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SUMMARY

Diabetes mellitus significantly increases the risk of severe respiratory virus disease like influenza and
COVID-19. Early evidence suggests that this susceptibility to respiratory viral disease is driven by glyce-
mic variability, rather than average blood glucose levels. Here, we use blood samples and constant
glucose monitoring (CGM) data obtained from people living with type 1 diabetes (T1D) to determine
the effects of glycemic variability on the ex vivo T cell response to influenza virus. We show that high
glycemic variability in participants living with T1D is associated with a reduced proportion of
CD8+CD107a�IFNg�MIP1b�TNF+ T cells in response to stimulation with influenza virus and an influenza
virus peptide pool. Thus, this study provides evidence that glycemic variability affects the ex vivo T cell
response to respiratory viruses. These data suggest that monitoring glycemic variability may have impor-
tant implications in understanding the antiviral immune response in people with diabetes.

INTRODUCTION

Diabetes mellitus (both type 1 [T1D] and type 2 [T2D]) significantly increases the risk of severe respiratory virus infections.1–4 The mechanisms

by which this occurs remain poorly defined. Hyperglycaemia (high blood glucose levels) is typical of both T1D and T2D and its persistence is

indicated by elevated glycated hemoglobin (HbA1C) levels. Hyperglycaemia is associated with increased susceptibility to severe disease,

including respiratory tract infections. A meta-analysis showed that chronic hyperglycaemia (HbAa1c levelsR7.0%) is associated with at least

a 2.5-fold increased risk of pulmonary tuberculosis relative to patients with lower (<7.0%) HbA1c levels.5 Hyperglycaemia (relative to in range

blood glucose levels) also significantly increased the risk of mortality, ICU admission, and intubation for COVID-19 in patients with T2D.6 Simi-

larly, in vitro high glucose levels increase pulmonary epithelial-endothelial damage from influenza virus infection.7 An elevated HbA1C in pa-

tients with diabetes is also associated with impaired TNF production to influenza virus by CD8+ T cells.8
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In contrast to consistently high average blood glucose levels there is now a growing body of evidence that glycemic variability may also

play a significant role in susceptibility to severe respiratory virus infections.4,9–13 Typically, in healthy individuals blood glucose levels remain

relatively stable throughout the day except for small and short-lived post-prandial peaks. However, in individuals living with diabetes these

postprandial glucose spikes are more frequent and higher in magnitude. This glycemic variability is not indicated in measurements of a pa-

tient’s HbA1c, which largely reflects a 3-month average of blood glucose levels in terms of the percentage of glycated hemoglobin. Instead,

blood glucose variability can be detected using continuous glucose monitors (CGM). Indeed, CGM data have shown that both T1D patients

and T2D patients experience significant fluctuations in blood glucose levels over time.14,15 In contrast, healthy individuals with CGM data

display minimal, if any, out of range fluctuations.16 Several studies have shown that glycemic variability increases the severity of

COVID-194,11–13 and there is evidence that a similar phenomenon occurs with influenza virus.9 However, such studies typically depend on suc-

cessive measurements of an individual’s blood glucose levels (rather than CGMdata) and the mechanisms underlying this association remain

to be determined.

Here, we hypothesize that high glycemic variability (as determined by CGM data) reduces the anti-viral immune response to influenza

virus.

RESULTS
Patient characteristics

To investigate the effect of glycemic variability on anti-viral T cell populations, 32 participants with T1D were recruited. These participants

all had at least two weeks of CGM data available for analysis. Using a CV threshold of 33%, participants were classified as having either

low (n = 13) or high (n = 19) glycemic variability. Participants with low and high glycemic variability were of equivalent age, sex distribution,

type of insulin treatment (injection/pump), body mass index (BMI), had a similar duration of diabetes (approximately 15 years; Table 1), and

recent history of influenza virus infection. Importantly, participants with low and high glycemic variability had equivalent HbA1c levels and

blood glucose levels at the time of sample collection (Table 1). The high glycemic variability group had a lower rate of influenza virus vacci-

nation within the last 6 months (Table 1). Patients reported taking several other medications asides from those associated with diabetes man-

agement, the most common of which was some form of contraception (Table S1).

