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ABSTRACT
This study introduces OpenMAP-T1, a deep-learning-based method for rapid and accurate whole-brain parcellation in 
T1- weighted brain MRI, which aims to overcome the limitations of conventional normalization-to-atlas-based approaches 
and multi-atlas label-fusion (MALF) techniques. Brain image parcellation is a fundamental process in neuroscientific and 
clinical research, enabling a detailed analysis of specific cerebral regions. Normalization-to-atlas-based methods have been 
employed for this task, but they face limitations due to variations in brain morphology, especially in pathological conditions. 
The MALF techniques improved the accuracy of the image parcellation and robustness to variations in brain morphology, but 
at the cost of high computational demand that requires a lengthy processing time. OpenMAP-T1 integrates several convolu-
tional neural network models across six phases: preprocessing; cropping; skull-stripping; parcellation; hemisphere segmen-
tation; and final merging. This process involves standardizing MRI images, isolating the brain tissue, and parcellating it into 
280 anatomical structures that cover the whole brain, including detailed gray and white matter structures, while simplifying 
the parcellation processes and incorporating robust training to handle various scan types and conditions. The OpenMAP-T1 
was validated on the Johns Hopkins University atlas library and eight available open resources, including real-world clin-
ical images, and the demonstration of robustness across different datasets with variations in scanner types, magnetic field 
strengths, and image processing techniques, such as defacing. Compared with existing methods, OpenMAP-T1 significantly 
reduced the processing time per image from several hours to less than 90 s without compromising accuracy. It was particu-
larly effective in handling images with intensity inhomogeneity and varying head positions, conditions commonly seen in 
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clinical settings. The adaptability of OpenMAP-T1 to a wide range of MRI datasets and its robustness to various scan condi-
tions highlight its potential as a versatile tool in neuroimaging.

1   |   Introduction

Brain image parcellation constitutes a pivotal aspect of neuro-
scientific and clinical investigations, delineating a repertoire 
of parcels that correspond to biologically or functionally perti-
nent cerebral units. These defined parcels facilitate quantita-
tive analyses of neuroimaging data for each individual region 
(Aljabar et  al.  2009; Blesa et  al.  2016; Chapman et  al.  2010; 
Deshpande, Chang, and Oishi 2015; Fan et al. 2016; Gholipour 
et  al.  2014; Habas et  al.  2008; Mori et  al.  2013; Oishi, Chang, 
and Huang  2019; Oishi et  al.  2009, 2010, 2011, 2008; Otsuka 
et al. 2019; Qin et al. 2013; Tzourio-Mazoyer et al. 2002; Maldjian 
et al. 2003; Klein and Tourville 2012; Desikan et al. 2006). While 
numerous criteria exist for the parcellation of cerebral territo-
ries, the designation of regional labels predominantly relies on 
established anatomical or neurofunctional insights. Examples 
include macroanatomical landmarks, such as gyri and sulci 
(Oishi et  al.  2009, 2010, 2011; Tzourio-Mazoyer et  al.  2002; 
Desikan et  al.  2006; Destrieux et  al.  2010), cellular configura-
tions at the microscopic scale (Destrieux et al. 2010), the spatial 
distribution of transporters or receptors (Hansen et  al.  2022; 
Beliveau et al. 2017), and regions characterized by vascular ter-
ritories (Liu et al. 2023), as well as by functional or anatomical 
connectivity (Fan et  al.  2016; Gordon et  al.  2016; Doucet, Lee, 
and Frangou  2019; Yan et  al.  2023; Schaefer et  al.  2018; Joliot 
et al. 2015; Yeo et al. 2011).

The electronic version of brain atlases frequently serves as a 
reference for demarcating anatomical or functional territo-
ries. Such atlases typically comprise a standard brain image 
paired with an accompanying parcellation map, annotated 
with labels spanning the entirety of the cortex, white matter 
areas, or entire brain regions. Within atlas-based analyses, 
the inherent semantic information encapsulated within the 
parcellation map is transposed onto the target brain image 
for subsequent image quantification. Diverse atlas types have 
been formulated and employed for brain image parcellation 
(see Oishi et  al.  2009; Tzourio-Mazoyer et  al.  2002; Klein 
and Tourville  2012; Desikan et  al.  2006 for details). Image 
transformation techniques enable the adjustment of these 
knowledge-informed parcels from the atlas to conform to 
the specificities of the target brain. Thus, the atlas undergoes 
mathematical transformation (“warping” or “deformation”) to 
be congruent with the morphological attributes of the target 
brain, thereby generating a parcellation map in harmony with 
the target's morphology. This technique boasts over two de-
cades of application. However, due to the pronounced individ-
ual variations in brain morphology, substantial discrepancies 
can sometimes be observed between the target and atlas brain 
structures. These mismatches make precise atlas-to-target 
transformations challenging (Oishi, Chang, and Huang 2019; 
Djamanakova et al. 2013). Notably, these transformation errors 
are exacerbated when addressing neuroimages of brains with 
pathological atrophy, lesions that exhibit signal alterations, 
such as ischemic or hemorrhagic lesions, or mass lesions 

(Dolz, Massoptier, and Vermandel 2015). Consequently, it has 
become clear that relying solely on a single brain atlas for accu-
rate parcellation is not viable. To adeptly segment an array of 
brains, and encompass those that are pathologically affected, 
the multi-atlas label-fusion (MALF) techniques (Sabuncu 
et  al.  2010; Wang et  al.  2013; Collins and Pruessner  2010; 
Asman, Dagley, and Landman  2014; Wu et  al.  2014, 2015; 
Asman et al. 2015; Mori et al. 2016) have garnered significant 
traction since the 2010s.

