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The relationship between the thermodynamic and com-
putational properties of physical systems has been a
major theoretical interest since at least the 19th century.
It has also become of increasing practical importance over
the last half-century as the energetic cost of digital devices
has exploded. Importantly, real-world computers obey
multiple physical constraints on how they work, which
affects their thermodynamic properties. Moreover, many
of these constraints apply to both naturally occurring
computers, like brains or Eukaryotic cells, and digital
systems. Most obviously, all such systems must finish
their computation quickly, using as few degrees of free-
dom as possible. This means that they operate far from
thermal equilibrium. Furthermore, many computers, both
digital and biological, are modular, hierarchical systems
with strong constraints on the connectivity among their
subsystems. Yet another example is that to simplify their
design, digital computers are required to be periodic
processes governed by a global clock. None of these
constraints were considered in 20th-century analyses
of the thermodynamics of computation. The new field
of stochastic thermodynamics provides formal tools for
analyzing systems subject to all of these constraints. We
argue here that these tools may help us understand at
a far deeper level just how the fundamental thermody-
namic properties of physical systems are related to the
computation they perform.
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Information technology accounted for roughly 6 to 10%
of world electricity usage in 2018, resulting in a greater
carbon footprint than all civil aviation (1, 2). This demand for
computational power is only expected to grow, increasing
energy costs to society and the environment. Unsurpris-
ingly, reducing energy requirements has become a central
concern for the engineering of computers (3).

How does all of this energy usage depend on the details
of how the computation is physically implemented, as
well as the computational problem itself? The relationship
between the unavoidable energetic costs of carrying out a
computation in a physical system and the details of that
computation is a deep issue that has been of concern in the
physics community for close to two centuries (4, 5). For a
long time, it was thought that a lower limit on this cost is
given by the original version of Landauer’s bound (6). This
stated that the “thermodynamic cost” of erasing a bit in a

physical system was always kBT ln 2, where kB is Boltzmann’s
constant, and T is the temperature of the system.

The modern, fully formal version of this bound applies
to any physical system that evolves for a fixed period while
in contact with one or more thermal reservoirs. Like all of
statistical physics, this modern version of the bound involves
the change in the probability distribution over the states
of a physical system during its evolution. Specifically, the
bound says that the sum over the reservoirs, of the net
energy flow of energy to those reservoirs divided by that
reservoir’s temperature, is lower-bounded by the drop in
Shannon entropy of the system.

Unfortunately, Landauer’s bound is almost useless for
analyzing real-world computers. The problem is that the
bound is only saturated when there are no constraints
on the processes that can be used to implement the
computation, i.e. when we can consider any process what-
soever to achieve the desired change in Shannon entropy.
However, real-world computers are almost all subject to
constraints on the processes they can use. Such constraints
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invariably mean that the process must have nonzero “irre-
versible entropy production (EP),” which is an energetic cost
over and above the cost demanded by Landauer’s bound.

For example, almost all real-world computations must
finish in some given, finite time. The thermodynamic speed
limit theorems (SLTs) provide nonzero lower bounds on the
EP, which increases as the required time shrinks. Further-
more, almost all digital computers run in a periodic process,
where an electronic clock on the chip is used to ensure that
the exact same process is used to implement each iteration
of any desired computation. However, as described below,
any periodic process has a nonzero EP. Finally, consider
two separate bits that are erased in parallel. Each such
bit eraser, considered by itself, achieves Landauer’s bound.
However, suppose that the initial states of the bits are
statistically coupled. In this case, even though each bit-
eraser considered by itself is thermodynamically reversible,
the joint system of the two bits is not thermodynamically
reversible. The map between a computer’s design features
and performance is shown in Fig. 1.

The general theory underlying these examples is a set of
revolutionary recent advances in nonequilibrium statistical
physics, often called stochastic thermodynamics (7–10).
This exploding field provides precisely the tools required
to analyze the thermodynamics of far-from-equilibrium
systems—like computers. The implications of stochastic
thermodynamics for running computers are just starting to
be explored.

These extra unavoidable costs mean Landauer’s bound
is far below the actual energy costs of computers.* This
has been verified in numerous investigations of detailed

Fig. 1. The mapping between the design features of a computer and its
performance when computing a function is mediated by its resource costs.

*Indeed if one considers a physical system that performs the computation in a nonequi-
librium steady state, typically ΔS ≈ 0, in which case Landauer’s bound is zero.

physical models of computers, like complimentary metal-
oxide semiconductor (CMOS)-based electronic circuits (11,
12), as well as biological systems like brains (13). These
investigations also reveal deep relationships between the
thermodynamics of different kinds of physical systems that
we characterize as “performing computation.” For example,
ribosomes perform simple decoding computations at an
energy cost within an order of magnitude of Landauer’s
bound (14). In contrast, typical artificial computers can only
reach within multiple orders of magnitude of Landauer’s
bound (15).

