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Prenatal diagnosis of fetal skeletal
anomalies via whole-exome
sequencing in a tertiary referral
center

Huili Xue®™, AiliYu%®, Wantong Zhao5, Lingji Chen%$, Ruqi Fang?, Wen Ling*, Lin Zhang®,
Qun Guo?, Na lin'*?, Liangpu Xu'* & Hailong Huang'**

The accurate prenatal diagnosis of skeletal anomaly (SKA) using prenatal imaging alone remains
challenging. We aimed to investigate the efficacy of whole-exome sequencing (WES) in the prenatal
molecular genetic diagnosis of skeletal system abnormalities, with or without additional ultrasound
anomalies. All fetuses with SKA were subjected to sequential genetic tests, and after excluding fetal
chromosomal abnormalities and clinically significant copy number variations (CNVs) consistent with
the observed phenotype, the affected fetuses were further subjected to WES. The clinical features of
fetal SKA were collected, and the results of molecular genetic testing and perinatal outcomes were
analyzed. Following negative routine genetic test results of the 78 fetuses, trio-WES was conducted
for 73 fetuses, and fetus-only WES (single WES) was performed for five fetuses due to parental
refusal. Fetal skeletal system abnormalities in our cohort were subdivided into seven groups: 39
(50%) had short long bones, 14 (17.9%) had abnormal limb morphology, 4 (5.1%) had polydactyly, 4
(5.1%) had the absence of the radius tibia or tibiofibula, 5 (6.4%) had spine anomalies, 6 (7.7%) had
strephenopodia, and 6 (7.7%) had multiple deformities. In total, we identified the molecular diagnoses
for 32/78 fetuses with SKAs, and confirmed 41 pathogenic/likely pathogenic variants in 28 genes,
including nine novel variants in our cohort. The overall diagnostic rate was 41% (32/78). Our findings
demonstrate that WES can greatly improve the genetic diagnostic rate of fetal SKAs following routine
genetic testing, which can comprehensively guide perinatal management and help assess the risk of
recurrence in future pregnancies. Our data also provide a basis for the association between the SKA
phenotype and related genotypes and expand the spectrum of fetal SKA phenotypes and related
genes.

Keywords Whole-exome sequencing, Prenatal diagnosis, Skeletal anomaly, TBX6, Maternal uniparental
disomy of chromosome 6

Skeletal anomaly (SKA) is a common fetal birth defect with an incidence of 1 per 500", and is characterized by the

abnormal growth and development of bone and cartilage, with variable phenotypic and genetic heterogeneity.
SKA is caused by genetic and non-genetic factors. Non-genetic factors refer to exposure to environmental

teratogenic factors, drugs, and maternal autoimmune diseases. Genetic causes include chromosomal aneuploidies,
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copy number variations (CNVs), and single-gene diseases. The 771 genetic skeletal disorders involve 552 bone
dysplasia (BD)-related genes.

Currently, the prenatal diagnosis of fetal SKA mainly relies on detailed two- dimensional-ultrasound (US)
examination®?, three-dimensional US, magnetic resonance imaging (MRI), and ultra-low-dose fetal computed
tomography>°. Because of the high clinical and genetic heterogeneity of SKA, ultrasonographic findings alone
do not provide an accurate prenatal diagnosis of the specific type of BD, making comprehensive prenatal
assessment of fetal prognosis and genetic counseling challenging’. Additionally, perinatal lethal BD is a major
concern and worthy of attention. Thus, molecular genetic testing for fetal SKA may contribute to the accuracy of
the differential diagnosis of various types of fetal BD.

When karyotyping and CNV results are negative, next-generation sequencing, particularly whole-exome
sequencing (WES), has been increasingly applied in the prenatal genetic diagnosis of fetal SKAs®!!. Diagnostic
yields of 64% (35/55) and 15% (10/65) and a pooled yield of 69.0% have been reported using WES in large
sample sizes in prenatal settings®!>1.