In the MALF approach, typically 10–30 atlases are curated and 
subsequently transformed to the target brain. These atlases are 
carefully chosen to encompass a diverse range of morphologi-
cal features, ensuring accommodation for inter-individual vari-
ations in cerebral morphology. This leads to the generation of 
as many parcellation maps as the number of atlases employed 
as intermediate products, each reflecting subtle differences at-
tributable to the unique characteristics of its corresponding 
atlas. Leveraging these multiple parcellation outputs, a series of 
mathematical techniques, termed “label fusion,” are employed 
to integrate and obtain a final optimal parcellation map for the 
target brain (Wang et al. 2013). This resultant map showcases 
superior accuracy compared with one obtained from a single 
atlas (Collins and Pruessner  2010). Consequently, the MALF 
approach has found significant utility, especially in the precise 
parcellation of brains affected by neurodegenerative disorders 
that cause atrophy (Wu et al. 2015).

Given the proficiency of the MALF approach in accurately seg-
menting a diverse range of pathologically affected brains, its 
application to the quantification of clinical imaging datasets 
that comprise various diseases seems an intuitive progression. 
For instance, parcellating clinical brain magnetic resonance 
imaging (MRI) data can yield volumetric insights into distinct 
cerebral regions, facilitating diagnosis, analogous image re-
trieval, and autonomous detection of characteristics that devi-
ate from normative brain parameters. Nonetheless, the MALF 
techniques are characteristically computationally intensive, 
necessitating intricate mathematical transformations across 
multiple atlases, followed by label fusion. Consider MRICloud 
(Mori et  al.  2016), a freely accessible cloud-based computa-
tional tool renowned for its precise brain MRI parcellation with 
multi-atlas label fusion. Despite the use of a cluster computing 
infrastructure environment, optimized for parallel processing, 
the use of the computationally intensive advanced large de-
formation diffeomorphic metric mapping for image transfor-
mation results in several hours of processing time for a single 
image. This computational burden poses significant challenges 
in big-data analysis or clinical scenarios. For instance, in clin-
ical settings where multiple brain MRI scans necessitate im-
mediate segmentation for diagnostic assistance or when a large 
repository of brain images requires quantification, expedited 
processing is imperative. Under such circumstances, the cur-
rent MALF techniques have proven overly resource-intensive 
and time-prohibitive.
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In recent years, there has been a growing inclination to use 
deep-learning models to expedite the parcellation of brain 
MRI while simultaneously enhancing accuracy (Li et al. 2017; 
Rajchl et al. 2018; Huo et al. 2019; Coupe et al. 2020; Henschel 
et  al.  2020; Thyreau and Taki  2020; Lim et  al.  2022; Yu 
et  al.  2023; Billot et  al.  2023). For instance, ParcelCortex 
(Thyreau and Taki  2020) employs convolutional neural net-
works (CNNs), while DeepParcellation (Lim et al. 2022) inte-
grates the Attention 3D U-Net for cortical segmentation based 
on the Desikan–Killiany–Tourville atlas parcellation derived 
from FreeSurfer (Fischl  2012). A salient advantage of deep-
learning lies in its efficiency: once a model is trained and val-
idated, it permits rapid parcellation. This proficiency renders 
it advantageous for processing extensive datasets, encompass-
ing both research-oriented and clinical imaging. Nonetheless, 
models capable of detailed segmentation across all cerebral 
regions, inclusive of white matter territories, and those offer-
ing results comparable to the sophisticated MALF method, 
remain underdeveloped.

In the present study, we introduce a deep-learning-based, rapid, 
whole-brain parcellation method. While existing deep-learning 
models focus on the segmentation and parcellation of gray mat-
ter, we aimed to develop a model capable of finely parcellating 
both gray and white matter structures. This is essential due to 
advancements in neuroscience that necessitate the mapping of 
white matter to better identify neural pathways and the func-
tions of white matter in conjunction with gray matter structures 
(Nowinski 2021; Mori, Oishi, and Faria 2009; Nozais et al. 2023). 
Consequently, we selected the JHU-MNI atlas, which provides 
detailed anatomical definitions of both gray and white mat-
ter structures on anatomical MRI. Our aim was to construct 
a model that not only mirrors the accuracy of the multi-atlas 
approach, but also accommodates images from diverse reposi-
tories and facilitates parcellation within mere minutes on a stan-
dard desktop configuration. The model has been named “Open 
resource for Multiple Anatomical structure Parcellation for T1-
weighted brain MRI (OpenMAP-T1)” and is accessible through 
the website (URL: https://​github.​com/​Oishi​Lab/​OpenM​AP-​T1). 
In addition, we have implemented the OpenMAP-T1 into the 
web-based image analysis platform, MRICloud (https://​brain​
gps.​mricl​oud.​org/​), which allows users without coding skills to 
easily utilize the functionalities of OpenMAP-T1.