Are there fundamental reasons for the yawning gap
between the energetic efficiency of the computers we build
and those found in nature? If so, can they be at least partially
circumvented? Why do even biological computers require so
much more energy than the minimum given by Landauer’s
bound, in light of the fact that energy use is one of the most
important fitness costs in biological evolution?

We argue below that the time is ripe to use stochastic
thermodynamics to investigate the relationship between
i) the energy usage of physical computational systems, ii)
their other performance metrics [e.g., their “space” and
“time” complexity, in the sense of those terms investigated
in computer science (CS) theory], and iii) constraints on
the allowed physical processes in those computers. Such
investigations can potentially generate breakthroughs in
the design of artificial computers that expend less energy.
They may also reveal insights into the relationship between
artificial and biological computers.

For experts in stochastic thermodynamics, these investi-
gations provide new kinds of dynamical systems to analyze
(namely, those that implement computational machines).
For CS theorists, they provide new kinds of resource costs
to analyze (namely, those grounded in statistical physics).
For scientists as a whole community, they may provide
important new insights into physical systems of many types.

1. Background

The term “computation” is semiformally used in many
fields (16–19). It is also sometimes called “information pro-
cessing” in this literature. The common thread uniting the
various approaches is that a physical system is “computing”
if its dynamics modifies the distribution over the variables of
the system, with some subset of those variables identified
as “information-bearing degrees of freedom (IBDF).” [Some-
times certain subsets of these IBDF are referred to as input,
output, or temporary data variables (6, 20).]

Unfortunately, neither the term “information processing”
nor the term “computation” is ever defined in this literature
in a way that is both formal and broadly applicable. More
precisely, there is no consensus on how to define precisely
what computation an arbitrary given dynamic system does.†
At present, the only universal agreement of how to define
“computation” is that whatever else computation is, it
includes the digital systems analyzed in CS theory as special
cases. In addition, these are the computational systems
that have received the most attention in the stochastic

†See ref. 21 and references therein for previous literature on this problem. A soon-to-be-
published focus issue on this problem is in ref. 22.
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thermodynamics community. In light of this, we focus on the
digital systems considered in CS theory in this perspective.‡

To begin, in the next subsection, we present some
relevant background on CS theory. After that, we present
some background on stochastic thermodynamics.

1.1. Theoretical Computer Science. Much of theoretical CS
is concerned with the minimal resources needed to solve
computational problems with some abstractly defined
computational machine (23–25). Each such computational
machine is a generic model of any entity that computes
(transforms an input into an output). There is a set of one
or more natural “resource costs” for all commonly studied
computational machines. One of the core concerns of CS
theory is how the minimal resource costs required to solve
a given computational problem on a given computational
machine depend on the size of the instance of the problem.
In the rest of this subsection, we elaborate on this high-level
description of CS theory, underscoring why it is of central
importance in designing real computers.

An important example of a computational machine is the
Turing machine (TM) (26). This is an abstract, nonphysical
device that scans back and forth over one or more “tapes”
containing infinite sequences of bits. The input to the TM
(e.g., a list of integers to be sorted) specifies the initial string
on a tape. The output (e.g., the sorted version of that list
of integers) is given by the bit string on a tape of the TM
when the TM enters a special “halt state.” TMs have a natural
notion of a resource cost involving “time” (the number of
operations the TM runs before completing a computation)
and a resource cost involving “space” (the number of tape
cells used by the TM to complete the computation).

Another frequently studied computational machine is a
Boolean circuit (24), which is a directed acyclic graph (DAG)
where each node implements a Boolean operation (a “gate”).
The full graph executes a Boolean function by mapping
the input bit string (written onto the bits at the roots of
the DAG) through the intermediate gates to an output bit
string (sequence of bits produced at the leaves of the DAG).
Natural resource costs for Boolean circuits include the total
number of gates and the maximal number of directed links
from any input node to any output node. These roughly
correspond to the time cost and space cost, respectively.

Another set of computational models is designed for
investigating distributed sets of interacting computers, e.g.,
multiple (perhaps very many) computers connected in a
network. Associated costs include the total number of
asynchronous messages sent among the computers and
the number of “rounds” of communication required by the
system.

In CS theory, a “computational problem” that a compu-
tational machine may be tasked with is defined as a set of
instances of that problem that must be solved. For example,
one of the most important computational problems is inte-
ger sorting (24). Each instance of this problem is specified
by a list of integers, and the associated solution is that set
of integers sorted into ascending order.

‡An important alternative interpretation of the term “computation” arises in signal
processing, which we can view as a type of analog computation. Very little is known
about the stochastic thermodynamics of such systems at present, though, so we do not
focus on them here.

A well-studied issue is how the worst-case number of
iterations required by a TM to sort a list of n integers scales
with n. In particular, the class P is the set of all computational
problems that can be solved using a TM that is guaranteed to
halt on an instance of size n “in polynomial time,” i.e., within
a number of iterations that is a polynomial function of n.
The class NP is instead the set of computational problems
such that a solution to the problem can be verified by a TM
in polynomial time. One of the deepest open questions in
mathematics and theoretical CS is whether P = NP.

