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Abstract

Identifying potential cancer biomarkers is a key task in biomedical research, providing a promising avenue for the diagnosis and
treatment of human tumors and cancers. In recent years, several machine learning–based RNA–disease association prediction
techniques have emerged. However, they primarily focus on modeling relationships of a single type, overlooking the importance of
gaining insights into molecular behaviors from a complete regulatory network perspective and discovering biomarkers of unknown
types. Furthermore, effectively handling local and global topological structural information of nodes in biological molecular regulatory
graphs remains a challenge to improving biomarker prediction performance. To address these limitations, we propose a multichannel
graph neural network based on multisimilarity modality hypergraph contrastive learning (MML-MGNN) for predicting unknown types of
cancer biomarkers. MML-MGNN leverages multisimilarity modality hypergraph contrastive learning to delve into local associations in
the regulatory network, learning diverse insights into the topological structures of multiple types of similarities, and then globally
modeling the multisimilarity modalities through a multichannel graph autoencoder. By combining representations obtained from
local-level associations and global-level regulatory graphs, MML-MGNN can acquire molecular feature descriptors benefiting from
multitype association properties and the complete regulatory network. Experimental results on predicting three different types of
cancer biomarkers demonstrate the outstanding performance of MML-MGNN. Furthermore, a case study on gastric cancer underscores
the outstanding ability of MML-MGNN to gain deeper insights into molecular mechanisms in regulatory networks and prominent
potential in cancer biomarker prediction.
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Introduction
According to the National Cancer Institute (NCI), disease biomark-
ers are biological molecules found in blood, other bodily fluids,
or tissues, serving as indicators of normal or abnormal pro-
cesses, conditions, or diseases (NCI), such as cancer. Biomarkers
can be utilized for various purposes, including assessing can-
cer risk [1], diagnosing cancer, determining treatment and prog-
nosis responses [2, 3], and monitoring disease progression [4].
In essence, identifying novel cancer biomarkers holds promise
for advancing the understanding of cancer pathogenesis and
improving cancer diagnosis and treatment [5]. However, conven-
tional approaches to biomarker discovery are often constrained by
costly resources and ethical considerations. Therefore, leveraging
advanced computational methods to identify reliable candidate
targets remains an essential approach for biomarker discovery in
research [6].

Compelling evidence indicates that microRNAs (miRNAs) are
implicated in nearly all known physiological and pathological
processes, including cancer [7]. Noncoding RNAs such as circular
RNAs (circRNAs) and long noncoding RNAs (lncRNAs) competi-
tively bind to miRNAs through miRNA response elements (MREs),
thereby modulating the expression of target genes and subse-
quently influencing biological processes, leading to the onset of
diseases [8].

Given the significant biological implications of miRNAs,
researchers in recent years have explored computational methods
for predicting miRNA–disease associations [9]. These methods
model prior knowledge from matrix factorization, network
structures, and graph structures to extract representative feature
descriptors of biomolecules for downstream prediction tasks
[10, 11]. By preemptively identifying high-probability candidate
miRNAs associated with diseases, this approach has effectively
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advanced related research. As investigations into competitive
endogenous RNAs (ceRNAs) progress, more noncoding RNAs
(ncRNAs), including circRNAs and lncRNAs, have been confirmed
to participate in miRNA-related regulatory systems [12]. Conse-
quently, there is a growing emphasis on predictive studies related
to noncoding RNAs, such as circRNA–miRNA interactions [13–
15], circRNA–disease associations [16–18], lncRNA–miRNA inter-
actions [19–22], and lncRNA–disease associations [23–26]. This
has established a common paradigm of modeling based on prior
singular associations to infer potential molecular interactions.

In fact, while biomarker prediction methods based on singu-
lar associations have yielded exciting results and significantly
advanced the modeling and analysis of associations between bio-
logical medical entities, they do have certain limitations. The pri-
mary limitation is that they model and analyze singular associa-
tions by isolating the complete regulatory network. Consequently,
they may encounter challenges in effectively capturing the full
regulatory information of nodes and long-distance dependencies
within the network. This limitation directly results in a focus on
the high predictive performance of biomarkers of specific types,
overlooking the discovery of unknown types of biomarkers. Addi-
tionally, these methods also face issues related to the learning and
integration of local and global topological structures.

Interestingly, the latest research has begun incorporating
multiple types of molecules into association modeling. For
instance, Sheng et al. supplemented information by integrating
miRNA molecules into lncRNA–disease associations [21]; Wang
et al. enriched the circRNA-miRNA-cancer association (CMCA)
network with miRNAs in circRNA-cancer associations [27]; Zou
et al. integrated eight biological entity relationships to predict
potential miRNA-disease associations [28]; Zhao et al. integrated
nine interactions between five biomolecules to construct a
heterogeneous network HIN to predict potential lncRNA–miRNA
associations [29]. This approach represents an inevitable trend as
adding nodes effectively mitigates the sparsity of network con-
struction, thereby enhancing prediction efficiency. Unfortunately,
while these methods have improved the predictive efficiency of
models, the added molecules fail to construct complete regulatory
networks, leading to challenges in obtaining global biological
regulatory interaction information for the molecules.

On the other hand, almost all biomarker prediction models are
trained and predicted based on the same type of prior knowledge.
This implies that in case studies examining the practicality of the
models, validation of predictive results typically relies on compar-
ing them with existing data from databases or literature. This val-
idation method actually overly relies on the serendipity of dataset
construction, making it difficult to obtain convincing results.

To address the aforementioned issues, we propose a novel
multichannel graph neural network based on multisimilarity
modal hypergraph contrastive learning (MML-MGNN) for predict-
ing different types of cancer biomarkers at the graph level within
local and global regulatory networks. Specifically, MML-MGNN
constructs competitive endogenous RNA regulatory networks
(CENA) for 72 cancers based on experimental reports and then
utilizes multisimilarity modality hypergraph contrastive learning
(MHCL) to deeply isolate individual molecular associations,
learning diverse topological structural insights of molecules
across different subassociations, and enhancing differential
representations of various structures through contrastive
learning (CL). Subsequently, a multichannel graph autoencoder
(MCGAE) is employed to receive multimodal local insights of
molecules and propagate and aggregate them in the global CENA
to obtain molecular feature descriptors with both global and local

insights. These descriptors can be used for downstream tasks
such as predicting unknown types of biomarkers. It is noteworthy
that all data in the downstream prediction task of unknown
biomarker types do not participate in feature engineering. MML-
MGNN demonstrates competitive performance in predicting
three types of biomarkers. Furthermore, in a case study based
on gastric cancer, high-probability predictions of three different
biomarker types underwent differential expression analysis and
expression visualization in normal and cancerous tissues. The
results indicate that the predictive outcomes of MML-MGNN
are supported by the literature and can predict biomarkers with
significant expression differences not reported in the literature,
demonstrating the practical value of the proposed method.

Materials and methods
Datasets and materials
In this study, we constructed cancer-related CENA based
on reports from existing research. Specifically, the circRNA–
miRNA–cancer regulatory network data were sourced from the
CircR2Cancer database [30], a manually curated circRNA–cancer
association database. The latest version contains 1439 experimen-
tally supported positive samples between 1135 circRNAs and 82
types of cancer. We focused on cancer associations mediated by
circRNA–miRNA interactions, ultimately retaining 648 circRNA–
cancer associations, 753 circRNA–miRNA associations, and
731 miRNA–cancer associations. The circRNA–miRNA–cancer
association dataset was constructed based on our previous
research [27], and the 753 circRNA–miRNA associations (CMI-
753) dataset is one of the commonly used datasets in the field of
circRNA–miRNA interaction prediction.