2   |   Materials and Methods

2.1   |   Participants

We used public brain MRI datasets for the model training and 
evaluations: Alzheimer's Disease Neuroimaging Initiative 2 and 
3 (ADNI2/ADNI3) (Weiner et  al.  2010); Australian Imaging, 
Biomarkers and Lifestyle (AIBL) (Ellis et al. 2009, 2014); Calgary-
Campinas-359 (CC-359) (Souza et al. 2018); LONI Probabilistic 
Brain Atlas (LPBA40) (Shattuck et  al.  2008); Neurofeedback 
Skull-stripped (NFBS) (Puccio et  al.  2016); and Open Access 
Series of Imaging Studies 1 and 4 (OASIS1/OASIS4) (Marcus 
et al. 2007; Koenig et al. 2020). Table 1 presents descriptions of 
the public dataset used in this study. Although these datasets in-
clude multiple scans from single participants, only one MRI per 

participant was randomly selected to avoid potential bias toward 
specific individuals. In addition, the JHU multi-atlas library 
(Wu et al. 2016) comprises 3D-T1-weighted images paired with 
parcellation maps manually created by experts (Table 2). It was 
used as the ground truth (GT) of anatomical labeling to evaluate 
the accuracy of the automated parcellation by OpenMAP-T1.

2.1.1   |   Training Dataset

The OpenMAP-T1 used 350 Magnetization Prepared Rapid 
Acquisition Gradient Echo (MPRAGE) images from ADNI2 
datasets for the training. As recommended by the ADNI team, 
we included ADNI2 MPRAGE images (55.1–94.7 years) prepro-
cessed with Gradwarp, B1 nonuniformity, and N3 bias field cor-
rections. The ADNI (Weiner et al. 2010) was launched in 2003 
as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been 
to test whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer's disease (AD). For up-to-date information, 
see www.​adni-​info.​org. The ADNI study has evolved through 
several phases, with ADNI2 during 2011–2016.

2.1.2   |   Evaluation Dataset

To evaluate accuracy of the OpenMAP-T1 compared with the 
GT anatomical parcellation, we used the JHU multi-atlas li-
brary (Wu et al. 2016). The MRIs were acquired at the Kennedy 
Krieger Institute (KKI), utilizing a 3T Philips scanner. This 
dataset includes participants across three age ranges: adoles-
cents, 8–19 years; young adults, 22–50 years; and older adults, 
50–90 years.

To compare the parcellation maps obtained from OpenMAP-T1 
with those obtained from the existing MALF algorithm, we used 
535 cases from ADNI2 and seven other datasets (ADNI3, AIBL, 
CC359, LPBA40, NFBS, OASIS1, OASIS4) that were not used 
to train OpenMAP-T1. For OpenMAP-T1, these seven data-
sets consist of brain MRIs acquired from unknown imaging 
environments.

ADNI3 is a continuation of the ADNI2 study and was conducted 
from 2016 to 2022. Image preprocessing for ADNI2 MPRAGE 
images was not necessary for ADNI3 MPRAGE images, as inter-
nal corrections were applied. While some subjects from ADNI2 
are included in ADNI3, they were not included in the evaluation 
dataset to avoid data leakage. We included MPRAGE images 
(50.5–97.4 years) downloaded from the ADNI website.

The AIBL (Ellis et  al.  2009, 2014), also known as Australian 
ADNI, is a long-term research initiative that aims to understand 
the biomarkers and cognitive characteristics that determine the 
development of AD. The AIBL study commenced in 2006 and the 
methodology has been reported previously (Ellis et al. 2009). In 
our study, the original MPRAGE images (55.0–96.0 years) down-
loaded from the website (https://​aibl.​org.​au/​) were included.

https://github.com/OishiLab/OpenMAP-T1
https://braingps.mricloud.org/
https://braingps.mricloud.org/
http://www.adni-info.org
https://aibl.org.au/


4 of 24 Human Brain Mapping, 2024

T
A

B
L

E
 1

    
|    

P
ub

lic
 d

at
as

et
 u

se
d 

in
 o

ur
 s

tu
dy

: A
lz

he
im

er
's 

D
is

ea
se

 N
eu

ro
im

ag
in

g 
In

iti
at

iv
e 

2/
3 

(A
D

N
I2

/A
D

N
I3

), 
A

us
tr

al
ia

n 
Im

ag
in

g,
 B

io
m

ar
ke

rs
 a

nd
 L

ife
st

yl
e 

(A
IB

L)
, C

al
ga

ry
-C

am
pi

na
s-

35
9 

(C
C

35
9)

, 
LO

N
I P

ro
ba

bi
lis

tic
 B

ra
in

 A
tla

s (
LP

BA
40

), 
N

eu
ro

fe
ed

ba
ck

 S
ku

ll-
st

ri
pp

ed
 (N

FB
S)

 R
ep

os
ito

ry
, O

pe
n 

A
cc

es
s S

er
ie

s o
f I

m
ag

in
g 

St
ud

ie
s 1

/4
 (O

A
SI

S1
/O

A
SI

S4
).

D
at

as
et

T
ra

in
in

g
Te

st

A
D

N
I2

A
D

N
I2

A
D

N
I3

A
IB

L
C

C
35

9
L

PB
A

40
N

FB
S

O
A

SI
S1

O
A

SI
S4

Su
bj

ec
t

35
0

53
5

81
6

37
6

35
9

40
12

5
23

5
57

0

Sp
ac

in
g 

(m
m

)
0.

93
–1

.1
0

0.
93

–1
.3

0
1.

0
1.

0
0.

9–
1.

0
0.