The main reason for analyzing any of the resource costs
formalized in CS theory is that those costs approximate
important operating costs that arise when solving com-
putational problems on real physical systems like digital
computers. For example, consider a problem that requires
a TM to undergo a number of steps, which is roughly
exponential as a function of the input size. This problem will
also require exponentially many operations as a function of
the input size to run on a real, digital computer.§

Most previous investigations in CS theory have ignored a
primary resource cost of any real computer—the energy
it uses to run. One notable exception is an attempt to
formalize the energy complexity of algorithms (27). Unfor-
tunately, the study uses Landauer’s bound to guide their
investigations, which leads to the misunderstanding of the
thermodynamic costs of far-off equilibrium systems that
we discussed in the Introduction. In hindsight, this is not
surprising. Only recently have physicists had the framework
(stochastic thermodynamics) to calculate energy usage of
out-of-equilibrium systems, and so provide computer scien-
tists with the theoretical tools to explore how energy scales
with the size of a problem.

Note that computational complexity theory analyzes how
the resource costs of computational problems scale with
the size of the (instance of the) problem (24). Typically,
these analyses concern worst-case resource costs, mostly
due to mathematical tractability. However, other types
of costs, including “average-case complexity”, “derandom-
ization” or “hardness amplification” are also studied (24).
Most importantly, though, many real computation tasks
do not typically operate on worst-case inputs but rather
on a set of many different inputs with different occurring
frequencies. By calculating the average quantities over the
set of all possible inputs, we can more accurately estimate
the performance of an algorithm when repeatedly used to
perform a computation on many possible inputs.

Accordingly, all information theory considers systems
with stochastic inputs (28). Similarly, statistical physics in-
volves distributions, including stochastic thermodynamics.
This is illustrated in the following subsection.

1.2. Statistical Physics. Throughout the 20th century, the
thermodynamics of computation focused on questions of
whether an intelligent being could violate the second law
of thermodynamics through measurement and feedback
(4, 5) and erasure (6, 20) of single bits. Although modern ap-
proaches have resolved the paradoxes brought up by these
systems (29–31), they retain wide resonance throughout the

§It is well known in computational complexity theory that a TM with RAM can obtain at
most polynomial savings in time cost compared to a regular TM (23, 24).
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physics community and have remained a focus of investiga-
tion (32, 33), mostly due to mathematical tractability.

Statistical physics, which analyzes the behavior resulting
from large collections of components, offers a potential
pathway to widen the prior focus to more complex systems.
Most of the research in statistical physics through the
end of the 20th century considered systems modeled to
be at (a perhaps local) thermodynamic equilibrium. These
systems are either static, undergoing quasi-static evolution,
or undergoing some first-order perturbation around such
evolution, as, for example, they are in a local equilibrium
that evolves quasistatically (i.e., infinitely slowly). Thus, they
cannot complete a computation in finite time.

Accordingly, analyzing real computers requires extend-
ing equilibrium statistical physics to concern systems
with many nonhomogeneous degrees of freedom evolving
quickly while far from thermodynamic equilibrium. Over the
past two decades, stochastic thermodynamics, an important
development in the study of nonequilibrium systems, has
provided a framework for addressing this need in both
theoretical computer science and the physics of computa-
tion (7, 8).

Stochastic thermodynamics is the extension of ther-
modynamics which allows us to analyze heat, work, and
entropy at the level of individual trajectories generated in
a physical system that is evolving arbitrarily quickly while
arbitrarily far from thermal equilibrium (7). For a brief
introduction to stochastic thermodynamics, see ref. 8 and
see refs. 9 and 10 for textbook-length introductions. For a
physical system that is evolving while coupled to N thermal
reservoirs at temperatures Ti , the entropy production can
be expressed as

� = ΔS +
N∑
i=1

Qi
kBTi

. [1]

In this formula, ΔS is the change in entropy between the
probability distributions of the input and output states and
Qi is the heat flow out of the system to the heat reservoir
i. The second law of thermodynamics states that � ≥ 0, no
matter what physical process transpires.

Crucially for the analysis of computers, all of this holds
whether we consider an entire computer (e.g., a modern
digital computer) or subsystems of that computer (e.g.,
individual gates on a circuit, or individual circuits in a digital
computer). It also holds no matter how long the time interval
we are considering, e.g., a single cycle of a clock in a
synchronous computer, or the time for the computer to
complete an entire run of calculating the output given by
running an algorithm on an input.