However, reports on the prenatal molecular diagnosis of SKAs via WES remain limited, and the sample sizes
of most studies are not sufficiently large. We collected 78 fetuses with SKA and with normal karyotypes and/or
non-diagnostic CNV results related to the phenotypes, we performed WES and summarized the ultrasonographic
phenotypes and molecular genetic testing results of the fetal SKAs to explore the correlation between fetal SKA
phenotypes and causative genotypes. These findings will help comprehensively guide pregnancy management
and accurately evaluate the risk of recurrence in future pregnancies.

Materials and methods

Ethics statement

The study complied with the principles set forth in the Declaration of Helsinki. It was approved by the Ethics
Committee of the Fujian Maternity and Child Health Hospital (N0.2021KLD09049). Written informed consent
was obtained from each patient or from guardians.

Subjects

A total of 78 fetuses with SKAs, with or without additional ultrasound anomalies (UAs), examined via ultrasound
were recruited from December 2019 to December 2022 at Fujian Maternity and Child Health Hospital. Fetuses
were excluded if they had \ a known infection or exposure to a known teratogenic drug, or a chromosomal
abnormality and/or clinically significant CNV results related to the observed phenotype. Informed consent
was obtained from all pregnant couples, and fetal samples were collected via invasive diagnostic procedures at
different weeks of gestation. Peripheral blood was collected from the parents.

Isolation of genomic DNA

Fetal samples, 15 mg of chorionic villi, 30-40 mL of amniotic fluid, or 2-5 mL of umbilical cord blood was
obtained, and genomic DNA from the fetus and its parents were extracted using the QlAamp  DNA Blood Mini
Kit (Qiagen Inc., Hilden, Germany) following the manufacturer’s instructions. Maternal cell contamination
was ruled out using a multiplex quantitative fluorescent polymerase chain reaction kit (Darui, Guangzhou,
China), which tested 20 markers, including four short tandem repeats (STRs) from chromosome 13 (D135634,
D13S305, D13S628, and D13S742), four from chromosome 18 (D18S391, D18S1002, D18S535, and D18S386),
six from chromosome 21 (D21S1411, D21S1445, D21S1414, D21S1412, D21S1433, and 21q11.2), and six from
chromosome X and Y (AMXY, DXS1187, DXS8377, SRY, DXS6809, and DXS981).

WES and bioinformatics analysis.

After excluding fetal chromosomal abnormalities and clinically significant CNVs related to the phenotype,
potential recessive pathogenic variants were detected using WES, after obtaining parental consent. Seventy-
three families underwent (fetus-mother-father) trio-WES, and five families performed fetus-only WES due to
the parents’ refusal. Exon capture was conducted using the Sure Select®*” Human All Exon V6 kit (Agilent, Santa
Clara, CA, USA), and samples were fragmented randomly, purified, and enriched to construct DNA libraries.
Paired-end (150 bp X 2) sequencing was performed on a NovaSeq 6000 instrument (Illumina, San Diego, CA
USA) according to the manufacturer’s instructions.

For sequence alignment, variant calling, and annotation, the sequences were mapped to their location with
the human genome reference sequence (hgl9 build) using Burrows-Wheeler software (version 0.59)!%. All SNVs
and insertion/deletions (indels) were annotated using publicly available public population frequency databases,
including NCBI dbSNP, 1000 Genomes Project, and the Exome Aggregation Consortium, as well as OMIM,
Swiss-var, the Human Gene Mutation Database, ClinVar, and other disease databases. To identify possible effects
on protein function, variants were evaluated using the Sorting Intolerant from Tolerant (SIFT) algorithm'
and Polymorphism Phenotyping version 2 (PolyPhen-2)!¢, and only variants that were clinically relevant or
potentially relevant to the fetuses’ phenotypes were reported. The annotation of mutations, prediction of protein
function effects, and shear harmoniousness were conducted and the pathogenicity of the variants was assessed
according to the American College of Medical Genetics and Genomics guidleines!'’. Sequencing data were
reanalyzed 1 year later if necessary.