The lncRNA–miRNA–cancer regulatory network data were
obtained from the lncRNAdisease3.0 database [31]. In the latest
version, we selected 308 experimentally supported lncRNA–
miRNA associations, 732 miRNA–cancer associations, and 1066
lncRNA–cancer associations.

The miRNA–target gene associations were extracted from the
miRTarBase database [32]. Among 1 048 576 miRNA–target gene
associations, we chose positive samples with experimental sup-
port from two or more sources, resulting in 5330 miRNA–target
gene associations.

Given the biological process by which various types of RNA (cir-
cRNA, lncRNA, mRNA) competitively bind to miRNAs, we utilized
miRNAs as intermediate nodes within different subnetworks to
construct the CENA. Specifically, nodes targeting the same miRNA
were connected to form a comprehensive regulatory network.
By integrating the circRNA–miRNA–cancer regulatory network,
the lncRNA–miRNA–cancer regulatory network, and the miRNA–
target gene associations, we ultimately obtained a competing
endogenous RNA network that includes 72 types of cancer, 515
circRNAs, 568 miRNAs, 573 lncRNAs, and 2526 target genes.

The detailed statistical information of the CENA is presented in
Table 1. To visually illustrate the construction of various types of
regulatory associations within CENA, we have provided a visual-
ization in Fig. 1. This dataset will be used for downstream training
and prediction tasks.

Multichannel graph neural network based on
multisimilarity modal hypergraph contrastive
learning
The architecture of MML-MGNN is illustrated in Fig. 2. MML-
MGNN learns molecular representations by considering the
multisimilarity topological structural modalities of isolated
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Table 1. The detailed information of the CENA.

Dataset Edges miRNA circRNA lncRNA Disease Gene Database

MCA 782 457 Non Non 72 Non Data integration
CCA 648 Non 515 Non 72 Non circR2Cancer
LCA 1066 Non Non 573 48 Non lncRNAdisease3.0
LMI 308 203 Non 96 Non Non lncRNAdisease3.0
CMI 753 457 515 Non Non Non circR2Cancer
MGA 5330 457 Non Non Non 2526 miRTarBase
CENA 8887 568 515 573 72 2526 Data integration

Figure 1. The visualization explanation of CENA.

subgraphs in CENA and multifeature propagation in the complete
CENA and then identifies potential unknown biomarkers in an
end-to-end manner.

Multisimilarity modal
Extracting a comprehensive topological representation of nodes in
graph-level tasks remains a major challenge in current research.
This is because graph-structured data typically exhibit high com-
plexity and diversity and lacks a fixed topology; the arrangement
of nodes and the connections between edges are dynamic and
irregular. Consequently, when extracting topological representa-
tions of nodes, models must possess the ability to capture both
local and global structural information, understanding not only
the relationships between neighboring nodes but also the overall
structure of the entire graph. At the same time, graph represen-
tation learning must balance preserving topological information
with avoiding information overload and redundancy. This requires
that the model effectively leverage the structural information of
the graph while filtering out irrelevant or secondary information.
Inspired by multistructural feature extraction in molecular net-
works [33, 34], we construct comprehensive topological represen-
tations of nodes within subgraphs through the incorporation of
multisimilarity structures.

In detail, for each independent subgraph, we construct three
types of topological similarities for nodes: kernel topological
similarity, nearest-neighbor topological similarity, and functional
topological similarity. Kernel topological similarity represents
the centrality of a node in the graph and its degree of tight
connection with other key nodes. It reflects the node’s importance
in the global network and helps identify pivotal nodes, revealing
their dominant roles in the overall topological structure.

Nearest-neighbor topological similarity primarily captures the
local structural relationships between a node and its neighboring
nodes. By analyzing the local neighborhood around the node,
we can understand its position and role within its immediate
environment. Functional topological similarity, on the other hand,
focuses on the functional roles that a node plays in the network,
beyond its mere structural location. This similarity measures the
performance similarity of nodes in specific regulatory processes
or functional tasks, making it highly relevant to systems with
molecular networks.

By integrating these three different types of topological
similarities, we can comprehensively capture the multidimen-
sional structural information of nodes within a subgraph,
thereby obtaining a more refined topological representation. This
multisimilarity structure integration enhances performance in
graph-level tasks, enabling models to better adapt to complex
network structures. The obtained multisimilarity structural
topology will be utilized for further hypergraph construction and
hypergraph comparison learning.

Based on the assumption of functional similarity in molecules,
i.e. molecules with the same targets may exhibit similar functions,
we constructed molecular kernel topology using the adjacency
matrix of the subgraph. Taking the miRNA–cancer subgraph as an
example, we used the adjacency matrix MC to store the associa-
tions between 568 miRNAs and 72 cancers, with MCij set to 1 when
there is a positive relationship between miRNA i and cancer j and
0 otherwise. The calculation of miRNA Gaussian kernel similarity
is as follows:

GaumiRNA
(
MRi, MRj

) = exp
(
−K

∥∥LP (MRi) − LP
(
MRj

)∥∥2
)

(1)
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Figure 2. The architecture of MML-MGNN.

where MRi and MRj represent miRNA i and j, respectively, and K is
a variable parameter controlling the bandwidth of the Gaussian
similarity:

K = 1/

(
1

NM

NM∑
i=1

∥∥Lp (MRi)
∥∥2

)
(2)

Similarly, the calculation of Gaussian kernel similarity for the
cancer is as follows:

GauCancer
(
CAi, CAj

) = exp
(
−K

∥∥LP (CAi) − LP
(
CAj

)∥∥2
)

(3)

K = 1/

(
1

NC

NC∑
i=1

∥∥Lp (CAi)
∥∥2

)
(4)

The calculation of miRNA sigmoid kernel similarity is as
follows:

SigmiRNA

(
MRi, MRj

) = tanh
{
β [ρ (MRi)] × 1

n

[
ρ

(
MRj

)]}
(5)

Similarly, the calculation of cancer sigmoid kernel similarity is
as follows:

SigCancer

(
CAi, CAj

) = tanh
{
β [ρ (CAi)] × 1

n

[
ρ

(
CAj

)]}
(6)

We organically integrate different kernel similarity measures
using the following formula:

KSmiRNA
(
MRi, MRj

) =

⎧⎪⎨
⎪⎩

GaumiRNA
(
MRi, MRj

)
if GaucircRNA

(
MRi, MRj

)
≥ SigcircRNA

(
MRi, MRj

)
SigmiRNA

(
MRi, MRj

)
otherwise

(7)

KSCancer
(
CAi, CAj

) =

⎧⎪⎨
⎪⎩

GauCancer
(
CAi, CAj

)
if GauCancer

(
CAi, CAj

)
≥ SigCancer

(
CAi, CAj

)
SigCancer

(
CAi, CAj

)
otherwise

(8)

For the molecular similarity of the nearest-neighbor topologi-
cal structure in the subgraph, we employ a random walk approach
[35] to explore the neighbor set of nodes and calculate the neigh-
borhood representation of node MRi:

WMRi = RandomWalk
(
G, MRi, t

)
SkipGram (β, WMRi, w)

(9)

where t represents the maximum extent of random walk, and w
represents the size of the predicted context window.

