with a change in 90-day mortality and functional recovery. Larger 

comparative effectiveness studies are indicated to identify which acute ischemic stroke patients 

with cEEG abnormalities benefit most from ASM treatment.
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Introduction

Continuous electroencephalography (cEEG) is often utilized for the detection of 

electrographic seizures in patients with acute ischemic stroke and a clinical concern for 

seizures or unexplained encephalopathy [1–3]. Epileptiform abnormalities (EAs), including 

seizures and periodic and rhythmic patterns, can be seen in up to 40% of patients presenting 

with post-stroke neurological deterioration [4]. Prior studies have shown conflicting results 

on whether EAs are associated with worse discharge outcomes in patients with acute 

ischemic stroke [1, 3]. At the same time, anti-seizure medications (ASMs) are frequently 

prescribed in response to cEEG findings, and there is limited evidence on whether treatment 

improves outcomes [1, 3]. The goal of this study was to describe ASM treatment patterns 

and estimate the effect of treatment on 3-month mortality and functional outcomes, in AIS 

patients undergoing cEEG monitoring.

Methods

This is a retrospective cohort study of patients with AIS admitted to a single center 

between January 2012 and December 2019. The study was approved by the Institutional 

Review Board. Informed consent was not required. The results are reported in accordance 

with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines for reporting observational studies [5]. The data that support the findings of this 

study are available from the senior author upon reasonable request.

The inclusion criteria were (1) admission for acute ischemic stroke, (2) age > 18 years, (3) 

cEEG monitoring initiated within 7 days of admission, and (4) ≥ 16 h of cEEG monitoring. 

We restricted our cEEG exposure to the first 7 days of admission as this defines the risk 

period for acute symptomatic seizures [6, 7]. We restricted our inclusion criteria to patients 

with 16 h of cEEG as the probability of seizures drops to < 5% if no seizures have occurred 

in the first 16 h of recording [8]. We excluded patients with prior diagnosis of epilepsy 

or those on chronic ASM treatment prior to admission for AIS. We also excluded patients 

admitted for less than 7 days.
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ASM treatment exposure definition

Indications for ASM treatment included clinical seizures and EAs. ASM type, dosage, and 

duration of treatment were at the discretion of the treating team. We defined ASM treatment 

exposure as the initiation or continuation of ASMs for ≥ 48 h after the first 24 h of cEEG 

and through day 7 of admission. The unexposed group consisted of patients who did not 

receive any ASMs or received less than 48 h of ASM exposure within the first 7 days of 

admission. Follow-up for outcomes started after day 7 of admission and continued in an 

intention-to-treat scheme until 90 days from start of follow-up.

Clinical covariates

Demographic and clinical variables were abstracted from the electronic health record. 

Comorbidities were quantified using the Charlson Comorbidity Index (CCI) [9]. We 

measured stroke severity using the NIH Stroke Scale (NIHSS) [10], and critical illness 

severity using the Acute Physiology and Chronic Health Evaluation (APACHE II) score 

[11]. Stroke etiology was classified using the Trial of ORG 10,172 in acute stroke treatment 

(TOAST) criteria [12]. Stroke location was characterized based on cortical involvement 

and vascular territory involved. Stroke treatment modality (i.e., intravenous thrombolysis 

and/or intraarterial thrombectomy) was recorded. Occurrence of post-stroke complications 

including hemorrhagic transformation, need for decompressive craniectomy, and hospital-

acquired infections were also recorded.

cEEG recording and features

The primary indications for cEEG monitoring were screening for non-convulsive seizures 

(NCS) and unexplained altered mental status. Continuous video EEG was recorded using 21 

electrodes and the International 10–20 system. Two clinical neurophysiologists reviewed and 

reported the cEEG findings at least twice daily during the hospitalization. All cEEG findings 

were reported using the American Clinical Neurophysiology Society nomenclature (ACNS) 

[13]. cEEG features and EA burden data were abstracted from the clinical EEG reports.

Epileptiform abnormalities (EAs) were defined as any of the following patterns: 

electrographic seizures, lateralized periodic discharges (LPDs), generalized periodic 

discharges (GPDs), bilateral independent periodic discharges (BiPDs), and lateralized 

rhythmic delta activity (LRDA). Electrographic seizures were defined as spikes and sharp 

wave or sharp-slow wave complexes lasting for 10 s or more at a frequency of 3 Hz or at 

a frequency of 1 Hz but with clear evolution in frequency, morphology, or location [14]. 