Sanger sequencing

The clinically significant candidate variants were confirmed in our center using Sanger sequencing. The PCR
primer sequences and protocols are available upon request. Amplified fragments were sequenced using a
96-capillary 3730x1 system (Applied Biosystems, Waltham, MA, USA).
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Pregnancy outcome

For fetuses with SKAs, we collected basic information, imaging findings, routine diagnostic testing results of
invasive diagnostic procedures, molecular genetic testing results, perinatal outcomes, and follow-up information.
Perinatal outcomes were obtained from the delivery records at our hospital and/or via telephone calls.

Statistical analysis

SPSS software version 22.0 (SPSS, Inc., Chicago, IL, USA) was used for statistical analysis. Measurement data
are expressed as mean + standard deviation, statistical comparisons were performed using a chi-square test, and
P <0.05 was considered statistically significant.

Results

Patient characteristics

After excluding fetal chromosomal abnormalities and/or clinically significant (related to the fetal phenotypes)
CNVs, we recruited 78 fetuses with SKAs examined via ultrasound, who underwent molecular genetic testing by
WES. The demographic characteristics of the 78 fetuses with SKAs, with or without additional UAs, are shown
in Table 1.

The number of weeks of gestation at the time of invasive prenatal diagnosis and maternal age for pregnancies
with fetal SKAs were 21.2+4.5 weeks and 33.0+2.3 years, respectively. The clinically significant variants
detected by WES, ultrasonographic findings, and the perinatal outcomes of 41 fetuses (Cases 1-41) with SKAs
are summarized in Table 2, and the variables of unknown significance (VOUS) or incidental CNV results of four
fetuses (Cases 42-45) with negative WES results are listed in Table 3.

Clinical features

Seventy-eight fetuses with SKAs were divided into the following seven subgroups according to the main
clinical features examined via ultrasound: 39 (50%) had short long bones, 14 (17.9%) exhibited abnormal limb
morphology, 4 (5.1%) had polydactyly, 4 (5.1%) had the absence of a radius tibia or tibiofibula, 5 (6.4%) had
spine anomalies, 6 (7.7%) had strephenopodia, and 6 (7.7%) had multiple deformities. Two families had one or
more adverse pregnancy histories of fetal SKA. All fetal imaging findings with positive genetic testing results are
shown in Table 2.

WES results

WES was conducted in 78 fetuses with SKAs. Thirty-two cases with pathogenic/likely pathogenic LP(P/LP)
variants associated with fetal phenotypes were observed, yielding a diagnostic rate of 41.0% (32/78) (Table 1).
Nine fetuses carried VOUS related to fetal SKAs. The genetic cause was successfully determined for both families
(Cases 1 and 31) with an adverse pregnancy history (G2 had similar findings to G1) was successfully detected.
In addition, two cases with incidental findings were identified. In Case 26, an inherited paternal LP missense
variant, c.427 C>T in MYH?7, was identified, in addition to the diagnostic variant in GL3. In Case 46, the fetus
presented with omphalocele and a missing left limb at 13 weeks of gestation; No diagnostic variant was detected,
except for an inherited maternally pathogenic missense variant, ¢.725G > A in SDHB, which is associated with
hereditary paraganglioma-pheochromocytoma syndromes.

In total, we identified the molecular diagnoses for 32/78 fetuses with SKAs, and confirmed 41 P/LP variants
in 28 different genes, including nine novel variants, thus extending the spectrum of gene variants related to fetal
SKAs. Of the 32 cases with diagnostic results identified by WES, 21 cases showed autosomal dominant (AD)
inheritance (9 cases had variants inherited from one of the parents, 11 cases had de novo variants, and 1 case
refused verification of the origin of the variant), 10 cases had compound heterozygotes or homozygotes variants
presenting autosomal recessive (AR) inheritance, and 1 case showed X-linked recessive (XLR) inheritance. De
novo variants were detected in 13 cases (40.6%, 13/32), of which 12 fetuses (37.5%, 12/32) had AD inheritance
and 1 fetus had XLR inheritance. Familial co-segregation analysis of Case 18, which showed AD inheritance, was