Considering that the nearest-neighbor structure cannot simul-
taneously capture nodes with similar functions but distant dis-
tances, we introduce functional topological structure as a sup-
plement [36]. The functional topological structure is based on
the assumption that if nodes have the same degree, they are
structurally similar, and, if the neighbors of nodes have the same
degree, the nodes are assumed to have higher structural simi-
larity. The functional topological structure utilizes a hierarchical
structure to calculate the structural similarity of nodes. When
considering the C-hop neighborhood between nodes i and j, the
distance d is calculated as:

dC
(
i, j

) = dC−1
(
i, j

) + g
(
n

(
NC(i), n

(
NC(j)

))
, C ≥ 0 and

| NC(i) |, | NC(j) |≥ 0 (10)

where n represents the ordered sequence of C-order neighboring
nodes of node n, N represents the set of C-order neighboring
nodes, and g is the distance based on the order sequence. By
combining a biased random walk strategy and employing skip-
gram [37] training for context, the functional topological structure
representation of nodes is ultimately obtained.

Multisimilarity modality hypergraph contrastive learning
In this study, we introduce an MHCL module for learning node
multistructural modalities to gain insights into the high-order
regulatory correlations within subnetworks. Within the multi-
similarity structural modality construction module, we calculate
the node kernel topological structure similarity matrix KX, the
nearest neighbor topological structure similarity matrix KN, and
the functional topological structure similarity matrix KS within
the subgraph, respectively. For each structural modality, we use
K-nearest neighbors (KNNs) and K-means to construct node-
relevant hypergraph matrices HX from the subgraph and then
employ hypergraph neural networks to learn embeddings rep-
resenting different perspectives of each modality. Furthermore,
to obtain differentiated insights into embeddings from different
perspectives, we incorporate contrastive learning to enforce dif-
ferential learning of representations from the two perspectives,
thereby enhancing insights into the distinct features of molecules.

Taking KX as an example, we initially utilize the Euclidean
distance to compute the KNNs of each node in the kernel topolog-
ical structure, where k is an optional parameter, to establish the
node neighbor set, known as a hyperedge. The K-means method
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randomly selects central nodes of the matrix, calculates the
Euclidean distance between each node and this center, and cate-
gorizes nodes with closer distances into a subset, i.e. a hyperedge.
We represent the hyperedge matrix HX using the hypergraph
construction approach:

HX (v, e) =
{

1 if v ∈ e
0 if v /∈ e

(11)

V represents the vertex set of the hypergraph; E denotes the
set of hyperedges in the hypergraph, where each hyperedge e is a
subset of the vertex set V, representing nodes that are closer in
distance to the central node.

We utilize spectral graph convolution on the hypergraph to
encode higher-order relationships in the hyperedge matrix HX.
Regarding the hyperedge matrix HX, the core representation of
hyperedge convolution is as follows:

Z(L+1) = σ
(
D−1/2

v HXWD−1
e HX�D−1/2

v Z(L)α(L)
)

(12)

where Z(L) denotes the aggregated information of the hypergraph
over L layers. α represents the hyperedge weight, initialized as an
identity matrix, indicating that the weight of each hyperedge is
equal. De and Dv stand for the degree matrices of hyperedges and
vertices, respectively. The degrees of vertex n and hyperedge e are
defined as follows:

d(n) = ∑
n∈Vα(n)HX (v, e)

d(e) = ∑
e∈EHX (v, e)

(13)

To enhance the diversity and uniformity of node represen-
tations in different views of vertices and hypergraph matrices
in hypergraph spectral convolution, we introduce a contrastive
learning approach to learn node contrastive representations by
optimizing the contrastive loss between positive and negative
representations.

In detail, for the same node n, we construct two hypergraphs
using KNN and K-means, respectively, to explore comprehensive
representations of nodes in regulatory networks. For node n, we
aim for the representations BNn learned in the KNN view and
BMn learned in the K-means view to be more similar; thus, BNn

and BMn are treated as positive representations. For different
node representations within the same view, we expect the rep-
resentation of node n to exhibit significant differences from the
representations of other nodes k. Similarly, for different nodes in
different views, the representation of node n should demonstrate
significant differences from the representations of other nodes k.
Therefore, node representations within the same view and node
representations in different views are considered as two types
of negative representations. To achieve the above objectives, we
define the training objective as follows:

LC (BNn, BMn) = − log
ef (BNn ,BMn)/s

ef (BNn ,BMn)/s + ∑
k �=n

ef (BNn ,BNk)/s + ∑
k �=n

ef (BNn ,BMk)/s

(14)
where s is a temperature parameter, and f(BN, BM) = c(l(BN), l(BM)),
where c denotes cosine similarity and l represents nonlinear
projection.

For the miRNA node set, the contrastive loss of the KNN
hypergraph can be defined as follows:

LN
C (BNn, BMn) = −

N∑
n=1

log
ef (BNn ,BMn)/s

ef (BNn ,BMn)/s + ∑
k �=n

ef (BNn ,BNk)/s + ∑
k �=n

ef (BNn ,BMk)/s

(15)

Similarly, the contrastive loss of the K-means hypergraph is
defined as:

LM
C (BMn, BNn) = −

N∑
n=1

log
ef (BMn ,BNn)/s

ef (BMn ,BNn)/s + ∑
k �=n

ef (BMn ,BMk)/s + ∑
k �=n

ef (BMn ,BNk)/s

(16)

The overall contrastive loss for miRNA can be calculated as:

LC = 1
2

LN
C (BN, BM) + 1

2
Lm

C (BM, BN) (17)

For all molecule sets, we conduct hypergraph contrastive learn-
ing on three structural modalities to obtain the structural repre-
sentations of nodes. Subsequently, these representations are fully
connected, and the node’s multistructural modality representa-
tion in the subgraph is obtained through an output using a single
linear layer.

Multichannel graph autoencoder
MML-MGNN obtains the three structural modality representa-
tions of each molecule in the subgraph through MHCL, which
represents the local connectivity insights of molecules in the reg-
ulatory network. To obtain a comprehensive regulatory network
insight of molecules, we construct an MCGAE to propagate and
aggregate the multi-structural modality features of molecules in
the to obtain nodal feature descriptors benefiting from both local
and global perspectives.

The MCGAE consists of three parts: the encoding layer, the
hidden layer, and the output layer. The encoding layer takes the
three features of nodes as inputs from the undirected graph G,
corresponding to the three structural modality representations of
nodes and the global CENA. Subsequently, the input multichannel
features are mapped to the hidden layer for global network fea-
ture aggregation. For each modality representation channel, we
provide two propagation layers for feature aggregation: graph con-
volutional neural network layer and graph attention mechanism
layer.

For the input features Xk (k = 3) of nodes and the global network
graph structure G, the graph convolutional layer aggregates the
input features through the following formula:

HkL+1 = β
(
D̃− 1

2 ÃD̃− 1
2 Hk(L) W(L)

)
Ã = A + I

(18)

where Hk
(0) is the input feature matrix of the k-th channel, A

represents the adjacency matrix of graph G, and I is a diagonal
matrix representing the self-connections of nodes. W(L) is the

weight matrix of the L-th layer, and
∼
D is the degree matrix of

∼
A.

The graph attention aggregation layer can be computed as:

δmn =
exp

(
Leaky Re LU

(−→μ � [
W

−→
H m

∥∥∥W
−→
H n

]))
∑

k∈N

(
Leaky Re LU

(−→μ � [
W

−→
H m

∥∥∥W
−→
H k

])) (19)
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where H is the input feature matrix of the k-th channel, and W(L)

is the weight matrix of the L-th layer.
For each channel of input features in each layer, the feature

propagation layers are optional. Through feature propagation
in the global graph, we ultimately obtain three types of global
representations, denoted as X.

X = concat (X1, X2, X3) (20)

where X1, X2, and X3 represent the structural modal outputs
in three channels. We then output X through a decoding layer
constructed by a linear transformation layer to obtain the final
feature descriptors of nodes.

