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Abstract
Background We previously reported that increases in circulating sphingolipids are associated with elevated risk of 
biopsy Gleason grade group (GG) upgrading in men on Active Surveillance (AS) for prostate cancer. Here, we aimed to 
validate these findings and establish a blood-based sphingolipid biomarker panel for identifying men on AS who are 
at high-risk of biopsy GG upgrading.

Methods Men diagnosed with low- or intermediate-risk prostate cancer in one of two AS cohorts (CANARY PASS and 
MDACC) were followed for GG upgrading after diagnostic and confirmatory biopsy. The PASS cohort consisted of 544 
patients whereas the MDACC Cohort consisted of 697 patients. The number of patients with GG upgrading during 
course of study follow-up in the PASS and MDACC cohorts were 98 (17.7%) and 133 (19.1%), respectively. Plasmas 
collected prior to confirmatory biopsy were used for mass spectrometry-based quantitation of 87 unique sphingolipid 
species. A neural network layer based on 21 sphingolipids was developed in the CANARY PASS cohort for predicting 
biopsy GG upgrading. Tertile-based thresholds for low-, intermediate-, and high-risk strata were subsequently 
developed for the sphingolipid panel as well as a model that combined the sphingolipid panel with PSA density 
and rate of core positivity on diagnostic biopsy. The resultant models and risk thresholds for GG upgrading were 
validated in the MDACC cohort. Performance was assessed using Cox proportional hazard models, C-index, AUC, and 
cumulative incidence curves.

Results The sphingolipid panel had a HR (per unit standard deviation increase) of 1.36 (95% CI: 1.07–1.70) and 1.35 
(95% CI: 1.11–1.64) for predicting GG biopsy upgrading in the PASS and MDACC cohort, respectively. The model 
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Background
Active surveillance (AS) is the preferred management 
option for men diagnosed with low risk prostate cancer, 
and is an option for select men with intermediate risk 
disease [1]. While clinically safe, a very small proportion 
of men are at risk of future metastases on AS [2, 3]. Con-
cern regarding disease progression and future metastasis 
form the basis of current AS protocols, all of which rely 
upon invasive biopsies as a gold standard in monitoring 
disease [4]. Gleason grade group (GG) biopsy upgrad-
ing remains the most common reason for delayed radical 
therapy on AS, which places men at risk of treatment-
related changes to quality of life and affects an estimated 
30–40% of men initiated on surveillance [5]. 

Clinical factors [6, 7] and risk calculators [8] have been 
developed to aid in determining men at increased risk 
for biopsy upgrading and, conversely, those who may be 
candidates for de-escalation of surveillance intensity [9]. 
However, they lack discriminatory power and have not 
resulted in guideline-based de-escalation strategies. Fur-
ther, studies that evaluate the use of blood based [10, 11] 
and tissue based biomarkers [12] to augment clinical fac-
tors in predicting biopsy upgrading on AS have yielded 
only incremental improvements.

Previously, we demonstrated that increases in a cir-
culating sphingolipids, a discrete sub-class of lipids, are 
associated with increased risk of GG biopsy upgrade 
among men on AS [13]. Studies by others have also 
reported circulating sphingolipids to be associated with 
poor clinical outcomes in patients with localized and 
metastatic prostate cancer [14]. Mechanistically, we 
demonstrated that Caveolin-1 (Cav-1), a protein that 
functions in organizing cell membrane microdomain 
composition and signal transduction, rewires prostate 
cancer cell metabolism towards increased uptake of cir-
culating sphingomyelins (a type of sphingolipid). This 
process supports increased synthesis of glycosphingo-
lipids that are subsequently secreted in particles that 
contain both Cav-1 and mitochondrial components, pre-
venting the buildup of damaged mitochondria and subse-
quent cancer cell death [13]. 

In the current study, we aimed to confirm the asso-
ciation between plasma levels of sphingolipids and GG 
biopsy upgrade in the Prostate Active Surveillance Study 
(PASS). We subsequently developed a sphingolipid panel 
together with clinical risk markers for risk stratification of 
GG upgrading. Validation of the models was performed 
using an independent set of prospectively collected plas-
mas from patients enrolled in the MD Anderson Cancer 
Center active surveillance program [13].

Methods
Specimen sets
The Canary Prostate Active Surveillance Study (PASS) is 
a prospective (ClinicalTrials.gov NCT00756665) study 
enrolling men diagnosed with localized prostate cancer 
who have opted for AS from 2008 to 2019. All men with 
localized disease who chose active surveillance for man-
agement were eligible [15]. In the PASS cohort, PSA was 
measured every 3 months, clinic visits occurred every 6 
months, and ultrasound guided biopsy (at least 10 cores) 
was performed 6–12 months and 24 months after diag-
nosis, then every 2 years. All biopsy slides were read by 
genitourinary pathologists at study sites [15].