78
–0

.8
6

1.
0

1.
0

0.
5–

1.
1

Sl
ic

e 
th

ic
kn

es
s (

m
m

)
1.

2
1.

2–
1.

4
1.

0–
1.

2
1.

2
1.

0–
1.

3
1.

5
1.

0
1.

25
0.

9–
1.

6

A
ge

M
ea

n
73

.7
74

.8
73

.1
74

.0
53

.4
29

.2
31

.0
72

.3
72

.5

St
d

7.
4

7.
6

8.
0

7.
1

7.
8

6.
3

6.
6

12
.0

9.
2

Se
x

Fe
m

al
e

16
0

24
7

48
1

19
8

18
3

20
77

15
6

30
3

M
al

e
19

0
28

8
38

5
17

8
17

6
20

48
79

26
7

M
an

uf
ac

tu
re

r
G

E
97

17
0

18
4

12
0

40

PH
IL

IP
S

65
89

12
3

11
9

SI
EM

EN
S

18
8

27
6

50
9

37
6

12
0

12
5

23
5

57
0

Fi
el

d 
st

re
ng

th
1.

5T
30

11
0

10
2

17
9

40
23

5
29

3.
0T

32
0

42
5

81
6

27
4

18
0

12
5

54
1

D
ia

gn
os

is
C

N
12

2
22

9
26

1
26

8
35

9
40

12
5

13
5

R
ea

l-W
or

ld
 M

R
I

M
C

I
19

6
13

6
46

3
64

A
D

32
17

0
92

44
10

0

N
ot

e:
 O

A
SI

S4
 c

on
si

st
s o

f c
lin

ic
al

 M
R

Is
 w

ith
 v

ar
io

us
 d

is
ea

se
s a

nd
 c

on
di

tio
ns

. O
pe

nM
A

P-
T1

 w
as

 tr
ai

ne
d 

us
in

g 
on

ly
 3

50
 c

as
es

 in
 A

D
N

I2
. O

ne
 M

R
I p

er
 su

bj
ec

t w
as

 ra
nd

om
ly

 se
le

ct
ed

 to
 a

vo
id

 p
ot

en
tia

l b
ia

s.
A

bb
re

vi
at

io
ns

: A
D

, A
lz

he
im

er
's 

di
se

as
e;

 C
N

, c
og

ni
tiv

el
y 

un
im

pa
ir

ed
 o

ld
er

 p
eo

pl
e;

 M
C

I, 
m

ild
 c

og
ni

tiv
e 

im
pa

ir
m

en
t.



5 of 24

The CC359 (Souza et al. 2018) dataset is an open, multi-vendor, 
multi-field-strength brain MRI dataset. It is composed of 359 
MRIs of healthy adults acquired on scanners from three vendors 
(Siemens, Philips, and General Electric, GE) at both 1.5T and 
3T to evaluate the impact of scanner vendor and magnetic field 
strength on skull-stripping. In our study, we used MPRAGE im-
ages of Siemens and Philips and 3D spoiled gradient echo se-
quences (SPGR) (29.0–80.0 years) on the GE, downloaded from 
the website (https://​www.​ccdat​aset.​com/​download).

The LPBA40 (Shattuck et al. 2008) is a set of brain MRIs of 40 
healthy young adults scanned on a single 1.5T GE scanner. In 
our study, we used the 3D SPGR images (19.3–39.5 years) down-
loaded from the website (https://​www.​loni.​usc.​edu/​resea​rch/​
atlas_​downl​oads).

The NFBS (Puccio et  al.  2016) dataset is a repository of brain 
MRIs of 125 individuals, including 66 who were diagnosed with 
a wide range of psychiatric disorders, scanned on a single 3T 
Siemens scanner. In our study, we used MPRAGE images (21.0–
45.0) downloaded from the website (http://​prepr​ocess​ed-​conne​
ctome​s-​proje​ct.​org/​NFB_​skull​strip​ped/​).

The OASIS (Marcus et al. 2007; Koenig et al. 2020) is a brain MRI 
dataset that includes multiple releases, such as OASIS-1, OASIS-2, 
OASIS-3, and OASIS-4, which provide cross-sectional and longi-
tudinal MRI data for normal aging and AD. The subjects of the 
OASIS1 were selected from a larger database of individuals who 
had participated in MRI studies at Washington University. OASIS4 
is a Clinical Cohort and was acquired at the Memory Diagnostic 
Center. All subjects in OASIS4 underwent a clinical assessment 

TABLE 2    |    JHU multi-atlas library used in this study. All images in this dataset were accompanied by a manual parcellation map of 280 anatomical 
regions.

Group

Test

Adolescents Young adults Older adults

Age (years) 8–19 22–50 50–90

Number of subjects 37 26 23

Spacing (mm) 1 1 1

Slice thickness (mm) 1 1 1

Sex Female 14 16 15

Male 23 10 8

Manufacturer PHILIPS

Field strength 3T

Diagnosis CN 37 26 17

AD 6

Note: These images were used only for evaluation of the OpenMAP-T1 (i.e., same as test columns in Table 1).