To demonstrate the glycemic profile in high and low glycemic variability, representative CGMdata from each group is shown in Figure 1A.

To evaluate the differences in glycemic profile between low glycemic variability and high glycemic variability with a CV threshold at 33%, the

time glucose levels were above and below the healthy range (3.9 mmol/L–10.0 mmol/L) were assessed (Figure 1B). Participants with high gly-

cemic variability had significantly lesser time spent with hyperglycemic levels, but significantly higher time spent with hypoglycaemic levels

(Figure 1B).

Table 1. Participant characteristics using a threshold of 33% CV

Low glycemic variability (n = 13)a High glycemic variability (n = 19)

p valuebMean (SD) Mean (SD)

Age (years) 29.88 (G11.69) 26.49 (G6.67) 0.6172

Sex (male; female) 4; 9 6; 13 0.5993

BMI (kg/m2) 26.33 (G4.79) 26.45 (G4.94) >0.9999

HbA1c (%) 7.92 (G1.75) 7.75 (G1.42) 0.5505

Diabetes duration (years) 14.54 (G9.12) 15.15 (G5.24) 0.6151

Average blood glucose (mmol/L)c 11.83 (G3.54) 9.83 (G2.65) 0.0823

CV (%) 27.01 (G4.32) 39.15 (G3.25) <0.0001 (*)

Type of insulin treatment (injection; pump)d 4; 9 9; 10 0.3477

Time in range (%) 38.38 (G28) 56.95 (20.85) 0.04 (*)

Influenza virus vaccination (Y; N) 10; 3 5; 14 0.0048 (*)

Recent respiratory virus infection (Y; N) 0; 13 0; 19 –

12/13 individuals received two vaccine doses; 1 individual only received one.

All individuals received two vaccine doses with the exception of one individual for whom data were not available.
aBMI, body-mass index; HbA1c, glycated hemoglobin type A1C; CGM, continuous glucose monitor; CV, coefficient of variation. Participants were grouped

based on their CV% from CGM data, threshold set at 33%.
bp value was determined with either Mann-Whitney test (age, BMI, diabetes duration, and average glucose), a t test (time in range) or chi-square test at a 0.05

significance level (sex, type of insulin treatment, influenza virus vaccination history, and SARS-CoV-2 vaccination). Significant p values were denoted with an

asterisk (*).
cAverage blood glucose levels were recorded as an average of all glucose readings across time worn.
dInsulin regime (basal vs. bolus, long lasting vs. fast acting insulin) was not recorded.

ll
OPEN ACCESS

2 iScience 27, 111166, November 15, 2024

iScience
Article



Ex vivo T cell responses

To characterize the T cell populations of both participant groups the percentage of circulating CD4+ and CD8+ T cells were assessed. There

was no significant difference in the percentage of CD4+, CD8+, the ratio of CD4:CD8 cells or CD4�CD8� T cells between those with low

glycemic variability and high glycemic variability (Figure 2A). To better define the subsets of CD4+ and CD8+ T cells the percentage of circu-

lating naive T cells (Tnaive; CD27
+CD45RA+CD95�), stem cell memory T cells (TSCM; CD27

+CD45RA+CD95+), central memory T cells (TCM;

CD27+CD45RA�), effector memory T cells (TEM; CD27�CD45RA�) and effector memory re-expressing CD45RA T cells (TEMRA;

CD27�CD45RA+) of the total CD4+ and CD8+ T cell populations were established (Figure 2B). No significant differences were seen in the

CD4+ T cell subsets between the two participant groups (Figure 2B). In contrast, patients with high glycemic variability had a significantly

higher percentage of Tnaive CD8
+ T cells but a significantly lower percentage of TEMRA CD8+ T cells compared to patients with low glycemic

variability (Figure 2B).