Variant n (%)
Maternal age (mean + SD) (33.0+2.3)
Gestation weeks at invasive PD (mean+SD) | (21.2+4.5)
WES type n (%)
Trio-WES 73 (93.6%)
Fevsent (64

pecimens 2(2.6%)
Chorionic villus

ronic Vit 72(92.3%)

Amniotic fluid 4(5.1%)
Cord blood e
Pregnancy outcome 25(31.6)
crp 53(67.9)
TOP :
Total molecular detection rate via WES 32/78(41.0%)

Table 1. Demographic characteristics of 78 fetuses with skeletal anomalies with or without additional
ultrasound anomalies. CTP continuation of pregnancy; PD prenatal diagnosis; SD standard deviation; TOP
termination of pregnancy.
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Case ID | Indications for prenatal diagnosis CNYV result/Pathogenicity Inheritance | Pregnancy outcome
Fetal abnormal development of fetal
42 hands (clinical suspicion of spider seq[GRCh37]7q36.1(151818701_152007230)x) VOUS Mat TOP
fingers)
Fetal gastric vesicles and bladder were
43* not observed, hydramnios, absence of | seq GRCh37]16p11.2(29449426_30320316)x1 P Dn TOP
both kidneys, bipedal varus
Preterm birth.
Erythema after birth,
premature closure
Fetal flexion contracture, seq[GRCh37] 16P13‘1.1(14947627716301303))(3 V.QUS . of fontanelles at five
44 . 16p13.11 recurrent microduplication (neurocognitive disorder | Mat .
ventriculomegaly and FGR susceptibility locus) months after birth,

P Y GDD, intellectual
disability, seizure,
absent speech

45 Absence of fetal nasal bone arr[GRCh37]Xq28(154101869_154271165)x2 VOUS Mat TB
Normal development

Table 3. VOUS or incidental CNV results of four fetuses with negative WES results. Dn, de novo; FGR, fetal
growth restriction; GDD, global developmental delay; TOP, termination of pregnancy; VOUS, variant of
uncertain significance; Mat, maternal.

refused. According to the genotype-phenotype correlation analysis, eight genes involved in short limbs with or
without other UAs, and five genes causing the bent BD were identified (Table 2).

There were two cases (Cases 1 and 31) with a history of adverse pregnancy outcomes. One fetus presented
with a cleft palate, micrognathia, femur length and humerus length that were less than the expected length,
pyelectasis, and hydramnios in the current pregnancy (Table 2, Case 1). An LP variant (c.79delG p.E27Sfs*24) in
BMP2 was identified in this fetus. The same pathogenic variant segregating with the phenotype was found in the
mother and an elder brother (neonatal death), both of whom had a cleft palate, short limb, and micrognathia.
The second fetus presented with short long bones, and a cleft palate in the ongoing pregnancy (Table 2, Case
31). Almost the same anatomical anomalies had been present in a previous pregnancy of the same parents, and
the father had additional retinal detachment and high myopia. An LP variant (c.2484delG p.G831Dfs*50) in
COL2A1 was identified in the ongoing pregnancy. The same variant segregating with the observed manifestations
was identified in the father and an elder brother.

In the remaining nine cases with VOUS, in addition to two compound heterogeneous variants in DYNC2HI
and NPR2, we also identified variants in TRPV4, ACTN2, TPM2, COL2A1, COL1A1, and OFDI, and the
correlations between the phenotypes and genotypes were consistent or partially consistent. Of note, maternal
uniparental disomy (UPD) of chromosome 6 was also detected in Case 33. Due to the lack of evidence for
functional verification, these variants were classified as VOUS.