FIGURE 1    |    Overview of the open resource for multiple anatomical structure parcellation for T1-weighted brain MRIs (OpenMAP-T1) consisting 
of the preprocessing, cropping phase, skull-stripping phase, parcellation phase, and hemisphere phase.

https://www.ccdataset.com/download
https://www.loni.usc.edu/research/atlas_downloads
https://www.loni.usc.edu/research/atlas_downloads
http://preprocessed-connectomes-project.org/NFB_skullstripped/
http://preprocessed-connectomes-project.org/NFB_skullstripped/
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conducted by experienced clinicians. The 570 subjects we selected 
included 16 different diagnostic labels. In our study, we used 
MPRAGE images (OASIS1: 33.0–96.0, OASIS4: 37.0–94.0) down-
loaded from the website (https://​www.​oasis​-​brains.​org/​).

2.2   |   Anatomical Labeling for Training 
and Evaluation

2.2.1   |   The JHU Multi-Atlas Library

The JHU multi-atlas library includes 87 atlases with subject 
ages ranging from 8 to 90 years. The parcellation was performed 
manually according to the anatomical definition of the JHU-
MNI atlas (Oishi et  al.  2009), which includes 280 anatomical 
regions covering the entire brain, as detailed in (Wu et al. 2016) 
and listed in Supporting information: Table A.

2.2.2   |   MALF

Since we aim to develop a deep-learning model capable of 
achieving parcellation accuracy comparable with an existing 
MALF algorithm, known for being one of the most accurate 
methods for image parcellation, we utilized the MALF algo-
rithm implemented in MRICloud (www.​MRICl​oud.​org) (Mori 
et al. 2016) to create anatomical labels for training and testing 
the OpenMAP-T1 model. This MALF algorithm parcellates the 
entire brain into 280 regions defined by the JHU-MNI atlas by 
registering multiple atlases to the target brain, followed by label 
fusion.

We applied this MALF algorithm to all images in the public 
brain MRI dataset shown in Table  1. The OpenMAP-T1 was 
trained using 350 cases of ADNI2 labeled by this MALF al-
gorithm. Details of the labels used to train OpenMAP-T1 are 
shown in Supporting information: Figure A. The remaining 
images (i.e., Test columns of Table  2) were used to compare 
the parcellation performance of OpenMAP-T1 and MALF. 
It should be noted that, in this paper, the term “MALF” will 
henceforth refer exclusively to the specific algorithm imple-
mented in MRICloud.

2.3   |   Model Design

The OpenMAP-T1 was designed to accept any T1-weighted im-
ages and output a corresponding parcellation map, in which 
gray matter, white matter, and cerebrospinal fluid areas are 
segmented and further parcellated into 280 anatomical regions 
based on the JHU-MNI atlas (Oishi et al. 2009).

Figure 1 shows an overview of OpenMAP-T1. The OpenMAP-T1 
follows six phases: (1) preprocessing; (2) application of a crop-
ping network (CNet) consisting of the 2D U-Net (Ronneberger, 
Fischer, and Brox 2015) to crop the area surrounding the head 
in the input MRI; (3) application of a skull-stripping network 
(SSNet) consisting of the 2D U-Net to extract the brain; (4) ap-
plication of a parcellation network (PNet) consisting of the 2.5D 
U-Net (Avesta et  al.  2023) to parcellate the whole brain into 
141 anatomical areas; (5) application of a hemisphere network 

(HNet) consisting of 2D U-Net to segment the whole brain into 
the right and left hemisphere; and (6) separation of 139 regions 
of the 141 from the parcellation map created in phase (4) into 
right and left sides based on the hemisphere map from phase (5), 
with the exception of the 3rd and 4th ventricles. Consequently, 
OpenMAP-T1 produces a parcellation map consisting of 280 
neuroanatomically defined regions.

2.3.1   |   Preprocessing

N4 bias field correction (Tustison et al. 2010) was applied to re-
move intensity nonuniformity. In addition, the images were res-
caled to a resolution of 1 × 1 × 1 mm using trilinear interpolation, 
and their size was standardized to 256 × 256 × 256 through the 
application of zero padding. Pixels with intensity values below 
0 or above u + 2σ (where u is the mean and σ is the standard 
deviation) were identified as outliers and excluded. These pix-
els were then linearly normalized to a range between −1 and 
1. Following normalization, the excluded pixels were replaced 
with the minimum and maximum values within this normal-
ized range.

2.3.2   |   Cropping Phase

Nonbrain soft tissue, such as skin, fat, and muscle, potentially 
confound whole-brain parcellation. In particular, variations in 
the intensity of the neck tissue interferes with image segmen-
tation. In addition, the extent to which the field-of-view of the 
image covers the neck depends on the scan parameters, and, in 
some publicly available datasets (e.g., NFBS and OASIS1), a de-
facing algorithm was applied to the image for deidentification 
(Puccio et al. 2016; Marcus et al. 2007). To reduce the influence 
of neck tissue in image segmentation and parcellation, we set 
the cropping phase to eliminate the regions below the brain in 
a consistent way using the cropping network (CNet). Supporting 
information: Figure B shows an overview of the cropping phase 
and the detail of the CNet is shown in Section 2.3.6.