Next, the cytokine responseof T cells to ex vivo stimulationwith infectious influenza viruswas assessed (Figure 2C). In termsofCD4+ T cells, a

lower proportion of CD107a+IFNg�MIP1b+TNF+, CD107a+IFNg�MIP1b�TNF+, and CD107a�IFNg�MIP1b�TNF+ cells were observed in indi-

viduals with high GV. In terms of CD8+ T cells, a lower proportion of CD107a+IFNg�MIP1b+TNF+, CD107a�IFNg+MIP1b�TNF�, and
CD107a�IFNg�MIP1b�TNF+ cells were observed in individuals with high GV (Figure 2C). We then sought to validate these observations in

CD8+ T cells stimulated with an influenza virus peptide pool (Figure 2D). Consistent with the observations using infectious virus, low glycemic

variability samples treated with influenza virus peptide pool had a significantly higher proportion of CD8+CD107a+IFNg�MIP1b+TNF+ relative

to high glycemic variability samples (Figure 2D). Also consistent with our infectious influenza virus stimulations, high glycemic variability sam-

ples stimulated with influenza peptides had a significantly lower proportion of CD8+C107a�IFNg�MIP1b�TNF+ T cells compared to low gly-

cemic variability samples (Figure 2D). When the proportion of any CD8+TNF+ cell after IAV or IAV peptide pool stimulation was examined

significantly higher proportions were still observed in low glycemic variability samples (Figure S1). Given that a decreased proportion of

CD8+C107a�IFNg�MIP1b�TNF+ cells in high glycemic variability samples were consistently observed between influenza virus and influenza

peptide pool stimulations and showed the largest difference relative to lowglycemic variability samples, weelected to focus on this population.

We next sought to determine if individuals with high glycemic variability continued to display a decreased proportion of

CD8+CD107a�IFNg�MIP1b�TNF+ cells in response to non-specific stimuli like PMA/I and Dynabeads (CD3/CD28) (Figures 2E and 2F). Inter-

estingly, unlike influenza virus stimulations, therewere several incidences of CD4+ andCD8+ T cell populations being higher in individuals with

high glycemic variability following this non-specific stimulation (Figures 2E and 2F). Furthermore, unlike influenza virus stimulations, there was

no significant difference in the proportion of CD8+CD107a�IFNg�MIP1b�TNF+ between those with high glycemic variability and those with

A B

Figure 1. Higher time recorded with hypoglycaemic levels were observed in participants with high glycemic variability (GV)

(A) Representative CGM data for individuals with low glycemic variability and high glycemic variability.

(B) The difference in time glucose levels spent above and below the glycemic healthy range (3.9 mmol/L to 10.0 mmol/L) were analyzed between both groups.

Statistical significance was assessed using a Mann-Whitney test or Student’s t test. p < 0.05 *; p < 0.001 *** Bars and error bars represent means (GSEM).
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low glycemic variability in response to either PMA/I (Figure 2E) or Dynabeads (Figure 2F). Taken together, these data suggest that the

observed phenotype may be specific to influenza virus or perhaps more broadly viral peptides.

One limitation of these analyses is that some of the observed changes to influenza virus stimulation may be the result of a differential influ-

enza virus vaccination history between those with low and high glycemic variability (Table 1), although as an inactivated subunit, influenza

vaccination does not typically induce strong cellular immunity. Nevertheless, we investigated the ex vivoCD8+ T cell response follow influenza

virus stimulation exclusively in influenza vaccinated individuals. Consistent with our original observations influenza vaccinated individuals with

low glycemic variability had a higher proportion of CD8+CD107a+IFNg�MIP1b+TNF+ cells (Figure S2). Furthermore, those with low glycemic

variability had a trend toward an increased percentage of CD8+ CD107a�IFNg�MIP1b�TNF+ T cells (p = 0.05; Figure S2). This held true when

the proportion of any CD8+TNF+ cell after IAV stimulation was examined (Figure S2). To further complement these results, we performed a

multiple linear regression model looking at the relationship between glycemic variability, influenza vaccination status and the percentage of

CD8+CD107a�IFNg�MIP1b�TNF+ T cells. Importantly glycemic variability (high vs. low) had a significant relationship with the percentage of

CD8+ CD107a�IFNg�MIP1b�TNF+ (p = 0.04) T cells while influenza vaccination did not (p = 0.350).