To illustrate Eq. 1, consider a physical system performing
a computation task (e.g., sorting a list of inputs). Suppose
we define a probability distribution over possible inputs
and a particular algorithm for the task. For sorting, this
would be the joint distribution over input lists. With these
specifications, the joint distribution of input, intermediate,
and output variables is fixed, and so is the entropy change
ΔS. Applying the nonnegativity of EP to Eq. 1 gives the “gen-
eralized Landauer bound,” which states that total entropy
flow cannot be less than the entropy change

∑
i
Qi
kBTi
≥ −ΔS

Note, that the term ΔS in the generalized Landauer
bound can be quite small. Indeed, in many models of

biological computational systems like those that occur
inside cells, the system is in a steady state—so there is
no change in entropy in time. Similarly, consider a clocked,
Boolean circuit of depth L that is run repeatedly, with IID
inputs. In both cases, ΔS = 0.

However, even when the change in entropy is strictly
positive, the generalized Landauer bound is a tiny fraction
of the heat generated by running the process in real-world
computers. This is due to the fact that the factors of kBTi
in Eq. 1 are so small compared to the heat flow generated
in real-world computers. Moreover,the difference between
the heat flow and the change in entropy of a computer
depends on the details of the physical system implementing
that computer. [For example, they depend on whether a
given sorting algorithm is implemented on a system that
uses CMOS technology (34) or something else.] Since Eq. 1
is an exact equality, the total EP will vary with the details of
the physical process.

Consequently, relying solely on the Landauer bound
misses the effect of the large, EP in real computations,
which often dominates the total thermodynamic cost. Even
biological computers that are far more energetically efficient
than our current artificial ones (14, 35) only come within
an order of magnitude or two of the generalized Landauer
bound. So, Eq. 1 tells us that almost all the dissipated heat
(energy cost) of actual computers comes from the EP.

As technology continues to improve, the minimum
achievable EP—subject to constraints on the materials in-
volved and other restrictions on the physical process—may
rapidly become the primary limitation on the energy costs
of real computers. However, it is now known that essentially
any constraint results in strictly positive EP (36, 37). In the
rest of this section, we discuss some important special
cases.

As a first example, one possible source of EP in com-
putation is the mismatch cost (38, 39). Write the initial
distribution over states of a system that minimizes EP
as q0.¶ We denote by �(q0) the EP corresponding to a
computational process starting with the distribution q0.
The EP �(p0) associated with the same process starting at
another distribution p0 can be expressed as (38)

�(p0) = �(q0) + D(p0||q0)− D(pf ||qf ), [2]

where pf and qf are the final distributions in the pro-
cess started at p0 and q0, respectively, and D(p||q) =∑

x p(x) ln p(x)
q(x) denotes the Kullback–Leibler (KL) divergence.

The difference D(p0||q0) − D(pf ||qf ) is called the mismatch
cost. Importantly, the formula for mismatch cost is very
general, applicable to classical systems, quantum systems,
and even systems undergoing non-Markovian dynamics.

Note that the difference between the initial and final KL
divergences is always nonnegative by the data processing
inequality for KL divergence. So even if the process is
thermodynamically reversible for some q0, the system
generates a positive EP when initialized at any other initial
distribution. We cannot optimize the system’s EP for all
possible p0. Therefore, if p0 =6 q0, EP must be positive.

¶Often, a machine’s intermediate variables are initialized (e.g., to 0) before processing
input, so the “initial distribution” refers to the probability distribution of input states. For
a TM about to compute, the head usually starts in an initialized state, with input tapes set
by an IID-sampled probability distribution over possible inputs.
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Mismatch cost is not the only source of EP. EP is also
unavoidable when there are constraints on the overall
dynamics. To illustrate these, in the rest of this paper we
will restrict attention to the case where the state space of
the system is digitized into a countable number of values,
e.g., due to coarse-graining or due to quantum mechanical
effects.# Given this restriction, then as described above,
under certain technical conditions, if a computation has
to be performed within a certain time interval � [here, �
describes physical (clock) time], the EP is lower bounded (41)
by the SLT:

�(�) ≥
(∑

x |p0(x)− p� (x)|
)2

2Atot(�) . [3]

The numerator is the square of the distance between
the initial (p0) and final (p� ) distributions. The term Atot(�) in
the denominator is the total activity, which is the average
number of physical state transitions|| that occur during
the computational process. Thus, the SLT states that the
minimum EP increases as the process speeds up.

Another contribution to the EP arises if we need statistical
precision in the dynamics of our computer. Fix some observ-
able, real-valued function of state transitions x′ → x that
is antisymmetric under the interchange of the two states.
The current J associated with such an “increment function”
for a full trajectory is the value of the observable summed
over all state transitions in that trajectory. Examples of
currents include the total transport of a molecular motor
and the total heat flow down a thermal gradient. As another
example, we can define the current through a transistor as
the difference between the input state and the output state.
In general, the more statistically precise the value of the
current, the more heat has to be dissipated. Intuitively, when
the precision of digital computation is higher, the switching
transistors require higher steepness of flanks and more
precise rectangular voltage curves, which require increased
energy consumption.