Generalized rhythmic delta activity (GRDA) and sporadic discharges are not associated with 

a high risk for poor outcomes and hence were excluded from our definition of EAs [3, 15].

EA burden was quantified using the ACNS terminology: rare < 1%, occasional 1–9%, 

frequent 10–49%, abundant 50–89%, or continuous > 90% [13]. We quantified the EA 

burden as follows:

1. First 24 h EA burden—defined as the percentage of the first 24 h of recording 

occupied by EAs. For patients with less than 24 h of recording, all available 

cEEG data was considered as the first 24-h epoch.
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2. Peak EA burden—defined as maximum EA burden measured within any 12-h 

window. Peak EA burden was calculated as the percentage of the 12-h epoch 

occupied by EA patterns.

Primary and secondary outcomes

Our primary outcome measure was 90-day mortality. The secondary outcome was 90-day 

functional recovery (good outcome) as measured by the Modified Rankin Scale (mRS): 

0, no symptoms; 1, no significant disability; 2, slight disability; 3, moderate disability; 

4, moderately severe disability; 5, severe disability; and 6, death [16]. For analysis, we 

dichotomized functional status into good outcome (mRS of 0 to 3) or poor (mRS of 4 

to 6). mRS was abstracted from physician and physical and occupational therapy clinical 

examinations by two reviewers (PS and SFZ) who were blinded to the EEG findings 

and ASM treatment exposure status at the time of outcome abstraction. Additionally, we 

examined the time to late onset clinical seizures, defined as seizures occurring after day 7 of 

admission [17].

Statistical analysis

Fisher’s exact test was used for comparison of dichotomized and categorical variables, and 

the Mann–Whitney U test for continuous variables. Significance was set at 0.05, and 2-sided 

p values are reported. Equality of survival functions was assessed using the log-rank test.

We used propensity score–adjusted analysis to address the potential clinical differences 

between ASM treatment exposed and non-exposed patients. The propensity score regression 

model included variables likely to be associated with ASM treatment, acute symptomatic 

seizures, and poor outcomes [3, 18–22]. These variables included NIHSS, APACHE II 

score, CCI, acute stroke treatment (thrombolysis and/or thrombectomy), clinical seizures on 

presentation, and first 24-h EA burden. We selected variables that captured illness severity, 

EEG findings, and comorbidities and were measured prior to the exposure window. The 

area under the receiver operating curve (ROC) for the propensity score model was 0.92. The 

estimated propensity score was included in a Cox proportional hazard model to assess the 

association between ASM treatment and primary and secondary outcomes. The proportional 

hazards assumption was evaluated using Schoenfeld residuals and log–log survival plots. 

Hazard ratios are presented with 95% confidence intervals as HR [95% CI]. Patients lost to 

follow-up were right censored in the analysis.

Results

During the study period, there were on average 825 ischemic stroke admissions per year 

(range 790–895/year). One hundred thirteen patients met the inclusion criteria. Thirty-nine 

(34.5%) patients received ASM treatment exposure, and 74 (65.5%) were non-exposed. 

Table 1 summarizes the clinical and demographic characteristics of this cohort. There were 

no missing data. There were no significant differences in NIHSS, APACHE II score, and 

rates of hemorrhagic transformation and hemicraniectomy between the two groups. Patients 

receiving ASM exposure were monitored with cEEG for longer duration and were more 

likely to have clinical seizures and higher first 24-h and peak EA burden.
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Patients with ASM exposure received a median of 9 days of inpatient ASM treatment (IQR 

6–19). Among treatment-exposed patients, 37 (94.9%) received levetiracetam treatment, 7 

(17.9%) received phenytoin, 4 (10.3%) received lacosamide, and 3 (7.7%) received valproic 

acid (these percentages are not mutually exclusive). Eleven patients in the unexposed group 

received < 48 h of ASM (levetiracetam only) treatment. In all eleven unexposed patients, 

ASMs were initiated due to an initial clinical concern for seizures and discontinued within 

48 h of cEEG monitoring. Of the 33 ASM treatment-exposed patients alive at discharge, 24 

(72.7%) were discharged with ASM prescriptions.