DISCUSSION

Individuals with diabetes can experience significant intra and inter-day fluctuations in blood glucose levels. To date, the effect of these fluctu-

ations on the T cell response to influenza virus, or other viral diseases, has been undefined. Here, we show that this glycemic variability is asso-

ciated with changes in the T cell population and reduced CD8+ T cell TNF production to ex vivo stimulation with influenza virus.

Patients with high glycemic variability had a significantly higher percentage of Tnaive CD8
+ T cells compared to patients with low glycemic

variability. Considering the clinical evidence that high glycemic variability is associated with more severe viral disease4,9–13 it is interesting to

speculate what functional consequences increased Tnaive CD8
+ T cell population may have. Whether this represents a population of T cells

that is unable to differentiate into functional effector or memory cells (which would then likely be associated with an impaired immune

response) remains to be determined. Therefore, the clinical consequences of these observations, if any, require further investigation.

In the present study we observed a reduced proportion of CD8+CD107a-IFNg�MIP1b�TNF+ T cells in response to stimulation with influ-

enza virus. This same phenomenon was not observed following stimulation with non-specific stimuli (such as PMA/I or Dynabeads). This sug-

gests that high glycemic variability does not impair CD8+ T cell function per se rather more specifically the response to influenza virus or viral

stimulation. The production of TNF by CD8+ T cells during a viral infection is essential for the induction of apoptosis, the recruitment and

activation of other immune cells, CD8+ T cell function and the regulation of anti-viral immunity. However, TNF produced by CD8+ T cells dur-

ing influenza virus infection can also cause ‘‘bystander damage’’ of pulmonary epithelial cells, resulting in immunopathology.17 Therefore,

whether these observations contribute to the increased influenza severity in individuals with diabetes with high glycemic variability4,9–13 re-

mains to be determined. Nevertheless, these data provide the evidence that assessing glycemic variability may provide an important insight

into the anti-viral CD8+ T cell response of individuals living with diabetes.

The precisemechanism by which high glycemic variability may reduce the TNF response of CD8+ T cells and affect the proportion of Tnaive
and TEMRA CD8+ T cells remains unclear. There is a growing body of evidence that glycemic variability is associated with increased oxidative

stress and the production of radical oxygen species (ROS) relative to steady state hyperglycaemia.18 Thismay directly affect T cell function. For

example, short pre-exposure of human PBMC toH2O2 reduces the ability of activated/memory CD3+ andCD8+ T cells (CD45RO+) to produce

key effector cytokines such as IFNg and TNF.19 This effect may bemore pronounced in activated/memory T cells.19 Similarly, over production

of ROS is known to drive naive T cell proliferation.20,21Whether these changes in circulating T cell populationwere the result of oxidative stress

or another biological system affected by glucose fluctuations in the blood remain to be determined.

In sum, this study has provided evidence that glycemic variability, rather than steady-state hyperglycaemia, effects T cell responses to influ-

enza virus. These data have important implications for clinical practice. Specifically, these data suggest that glycemic variability provides a

possible predicative approach to assess anti-viral immunity, thus providing better management of infectious diseases in this patient popu-

lation. Indeed, these data represent a further impetus to make CGMs widely available to patients with both T1D and T2D.

Limitations of the study

Our study has some limitations that are important to acknowledge. Firstly, in the participant cohort the sample size was low and glycemic

variability was categorized based on two weeks of CGM data. Whether additional effects would have been detected if a longer period of

CGM data were available remain to be determined. It is also important to note that the participants recruited to this study all had T1D.