The MD Anderson Cancer Center (MDACC) active 
surveillance cohort included men who were enrolled on 
a prospective AS protocol (NCT00490763) from 2006 
to 2014 at single institution and who had over 6 months 
of follow-up (following confirmatory biopsy). Men with 
localized disease and GG1-3 disease who chose active 
surveillance were eligible [7]. Men were followed with 
biannual digital rectal exam, laboratory testing (serum 
PSA, testosterone), and 11 core systematic biopsies every 
1–2 years [7]. All biopsy slides were read by genitouri-
nary pathologists at MDACC. In both cohorts, MRI per-
formance (and fusion biopsy) was not included as part 
of the protocol, though MRI was permitted if desired by 
the treating physician. Patients in both cohorts were fol-
lowed for biopsy GG upgrading, defined as any increase 
in biopsy-based pathologic GG when compared to previ-
ously completed baseline or confirmatory biopsy.

that combined the sphingolipid panel with PSA density and rate of core positivity achieved a HR of 1.63 (95% CI: 
1.33-2.00) and 1.44 (1.25–1.66), respectively. Tertile-based thresholds, established in the PASS cohort, were applied to 
the independent MDACC cohort. Compared to the low-risk group, MDACC patients in the high-risk strata had a GG 
biopsy upgrade HR of 3.65 (95% CI: 2.21–6.02), capturing 50% of the patients that had biopsy upgrading during study 
follow-up.

Conclusions The sphingolipid panel is independently associated with GG biopsy upgrading among men in two 
independent AS cohorts who have previously undergone diagnostic and confirmatory biopsy. The sphingolipid panel, 
together with clinical factors, provides a potential means for risk stratification to better guide clinical management of 
men on AS.

Keywords Active surveillance, sphingolipids, biomarker, prostate cancer
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Plasma specimens used for metabolomics assays 
were collected from patients enrolled in the respective 
cohorts during study follow-up, typically before (within 
6 months) or at time of the first on-study (confirmatory) 
biopsy.

Lipidomic analyses
Assaying of plasma sphingolipids, including sphingomy-
elin, ceramides, associated glycosphingolipid, and sul-
fatides, was conducted using a Waters Acquity™ UPLC 
system coupled to a Xevo G2-XS quadrupole time-of-
flight (qTOF) mass spectrometer as previously described 
[13]. Chromatographic separation was performed 
using a C18 (Acquity™ UPLC HSS T3, 100 Å, 1.8  μm, 
2.1 × 100  mm, Water Corporation, Milford, U.S.A) col-
umn at 55  °C. The mobile phases were (A) water, (B) 
Acetonitrile, (C) 2-propanol and (D) 500mM ammonium 
formate, pH 3. A starting elution gradient of 20% A, 30% 
B, 49% C and 1% D was increased linearly to 10% B, 89% 
C and 1% D for 5.5 min, followed by isocratic elution at 
10% B, 89%C and 1%D for 1.5 min and column equilibra-
tion with initial conditions for 1 min.

Mass spectrometry data were acquired using ‘sensitiv-
ity’ mode in positive and negative electrospray ionization 
mode within 100–2000 Da. For the electrospray acqui-
sition, the capillary voltage was set at 1.5  kV (positive), 
3.0 kV (negative), sample cone voltage 30 V, source tem-
perature at 120° C, cone gas flow 50 L/h and desolvation 
gas flow rate of 800 L/h with scan time of 0.5  s in con-
tinuum mode. Leucine Enkephalin; 556.2771 Da (posi-
tive) and 554.2615 Da (negative) was used for lockspray 
correction and scans were performed at 0.5  min. The 
injection volume for each sample was 3µL. The acquisi-
tion was carried out with instrument auto gain control to 
optimize instrument sensitivity over the samples acquisi-
tion time.

Data processing
LC-MS and LC-MSe data were processed using Progen-
esis QI (Nonlinear, Waters). Peak picking and retention 
time alignment of LC-MS and MSe data were performed 
using Progenesis QI software (Nonlinear, Waters). Data 
processing and peak annotations were performed using 
an in-house automated pipeline as previously described 
[13, 16–18]. Annotations were determined by matching 
accurate mass and retention times using updated cus-
tomized libraries created from authentic standards and 
by matching experimental tandem mass spectrometry 
data against the NIST MSMS, LipidBlast or HMDB v3 
theoretical fragmentations. To correct for injection order 
drift, each feature was normalized using data from repeat 
injections of quality control samples collected every 10 
injections throughout the run sequence. Measurement 
data were smoothed by Locally Weighted Scatterplot 

Smoothing (LOESS) signal correction (QC-RLSC) as pre-
viously described [13, 16–18]. 