Discussion

We performed prenatal WES on consecutive fetuses with SKAs that underwent routine genetic testing and
increased the diagnostic yield by approximately 41.0% (32/78) following routine genetic testing. This rate is
much higher than the previously reported rates of 15% (10/65) and 24% (8/34)'>!8, but lower than the previous
result of 64% (35/55)® and significantly lower than the results reported in previous studies with small sample sizes
(n<30)'°723, The difference in the diagnostic rate via WES was closely related to the sample size and specimen
selection employed. The size of our cohort was the second largest among the reported studies of fetal SKAs
analyzed via WES, and covered a greater number of and more specific phenotypes and genes associated with
BD. Thus, compared with other small studies, our diagnostic rate via WES for fetuses with SKAs was relatively
objective and reliable. Detailed ultrasound examination is vital for an extended genetic diagnostic strategy. In
our study, the most common sonographic features were short long bones (n=239, 50%), followed by abnormal
limb morphology (n=14, 17.9%), with genetic diagnosis rates of these two phenotypes being 33.3% (13/39)
and 28.6% (4/14), respectively. These were higher than the genetic diagnosis rates of other SKAs. Because the
risk of BD was high in our cohort, in cases of fetal short limbs and abnormal limb morphology, with or without
additional UAs, molecular genetic testing via WES is considered.

The accurate interpretation of genetic variants is crucial. De novo diagnostic variants were identified in 40.6%
(13/32) of our cohort, suggesting that it is especially essential for further prenatal molecular genetic testing after
excluding routine genetic abnormalities by karyotyping and microarray analysis when fetal SKAs are examined,
Moreover, it should be highlighted that the possibility of parental gonadal mosaicism cannot be ruled out and if
present, there may be a recurrence risk of 1.3-9.4%2%25; thus, prenatal molecular genetic diagnosis is still advised
in future pregnancies.

Nine fetuses with genetically diagnosed results (AD-inherited) inherited the disorder from one of the parents,
and the parents of six of these fetuses had similar phenotypes to the fetus, while the other parents (Cases 15) did
not have obvious symptoms. This may be related to the incomplete penetrance and high heterogeneity of genetic
skeletal disorders.

A history of an undiagnosed fetus (or proband) affected by multiple or recurrent similar structural anomalies
yielding a normal karyotype or microarray results in the current pregnancy was highly suggestive of a genetic
cause, thus, in cases of a positive family history and/or adverse pregnancy history, WES should be further
recommended after routine genetic testing. In Case 1, the pregnant woman had previously experienced adverse
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C3 hemivertebra

, L2 hemivertebra

—> T5 butterfly vertebra

T5 butterfly vertebra

T9 butterfly vertebra

> S1 spina bifida

B
L4
chr16 p11.2
WOSTIOSML  DOGTTIOMD  I0OGTTISM  H0GTIOML  00GTT25M  J0007I0M  I00GTIIMb  0OTTAOM  0097745Mb  00OTISOMb  J00TISSMb  0097760Mb 30007785 b
Sequence JAGCCGAGTAGGGGGCTGAGCGCCCGGAGTCTGGAGCCTCCGGGAAGCTGGGGCTCCTGACATGC
Gene
»>18x8
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«Fig. 1. The spine MRI image of the fetus’s father and fetus-only WES and familial Sanger sequencing results
for Case 13. (A). The spine MRI image of the fetus’s father; (B). Fetus-only WES results for case 13; (C).
Familial Sanger sequencing revealed that the fetus harbored an inherited paternally frameshift variant,
NM_004608: c.1121_1122delCA, in TBX6; (D). Familial Sanger sequencing results on T-C-A haplotype
of (rs2289292(C/T), rs3809624(T/C), and rs3809627(C/A) in TBX6. Abbreviation: C: cervical vertebra; L:
lumbar vertebra; T: thoracic vertebra; S: sacral vertebrae. (A) The spine MRI image of the fetus’s father. Al.
C3 hemivertebra and T5 butterfly vertebra. A2. L2 hemivertebra. A3. T5 butterfly vertebra and T9 butterfly
vertebra. A4. S1 spina bifida. (B). Fetus-only WES results for case 13. (C). Familial Sanger sequencing revealed
that the fetus harbored an inherited paternally frameshift variant, NM_004608: c.1121_1122delCA, in TBX6.
C1: The fetus; C2 The father; C3: The mother. (D). Familial Sanger sequencing results on T-C-A haplotype
of (rs2289292(C/T), rs3809624(T/C), and rs3809627(C/A) in TBX6. D1: The feus harbored a heterozygous
haplotype. D2: The father harbored a heterozygous haplotype. D3: The mother harbored a homozygous
haplotype.