In the training of the CNet, the head region included in the par-
cellation map resulting from MALF was used (Supporting infor-
mation: Figure A), since the parcellation map covers the head 
above the foramen magnum, and does not include neck tissue 
below it. The CNet employed 2D segmentation on individual 
cross-sections of a 3D brain MRI, which were then vertically 
stacked for high-speed processing. By utilizing the 2D U-Net 
architecture, it was possible to train the model using numerous 
images from a single MRI. For example, with a 256 × 256 × 256 
matrix, 2D U-Net can utilize 256 slices from a single MRI. Note 
that the cropping phase was specifically designed to eliminate 
tissue located below the brain; hence, the axial section, which 
does not contain vertical information, was excluded from the 
ensemble. The output was a probability map for the head above 
the foramen magnum, and areas with a probability of 50% or 
higher were defined as head masks. A failure in the cropping 
phase considerably affects the processing performance of sub-
sequent phases. To prevent small gaps or missing areas in the 
output mask, a closing process was applied using a 3 × 3 × 3 fil-
ter. The dilation and erosion operations were performed three 
times each.

https://www.oasis-brains.org/
http://www.mricloud.org
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2.3.3   |   Skull-Stripping Phase

To further remove signals from extracranial soft tissues that 
remained after the initial cropping phase, we applied skull-
stripping to the image. Given the varying intensity ranges 
caused by different scanner types, scan sequences, and parame-
ters, it is essential to adjust the image contrast between gray and 
white matter, as well as cerebrospinal fluid. However, signals 
from extracranial soft tissues, such as fat, bone, and muscle, 
vary greatly and can disrupt the stable signal intensity profile 
of intracranial structures. This variation can adversely affect 
the performance of deep-learning models. By employing skull-
stripping with SSNet, we effectively removed irrelevant regions 
for the later stages of parcellation and hemisphere analysis. 
Supporting information: Figure C provides an overview of the 
skull-stripping phase and the detail of the SSNet is Section 2.3.6.

To develop SSNet, we trained the model using an intracranial 
mask obtained from MALF (Supporting information: Figure A). 
SSNet performs 2D segmentation on any cross-sectional view of 
a 3D brain MRI, stacking these sections vertically in a manner 
similar to that of CNet. We input three cross-sectional views—
sagittal, coronal, and axial—into a 2D-U-Net. The output was a 
label for the intracranial space, defined as an area with a proba-
bility of 50% or higher.

2.3.4   |   Parcellation Phase

In our current computing environment, training a full-size deep-
learning network for multi-class parcellation with 3D images, 
such as an entire brain, presented challenges. To optimize parcel-
lation performance without running graphics processing units 
(GPU) memory, we used two strategies: utilizing 2D slices, and 
merging the left and right brain regions. An overview of the par-
cellation phase can be seen in Supporting information: Figure D.

The PNet, designed for 2D segmentation of 3D brain MRI cross-
sections, stacks these sections vertically. It is important to note 
that the PNet functions as a 2.5D U-Net, incorporating a target 
slice and the slices directly above and below it, and combining 
these slices along the channel direction. In typical 2D U-Net 
applications for 3D images, vertical spatial information is lost. 
However, the 2.5D U-Net approach allows for the use of pseudo 
spatial information while reducing parameter count compared 
with a 3D U-Net. Consequently, for each cross-section, three 
image slices (256 × 256) are stacked in the depth direction, result-
ing in an input dimension of 256 × 256 × 3 for the PNet. The choice 
to stack three slices was based on the findings from preliminary 
experiments. Furthermore, of the 280 brain regions, those present 
in both hemispheres were merged as a single region (Supporting 
information: Figure A). Excluding the 3rd and 4th ventricles, 278 
regions exist in both the left and right hemispheres, as per the 
JHU-MNI atlas. During the parcellation phase, this merging re-
duces the target regions for PNet to 141, making the segmentation 
task effectively 142 classes, including the background.

Combining the left and right regions offers three benefits. First, it 
enables U-Net to train on larger regions, which is crucial as some 
of the 280 regions are smaller than 100 voxels and challenging 
to extract accurately. Merging hemispheres roughly doubles the 

volume of these regions, making them more tractable. Second, 
it reduces computational costs. In 2D or 2.5D U-Net, the dimen-
sion of the output parcellation map is height × width × channels 
(number of segmentation classes). By merging hemispheres, we 
halve the number of output channels. Third, it facilitates the use 
of sagittal sections. Normally, distinguishing left from right in 
sagittal sections is difficult, and can potentially degrade parcel-
lation performance. This issue is resolved by treating the hemi-
spheres as identical.

Unlike CNet and SSNet, PNet uses three models for each cross-
section (coronal, sagittal, axial), and the final prediction is based 
on the highest average prediction probability across these mod-
els. This approach was chosen to ensure consistent predictions in 
regions where parcellation is challenging, such as at the brain's 
edges. Training a single model with three cross-sections risks 
misidentifications, like mistaking a coronal for an axial section.

2.3.5   |   Hemisphere Phase

The segmentation task of HNet is a three-class classification: 
background; right hemisphere; and left hemisphere. This clas-
sification aims to determine the left and right borders of 139 of 
the 141 region labels generated in the parcellation phase. The 
hemisphere phase model was trained using hemisphere labels 
obtained from MALF. An overview of this phase is depicted in 
Supporting information: Figure E and the detail of the HNet is 
shown in Section 2.3.6.

HNet employs 2D segmentation on any cross-section, stacking 
these sections vertically. It specifically uses axial and coronal 
sections to output the hemisphere labels. A post-processing 
step involving dilation was implemented to separate each re-
gion generated during the parcellation phase to the right and 
left sides. The process is as follows: (1) Dilate only the left hemi-
sphere label. (2) Modify the overlapping parts of the dilated left 
hemisphere label with the right hemisphere label to be classified 
as the right side. (3) Dilate only the right hemisphere label. (4) 
Modify the overlapping parts of the dilated right hemisphere 
label with the left hemisphere label to be classified as the left 
side. This method allows the hemisphere labels to expand while 
minimally affecting the borders.