In the MML-MGNN model, we define the target association
prediction task as a binary classification problem. To prevent
potential label leakage during feature engineering, all target asso-
ciations of the same type are excluded from the feature engi-
neering process and reserved solely for downstream prediction
tasks. The feature descriptor X, serving as the sole feature for
each node, is input into an advanced classifier for training (this
study uses Catboost classifier [38] as an advanced classifier to
support downstream tasks), which is then used to predict target
associations.

Results
Evaluation criteria
In this study, we introduce comprehensive evaluation metrics to
assess the predictive performance of MML-MGNN. Specifically,
during the model training process, we treat the target associations
as the validation set. For each cancer biomarker prediction task,
all associations of that type are excluded from network modeling
and feature engineering. Subsequently, we feed the molecular
features and validation set into advanced classifiers for five-fold
cross-validation (5-fold CV).

The detailed process and evaluation criteria of 5-fold CV are
shown in the supplementary materials.

Cancer biomarker prediction
In this section, we perform predictions on tasks involving
unknown types of cancer biomarkers (prediction types not
included in the feature engineering process). Specifically, we
predict three types of cancer biomarkers: miRNA, circRNA, and
lncRNA, to validate the predictive capabilities of the proposed
method. The objective results of the 5-fold CV are objectively
documented in Table 2. Additionally, the Receiver Operating
Characteristic (ROC) curve and Precision–Recall (P-R) curve are
illustrated in Fig. 3.

As shown in Table 2 and Fig. 3, the average Acc, Prec, Rec,
F1, Area Under the ROC Curve (AUC), and Area Under the P-R
Curve (AUPR) of MML-MGNN in the prediction of miRNA mark-
ers of cancer were 0.7244, 0.7257, 0.7245, 0.7241, 0.7918, and
0.7899, respectively, and in the prediction of lncRNA, the average
Acc, Prec, Rec, F1, AUC, and AUPR were 0.7603, 0.7615, 0.7603,
0.7601, 0.8382, and 0.8364, respectively. In the prediction of marker
circRNA, the average Acc, Prec, Rec, F1, AUC, and AUPR were
0.7222, 0.7241, 0.7223, 0.7216, 0.7731, and 0.7612, respectively.
The above results show that MML-MGNN can effectively pre-
dict three different types of cancer biomarkers, and all of them
have >75% AUC. Excellent results show that MML-MGNN is a
powerful method for predicting different types of biomarkers of
cancer.

Optimal feature aggregation method
MML-MGNN leverages hypergraph contrastive learning and
multichannel graph autoencoder learning in CENA to elucidate
the local and global regulatory correlations of nodes. To better
accommodate the propagation of node features in the global
network and mitigate excessive smoothing, we incorporate
various aggregation layer combinations in the multichannel graph
autoencoder module, including single-layer GCN, single-layer
GAT, two-layer GCN, two-layer GAT, GCN + GAT, and GAT + GCN. In
this section, we conduct experiments with different aggregation
layers for predicting three cancer biomarkers, aiming to tailor
propagation methods that enhance predictive performance
specific to different tasks. Experimental results are presented in
Table 3 and Fig. 4.

Table 3 and Fig. 4 demonstrate that different aggregation
layer combinations achieve optimal predictive performance for
various prediction tasks. Moreover, within the same prediction
task, different aggregation layer combinations also exhibit
notable performance variations. These results underscore
the necessity of adopting tailored propagation methods for
multitask prediction approaches, highlighting one of MML-
MGNN’s strengths. For predicting cancer biomarker miRNA, the
GCN + GCN propagation method achieves the best predictive
performance with average AUC and AUPR values of 0.7918 and
0.7899, respectively. In contrast, for cancer biomarker lncRNA
prediction, the GAT + GCN propagation method yields superior
performance, with average AUC and AUPR values of 0.8382
and 0.8364, respectively. Regarding cancer biomarker circRNA
prediction tasks, the GAT_GAT and GCN_CGN propagation
methods achieve the best average AUC and AUPR values,
specifically 0.7731 and 0.7652. Through customized propagation
methods, MML-MGNN efficiently enables targeted predictions
for different types of cancer biomarkers, demonstrating high
adaptability.

Optimal multichannel fusion method
MML-MGNN employs hypergraph-contrastive learning to learn
the regulate local singular associations within the network,
acquiring diverse structural modalities of node insights. This
approach yields three distinctive representations for each node,
emphasizing the multimodal nature of node characteristics.
By constructing an MCGAE capable of capturing these diverse
structural modalities and facilitating global propagation, we
focus on determining the optimal method for multichannel
feature fusion. Specifically, we explore fusion techniques such as
average, concat, dot, max, and sum across three modal channels.
Furthermore, we conduct fusion tests on these channels within
the context of three biomarker prediction tasks to ascertain
the most effective fusion strategy. Experimental outcomes are
documented in Table 4 and Fig. 5.

The data in Table 4 and Fig. 5 show that among the five chan-
nel fusion methods, CONCAT has achieved obvious advantages
in three different prediction tasks. Among them, the highest
AUC and AUPR were achieved in the prediction of biomarker
miRNA, and the highest AUC values were achieved in the pre-
diction of marker lncRNA and circRNA, respectively. This may be
because the CONCAT method increases the feature dimension,
so it shows a higher advantage in the training and prediction
of downstream classifiers. It is worth noting that the other four
different fusion methods also achieved expressive prediction per-
formance, showing that the model has a high generalization
ability.
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Table 2. The prediction result of the three types of cancer biomarkers.

MCA Acc Prec. Rec. F1-score AUC AUPR

1 0.7412 0.7420 0.7413 0.7410 0.7951 0.7858
2 0.7125 0.7128 0.7124 0.7123 0.7898 0.7690
3 0.6965 0.6969 0.6966 0.6964 0.7666 0.7806
4 0.7284 0.7284 0.7284 0.7284 0.7880 0.7834
5 0.7436 0.7485 0.7436 0.7423 0.8195 0.8306
Mean 0.7244 0.7257 0.7244 0.7241 0.7918 0.7899
std 0.0178 0.0189 0.0178 0.0176 0.0169 0.0212
LCA Acc Prec. Rec. F1-score AUC AUPR
1 0.7400 0.7409 0.7400 0.7398 0.8227 0.8174
2 0.7518 0.7523 0.7518 0.7516 0.8337 0.8331
3 0.7676 0.7681 0.7676 0.7675 0.8489 0.8428
4 0.7488 0.7498 0.7488 0.7486 0.8341 0.8287
5 0.7934 0.7966 0.7934 0.7929 0.8518 0.8599
Mean 0.7603 0.7615 0.7603 0.7601 0.8382 0.8364
std 0.0188 0.0196 0.0188 0.0187 0.0107 0.0143
CCA Acc Prec. Rec. F1-score AUC AUPR
1 0.7231 0.7236 0.7231 0.7229 0.7943 0.7879
2 0.7143 0.7162 0.7145 0.7138 0.7730 0.7659
3 0.6911 0.694 0.6909 0.6898 0.7279 0.7245
4 0.7490 0.7490 0.7490 0.7490 0.8014 0.7722
5 0.7336 0.7377 0.7338 0.7326 0.7689 0.7557
Mean 0.7222 0.7241 0.7222 0.7216 0.7731 0.7612
std 0.0194 0.0189 0.0194 0.0197 0.0257 0.0211

Table 3. Predictive performance using different aggregation layer combinations.