This patient group was selected as CGMs are more common among those living with T1D. Interestingly, recent evidence suggests that in

patients with T2D who did wear CGMs glycemic variability was associated with changes in the T cell population (namely an altered

Th1/Th2 ratio and frequency of Tregs).22 These data suggest that the differences observed in T cell populations observed herein may not

Figure 2. Participants with higher glycemic variability (GV) exhibit an altered T cell profile and proportion of TNFa+ cells in response to influenza virus

stimulation

PBMC from participants were stained for CD4 and CD8. CD4+, CD4�CD8�, and CD8+ positive T cells (A) were stained for CD27, CD45RA, and CD95 to further

define T cell subsets (B). To study T cell function, Boolean gating analysis was used. PBMC were stimulated with HKx31 (MOI10) (C), influenza virus peptide pool

(D), Dynabeads (E), and PMA/I (F) for 18 h. PBMC were then stained for CD107a, IFNg, MIP-1b, and TNF. Statistical significance was assessed using a Mann-

Whitney test or Student’s t test. Bars and error bars represent means (GSEM). Gating was performed as previously described.10 *: p < 0.05.
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be restricted to patients with T1D.22 Finally, additional patient information such as GAD positivity or beta cell function was not recorded and

may have influenced the results.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, A/Prof Kirsty R. Short (k.short@uq.
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Materials availability
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Data and code availability

� All data reported in the paper are available from the lead contact upon request. This paper does not report any original code. Any additional information
required to reanalyze the data reported in this paper is available from the lead contact upon request.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participant recruitment

A cohort of 32 people with clinically diagnosed T1D who were routinely using continuous, or flash glucose monitoring (CGM) devices were

recruited in Brisbane, Australia between 8/6/21 and 11/11/21. These individuals were a subset of a previously described cohort of 72 pa-

tients with diabetes mellitus (T1D and T2D).18 Inclusion criteria were 18-60 years of age, not pregnant at the time of study, non-smokers of

nicotine cigarettes, minimum diabetes mellitus duration of two years and no known immune disease requiring immunosuppressants.

Blood, clinical data, and two weeks of prior CGM data from these participants were collected at the point of recruitment. To further estab-

lish the quality of CGM data, only samples with CGM time worn above 70% were included in the analysis. This study was approved by

Mater Research Ethics Committee (HREC/MML/55151 V2) and the University of Queensland Ethics Committee (2019/HE002522). All

methods were performed in accordance with institutional guidelines and regulations. Written consent was obtained from all study

participants.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CD3 (UCHT1) BV480 BD Biosciences Cat #566166; RRID: AB_2739563

Anti-CD4 (SK3) BV650 BD Biosciences Cat #563875; RRID: AB_2744425

Anti-CD8 (SK1) PerCP5.5 BD Biosciences Cat #565310; RRID: AB_2687497

Anti-CD14 (MØP9) APC-Cy7 BD Biosciences Cat #560180; RRID: AB_1645464

Anti-CD19 (HIB19) APC-Cy7 BD Biosciences Cat #560727; RRID: AB_1727437

Anti-CD27 (M-T271) APC BD Biosciences Cat #558664; RRID: AB_1645457

Anti-CD45RA (HI100) FITC BD Biosciences Cat #555488; RRID: AB_395879

Anti-CD95 (DX2) BV421 BD Biosciences Cat #562616; RRID: AB_2737679

Live/Dead stain Near Infrared ThermoFisher Scientific Cat #L34976

Anti-CD3 (UCHT1) PE-Cy7 BD Biosciences Cat #563423; RRID: AB_2738196

Anti-CD4 (RPA-T4) PE BD Biosciences Cat #555347; RRID: AB_395752

Anti-CD8 (SK1) PerCP5.5 BD Biosciences Cat #565310; RRID: AB_2687497

Anti-TNF (Mab11) AF700 BD Biosciences Cat #557996; RRID: AB_396978

Anti-IFNg (B27) V450 BD Biosciences Cat #560371; RRID: AB_1645594

Anti-MIP-1b (D21-135) APC BD Biosciences Cat #560686; RRID: AB_1727565

Anti-CD107a (H4A3) FITC BD Biosciences Cat #560949; RRID: AB_396134

Live/Dead stain Near Infrared ThermoFisher Scientific Cat #L34976

Chemicals, peptides, and recombinant proteins

phorbol myristate acetate Sigma Aldrich Cat #P8139

Ionomycin Sigma Aldrich Cat #I0634

CD3/CD28 magnetic beads ThermoFisher Scientific Cat #11161D

influenza virus peptide pool AnaSpec Cat #AS-62340

Critical commercial assays

BD CytoFix/Cytoperm plus fixation/Permeabilization

solution Kit with BD GolgiPlug

BD Biosciences Cat #555028; RRID: AB_2869013

Software and algorithms

Prism 7 Graphpad Version 7.0; RRID:SCR_002798

FlowJo V10.8 FlowJo Version 10.0; RRID:SCR_008520

R software v4.1.1 R project Version 4.1.1; RRID:SCR_001905
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Glycaemic variability