Statistical analyses
Univariable Cox Proportional hazard models were ini-
tially used to evaluate associations between individual 
sphingolipids with disease progression (defined here as 
GG biopsy upgrade following confirmatory biopsy). The 
event time was defined as the time from date of specimen 
collection to date of GG biopsy upgrade. Patients were 
censored at prostate cancer treatment (with or without 
GG upgrade), voluntary withdrawal, or loss to follow-up 
following biopsy. To test for the proportionality of hazard 
assumption of a Cox regression, we used the method of 
Patricia and Grambsch in all models [19]. 

To establish a sphingolipid panel for GG biopsy upgrad-
ing, we leveraged lipidomic profiles generated using 
plasma samples from the PASS cohort (Supplementary 
Figure S1). Eight different models, including deep learn-
ing model (DLM; from h2o package [20]), Conditional 
Non-Parametric Survival Estimator (from akritas pack-
age in R [21]), Cox-Time Survival Neural Network (from 
coxtime package in R [22]), Cox melding with top 20 fea-
tures, Survival Neural Network (from DeepHit package 
in R [23]), Deep Survival Neural Network (from Deep-
surv package in R [24]), Logistic-Hazard Survival Neural 
Network [25], and PC-Hazard Survival Neural Network 
[26] were used to identify patients on AS at increased risk 
of GG biopsy upgrade. Individual model performance 
was evaluated by Hazard Ratio, C-index, and AUC.

A deep learning model (DLM) with 3 hidden layers 
and 6 nodes in each layer was selected for modeling the 
21-marker ‘sphingolipid panel’ based on AUC and Haz-
ard Ratio. Additional details regarding methodology are 
provided in Supplementary Table S2. Univariable and 
Multivariable Cox Proportional hazard models were used 
to assess performance of the derived sphingolipid panel 
and GG biopsy upgrade as a singular variable and when 
adjusting for patient and tumor characteristics. Vari-
ables that retained statistical significance in multivariable 
modeling (sphingolipid panel, PSA density, and percent-
age (%) positive cores), were subsequently used for devel-
oping a combined model using Cox regression. Multiple 
hypothesis testing adjusted p values from likelihood ratio 
testing for each feature were evaluated to investigate the 
importance of the features in the combined model.

We further dichotomized men on AS into high-, inter-
mediate-, or low-risk strata based on combined model 
score tertiles. Models and corresponding cut points 
were locked and subsequently validated using speci-
mens from an independent cohort of men on AS from 
MDACC (MDACC Set #1). Performance was further 
evaluated for external testing using a prior set of metabo-
lomic data generated from men on AS [13] as well as in 
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the combined MDACC cohort (Set #1 and #2) (Supple-
mentary Figure S1). We note that not all patients had 
complete clinical information, precluding combined 
model evaluation on the entire specimen set. Cumulative 
incidence curves based on the different risk strata were 
generated using the ‘Survminer’ package in R statistical 
software (https://www.r-project.org/). Reported p-value 
for cumulative incidence curves estimated from the chi-
square test with one-degree of freedom with the cor-
responding null hypothesis that there is no linear trend 
between the order of the groups and the median survival 
time. Model performance was further assessed in a sub-
set of MDACC patients with available MRI results fol-
lowing stratification by MRI risk and lesion number.

Power calculations and cohort data stratified by pro-
gression status for the PASS Cohort, MDACC Set #1 and 

MDACC Set #2 are provided in Supplementary Tables 
S12 and S13, respectively.

Results
Application of artificial intelligence to circulating 
sphingolipid profiles to establish an improved risk 
prediction model in the PASS Cohort
Our prior work demonstrated that elevated plasma 
sphingolipids were associated with prostate cancer pro-
gression [13]. We assembled a cohort of plasma samples 
collected from 547 men on AS from the Canary PASS 
study to further evaluate the association between circu-
lating sphingolipid species, including those described in 
our prior work [13] as well as additional sphingolipids 
not previously considered, and biopsy upgrade among 
men on AS. Table 1 lists baseline demographic, oncologic 

Table 1 Patient characteristics of the Canary PASS cohort and MDACC Validation Cohort
Variable Canary PASS MDACC Set 