MCA Acc. Prec. Rec. F1. AUC AUPR

GCN 0.7091 ± 0.02 0.7102 ± 0.02 0.7091 ± 0.02 0.7087 ± 0.02 0.7722 ± 0.02 0.7542 ± 0.03
GAT 0.6976 ± 0.02 0.6980 ± 0.02 0.6976 ± 0.02 0.6975 ± 0.02 0.7645 ± 0.01 0.7431 ± 0.02
GCN_GCN 0.7244 ± 0.02 0.7257 ± 0.02 0.7245 ± 0.02 0.7241 ± 0.02 0.7918 ± 0.02 0.7899 ± 0.02
GAT_GAT 0.7238 ± 0.01 0.7245 ± 0.01 0.7238 ± 0.01 0.7236 ± 0.01 0.7744 ± 0.02 0.7550 ± 0.03
GCN_GAT 0.6969 ± 0.02 0.6976 ± 0.02 0.6969 ± 0.02 0.6967 ± 0.02 0.7576 ± 0.02 0.7395 ± 0.03
GAT_GCN 0.7097 ± 0.01 0.7103 ± 0.01 0.7097 ± 0.01 0.7095 ± 0.01 0.7682 ± 0.01 0.7439 ± 0.01
LCA Acc. Prec. Rec. F1. AUC AUPR
GCN 0.7645 ± 0.02 0.7651 ± 0.02 0.7645 ± 0.02 0.7644 ± 0.02 0.8353 ± 0.01 0.8315 ± 0.01
GAT 0.7631 ± 0.01 0.7639 ± 0.01 0.7631 ± 0.01 0.7630 ± 0.01 0.8356 ± 0.02 0.8357 ± 0.01
GCN_GCN 0.7575 ± 0.02 0.7577 ± 0.02 0.7575 ± 0.02 0.7575 ± 0.02 0.8326 ± 0.01 0.8300 ± 0.01
GAT_GAT 0.7457 ± 0.03 0.7463 ± 0.03 0.7457 ± 0.03 0.7456 ± 0.03 0.8183 ± 0.02 0.8101 ± 0.03
GCN_GAT 0.7500 ± 0.02 0.7503 ± 0.02 0.7500 ± 0.02 0.7499 ± 0.02 0.8237 ± 0.01 0.8182 ± 0.01
GAT_GCN 0.7603 ± 0.02 0.7615 ± 0.02 0.7603 ± 0.02 0.7601 ± 0.02 0.8382 ± 0.01 0.8364 ± 0.01
CCA Acc. Prec. Rec. F1. AUC AUPR
GCN 0.7353 ± 0.01 0.7358 ± 0.01 0.7353 ± 0.01 0.7352 ± 0.01 0.7728 ± 0.01 0.7619 ± 0.02
GAT 0.7276 ± 0.03 0.7299 ± 0.03 0.7276 ± 0.03 0.7269 ± 0.03 0.7622 ± 0.03 0.7499 ± 0.03
GCN_GCN 0.7153 ± 0.02 0.7178 ± 0.03 0.7152 ± 0.02 0.7144 ± 0.02 0.7710 ± 0.02 0.7652 ± 0.04
GAT_GAT 0.7222 ± 0.02 0.7241 ± 0.02 0.7223 ± 0.02 0.7216 ± 0.02 0.7731 ± 0.03 0.7612 ± 0.02
GCN_GAT 0.7160 ± 0.03 0.7173 ± 0.03 0.7159 ± 0.03 0.7154 ± 0.03 0.7684 ± 0.04 0.7619 ± 0.03
GAT_GCN 0.7122 ± 0.03 0.7134 ± 0.03 0.7122 ± 0.03 0.7118 ± 0.03 0.7547 ± 0.02 0.7358 ± 0.02

Model robustness testing
In this study, we proposed a method MML-MGNN that can predict
multiple unknown types of cancer markers. We experimentally
verified the prediction performance of MML-MGNN and deter-
mined the optimal training parameters. In addition to focusing
on the prediction performance of the model, the robustness and
generalization of the model in the prediction task are also impor-
tant references for judging the prediction ability of the model.
Therefore, we conduct model robustness testing in this section.
Specifically, we randomly interfere with the input node feature
matrix by adding random noise and perform model training and

prediction. Feature interference is controlled by the interference
factor k, which represents the percentage degree of interference.
The factor of 0.05 is commonly used for feature perturbation.
Additionally, we amplify this factor by 2-fold (0.1) and 10-fold (0.5)
to conduct comprehensive robustness testing, aiming to observe
the model’s prediction performance under different values of k.
The experimental results are recorded in Table 5.

The results in Table 5 show that feature perturbation at varying
levels has a slight impact on prediction performance across the
three prediction tasks. As the percentage of feature perturbation
increases, the model exhibits different degrees of performance
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Figure 3. The ROC and P-R curves of MML-MGNN [(a) and (b) are the ROC and PR curves of MML-MGNN in MCA prediction; (c) and (d) are the ROC and
PR curves of MML-MGNN in LCA prediction; and (e) and (f) are MML-MGNN ROC and PR curves in CCA prediction].

degradation in predicting the three cancer biomarkers. This effect
is more evident in the MCA and LCA tasks, where performance
decreases incrementally with increasing perturbation levels. The
decline is relatively minor with 0.05 and 0.1 perturbations but
more pronounced with 0.5 perturbations. However, overall, the
standard deviations of AUC for the three tasks are 0.0143, 0.008,
and 0.0047, respectively, and the standard deviations of AUPR are
0.0264, 0.008, and 0.0073, respectively. This indicates that despite
varying degrees of feature perturbation, the model’s performance
remains stable, demonstrating high robustness. Additionally, in
the CCA prediction task, the model performance improved under
0.05 and 0.1 feature perturbations. This improvement may be
attributed to the introduction of a moderate amount of noise
during training, which could enhance the model’s robustness
and generalization, thereby boosting its performance. Overall, the
results of the feature perturbation experiment strongly indicate
that MML-MGNN exhibits high robustness and generalization
ability.

Comparison with state-of-the-art models
In this section, we compare our proposed method, MML-MGNN,
with existing state-of-the-art (SOTA) models across multiple pre-
diction tasks to validate its superior performance. Specifically,
we evaluate MML-MGNN against SOTA models on cancer-related
circRNA biomarker prediction and introduce two independent
datasets, CMI-9905 and CMI-9589, for a comprehensive assess-
ment. To the best of our knowledge, MML-MGNN is one of the
few methods capable of modeling CNEA, and thus, there is a
lack of models that can be directly compared. We incorporate the
core methodologies of representative prediction models into the
MML-MGNN framework and validate our approach using three
independent standard datasets.

In existing studies, the core of SOTA models involves con-
structing biomedical molecular entity association networks or
graphs and utilizing advanced network or graph algorithms to
capture behavioral association features of molecules for down-
stream tasks. The capturing of behavioral features can be broadly
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Figure 4. Predictive performance using different aggregation layer combinations.

Table 4. Predictive performance using different channel fusion methods.