Write 〈J(t)〉 for the expected current over all trajectories
in the time period [0, t], and write Var(J(t)) for the variance
of J. The ratio of those two quantities is called the (statis-
tical) “precision” of the process. A quickly growing set of
thermodynamic uncertainty relations (TUR) (42–44) is being
derived that lower bound the statistical precision in terms of
the EP generated by the underlying system. The historically
first TUR applies in the special case that the system is in a
nonequilibrium steady state (NESS):

�(�) ≥ 2〈J(�)〉2
Var(J(�)) . [4]

This TUR says that the minimum EP in a computational
process increases as the precision of any current of the
process increases, assuming the system is in a NESS.

Many of these theoretical predictions of stochastic
thermodynamics have been experimentally validated; see,
#Extensions of all these results hold when considering the stochastic thermodynamics of
systems with uncountably infinite state spaces, e.g., those evolving under an overdamped
Langevin equation (40). However, for simplicity, we do not explicitly consider such physical
systems in this paper.
||Note that the physical state transitions are not necessarily related to the number of
transitions (or operations) in the CS sense. Even in the case of a single-bit erasure, when
we transform the initial uniform distribution to the distribution where p(0) = 1, the system
encoding the bit can randomly jump back and forth between the states 0 and 1. The total
activity describes the average number of these random jumps per unit of time.

e.g., refs. 45–47. In addition, important generalizations of
these results have been recently found, including extended
versions of the TURs (48–50), and stronger SLTs (51–54).
Other results of stochastic thermodynamics promising for
the thermodynamics of computers include the fluctuation
theorems (55–58), the kinetic uncertainty relations (59), and
the thermodynamic correlation inequality (60).

2. Integrating Computer Science and
Statistical Physics

2.1. Previous Work. Before discussing how to integrate CS
theory and statistical physics, we comment on earlier work.
As described in the previous section, real-world comput-
ers operate far from equilibrium and cannot be analyzed
with equilibrium statistical physics. Before the advent of
stochastic thermodynamics, physicists were forced to try
to do precisely this since the primary tool they had was
the equilibrium statistical physics. This resulted in some
confusion in the literature.

In particular, there was some confusion in earlier lit-
erature about the relation between logical (ir)reversibility
and thermodynamic (ir)reversibility. The difference is that
logical reversibility is about the dynamics over a state space
(specifically, it must be injective). In contrast, thermody-
namic reversibility (i.e., zero EP) is about the associated
dynamics of distributions over that state space. These two
types of (ir)reversibility are, in fact, completely independent
properties of a physical process (29, 61).

A related confusion arose regarding the consideration of
computations performed in a logically reversible manner.
In that case, it is at least possible that a single run of the
computation can be performed without any thermodynamic
cost (e.g., refs. 27 and 62). However, the complete cycle of
computation, from generation of the input to computation
of the output back to generation of a new input, overwriting
the original input, results in unavoidable thermodynamic
costs. (See section XI in ref. 61.)

While real-world computers cannot be directly analyzed
as systems described by equilibrium statistical physics,
there has been some important work applying mathe-
matical techniques of equilibrium statistical physics to
investigate CS theory problems without considering the
underlying dynamics of a computer designed to solve those
problems. For example, a recent study (63) presents a
random language model, establishing the statistical physics
of generative grammars. Furthermore, statistical physics
increased attention to inference methods (see, e.g., ref. 64
for a recent review) and deep learning (65). Statistical physics
models, such as the Ising model or the hard-core lattice gas
model, have also permeated the design of Markov Chain
Monte Carlo algorithms in CS (66), and more recently have
been applied to swarm robotics systems (67).

Additionally, results from the statistical physics of disor-
dered systems can help us understand how the difficulty
of solving a randomly generated computational problem
depends on the distribution generating those problems (68).
Consider the example of a k-SAT (Boolean satisfiability)
problem, the example of a NP-complete problem. (69).
The goal of this problem is to determine whether there
is an assignment to a set of K Boolean variables that can
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simultaneously satisfy N Boolean clauses (logical OR of
K variables or their negations). Random instances of k-SAT
are typically easy for a broad range of values of � = N / K .
However, for a fixed k, existing algorithms for solving k-SAT
display a discontinuous phase transition in their efficiency
as � increases (25).

Note, though, that these are all applications of statistical
physics techniques to computer science. They do not ad-
dress the issue of the thermodynamic costs associated with
physically implementing that computation. In the rest of this
section, we review some preliminary work on precisely this
issue, and discuss how the unavoidable constraints faced
by real computers contribute to their energy costs.

2.2. Stochastic Thermodynamics of Detailed Models of Artifi-
cial Computers. Recently, researchers have started to use
stochastic thermodynamics to study concrete models of
circuits. These studies analyze the behavior of small, linear
circuits whose operational voltages are low enough that
thermal fluctuations affect their behavior. Early theoretical
endeavors used stochastic thermodynamics to characterize
the fluctuations in the injected and dissipated energies of
resistors (70), nanoscopic circuits (71), and generic electrical
conductors (72). Other recent work has analyzed more
complex, time-dependent RLC circuits (73). There has also
been experimental work on information engines (74) con-
structed with single-electron circuits (quantum dots, tunnel
junctions, etc.) (75, 76) as well as physical implementations
of Maxwell’s demon (77) and the Szilard engine (78).