Finally, the parcellation map, which includes 280 region labels, 
was created by dividing the 141-region parcellation map into left 
and right hemispheres, using the hemisphere labels obtained 
from the hemisphere phase. It is important to note that, in the 
141-region parcellation map, the two regions without a left–
right distinction (3rd and 4th ventricles) were given priority over 
the hemisphere labels (i.e., the hemisphere label was ignored). 
Furthermore, if there was an overlap between the background 
from the parcellation phase and the hemisphere region from the 
hemisphere phase, the background was given precedence.

2.3.6   |   Structures of CNet, SSNet, PNet, and HNet 
and Their Training

The CNet, SSNet, PNet, and HNet each comprise 24 convolu-
tion layers based on 2D CNN (Figure 2). The main distinction 
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between them lies in the number of input and output channels. 
As detailed in Figure 2, CNet, SSNet, and HNet had one input 
channel, while PNet had three channels.

Data augmentation included a random rotation ranging from 
−20° to +20° and a random shift from −20 to +20 pixels, ap-
plied with an 80% probability. For the sagittal cross-sections, a 
broader random rotation range of −30° to +30° was used, based 
on the greater variation seen on existing MRI databases. To 
ensure robust performance for low signal-to-noise ratio (SNR) 
images, random Gaussian noise (mean 0, standard deviation 
0.25) was added with a 50% probability. These data augmenta-
tion techniques were applied consistently across all phases. MRI 
magnetic field inhomogeneity led to very low-frequency inten-
sity variations throughout the image. Consequently, a random 
bias field (Sudre, Cardoso, and Ourselin 2017) was introduced 
with a 50% probability during the cropping and skull-stripping 
phases. While N4 bias field correction was used in preprocess-
ing to address inhomogeneity as much as possible, this data aug-
mentation was implemented to enhance the model's robustness. 
To adapt the CNet for use with images that did not include the 
neck area below the foramen magna, commonly found in axial 
scans and defaced images, we augmented the training data by 
incorporating images with the neck area cropped out, at a proba-
bility of 20%. Similar to CNet, the training dataset for SSNet was 
augmented by including skull-stripped images as inputs with a 
20% probability. This approach enabled the model to more accu-
rately identify the location of the brain by reducing the impact 
of non-brain regions.

The CNet, SSNet, PNet, and HNet were mainly trained using 
two RTX 3090 GPU with 24GB memory for about 24 h. Also, 
Automatic Mixed Precision (AMP) was utilized to accelerate 
training. The number of epochs was set to 10,000, and the learn-
ing rate was set to decrease sequentially from 0.01 to 0.0001 by 

the Cosine Annealing Learning Rate Scheduler. The batch size 
was 64 on CNet, SSNet, and HNet, and 32 on PNet. For the loss 
functions, the CNet and SSNet used binary cross-entropy, while 
the PNet used a combination of cross-entropy and Dice loss. The 
HNet exclusively used cross-entropy.

2.4   |   Evaluation and Comparison of Parcellation 
Performance

We assessed the performance of OpenMAP-T1 in terms of agree-
ment with the GT manual labels, and in comparison to MALF, 
FreeSurfer, biological criteria, and processing time.

2.4.1   |   Agreement With GT Manual Labels

2.4.1.1   |   Parcellation Performance.  To evaluate the par-
cellation performance of OpenMAP-T1, two metrics were used: 
(1) an illustration of the spatial overlap between two parcellation 
maps generated by manual labels and OpenMAP-T1 derived by 
calculating the average Dice similarity coefficient (DSC); (2) 
a demonstration of the average 95th percentile Hausdorff dis-
tance (HD) between manual labels and OpenMAP-T1, which 
showed the quality of parcellation boundaries. DSC and HD 
metrics were calculated for cortical (ROI = 74), deep gray matter 
(ROI = 26), white matter (ROI = 116), and others (ROI = 64).

To assess the performance of the multi-phase U-Net model in-
troduced in OpenMAP-T1, we compared its ability to parcellate 
the brain with a patch-based 3D U-Net introduced in nnUNet 
(Isensee et  al.  2021). We chose the nnUNet as a comparison 
target since it is a commonly used tool for segmenting medical 
images and has been proven to demonstrate excellent perfor-
mance. Direct comparison with existing deep-learning-based 

FIGURE 2    |    Architecture of the U-Net (CNet, SSNet, PNet, and HNet). U-Net consists of nine blocks, and each block includes two convolutions, 
batch normalization, and a ReLU function. The CNet, SSNet, and HNet have one input channel, and only PNet has three channels, including the 
target slice and its upper and lower slices. Since the CNet and SSNet perform binary cross entropy, the output class is only one. Also, since the PNet 
and HNet use multi-class classification, the output is the number of regions plus one (background). Note that only PNet has three models (for coronal, 
sagittal, and axial sections).
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parcellation tools such as SLANT (Huo et  al.  2019) and 
FastSurfer (Henschel et al. 2020) was not possible because they 
use different anatomical definitions compared to OpenMAP-T1, 
which follows the JHU-MNI atlas definition. Both nnUNet and 
OpenMAP-T1 were trained on the same MRI images (350 cases 
in ADNI2) to parcellate the brain into 280 anatomical regions. 
We used an analysis of variance (ANOVA) for this comparative 
analysis. A p value less than 0.05 in two-sided tests was consid-
ered statistically significant.