MCA Acc. Prec. Rec. F1. AUC AUPR

AVERAGE 0.7187 ± 0.02 0.7192 ± 0.02 0.7187 ± 0.02 0.7185 ± 0.02 0.7796 ± 0.03 0.7751 ± 0.04
CONCAT 0.7244 ± 0.02 0.7257 ± 0.02 0.7245 ± 0.02 0.7241 ± 0.02 0.7918 ± 0.02 0.7899 ± 0.02
DOT 0.7257 ± 0.03 0.7259 ± 0.03 0.7257 ± 0.03 0.7256 ± 0.03 0.7786 ± 0.02 0.7599 ± 0.03
MAX 0.7078 ± 0.02 0.7079 ± 0.02 0.7078 ± 0.02 0.7078 ± 0.02 0.7735 ± 0.02 0.7688 ± 0.02
SUM 0.7046 ± 0.02 0.7061 ± 0.02 0.7046 ± 0.02 0.7037 ± 0.02 0.7704 ± 0.03 0.7616 ± 0.04
LCA Acc. Prec. Rec. F1. AUC AUPR
AVERAGE 0.7561 ± 0.01 0.7565 ± 0.01 0.7561 ± 0.01 0.7560 ± 0.01 0.8382 ± 0.01 0.8377 ± 0.02
CONCAT 0.7603 ± 0.02 0.7615 ± 0.02 0.7603 ± 0.02 0.7601 ± 0.02 0.8382 ± 0.01 0.8364 ± 0.01
DOT 0.7598 ± 0.02 0.7602 ± 0.02 0.7598 ± 0.02 0.7598 ± 0.02 0.8301 ± 0.01 0.8188 ± 0.01
MAX 0.7486 ± 0.01 0.7488 ± 0.01 0.7486 ± 0.01 0.7485 ± 0.01 0.8363 ± 0.01 0.8346 ± 0.01
SUM 0.7444 ± 0.02 0.7446 ± 0.02 0.7443 ± 0.02 0.7443 ± 0.02 0.8295 ± 0.02 0.8299 ± 0.02
CCA Acc. Prec. Rec. F1. AUC AUPR
AVERAGE 0.7269 ± 0.02 0.7284 ± 0.01 0.7269 ± 0.02 0.7263 ± 0.02 0.7722 ± 0.02 0.7402 ± 0.03
CONCAT 0.7222 ± 0.02 0.7241 ± 0.02 0.7223 ± 0.02 0.7216 ± 0.02 0.7731 ± 0.03 0.7612 ± 0.02
DOT 0.7137 ± 0.03 0.7154 ± 0.03 0.7138 ± 0.03 0.7133 ± 0.03 0.7606 ± 0.03 0.7543 ± 0.02
MAX 0.7168 ± 0.02 0.7174 ± 0.02 0.7168 ± 0.02 0.7166 ± 0.02 0.7728 ± 0.02 0.7663 ± 0.03
SUM 0.7215 ± 0.03 0.7218 ± 0.03 0.7215 ± 0.03 0.7213 ± 0.03 0.7660 ± 0.03 0.7526 ± 0.04

categorized into two main types. The first type is based on graph
neural networks, focusing on node feature propagation and aggre-
gation. For instance, the GCNCMI model employs graph con-
volutional networks (GCNs) for node feature propagation [39];
KS-CMI integrates signed graph convolutional neural networks
to aggregate features in molecular social networks [27]; WSCD
utilizes graph representation via recursive eigenvector propaga-
tion (GraRep) to capture multihop behavioral features between
nodes [40]. The second type of approach centers on preserving
structural information within molecular association networks
for downstream prediction and relationship reconstruction tasks.

For example, JSNDCMI proposes a multistructural feature extrac-
tion framework in molecular networks to extract behavioral fea-
tures of molecules [41]; KGDCMI employs higher-order embed-
ding preservation to extract high-order structural information of
nodes in the network for downstream prediction tasks [13]; and
BGF-CMAP combines large-scale information network embedding
(LINE) and graph factorization (GF) to capture network structural
learning and obtain low-dimensional representations of nodes
[42].

In this study, we use graph convolutional neural networks,
signed graph convolutional neural networks, GraRep,
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Figure 5. Predictive performance using different channel fusion methods.

Table 5. Predictive performance using different k values for robustness.

MCA Acc. Prec. Rec. F1. AUC AUPR

0.05 0.7225 ± 0.02 0.7237 ± 0.02 0.7225 ± 0.02 0.7221 ± 0.02 0.7793 ± 0.02 0.7688 ± 0.02
0.1 0.7033 ± 0.01 0.7035 ± 0.01 0.7033 ± 0.01 0.7033 ± 0.01 0.7603 ± 0.01 0.7320 ± 0.01
0.5 0.6963 ± 0.01 0.6972 ± 0.01 0.6964 ± 0.01 0.6960 ± 0.01 0.7568 ± 0.03 0.7258 ± 0.06
Non 0.7244 ± 0.02 0.7257 ± 0.02 0.7245 ± 0.02 0.7241 ± 0.02 0.7918 ± 0.02 0.7899 ± 0.02
Std 0.012 0.0124 0.0121 0.0120 0.0143 0.0264
LCA Acc. Prec. Rec. F1. AUC AUPR
0.05 0.7669 ± 0.02 0.7672 ± 0.02 0.7669 ± 0.02 0.7668 ± 0.02 0.8371 ± 0.01 0.8293 ± 0.01
0.1 0.7683 ± 0.02 0.7688 ± 0.02 0.7683 ± 0.02 0.7682 ± 0.02 0.8367 ± 0.02 0.8201 ± 0.02
0.5 0.7373 ± 0.03 0.7379 ± 0.03 0.7373 ± 0.03 0.7372 ± 0.03 0.8181 ± 0.02 0.8146 ± 0.02
Non 0.7603 ± 0.02 0.7615 ± 0.02 0.7603 ± 0.02 0.7601 ± 0.02 0.8382 ± 0.01 0.8364 ± 0.01
Std 0.0124 0.0124 0.0124 0.0124 0.008 0.008
CCA Acc. Prec. Rec. F1. AUC AUPR
0.05 0.7238 ± 0.01 0.7272 ± 0.01 0.7239 ± 0.01 0.7227 ± 0.02 0.7737 ± 0.02 0.7630 ± 0.02
0.1 0.7377 ± 0.02 0.7391 ± 0.01 0.7377 ± 0.02 0.7372 ± 0.02 0.7801 ± 0.02 0.7578 ± 0.02
0.5 0.7330 ± 0.02 0.7346 ± 0.02 0.7331 ± 0.02 0.7325 ± 0.02 0.7668 ± 0.02 0.7443 ± 0.03
Non 0.7222 ± 0.02 0.7241 ± 0.02 0.7223 ± 0.02 0.7216 ± 0.02 0.7731 ± 0.03 0.7612 ± 0.02
Std 0.0064 0.0059 0.0064 0.0066 0.0047 0.0073

multistructure feature extraction framework, high-order embed-
ding preservation, LINE, and GF to replace the feature extraction
module in MML-MGNN and build GCN, SGCN, WSCD, JSND, KGD,
BGFLINE, and BGFGF models for prediction tasks. In order to
ensure the fairness of the comparison, we apply the feature
extraction methods of these models to three independent
prediction tasks and use the same prediction method for
comparison.

In the prediction of circRNA–cancer associations (CCAs), we
adopt the same training paradigm as in our study, where all
circRNA–cancer associations are excluded from feature engineer-
ing. The bar charts depicting the evaluation metrics for model
comparison are shown in Fig. S1. The box plots for evaluation
metrics derived from 5-fold CV are presented in Fig. S2. The
average ROC and P-R curves for the models are displayed in
Fig. S3. The data distribution of prediction scores is illustrated
in Fig. S4.