#1
MDACC Set 
#2

P-value compar-
ing Canary PASS 
and MDACC Set 
#1**

N 544 238 459 459
Age, yrs (median, IQR) 67 (58–70) 63 (58–68) 63 (58–69 0.18
PSA Density (median, IQR) 0.086 

(0.069–0.15)
0.10 
(0.06–0.15)

0.09 
(0.06–0.14)

0.98

Highest Gleason Grade Group, diagnostic or confirmatory biopsy (N, %)
 1 467 (85.8) 204 (90.0) 401 (87.4) 0.02
 2 74 (13.6) 27 (11.3) 53 (11.5)
 3 3 (< 1) 7 (2.9) 5 (1.1)
Percentage of positive cores at diagnosis (median, IQR) 10.0 (8.3–16.7) 9.1 (8.3–16.7) 9.1 (8.3–16.7) 0.18
BMI (median, IQR) 26.9 (24.7–31.0) 29.1 

(26.3–32.6)
28.6 
(26.1–31.6)

< 0.01

Race
 White 477 (87.7) 198 (83.2) 376 (81.9) 0.049
 Black 38 (7.0) 15 (6.3) 36 (7.8)
 Other/Unknown 29 (5.3) 25 (10.5) 47 (10.2)
Statin (N, %)
 Yes 238 (43.8) 117 (49.2) 217 (47.3) 0.18
 No 306 (56.3) 121 (50.8) 242 (52.7)
Diabetes (N,%)*
 Yes 48 (8.8%)
 No 496 (91.2%)
Follow-up, yrs (median, IQR) 2.1 (1.4–4.5) 3.5 (1.0-5.1) 3.0 (1.0-4.5) < 0.01
Total biopsy number, excluding diagnostic (median, IQR) 2 (1–2) 2 (1–3) 2 (2–3) < 0.01
Gleason grade group upgrade (any) during follow-up (N, %)
 Yes 98 (18.0) 33 (13.9) 98 (21.4) 0.10
 No 446 (82) 215 (90.3) 361 (78.6)
Gleason grade group upgrade (GG3 or higher) during follow-up (N, %)
 Yes 39 (7.2) 7 (2.9) 35 (7.6) 0.02
 No 505 (92.8) 231 (97.1) 424 (92.4)
*Baseline diabetes status not available for MDACC cohorts

**These cohorts compared as MDACC Set #1 was first evaluated using cut points established in Canary PASS as it is independent from previously reported 
patient data (MDACC Set #2; Vykoukal et al. Nat Commun 2020). Categorical variables were compared using Fisher’s Exact Test for two-class comparisons and 
χ2 tests for trends if more than two class comparison. Continuous variables were compared using Student T-test or Wilcoxon Rank Sum Tests depending on 
data normality

https://www.r-project.org/
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and follow-up data. Of the 544 patients, median age was 
67 years (interquartile range (IQR): 58–70) and 467/544 
(85.8%) had Gleason GG 1 disease, at most, on diagnos-
tic or on-study confirmatory biopsy. Median follow-up 
in the Canary PASS study was 2.1 years (IQR: 1.4–4.5 
years), and 98 (18.0%) of the 544 patients had a biopsy 
GG upgrading during study follow-up.

Assaying of sphingolipids was performed using ultra 
high-pressure liquid chromatography mass spectrometry 
(UHPLC-MS). A total of 87 uniquely annotated sphin-
golipids were quantified. Increases in individual sphin-
golipid species tended to be associated with GG biopsy 
upgrade on AS (Supplemental Dataset S1) [13]. Next, we 
evaluated eight different machine learning algorithms 
to establish a panel of sphingolipids for predicting GG 
upgrading. A neural network with 3 layers and 32 nodes 
in each layer based on 21 sphingolipids (hereon referred 
to as the “sphingolipid panel”) achieved the highest per-
formance in the PASS cohort, yielding a hazard ratio 
(HR) of 1.36 (95% CI: 1.07–1.70) per unit standard devia-
tion (SD) increase based on univariable Cox proportional 
hazards analysis (Supplementary Tables S1-2). Multivari-
able Cox proportional hazards models that accounted for 
relevant clinical (e.g. age, BMI, statin use [see Supple-
mentary Figure S2 for additional BMI and statin data]) 
and oncologic (e.g. biopsy characteristics) factors dem-
onstrated that the sphingolipid panel was independently 
associated with biopsy GG upgrade, with an HR of 1.33 
(95% CI: 1.05–1.70) per SD increase (Supplementary 
Table S3). Cox proportional hazard assumptions were 
met. Of note, sphingolipid panel scores did not exhibit 
statistically significant associations with BMI (Pearson 
r: -0.07). Sphingolipid panel scores tended to be lower in 
AS patients on statins (Supplementary Figure S2). Based 
on multivariable Cox proportional models, PSA den-
sity (PSAD) (HR 1.36, 95% CI 1.16–1.61) and diagnostic 
biopsy core positivity rate (HR 1.27, 95% CI 1.00-1.61) 
were also found to be independently associated with 
biopsy GG upgrading (Supplementary Table S3).