outcomes in her first pregnancy, with a fetal cleft palate, micrognathia, and clinical suspicion of Pierre Robin
sequence (PRS) in the first pregnancy. Amniocentesis was performed, resulting in unremarkable results for fetal
karyotyping and CNV, and the male baby died 2 weeks after birth due to pneumonia and breathing difficulties.
An autopsy and further genetic testing were declined. In the current (second) pregnancy, ultrasonographic
findings at 19 weeks of gestation revealed fetal micrognathism, a cleft palate, hydramnios, and a dilated left renal
pelvis, again indicating suspicion of PRS. Ultrasound findings at 24+ weeks of gestation revealed additional UAs
(fetal femur length and humerus length were less than expected, pyelectasis, and hydramnios) in addition to the
previous observed anomalies. Micrognathia and glossoptosis were confirmed using fetal MRI. Trio- WES revealed
a frameshift variant, ¢.79delG (p. E275{s*24) in the BMP2 gene in the fetus. Sanger sequencing confirmed that
the ¢.79delG gene in BMP2 was of maternal origin. The pregnant woman exhibited mild symptoms, including
a short stature (147 cm), craniofacial anomalies (short nose, anteverted nares, long philtrum, thin upper lip,
high palatal arch, and dental crowding), phalangeal abnormalities (only two knuckles in the 5th finger of the
right hand), and conductive hearing impairment, but with normal cognition, no cardiac murmur, and a normal
electrocardiogram. Based on these findings, a definitive diagnosis of short stature, facial dysmorphism, and
skeletal anomalies, with or without cardiac anomaly syndrome (SSFSC, OMIM 235200)%° was made, and fetal
labor was induced.

In Case 13, the fetus presented with a congenital spinal deformity, suspected scoliosis, and an atrial septal
defect. The father exhibited short stature (163 cm), and the spine MRI of the fetus’s father revealed cervical
vertebra 3 (C3) and lumbar vertebra 2 (L2) hemivertebra; thoracic vertebra 5 (T5) and T9 butterfly vertebra;
sacral vertebrae 1 (S1)- level spina bifida with different degrees of scoliosis; and C4-5, C6-7 disc herniation.
Fetus-only WES revealed an LP frameshift variant, ¢.1121_1122del p. P374Rfs*112, in TBX6 associated with
spondylocostal dysostosis 5 (SCDO5, OMIM 122600), which is caused by biallelic variation at one locus, that
is, a rare loss-of-function variant plus a common suballele in the trans position, similar to the AR mode of
inheritance?’. Because of the low coverage of the untranslated regions and introns of TBX6 with WES, only a few
reads were detected at rs2289292 (C/T:9/2) and rs3809624 (T/C:1/1), and no reads were detected at rs3809627
(Fig. 1.2). Sanger sequencing was performed to determine the origin, revealing that the fetus carried an inherited
paternal frameshift variant, c.1121_1122del p. P374Rfs*112, in TBX6, as well as an inherited parentally common
hypomorphic allele (T-C-A haplotype: rs2289292(C/T), rs3809624(T/C), and rs3809627(C/A)) in TBX6 (Fig. 1),
causing SCDO5%.