In the past few years, in light of rapidly shrinking tran-
sistor size, researchers have also started to use stochastic
thermodynamics to study the effect of noise in nonlinear
electronic circuits, such as CMOS technology (11, 12), in
which each gate operates in its subthreshold regime. A
recent article (79) goes a step further and studies how
different thermodynamic uncertainty relations constrain
the efficiency of electronic devices as: an inverter, a memory,
and an oscillator. Stochastic thermodynamics has proven
useful enough in analyzing electronic circuits that it is start-
ing to be used in the engineering community to model and
optimize the operation of low-power electronic devices (80).

As electronic advances near the thermal fluctuation limit,
interest in stochastic computing has resurged. Current com-
puters, being deterministic, incur energy costs to prevent
thermal fluctuations from affecting logical states and com-
putations. However, many computational tasks actually use
stochasticity. In those cases, deterministic computers rely
on complicated algorithms to produce pseudorandom num-
bers. This situation is somewhat paradoxical, wasting energy
unnecessarily avoiding stochasticity in the first place only
to produce it artificially later. A more efficient alternative,
known as stochastic computing, controls intrinsic thermal
fluctuations instead of avoiding them to solve problems
requiring stochasticity. Such circuits employ probabilistic
bits (p-bits), which output 0 with a probability p and output
1 with a probability 1− p.

Some novel work has demonstrated the use of magnetic
tunnel junctions to create probabilistic bits (81–83). Inter-
estingly, (11) presented the design of a p-bit that uses only
conventional CMOS gates operating in the subthreshold
regime. Such a CMOS p-bit has not yet been built, but this

study shows how stochastic thermodynamics can be used
to analyze new computing paradigms that exploit, rather
than fight, thermal noise.

Apart from aplication in stochastic algorithms (e.g.,
Monte Carlo methods), the main advantage of stochastic
computing is that, by incorporating tunable p-bits into
conventional logic, many tasks can be efficiently formulated
as stochastic optimization problems that can be solved
by Gibbs sampling (85). This might allow us to solve a
broad set of optimization problems in a way that computes
both solutions and their associated uncertainties together
(82, 84).

2.3. Stochastic Thermodynamics of Abstract Artificial Com-
puters. The optimization of key performance metrics also
increases energy dissipation. For example, minimizing com-
putational noise (i.e., having high accuracy in the map from a
computation’s inputs to its outputs) is a central concern for
all computational systems. However, in general, reducing
such noise also increases energy dissipation.

As reviewed in Section 1.1, the study of computational
complexity aims to analyze computing costs with various
abstract computational machines. The simplest nontrivial
example is the deterministic finite automaton (DFA). DFAs
process input strings sequentially, updating a computa-
tional state within a finite state space according to the
previous state and the next input symbol.

Since the computational update of a DFA is the same
at each iteration, it is natural to assume that any physical
process implementing a DFA will also be the same at each
iteration. (In fact, there is always such periodicity of the
underlying physical process in any clocked, synchronous
implementation of a computational machine—precisely the
type of computer always used in modern digital systems.)
In ref. 86, a strictly positive lower bound was derived on
the total mismatch cost of running a DFA this way. The
reason for this bound is that the distribution of the system
at the start of each iteration, p0 from Eq. 2, evolves with
the computation, whereas q0 must remain constant; hence,
it is not identical. This phenomenon illustrates a general
law: Whenever any physical system repeats the exact same
underlying physical process on a system that is not at
(periodic) stationary state, each repetition of the process will
undoubtedly generate EP. This is true no matter what the
details of the physical process are (86, 87). This law applies
to all modern digital computers operating synchronously
and governed by an electronic clock.

Consider, for example, a DFA designed to recognize input
strings consisting of the letters a and b, with no more than
two b’s in a row. This case is investigated in ref. 86, where it
was found that the resultant per-iteration mismatch cost
has highly nontrivial iteration dependence—dependence
that has yet to be explained. Among their other findings,
the paper also showed how to split the regular languages
into two separate classes, defined by (lower bounds on) the
“mismatch cost complexity” of those languages.

Another recent study investigated properties of the total
EP (not just mismatch cost) generated by DFAs using the
inclusive Hamiltonian approach of stochastic thermody-
namics (88). The inclusive Hamiltonian approach allows the
system of interest to operate deterministically, as is the
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case for many computational complexity theory models.
In applying this approach, the authors showed that the
minimal DFA for a given language is also the DFA that incurs
the minimum EP of any DFA implementing that language.

Aside from Boolean circuits, almost all of CS theory
concerns computers that run for a number of iterations
that vary depending on the input to that computer. Un-
fortunately, stochastic thermodynamics typically concerns
physical processes that finish at fixed times; it does not apply
when the “stopping time” of the process varies.