To better inform clinical decision making, we assessed 
the contributions of the three independent factors most 
strongly associated with biopsy progression - the sphin-
golipid panel, PSAD and % positive core biopsy rate 
(Supplementary Figure S3; Supplementary Table S3-4) - 
for identifying men on AS at increased risk of GG biopsy 
upgrade. A model that combined these three factors had 
an HR 1.63 (95% CI: 1.33-2.00) per unit SD increase for 
GG upgrade (Supplementary Table S5; Supplementary 
Figure S4).

We next placed men on AS into three risk strata, high-, 
intermediate-, or low-risk, based on combined model 
(sphingolipid panel + PSAD + positive core biopsy rate) 
score tertiles (Supplementary Table S6). Compared to the 
low-risk group, patients in the high- or intermediate-risk 

strata had significantly higher risk of biopsy GG upgrade 
(HR 3.17 (95% CI: 1.84–5.46) and HR 2.05 (95% CI: 
1.18–3.58), respectively), and this association was more 
pronounced than individual factors (Table 2). Cumulative 
incidence curves further demonstrated that patients in 
the high-risk strata had the highest incidence of biopsy 
upgrade (23.2%), compared to those in the intermedi-
ate- or low-risk strata (Table 2; Fig. 1), and accounted for 
42 out of the 98 patients who had GG upgrading during 
study follow-up.

Performance of the sphingolipid panel, the combined 
model, and corresponding risk thresholds for biopsy 
upgrade in the MDACC testing sets
Validation of the sphingolipid panel as well as the com-
bined model (sphingolipid panel + PSAD + positive core 
biopsy rate), using fixed model coefficients developed in 
the PASS cohort, was performed in an independent set 
of plasmas prospectively collected from 238 patients on 
AS at MDACC (MDACC Set #1; Table  1). Median age 
was 63 years (IQR 58–68) and 204/238 (90.0%) had GG 
1 disease, at most, on diagnostic or on-study confirma-
tory biopsy. Median follow-up of the cohort was 3.5 years 
(IQR 1.0-5.1 years), and 33 (13.9%) patients had a biopsy 
GG upgrading during study follow-up.

The sphingolipid panel was associated with risk of 
biopsy GG upgrade (HR 1.80, 95% CI: 1.18–2.74 per unit 
SD increase; Supplementary Table S7). The combined 
model that included the sphingolipid panel, PSAD and 
positive core biopsy rate yielded an HR of 3.07 (95% CI: 
2.07–4.54) for biopsy GG upgrade (Supplementary Table 
S7-8; Supplementary Figure S4-5).

To increase sample size, we further combined MDACC 
Set #1 with MDACC Set #2, which included 459 patient 
samples used in the initial discovery of the association 
between sphingolipids and biopsy GG upgrade on AS 
(Table 1; Fig. 1; Supplementary Tables S9-10; Supplemen-
tary Figure S6) [1]. In the combined MDACC cohort (Set 
#1 and #2), the sphingolipid panel had a HR (per unit SD 
increase) of 1.35 (95% CI: 1.01–1.58) whereas the com-
bined panel had a HR of 1.44 (95% CI: 1.25–1.66) (Sup-
plementary Table S5).

We next stratified patients into high-, intermediate-, 
or low-risk groups using fixed cut points derived in the 
PASS cohort (Supplementary Table S6). Compared to 
the low-risk group, patients in the high-risk strata had 
an HR of 3.65 (95% CI: 2.21–6.02) (Table 2). Cumulative 
incidence curves further demonstrated that patients in 
the high-risk strata had the highest incidence of biopsy 
upgrade (32.9%), compared to those in the intermedi-
ate- or low-risk strata (Table 2; Fig. 1), and accounted for 
50% of all patients (51 out of 102) who had GG upgrading 
during study follow-up.
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We additionally evaluated the performance of com-
bined model for risk stratification of biopsy GG upgrad-
ing for the subset of AS patients who underwent MRI. In 
the MDACC AS cohort, individuals with MRI PIRADS 
3 + tended to have higher risk of biopsy GG upgrade 
compared to patients with PIRADS 0–2 (HR: 1.43 [0.59–
3.46]; 2-sided p-value: 0.42) (Supplementary Table S11, 
Supplementary Figure S7). In contrast, high-risk patients 
based on combined panel scores > 3.2116 (Supplementary 
Table S6) had an HR of 12.13 (95% CI: 3.08–47.78) in the 
context of a negative MRI (Supplementary Table S11).