Primary and secondary outcomes

Figure 1 shows the Kaplan–Meier and adjusted survival curves. At 90 days, mortality was 

7/39 (18%) in the ASM treatment-exposed group and 23/74 (31%) in the non-exposed 

group. Twenty-five of 30 (83.3%) patients who died had withholding of life-sustaining 

therapy or were discharged to hospice. The unadjusted HR for 90-day mortality in the ASM 

treatment-exposed group was 0.55 [0.23–1.28]. After adjusting for the propensity score, the 

HR was 1.0 [0.31–3.27].

Figure 2 shows the Kaplan–Meier and adjusted curves for good outcomes defined as 

mRS 0–3. At 90 days, 10 (26%) patients in the ASM treatment-exposed group had good 

functional outcomes vs. 29 (39%) in the non-exposed group. The unadjusted HR for good 

functional outcome in the ASM treatment group was 1.19 [0.53–2.69] compared to the 

non-exposed group. After adjusting for the propensity score, ASM treatment exposure was 

not significantly associated with functional outcomes: HR 0.99 [0.32–3.02]. Survival data, 

including loss to follow-up rates, are summarized in Supplementary Tables S1 and S2.

Three patients in the ASM treatment-exposed group had late seizures, compared with 2 

patients in the unexposed group.

Sensitivity analysis

In a sensitivity analysis, we excluded all patients with clinical seizures on admission as 

these patients have a higher likelihood of being continued on ASMs regardless of cEEG 

findings. After exclusion of patients with clinical seizures, the ASM exposure arm only 

included patients in whom treatment was prescribed in response to cEEG findings. In this 

analysis, there continued to be no significant association between ASM treatment exposure 

and 90-day mortality (propensity adjusted HR 0.77 [0.023–2.66], p = 0.70) or functional 

outcomes (propensity adjusted HR 0.49 [0.09–2.80], p = 0.42).

In an additional sensitivity analysis, we excluded the 11 patients with < 48 h of ASM 

treatment in the unexposed group. In this analysis, ASM treatment exposure was not 

significantly associated with mortality (HR 0.539 [0.21–1.36], p = 0.184) or functional 

outcomes (HR 1.44 [0.66 [0.59–3.52]], p = 0.425). Finally, we performed a sensitivity 

analysis using fewer covariates in the propensity score model to address any potential impact 

of over fitting in the main propensity model and found no difference in our primary results 

(supplemental material).
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Discussion

In our cohort of acute ischemic stroke patients undergoing cEEG monitoring, sustained 

exposure to ASMs was not associated with significant changes in mortality or functional 

outcomes. Our study also demonstrated the utility of early cEEG for the characterization of 

clinical symptoms concerning for seizures and de-escalation of unnecessary and potentially 

harmful ASM treatment in stroke.

Concerning EA, not all patterns may warrant sustained or high-dose ASM treatment. 

Within acute ischemic stroke patients, there are conflicting reports on the impact of EAs 

on outcomes [1, 3]. In one study of 132 acute ischemic stroke patients, EAs were not 

associated with worse discharge outcomes [1]. However, the authors did not quantify 

and account for EA burden. In 143 acute ischemic stroke patients, we have previously 

shown that increasing EA burden was associated with worse discharge functional outcomes 

[3]. Additionally, in prior work, we have demonstrated increasing burden of epileptiform 

abnormalities is associated with worse discharge outcomes across a larger cohort of medical, 

surgical, and neurological patients [23]. All aforementioned studies have shown frequent 

prescription of ASMs in patients with EAs [1, 3, 23]. Future randomized studies including 

acute ischemic stroke patients with high burden EAs, and excluding low burden EAs, could 

provide evidence on the impact of ASM treatment on outcomes. Furthermore, such studies 

should evaluate long-term outcomes in multiple domains including functional, cognitive, and 

health-related quality of life.

In addition to a clear clinical correlate and high burden, EA pattern type, and frequency 

can also serve as potential treatment targets in future studies [24]. Specifically, prospective 

studies investigating the impact of ASM treatment on both seizure risk and outcomes in 

patients with high frequency (> 1.5 Hz) LPDs, GPDs, and LRDA are warranted as these 

patterns have the highest association with both seizures and secondary brain injury [15, 

25]. Periodic discharges are associated with metabolic stress as evidenced by markers 

of brain metabolism including reduction in brain tissue oxygenation, elevation in lactate/

pyruvate ratio, and PET hypermetabolism [25–27]. Biomarker-guided treatment may also 

help optimize the potential impact of ASM on long-term outcomes.