However, recent research has extended stochastic ther-
modynamics to apply to processes with random stopping
times (89–92). Preliminary work is investigating the appli-
cation of these extensions of stochastic thermodynamics
to computational systems (87). As an example, we now
know that the irreversible entropy produced when a DFA
processes a randomly generated bit string obeys a modified
“fluctuation theorem” (8, 57, 58),∫

ds P(s)e−�(xxx(s))−�(xxx(s)) = 1. [5]

In this expression, P(s) is the distribution over input
strings to the DFA, and xxx(s) is the resultant sequence of
states of the DFA up to the time that it halts. The �(xxx)
term captures the effects of the constraints on the physical
process that implements the computation, e.g., that the
process be periodic (as it is in digital computers). This
explicitly demonstrates how considering such constraints
can lead to strengthened versions of the second law—and
that these strengthened versions are particularly relevant
for investigating computational systems.

In general, different algorithms can implement the same
computation, whether the algorithm is represented by a
pseudocode, as a program written in assembly code, or as a
computational machine from the Chomsky hierarchy [e.g.,
a finite-state automaton or push-down automaton (23)].

Moreover, the EP generated by physically implementing
an algorithm depends more than just on the details of that
algorithm. It also depends on the statistical coupling of the
states of the other logical variables at the time of the state
transition. Consequently, the constraints embodied in the
specific algorithm used to implement a given computation
contribute to the overall energy costs of implementing the
computation with that algorithm. These costs are higher
energy costs that arise due to the constraints on the pre-
cise physical system that implements that algorithm—see
refs. 61, 86, 88, and 93–95 for some preliminary work con-
cerning the stochastic thermodynamics of such algorithms.
Also, recent work has derived the minimal EP generated by
any communication systems—one of the major sources of
heat in modern, real-world computers that have multiple
components communicating with one another (96).

2.4. Stochastic Thermodynamics of Biological Computers. Just
as artificial systems consume energy to perform computa-
tions and process information, so do living systems (97).
Perhaps the first example of the connections between
biological information processing, energy consumption, and
irreversible dynamics was kinetic proofreading (98, 99). In
protein synthesis, the genetic code is read with an error
rate on the order of 104, an accuracy far higher than

can be achieved through any one-step reversible process.
However, by inputting energy to generate irreversible steps,
Hopfield showed that kinetic proofreading can achieve
the accuracy observed in nature (98), a theoretical pre-
diction that has been verified experimentally in multiple
settings (100–103).

Stochastic thermodynamics provides a consistent math-
ematical framework for investigating the energetic costs of
biological computations. At the foundation of all biological
processes are complex networks of chemical reactions.
Using stochastic thermodynamics, one can derive the en-
ergy expended and entropy produced by these chemical
reaction networks (104, 105).

At a larger scale, cells must perform computations
to respond to environmental cues. A simple example,
first considered by Berg and Purcell, is the ability of
cells to determine the concentration of chemicals in the
surrounding (106). It is now understood that learning
about the environment requires breaking detailed balance
and consuming energy, with greater learning requiring
greater energy consumption (107). After the information
is gathered, it must be transferred between spatially
separated components, which can consume a substantial
fraction of the cellular energy budget (108). The problems
of cellular sensing and information transfer have received
significant focus in the statistical mechanics of living
systems, revealing the thermodynamic costs of simple
biological computations (97, 109–111).

At an even larger scale, groups of cells (particularly in the
brain) must communicate to sense, represent, and process
information (112). To execute these functions, the human
brain consumes 20% of our metabolic output despite only
accounting for 2% of the body’s mass (13, 16, 113, 114). Un-
derstanding how groups of neurons represent and transmit
information while minimizing energy consumption remains
a foundational question in neuroscience (115). Recent ad-
vances in stochastic thermodynamics have revealed that
the irreversibility of neurons in the retina depends critically
on the visual stimulus (116). At the whole–brain level in
humans, recent studies have suggested that irreversibility
and broken detailed balance may reflect increases in cogni-
tive processing and consciousness (117, 118). Yet despite
this progress, research at the intersection of stochastic
thermodynamics and biology has only begun to scratch the
surface of an ultimate understanding of the energetic and
thermodynamic costs of computations in living systems.

3. Open Research Topics

As discussed in Section 1.1, to date, CS theory has consid-
ered the scaling properties of resource costs other than en-
ergy in various kinds of computational systems. Stochastic
thermodynamics opens the possibility of integrating the
energetic resource costs of computer systems in these
analyses. A fascinating—and potentially practically very
important—future research program is to investigate the
scaling properties of the trade-off between the energy cost
of computation and the kinds of computational resource
cost traditionally investigated in CS theory.

Concretely, at present, we have a very limited under-
standing of why thermodynamic costs in both natural and
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artificial computers are many orders of magnitude above
the minimum possible. The reason for this must lie in
the physical constraints that apply to how both artificial
and natural computers can operate. To start to investi-
gate those constraints, we need to consider the minimal
thermodynamic costs of broad kinds of physical computers
rather than the very abstract “computational machines”
considered in CS theory.