Discussion
We describe a plasma-based, sphingolipid panel that 
is associated with risk of GG biopsy upgrading, the 
most common reason for delayed treatment on AS [6], 
in multiple mature AS cohorts. When combined with 
clinical factors that are independently associated with 
GG upgrading, the panel effectively risk-stratified men 

into groups at increased (and decreased) risk of biopsy 
upgrading. These findings build on our prior work dem-
onstrating alterations in sphingolipid metabolism that are 
present in both men with PCa and PCa model systems, 
[13] and offer further evidence that the sphingolipid 
panel described here may represent a useful biological 
correlate of localized PCa progression risk with improved 
predictive capacity.

In our prior studies, we reported that increases in 
circulating sphingolipids were associated with GG 
upgrading in men on active surveillance. Biologically, 
we attributed increases in circulating sphingolipids to 
an underlying onco-metabolic pathway that is active in 
prostate cancer cells and that is regulated by Cav1. Spe-
cifically, we found coordinated activities through which 
Cav1 rewires prostate cancer cells towards exogenous 
scavenging of sphingomyelin, increased cancer cell catab-
olism of sphingomyelin to ceramide, and subsequent 
glycosylation to glycosphingolipid derivatives [13]. We 

Table 2 Performance estimates of the sphingolipid panel, PSA density, % positive core biopsy and the model that combines all three 
at different risk strata for predicting biopsy upgrade for men on AS in the Canary PASS and the combined MDACC Cohort (Testing Set 
#1 and #2)

Canary PASS
Variable Strata # of

Events
# of
Patients

Biopsy Up-
grade, N (%)

No Biopsy 
Upgrade, N 
(%)

Median time to 
Upgrade,
Months (IQR)

P-
value†

Hazard Ratio
(95% CI)

Combined High-Risk 98 544 42 (23.2) 139 (76.8) 27.0 (16.5–39.6) 0.0017 3.17 (1.84–5.46)
Intermediate-Risk 37 (20.3) 145 (79.7) 33.1 (19.4–47.9) 2.05 (1.18–3.58)
Low-Risk 19 (10.5) 162 (89.5) 35.9 (24.6–58.9) reference

Sphingolipid 
Panel

High-Risk 98 544 45 (24.9) 136 (75.1) 28.9 (17.5–42.8) 0.0017 1.84 (1.11–3.07)
Intermediate-Risk 31 (17) 151 (83) 28.3 (18.4–36.8) 1.28 (0.74–2.22)
Low-Risk 22 (12.2) 159 (87.8) 35.9 (24.6–46.8) reference

PSA Density High-Risk 98 544 38 (21.0) 143 (79.0) 24.5 (17.9–41.6) 0.218 1.91 (1.18–3.10)
Intermediate-Risk 31 (17.0) 151 (83.0) 31.2 (18.6–42.7) 1.15 (0.69–1.91)
Low-Risk 29 (16.0) 152 (84.0) 30.6 (18.1–41.0) reference

% Core 
Biopsy

High-Risk 98 544 34 (18.8) 147 (81.2) 30.4 (17.5–41.6) 0.494 2.27 (1.37–3.74)
Intermediate-Risk 35 (19.2) 147 (80.8) 26.5 (17.9–38.4) 1.33 (0.81–2.19)
Low-Risk 29 (16.0) 152 (84.0) 33.7 (24.7–68.6) reference

MDACC AS (Set #1 and Set #2 [Vykoukal et al. 2020])
Variable Strata # of

Events
# of
Patients

Biopsy Up-
grade, N (%)

No Biopsy 
Upgrade, N 
(%)

Median time to 
Upgrade,
Months (IQR)

P-
value†

Hazard Ratio
(95% CI)

Combined High-Risk 102 536 51 (32.9) 104 (67.1) 24.0 (12.0–42.0) < 0.0001 3.65 (2.21–6.02)
Intermediate-Risk 29 (15.1) 163 (84.9) 24.0 (12.0-44.5) 1.33 (0.77–2.32)
Low-Risk 22 (11.6) 167 (88.4) 24.0 (12.0-43.5) reference