Fig. S1 shows that in the CCA prediction task, MML-MGNN
outperforms SOTA models across four evaluation metrics: ACC,
precision, recall, and F1 score, with improvements of 0.0355,
0.0409, 0.0077, and 0.0334, respectively. Fig. S2 presents box plots
from 5-fold cross-validation, indicating that MML-MGNN achieves
stable standard deviations across all metrics. Fig. S3 shows that
MML-MGNN exceeds SOTA models in both AUC and AUPR, with
enhancements of 0.0233 and 0.007, respectively, and exhibits
lower SDs. Fig. S4 visualizes the distribution of prediction scores,
indicating that MML-MGNN effectively distinguishes between
positive and negative samples, while SOTA models’ scores tend to
concentrate between 0.4 and 0.7, struggling to clearly differentiate
samples. This highlights two advantages of MML-MGNN: first,
it leverages latent node features through hypergraph learning,
demonstrating significant advantages in tasks with long-range
associations, especially when feature engineering does not
involve target prediction types. Second, the incorporation of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
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contrastive learning further enhances the benefits of hypergraph
learning, resulting in higher sample discrimination and improved
predictive performance.

In the predictive analysis based on the CMI-9905 dataset, we
employed a 5-fold CV for prediction. Additionally, for models
incorporating molecular attribute features, we utilized singular
value decomposition as the node’s initial feature. The evaluation
metrics of model comparison are presented in Fig. S5 as a bar
chart, the evaluation metrics of 5-fold CV are illustrated in Fig. S6
as a box plot, the average ROC and P-R curves of the models
are shown in Fig. S7, and the distribution of prediction scores is
depicted in Fig. S8.

Fig. S5 illustrates that MML-MGNN achieves superior predic-
tion results across all four evaluation metrics: ACC, Precision,
Recall, and F1. MML-MGNN outperforms the second-best model
by 0.012, 0.0312, and 0.0104 in ACC, Precision, and F1, respectively.
However, in the Recall metric, MML-MGNN slightly lags behind
the second-best model by 0.0032. Fig. S6 demonstrates that MML-
MGNN maintains a consistently low SD across all evaluation
metrics in five-fold experiments, indicating its robust stability.
Fig. S7 depicts that MML-MGNN attains the highest average ROC
and P-R curves, outperforming the second-best model by 0.0233
and 0.0185, respectively, with the lowest SDs. These observations
unequivocally affirm the superior performance and stability of
MML-MGNN. Further analysis through the distribution of model
prediction scores, as shown in Fig. S8, reveals that MML-MGNN’s
predictions are predominantly clustered in the intervals of 0–0.1
and 0.9–1, with the fewest predictions within the less discrimina-
tive range of 0.4–0.6. This underscores MML-MGNN’s remarkable
capability in effectively distinguishing between positive and neg-
ative samples, highlighting the notable advantages of contrastive
learning in differentiating between positive and negative samples.

In comparison to the GCN model, which exhibits a slightly
higher Recall, the GCN model demonstrates a lower count in
the most discriminative intervals of 0–0.1 and 0.9–1 but captures
a higher number of samples in the moderately discriminative
ranges of 0.2–0.4 and 0.6–0.9. This discrepancy is influenced by
the distinct task objectives and the core objectives of the cor-
responding algorithms. Specifically, MML-MGNN aims to extract
molecular interaction information within complex biological reg-
ulatory networks. Therefore, it exhibits a higher advantage in sce-
narios involving numerous molecular types and extended asso-
ciation distances. The CMI-9905 dataset, composed of two types
of molecules, with fewer long-range associations, benefits GCN
models that employ short-range adjacency matrices for graph
modeling. These models capture molecular behavioral features
more effectively, albeit with fewer high-prediction-score samples.
Thus, GCN models capture a higher number of positive samples
in less discriminative intervals, leading to an elevated Recall.
However, this approach may introduce a higher rate of false-
positive samples, consequently reducing Precision.

To further validate the conclusions drawn from the CCA and
CMI-9905 prediction tasks, we introduce the CMI-9589 dataset for
an independent prediction task. As one of the most widely used
datasets in the field of CMI prediction, CMI-9589 boasts a higher
average node degree, indicating that it is denser and possesses
longer-range associations compared to CMI-9905. The prediction
methodology for CMI-9589 remains the same as that for CMI-9905.
The evaluation metrics for model comparison are presented in a
bar chart in Fig. S9. Fig. S10 illustrates the evaluation metrics of
5-fold CV using a box plot. The average ROC and P-R curves of the
models are shown in Fig. S11, and the distribution of prediction
scores is depicted in Fig. S12.

Fig. S9 demonstrates that MML-MGNN outperforms the SOTA
models across all four evaluation metrics, exceeding the second-
best model by 0.0335, 0.0232, 0.0213, and 0.0392, respectively. The
results in Fig. S10 indicate that MML-MGNN achieves a stable SD
across all evaluation metrics during the five-fold experiments,
reflecting its robust stability. The average ROC and P-R curves
shown in Fig. S11 reveal that MML-MGNN attains the highest
average AUC and AUPR, outpacing the second-best model by
0.0306 and 0.0254, respectively, thereby substantiating the supe-
rior performance and generalizability of MML-MGNN.

In the distribution of model prediction scores depicted in
Fig. S12, the prediction distribution exhibits a pattern similar to
that observed in the CMI-9905 dataset. Specifically, MML-MGNN’s
prediction scores are predominantly concentrated in the intervals
of 0–0.1 and 0.9–1, with fewer samples in the less discriminative
range of 0.4–0.6. The GCN model shows a lower count in the
most discriminative intervals, 0–0.1 and 0.9–1, but captures a
higher number of samples in the moderately discriminative
intervals of 0.2–0.4 and 0.6–0.9. This finding corroborates our
analysis from the CMI-9905 prediction task. Different from CMI-
9905, since the CMI-9589 dataset has fewer molecules and longer
association behaviors, the number of positive samples captured
by MML-MGNN in the 0.9–1 interval is much higher than the
positive samples captured by GCN in the interval with lower
discrimination, so the recall of MML-MGNN is higher than that
of GCN. For the SGCN model, which captures the highest number
of samples in the 0–0.1 interval, the performance in predicting
positive samples is notably inferior, with the number of negative
samples far surpassing that of positive samples. This indicates
that the model generates an excessive number of false negatives.
Consequently, the model exhibits suboptimal performance and
demonstrates poor stability.

Overall, the comparative results with SOTA models unequivo-
cally demonstrate the superior and competitive performance of
MML-MGNN in predicting biomarkers of unknown cancer types.

Case study on cancer marker prediction
To validate the practicality of MML-MGNN in predicting differ-
ent types of cancer biomarkers, we conducted a study focusing
on the prediction of gastric cancer biomarkers, encompassing
target genes, miRNAs, and lncRNAs. The study was designed to
assess MML-MGNN’s capability in biomarker discovery through
differential expression analysis and by referencing existing lit-
erature. Specifically, we employed the MML-MGNN to predict
high-probability candidates for the three types of gastric cancer
biomarkers. Subsequently, we downloaded gastric cancer and
normal tissue samples from the Cancer Genome Atlas [43] for
differential expression analysis. In this analysis, we classified
normal and primary tumor tissues and calculated the differential
expression value (P) for the high-probability candidates. It was
deemed that when P < .05, there was a statistically significant
difference between the two groups. To further confirm the dif-
ferential expression of the cancer biomarkers, we generated a
visual heatmap to illustrate the expression potential of the cancer
biomarkers across different types of tissues. The experimental
results are documented in Fig. 6 and Table 6.

The data from Fig. 6 and Table 6 indicate that, among the
10 high-probability target gene biomarkers predicted by MML-
MGNN, seven genes exhibit significant expression differences
across various tissue types. This finding is further corroborated
by the heatmap of target gene expression, which clearly demon-
strates differential expression across multiple tissues. Addition-
ally, 9 out of the 10 candidate target genes have been validated

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae575#supplementary-data


12 | Wang et al.