For example, computational systems can be modeled
as networks of distributed computational units that com-
municate with each other in limited ways. However, we
do not know how the properties of a network affect its
energy cost when used to implement a computation. To
help guide our investigation, we can consider the properties
that have been considered before in the literature. In partic-
ular, computer scientists (119, 120), neuroscientists (121),
network scientists (122, 123), political scientists (124),
roboticists (125), and biologists (126, 127) alike have re-
peatedly identified two key features of network topology
to the versatility, robustness, and efficiency of resource
utilization in large, distributed computational systems:
modularity and hierarchy.

Modularity refers to the property that a network can
be divided into a set of discontinuous modules, such that
each module’s intraconnectivity (number of edges among
its own nodes) is much higher than would be expected in a
random graph with the same number of edges. Conversely,
its interconnectivity (number of edges between its nodes
and the nodes of other modules) is much lower (122).

Hierarchy refers to the property that subsystems can
be grouped into partially ordered “levels,” as in a tree-
like network. Several definitions of the hierarchy have
been proposed in the literature, e.g., refs. 120 and 128.
Both modularity and hierarchy are posited to reduce the
cost of establishing long-range correlations in systems of
increasing size and complexity. It is known that modularity
in a system’s architecture increases EP (95, 129), even
though it is often useful for robustness (125, 126). However,
very little is known beyond this about how the detailed
architectural constraints—how each component’s state is
allowed to affect the dynamics of other components—
give rise to EP. The very structure of hierarchical, modular
systems leads to additional energy dissipation, e.g., due
to mismatch cost (86, 87). Currently, nothing is known
about how the benefits of such networks connecting
computer components balance with their thermodynamic
costs.

Another important open issue arises from the fact
that in both real-world artificial computers and real-world
biological computers, communication costs—transferring
information, from point to point, rather than transforming
information. Formally speaking, communication is a very
specific computational process, typically involving encoders
and decoders on both sides of a (noisy) communication
channel. Focusing on just the channel. that is a system
that consists of an “input” subsystem and an “output”
subsystem, and the computation is copying the state of
the input subsystem to that of the output subsystem.
Despite its major importance in real-world computers,
applying stochastic thermodynamics to analyze the EP of
communication systems—and potentially help design such
systems—is still in its infancy (96, 130).

Wireless sensor networks (WSNs) are distributed com-
puting systems that often have lightweight nodes made of
single-chip microcomputers. WSNs typically manage many
diverse sensors and communicate with one another via a
wireless link to collectively detect, analyze, summarize, or
react to phenomena that their sensors encounter. As they
are usually battery-powered or run off of limited scavenged
energy and share common RF channels, much of the effort
in WSN systems involves reducing consumed energy. So far,
these efforts have involved minimizing communications and
processor load, dynamic information routing, and deciding
what information to transmit from a given node (131).
Stochastic thermodynamics can help reduce energy costs
by modifying macroscopic parameters beyond the energy
flowing through single gates.

Stochastic thermodynamics also has the potential to
analyze certain nonconventional forms of computation. For
example, one potentially promising application of stochastic
thermodynamics to computation is in the growing sphere
of molecular computation, including DNA (17, 132) and
small molecule computation (133–135). In these forms of
computation, molecular concentrations are used to encode
information, and reactions among molecules are used to
compute. Given that molecules are distributed throughout a
solution, molecular computation is an inherently distributed
form of computation that has the potential to involve
many separate, parallel operations. Stochastic thermody-
namics has been previously applied to model reaction
networks (105), but much remains to be learned about the
thermodynamic limits of molecular computation and how
close they can be approached by selection of molecular
species and tuning of their reactions.

As another example, stochastic thermodynamics might
be a fruitful way to analyze alternative computational
systems, such as stochastic computing. Finally, a major
motivation of neuromorphic computing is reducing the
energetic costs of communication among the components
of a computer (136). However, to date, stochastic thermody-
namics has not been used to help design such computers.

4. Conclusion

The energetic cost of computation is a long-standing, deep
theoretical concern in fields ranging from statistical physics
to computer science and biology. It has also recently become
a major topic in the fight to reduce society’s energy costs.

Although CS theory has mostly focused on computational
resource costs regarding accuracy, time, and memory con-
sumption, energetic costs are another important cost that
has barely been considered in the CS theory community.
Until quite recently, most of the research regarding the
thermodynamics of computation has focused either on
systems in equilibrium or archetypal examples of small
systems, including only basic operations such as bit erasure.

In this paper, we argue that the recent results of
stochastic thermodynamics can provide a mathematical
framework for quantifying the energetic costs of realistic
(both artificial and biological) computational devices. This
may provide major benefits for the design of future artificial
computers. It may also provide important new insights into
the biological computers. Finally, by combining CS theory
with the theoretical tools of stochastic thermodynamics, we
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may uncover important new insights into the mathematical
nature of all physical systems that perform computation in
our universe.
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