Sphingolipid 
Panel

High-Risk 131 707 55 (22.7) 187 (77.3) 24.0 (12.0–42.0) 0.014 1.78 (1.17–2.72)
Intermediate-Risk 41 (18.9) 176 (81.1) 24.0 (12.0-37.1) 1.31 (0.83–2.05)
Low-Risk 35 (14.1) 213 (85.9) 24.0 (12.0–36.0) reference

PSA Density High-Risk 127 642 54 (27.3) 144 (72.7) 24.0 (12.0-36.2) 0.001 2.31 (1.51–3.53)
Intermediate-Risk 37 (18.3) 165 (81.7) 24.0 (12.0–42.0) 1.35 (0.85–2.13)
Low-Risk 36 (14.9) 206 (85.1) 24.0 (12.0-46.5) reference

% Core 
Biopsy

High-Risk 102 538 26 (31) 58 (69) 25.0 (12.0-44.6) 0.001 2.56 (1.55–4.23)
Intermediate-Risk 39 (19.8) 158 (80.2) 24.3 (12.0–42.0) 1.49 (0.95–2.34)
Low-Risk 37 (14.4) 220 (85.6) 16.5 (12.0–42.0) reference

† χ2 test for trend 2-sided p-value
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further showed that increased Cav1-mediated glyco-
sphingolipid synthesis supports biogenesis and release of 
(glyco)sphingolipid-enriched extracellular vesicles (EVs) 
that enables removal of mitochondrial components to 
maintain mitochondrial quality control [13]. Targeting 
of this onco-metabolic pathway via repurposing of eli-
glustat, a selective small molecule inhibitor of glucosyl-
ceramide synthase (UGCG), elicited anti-cancer effects 
in vitro and attenuated tumor development in an ortho-
topic syngeneic RM-9 mouse model of prostate cancer. 
The anti-cancer effects of eliglustat were attributed to 
hyperaccumulation of ceramides in prostate cancer cells, 
resulting in induction of compensatory mitophagy and 
subsequent cancer cell death [13]. Thus, the sphingolipid 
panel reported herein may serve as a surrogate for the 
above described onco-metabolic pathway, which may be 
targetable through repurposing of available small mol-
ecule inhibitors of UGCG. We also note that this path-
way is likely important among other malignancies, as we 
and others have reported increases in circulating sphin-
golipids in other cancers, such as breast cancer [27]. Our 

group is also investigating the potential for behavioral 
interventions, such as dietary change, as means to miti-
gate disease progression risk associated with an elevated 
sphingolipid signature, and this work is ongoing.

AS is increasingly utilized, and, while safe, places a 
myriad of burdens on patients and physicians, includ-
ing frequent outpatient visits, [29] potential biopsy side 
effects, [30] costs of care, [31] and changes to quality 
of life associated with delayed radical treatment [32]. 
While such costs may be justifiable within the context 
of improved oncologic outcomes, a major challenge in 
approaching men with low and intermediate risk pros-
tate cancer from an oncologic perspective is the gener-
ally indolent nature of the disease. Recent 15-year data 
from the randomized PROTECT trial demonstrated a 
rate of prostate cancer-specific death of 3.1% among men 
managed with AS, [3] which was not significantly differ-
ent (both clinically and statistically) than the 2.2% and 
2.9% rates of death seen in the surgical and radiotherapy 
arms, respectively. Thus, the performance demands of 
any risk stratification system (based on clinical factors, 

Fig. 1 Cumulative incidence curves for GG biopsy upgrade based on combined model at high-, intermediate-, and low-risk strata in the PASS and 
MDACC Cohorts. Risk tables, including censoring events, are provided beneath. Censoring was attributed to GG upgrading, prostate cancer treatment, 
voluntary withdrawal from AS, or loss to follow-up following biopsy
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biomarkers, or a combination) that is designed to delin-
eate AS candidates who would gain an oncologic survival 
benefit from early radical treatment are exceedingly high. 
Therefore, the identification of stratification systems, 
such as that described in this work, that may safely guide 
surveillance de-escalation among men on AS, while iden-
tifying individuals at increased risk, are sorely needed. 
This may include stratification of patients for more (or 
less) frequent PSA, MRI, and biopsy testing.