Figure 6. The analysis of differential expression and expression heatmap for the three biomarkers in gastric cancer [(a), (c), and (e) represent the
differential expression analysis results of genes, miRNAs, and lncRNAs in cancer tissue and adjacent tissue; (b), (d), and (f) represent the gene expression
heatmaps of genes, miRNAs, and lncRNAs in cancer tissue and adjacent tissue].

by existing literature, underscoring the efficacy of MML-MGNN
in identifying potential biomarkers and effectively excluding low-
expression data and tissue-specific interference. This capability is
particularly evident in the miRNA and lncRNA expression analysis
results.

In the current analysis, technical limitations associated with
probes often hinder the effective detection of low-expression
biomarkers. However, MML-MGNN shows a marked advantage in
predicting these low-expression biomarkers. While Figures c and e
indicate that nine miRNAs and eight lncRNAs exhibit significant
expression differences, these differences are less pronounced in
the differential expression heatmap. Nevertheless, MML-MGNN
successfully predicted the existence of these biomarkers, with its
predictions validated by existing literature, further highlighting
the model’s substantial advantages and utility in processing low-
expression biomarker data. Thus, MML-MGNN not only demon-
strates high efficacy in target gene prediction but also excels in
filtering out interference from low-expression data and handling
tissue-specific influences. These strengths position MML-MGNN
as a reliable method for identifying candidate biomarkers in
related research.

Discussion
Cancer diagnosis, treatment, and prognosis have long been focal
points of biomedical research. Identification of cancer biomark-
ers offers promising avenues for advancing cancer-related stud-
ies. With the evolution of machine learning methods, computa-
tional approaches can efficiently sift through vast datasets to
uncover potential high-probability biomarker candidates, thus
saving time, manpower, and resources in wet lab experiments.

However, constrained by reductionism and machine learning
limitations, existing research typically employs task modeling
through isolated regulatory networks with target associations,
leading to an overemphasis on high-performance requirements
within a single association. This approach has achieved advanced
prediction results and has effectively promoted progress in
related fields. Nonetheless, focusing excessively on modeling and
predicting single associations has the drawback of overlooking
the overall associations in regulatory networks and the discovery
of unknown types of biomarkers.

As research progresses, researchers have begun attempting to
construct large heterogeneous networks to enrich the molecu-
lar interaction information within single association networks,
achieving promising results. Despite these advancements, the
fundamental objective remains to address sparsity in network
modeling, with the incorporated molecules failing to construct
a complete regulatory network. Consequently, existing research
still lacks comprehensive graph-level modeling and node interac-
tion information extraction within complete regulatory networks.
Moreover, current computational models generally validate their
practical utility by comparing their prediction results with exist-
ing research data and literature. However, the potential for label
leakage and the fortuitous nature of data construction render this
validation approach less convincing.

To address this situation, we propose a method called MML-
MGNN, capable of predicting multitype cancer biomarkers,
and construct the cancer-related CENA. MML-MGNN leverages
hypergraph contrastive learning to obtain multimodal local
insights of nodes within individual associations and then
propagates molecular features globally through a multichannel
graph neural network, effectively capturing both local and global
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Table 6. Examination results of three cancer markers predicted by MML-MGNN in existing studies.

Num Gene Cancer type Evidence Differential expression

1 EGFR Gastric cancer PMID: 34618022 N
2 PIK3CA Gastric cancer PMID: 31908498 Y
3 CTNNB1 Gastric cancer PMID: 31889902 Y
4 FGFR2 Gastric cancer PMID: 34307360 N
5 MET Gastric cancer Unconfirmed Y
6 PAK1 Gastric cancer PMID: 36636079 Y
7 PTEN Gastric cancer PMID: 36636064 N
8 JAK1 Gastric cancer PMID: 36483041 Y
9 STAT3 Gastric cancer PMID: 36483041 Y
10 TP53 Gastric cancer PMID: 36477655 Y
Num miRNA Cancer type Evidence
1 Has-mir-34c Gastric cancer PMID: 36316351 Y
2 Has-mir-370 Gastric cancer PMID: 35957833 Y
3 Has-mir-612 Gastric cancer PMID: 35581633 Y
4 Has-mir-448 Gastric cancer PMID: 35528235 N
5 Has-mir-665 Gastric cancer PMID: 35322746 Y
6 Has-mir-93 Gastric cancer PMID: 35183057 Y
7 Has-mir-1270 Gastric cancer PMID: 34986743 Y
8 Has-mir-429 Gastric cancer PMID: 34976174 Y
9 Has-mir-421 Gastric cancer PMID: 34938121 Y
10 Has-mir-186 Gastric cancer PMID: 34900056 Y
Num lncRNA Cancer type Evidence
1 SBF2-AS1 Gastric cancer PMID: 36549764 Y
2 GAS5 Gastric cancer PMID: 36316351 Y
3 LINC-ROR Gastric cancer PMID: 36299522 Y
4 MEG3 Gastric cancer PMID: 36299522 N
5 TERC Gastric cancer PMID: 36267723 N
6 AFAP1-AS1 Gastric cancer PMID: 36164273 Y
7 UCA1 Gastric cancer PMID: 35949302 Y
8 DIRC3 Gastric cancer PMID: 35949302 Y
9 HOTAIR Gastric cancer PMID: 35949302 Y
10 KCNQ1OT1 Gastric cancer PMID: 35910231 Y

regulatory behaviors of molecules. We tested our method on the
prediction tasks of three types of biomarkers: miRNA, lncRNA, and
circRNA, achieving robust performance. In comparative studies
with existing research, MML-MGNN demonstrated competitive
performance. Notably, target prediction associations do not
participate in the feature engineering process, enabling MML-
MGNN to efficiently predict unknown association types.

To further validate the practical utility of our computational
model, we introduce a case study approach with high reference
value. Specifically, our model predicts high-probability potential
biomarker candidates for the gastric cancer. We then conduct
differential expression analysis of these biomarkers in cancer-
ous versus adjacent normal tissues, constructing an expression
matrix. By examining whether the biomarkers show significant
differential expression between cancer and normal tissues and
combining this with preliminary observations from the expres-
sion matrix, we identify potential candidates. Finally, we verify
whether these candidates have the potential as disease biomark-
ers through comparison with existing literature and databases.
This approach effectively addresses the challenge of performance
validation for the model in real-world scenarios.

While the results are indeed exciting, there remains room
for improvement. Firstly, the data used for CENA construction,
though supported by experiments, are sparse due to the difficulty
in collection, which poses challenges for modeling and predic-
tion. Additionally, the absence of molecular attribute features,
including RNA sequences and descriptions, limits multi-modal

feature processing. Despite these limitations, the first modeling
and prediction tasks for CENA have yielded surprising results,
providing a reference example for future research. We hope to
continuously improve the biomarker data and related algorithms
in subsequent studies to enhance the model’s predictive perfor-
mance and efficiency in biomarker discovery.

Key Points

• A novel multi-channel graph neural network based
on multisimilar modal hypergraph contrastive learning
(MHCL) is proposed for predicting different types of can-
cer biomarkers at the graph level of local and global
regulatory networks.

• Deeply separate individual molecular associations using
multisimilarity MHCL and learn different topological
insights of molecules in different subassociations.

• A multichannel graph autoencoder is employed to
receive multimodal local insights of molecules and
propagate and aggregate them in a global competitive
endogenous RNA regulatory network to obtain molecu-
lar feature descriptors with global and local insights.

• It can predict biomarkers with significant expression
differences and be verified by literature, which has a
high practical value.
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