Glycaemic variability was determined based on an individual’s coefficient of variation (CV; glucose SD expressed as a percentage of themean

glucose) reading from their CGM with the threshold set at 33.0% as described previously.19

METHOD DETAILS

Influenza virus culture

Virus stocks of HKx31 (H3N2) were prepared in embryonated chicken eggs and titers of infectious virus were determined by plaque assays on

MDCK cells as previously described.23 The use of embryonated chicken eggs was approved by the University of Queensland Animal Ethics

Committee (AE000089).

Human PBMC isolation

10 mL of whole peripheral blood was collected in BD Vacutainer EDTA tubes (BD Biosciences). Peripheral blood mononuclear cells (PBMC)

were isolated with Lymphoprep (STEMCELL, Canada) according to manufacturer’s instructions. Isolated PBMC were subsequently frozen

down in Fetal Calf Serum (FCS) (Gibco) containing 10% DMSO (Sigma-Aldrich) at �80�C until analysis.

Human T cell phenotype characterization

To study the effects of glycemic variability on CD8+ T cell phenotypic markers, PBMCs isolated from participants were stained as previously

described.24 Briefly, T-cells were washed and stained for lymphocyte (anti-CD3; anti-CD4 anti-CD8) and differentiation markers (anti-CD27,

anti-CD45RA and anti-CD95) (key resources table). T-cells were subsequently washed and fixed. All samples were analyzed on LSRFortessa

(BD Biosciences) and analyzed using FlowJo v10.8 (BD Biosciences). Gating was performed as previously described10

T cell stimulation and intracellular cytokine staining (ICS) on human PBMC

To investigate the effect of glycemic variability on the cytokine response of T-cells ex vivo, PBMCs fromeach donorwere stimulatedwith either

i) HKx31 (multiplicity of infection 10), ii) 5 ng/mL phorbol myristate acetate and 1 mg/mL Ionomycin (PMA/I Sigma Aldrich) iii) CD3/CD28 mag-

netic beads (Thermo Fisher; Dynabeads) or iii) influenza virus peptide pool (4 mg/mL; AnaSpec) (Table S1) in RPMI1640 (Gibco) with 10% FCS

(Gibco). Stimulations were performed for 18 h (influenza virus, influenza virus peptide pool) in the presence of anti-CD107a (0.4 mg/mL;

BioLegend; H4A3), BD GolgiStop and BD GolgiPlug (BD Biosciences). T-cells were subsequently washed and stained for anti-CD3, CD4

and CD8 (key resources table). T-cells were then washed, fixed, and permeabilized using the BD Cytofix/Cytoperm Fixation/Permeabilization

kit (BD Biosciences) and stained with anti-MIP1b, anti-IFNg and anti-TNF (key resources table). Cells were analyzed on the LSRFortessa (BD

Biosciences) and analyzed using FlowJo v10.8 (BD Biosciences). To assess the functionality of these T-cells, the number of MIP-1b+, IFNg+,

TNF+ and CD107a+ cells were assessed according to our previously described gating strategy.10

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Statistical analyses were performed with GraphPad Prism software (version 9.3.1) (Dotmatics, CA, USA). After determining the normality of

distribution with Shapiro-Wilk normality test, outliers within datasets were removed according to the ROUT (1%) test. Continuous data

were tested for statistical significance with a Mann-Whitney test, a Kruskal-Wallis test or t-test as appropriate. Categorical data were tested

for statistical significance with a chi-square test. Multiple linear regression was performed with R software version 4.1.1 (The R Project).
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