Within our cohort, majority of patients with treatment exposure were also discharged on 

ASMs (72.7% of all treatment exposed patients). A similar finding of long-term continuation 

of ASMs in stroke patients with EAs has been reported in another study [28]. ASMs have 

the potential to impair functional and cognitive recovery in neurocritical care patients as 

highlighted by several studies [29, 30]. ASMs can also impair neurocognitive recovery and 

affect the quality of life of patients with post-stroke epilepsy (PSE) [31–33]. Therefore, 

further work is needed to investigate the proposed benefit of treatment during the acute 

phase and timely discontinuation or reduction of ASMs in the post-acute phase [34]. The 

post-acute symptomatic seizure (PASS) clinic model provides continuity of care for such 

patients and ensures appropriate ASM weaning when long-term treatment is not warranted 

[35]. A single-center PASS clinic model resulted in the reduction or discontinuation of 

ASMs in 44.6% of patients [35].
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An indication for cEEG is the characterization and diagnostic clarification of paroxysmal 

events concerning for seizures [36]. Our study highlights the utility of cEEG for this 

indication in patients with acute ischemic stroke. In our cohort, 11 patients in the unexposed 

group were initially started on ASMs for clinical concern, with discontinuation shortly 

after initiation of cEEG monitoring. All 11 patients (10% of the total cohort) received 

ASMs for < 48 h and were therefore counted in the unexposed group. In a separate 

cohort of acute ischemic stroke patients, cEEG-guided de-escalation of treatment was 

reported in 4.5% of patients [1]. Paroxysmal events including rhythmic and repetitive motor 

movements, tremors, gaze deviation, and autonomic symptoms are frequently encountered 

in neurocritical care [37, 38]. These paroxysmal symptoms are not always seizures but can 

be misdiagnosed as seizures resulting in initiations of ASMs [37, 38]. In such patients, 

risk of ASM adverse effects outweigh benefits and cEEG data can provide guidance on 

discontinuation of unnecessary treatment.

Limitations of our study include the lack of randomization and the use of information 

from a single-center which may limit generalizability. There was limited sample size and 

number of patients in the exposed group. Our study may, therefore, be underpowered to 

find smaller differences. Restricting the eligibility criteria to 16 h of cEEG, may create a 

selection bias. Our cohort was also restricted to patients with higher stroke severity given 

our eligibility criteria of admission length ≥ 7 days, and need for prolonged cEEG. Finally, 

although we used propensity scores, our results may still be prone to residual or unmeasured 

confounding.

In conclusion, acute ischemic stroke patients undergoing cEEG monitoring are often 

exposed to ASM treatment. However, it is unclear whether ASM treatment improves the 

outcomes. In our study, we found no significant differences in the outcomes between 

patients exposed to ASMs vs. not. Future larger comparative effectiveness studies and 

randomized investigations are indicated to identify patients that may benefit the most from 

ASM treatment and to define the optimum duration of treatment. Further work is also 

needed to determine whether cEEG-guided de-escalation of treatment in patients with a 

clinical concern for seizures could minimize the harmful effects of ASMs, such as cognitive 

impairment and sedation, and improve outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Ninety-day mortality. a Kaplan–Meier curves for time to death comparing ASM treatment 

exposure (red curve) vs. non-exposure (blue curve) in acute ischemic stroke patients 

undergoing cEEG monitoring. b Propensity-adjusted survival curves for time to death 

comparing ASM treatment exposure (red curve) vs. non-exposure (blue curve) in acute 

ischemic stroke patients undergoing cEEG monitoring. ASM, anti-seizure medication; 

cEEG, continuous electroencephalography
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Fig. 2. 
Ninety-day functional recovery. a Kaplan–Meier curves for time to good functional outcome 

(mRS 0–3) comparing ASM treatment exposure (red curve) vs. non-exposure (blue curve). b 
Propensity adjusted curves for time to good functional outcome (mRS 0–3) comparing ASM 

treatment exposure (red curve) vs. non-exposure (blue curve)
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