Maternal UPD on chromosome 6 presents a great challenge for genetic counselling prenatally?®. In Case 33, the
fetus exhibited biparietal diameter of -2.1 standard deviation (SD), a head circumference of -2.9SD, an abdominal
circumference of -3.1SD, a femur length of -2.0SD, a humerus length of -2.5SD, oligohydramnios, intra-cardiac
echogenic foci. Fetal SNP array analysis revealed multiple homozygous segments of a region on chromosome
6. Further parental microarray analysis preliminary revealed maternal segmental iso-UPD of chromosome 6
[UPD (6) mat], and subsequently trio-WES confirmed UPD (6) mat, also known as mixed UPD, including iso-
UPD and hetero-UPD (Fig. 2). UPD (6) mat is a rare finding, and its clinical pathogenetic significance is not
clear. The clinical manifestations of UPD (6) mat were not obvious®’, but placental dysfunction due to trisomy 6
mosaicism has been reported to cause fetal growth restriction (FGR) as well as preterm birth?*-32 There has been
no reported imprinting effect associated with this segment, and this was confirmed in Case 33.

For fetal SKAs, efficient and accurate prenatal molecular genetic diagnosis is recommended, which may
contribute to appropriate genetic counselling, comprehensive pregnancy management, and an understanding
of the risk of recurrence in future pregnancies. However, there were still 59.0% (46/78) of cases in our cohort
for whom definite diagnostic results were not obtained, including nine fetuses carrying VOUS. For one of these
fetuses (Case 41), verification of the parental origin of the VOUS was rejected. Highly suspicious variants were
identified in the nine fetuses, but the significance of these genetic variants is uncertain and requires more cases
and further functional experiments for verification, which is worthy of attention and provides a certain reference
value for similar situations.

Because the correlations between SNVs and indels identified via WES and postnatal phenotypes are very
limited, interpreting prenatal WES results, especially VOUS, can be challenging, as the detection of prenatal
VOUS may cause considerable stress and anxiety for the affected pregnant couple, which may even lead certain
women choosing to terminate the pregnancies. A more detailed and complete fetal clinical evaluation and
continuous follow-up would allow for a better assessment of the causal relationship of the variation. With the
continuous updating of databases and the rapid development of sequencing technology, pathogenic variations
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Figure 1. (continued)

or new disease-causing genes may be identified via reanalysis of WES, whole genome sequencing, or RNA
sequencing data or even via epigenetic studies, which can be a powerful complementary technique when WES
results are negative®>. Further research is essential to explore the etiology of the disorders in these families with
negative or VOUS results.

Diagnostic sequence variants were identified in 28 different genes, corresponding to 29 different disorders
across 41 fetuses. In 21 cases, the mode of inheritance was AD and in 10 it was AR, and in 1 case it was X-linked
recessive. Overall, the detection rate in our study was 41.0% (32/78) and 41 different variants were identified,
of which nine were novel variants. Our study further broadened the mutation spectrum of fetal SKAs, and will
help improve the management of future pregnancies and genetic counselling of the affected parents. However,
more cases of WES for fetuses with SKAs examined via ultrasound should be investigated using WES, to extend
the genotype-phenotype correlations and explore comprehensive genetic causes of SKAs. This will provide more
reference information and further reveal the clinical efficacy of prenatal WES testing.

Our study has some limitations. First, although it was a prospective single-center study, the sample size
was not sufficiently large. Thus, larger population studies are needed, and the follow-up period was not long
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enough, and therefore, some postnatal clinical phenotypes may have been missed. Second, we did not confirm
the pathogenicity of these novel splice-site mutations using a splicing assay by constructing a minigene in vitro.

In conclusion, WES increased the diagnostic yield in fetuses with SKAs, identifying an additional 41% of
cases with a genetic cause. Our study further showed that prenatal WES is recommended for fetuses with SKAs
following routine testing, to facilitate comprehensive genetic counselling and the assessment of the risk of
recurrence in future pregnancies.

Data availability

Sequence data that support the findings of this study are not publicly available in order to comply with hospital
and IRB policy. According to the consent form, sequencing data cannot be accessed without patient’s permis-
sion. But they are available from the corresponding author on reasonable request.
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