Multiple prior investigations have sought to eluci-
date associations between prostate cancer biomarkers 
and progression on AS, though few have demonstrated 
the ability to stratify men at risk of GG biopsy upgrad-
ing. In terms of plasma-based markers, the 4K score is 
associated with risk of upgrading at time of initial repeat 
biopsy, though is not associated with biopsy upgrad-
ing over time [11]. Similarly, Prostate Health Index is 
associated with initial biopsy upgrading, but not subse-
quent biopsy results [10]. When considering tissue-based 
markers (which require invasive biopsy to complete), a 
study completed in the PRIAS trial demonstrated that 
tumor PTEN status is associated with GG upgrading and 
adverse pathology at prostatectomy, though the study 
was limited in size and has not been externally validated 
[28]. To contrast, a study in the Canary PASS cohort 
showed that a 17-gene Genomic Prostate Score was not 
independently associated with biopsy upgrading [12] 
and a study from the MUSIC collaborative evaluating the 
Decipher Prostate Biopsy Assay did not demonstrate an 
association with GG upgrading (though high scores were 
associated with shorter time to treatment and treatment 
failure) [29]. While these (and other) tissue-based mark-
ers are therefore associated with oncologic outcomes 
such as post-prostatectomy pathology and metastasis, 
their predictive value within the context of newly diag-
nosed prostate cancer managed on AS remains unclear 
[30]. To date, PSAD remains the marker that is most 
consistently associated with biopsy upgrading on AS 
[31–33] and it is included in guideline-based risk strati-
fication of men who are diagnosed with GG 1 disease [1]. 
Importantly, PSAD was associated with GG upgrading 
in our cohort; however, the combination of PSAD, core 
biopsy positivity, and the sphingolipid panel demon-
strated improved risk stratification (Table 2) which may 
be leveraged through the use of marker-based cut points. 
Future studies using the cut points described in this work 
to select groups for less frequent visits, tests, and biop-
sies, while continuing to monitor those at increased risk 
of GG biopsy progression, may improve the efficiency of 
low risk prostate cancer management, while maintaining 
the safety of deescalated care algorithms.

Ultimately, future studies evaluating GG progression 
risk and biopsy frequency among men on AS need to 
incorporate the remaining predictor that shows promise 

in discriminating potentially aggressive from indolent 
disease among those with localized prostate cancer: 
magnetic resonance imaging (MRI). Prostate MRI with 
guided biopsy is established as a more effective means 
to diagnosis GG 2 or higher prostate cancer when com-
pared to systematic biopsy [34] and is increasingly used 
among men on AS [35, 36]. Further, a randomized study 
demonstrated that rates of upgrading on AS decreased 
when MRI-guided biopsy was used [37]. While the cur-
rent work offers the benefits of: (1) AS performance in a 
large number of patients, (2) extensive follow-up (having 
been initiated in the mid-2000s) [15, 38] after confirma-
tory biopsy performance, and, (3) consistent biopsy tech-
niques, a limitation of this study is that most patients did 
not undergo MRI-based stratification or fusion biopsy. 
Notably, work in the Canary PASS AS cohort demon-
strated that prostate MRI findings did not improve upon 
clinical factors when assessing biopsy-based GG upgrad-
ing risk within 12 months of MRI performance [39]. 
Similarly, sphingolipid panel performance remained con-
sistent among a subgroup of MDACC patients stratified 
by MRI results in the current study. These data suggest 
that the sphingolipid panel, alone and in combination 
with factors such as PSAD, is likely independently associ-
ated with GG upgrade risk. However, future studies that 
incorporate MRI and targeted biopsy results along with 
sphingolipid panel levels and other clinical factors are 
needed to determine the optimal patients in whom de-
escalation may occur, especially considering that MRI 
estimates of tumor characteristics and size may prove 
to be stronger predictors of upgrading risk than clinical 
variables such as prostate core positivity that are included 
in the current work. In terms of other limitations, our 
current work lacks racial diversity, including in AA men 
(who are at increased risk of adverse prostate cancer out-
comes) [2], potentially limiting the overall generalizability 
of our results. Our work is also limited by follow-up time, 
which is attributed to progression events, patients elect-
ing treatment, and patient preference to follow closer to 
home (as opposed to continued visits at tertiary care cen-
ters). However, these limitations are present among most 
mature active surveillance cohorts from this time and did 
not preclude robust analyses performed in this work. We 
also acknowledge that factors such as obesity and statin 
use and metabolic disorders (e.g. diabetes) alter lipid pro-
files, which may affect sphingolipid levels [40]. Nonethe-
less, we emphasize that multivariable models taking these 
factors into account revealed an independent association 
between the sphingolipid panel and GG upgrading.

Conclusions
In conclusion, the sphingolipid panel may serve as a use-
ful adjunct in determining patient management among 
men with low- and intermediate-risk prostate cancer 
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managed on AS. Future validation studies are needed 
to inform its potential use in management of men with 
prostate cancer managed on AS as a means to tailor fol-
low-up and biopsy frequency among those at the highest 
(and lowest) risk of biopsy upgrading.
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