2.4.1.2   |   Influence of Biological and Pathological Fac-
tors.  To apply the parcellation methods in large-scale clin-
ical research, they must be robust to differences in age, sex, 
and diagnosis. We conducted a comparative analysis to deter-
mine whether significant variations in the DSC were present 
due to biological factors such as age, sex, and diagnosis. We used 
an ANOVA for this analysis and considered a p value less than 
0.05, corrected for multiple comparisons using the Bonferroni 
method, in two-sided tests, as statistically significant.

2.4.1.3   |   Volumetric Similarity.  To investigate whether 
the regional volumes obtained from OpenMAP-T1 corresponded 
to the GT, three metrics were used:

1.	 Pearson and Spearman correlation coefficients were calcu-
lated to measure the correlation between volumes obtained 
from GT manual labels and OpenMAP-T1, indicating the 
consistency of the relationship between these predicted 
volumes.

2.	 A Bland–Altman plot (Altman and Bland 2018) to examine 
the agreement between regional volumes obtained from 
manual labels and OpenMAP-T1, which allowed the iden-
tification of any systematic bias between the measurements 
and outliers.

3.	 The correlation between the volume obtained from manual 
labels and the corresponding DSC was analyzed to show 
how the volume correlated with parcellation performance.

All these metrics were calculated for cortical (ROI = 74), deep 
gray matter (ROI = 26), white matter (ROI = 116), and others 
(ROI = 64).

2.4.2   |   Comparison With MALF

Our aim was to create a fast model that could accurately par-
cellate the whole brain, similar to MALF. To achieve this, we 
evaluated the agreement between the ROIs obtained from 
OpenMAP-T1 and that of MALF.

2.4.2.1   |   Parcellation Similarity.  An average DSC was 
used as a measure to evaluate the spatial overlap between ROIs 
obtained from MALF and OpenMAP-T1. DSC was calculated 
for cortical (ROI = 74), deep gray matter (ROI = 26), white matter 
(ROI = 116), and others (ROI = 64).

2.4.2.2   |   Influence of Technical, Biological, and Patho-
logical Factors.  We conducted an ANOVA to analyze how 
age, sex, scanner manufacturer, and field strength affected 
the agreement between MALF and OpenMAP-T1. We 

investigated whether these factors affected the DSC. A p value 
less than 0.05 in two-sided tests was considered statistically sig-
nificant. We did not perform corrections after multiple compar-
isons, as our aim was to identify factors that could potentially 
influence the agreements between the two methods.

2.4.2.3   |   Volumetric Similarity.  To determine whether 
the regional volumes obtained from OpenMAP-T1 were com-
parable to those obtained from MALF, three metrics were 
employed: the correlation between regional volumes; the Bland–
Altman plot; and the correlation between volumes obtained 
from MALF and the corresponding DSC. This comparison was 
carried out in a manner similar to the comparison with the GT 
manual labels.

2.4.3   |   Comparison With FreeSurfer

Various whole-brain parcellation tools have been developed to 
date. Among them, FreeSurfer (Version 7.4.1) (Fischl 2012) re-
mains the most commonly used tool. Comparing the ROIs ob-
tained from FreeSurfer and OpenMAP-T1 is essential to provide 
valuable insights for prospective users.

It is important to keep in mind that a direct comparison between 
the parcellation maps of FreeSurfer (based on the Desikan–
Killiany–Tourville, DKT) atlas (Klein and Tourville 2012) and 
OpenMAP-T1 (which uses the JHU-MNI atlas Oishi et al. 2009), 
is not feasible because their anatomical definitions differ.

Therefore, we focused on comparing three regions: the hippo-
campus; amygdala; and entorhinal cortex. These regions are 
notably associated with AD. Two metrics were used for this 
comparison:

1.	 The average recall, precision, and DSC for the parcellation 
maps of the hippocampus, amygdala, and entorhinal cortex 
produced by OpenMAP-T1 and FreeSurfer, considering the 
result of FreeSurfer as the GT;

2.	 A correlation analysis of the volumes for the hippocampus, 
amygdala, and entorhinal cortex, comparing the results 
from OpenMAP-T1 and FreeSurfer.

2.4.4   |   Biological Evaluation

We assessed the ability to distinguish between AD and cogni-
tively normal (CN) participants using region volumes obtained 
from FreeSurfer, MALF, or OpenMAP-T1. Our evaluation in-
volved 554 subjects from the ADNI3 dataset, and we used a 
three-fold cross-validation approach along with a logistic re-
gression model that employed the Least Absolute Shrinkage and 
Selection Operator (LASSO) for classification.

To ensure a fair comparison with FreeSurfer, we removed vol-
umetric information related to the white matter and the sul-
cus from MALF and OpenMAP-T1. In addition, we averaged 
the predicted volumes of regions obtained from FreeSurfer, 
MALF, and OpenMAP-T1 across their left and right counter-
parts to mitigate multicollinearity, resulting in 58 ROIs for 
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MALF and OpenMAP-T1 and 59 ROIs for FreeSurfer. In ad-
dition, we adjusted for brain size effects by normalizing each 
structure's volume to the total brain volume of each partici-
pant. These normalized volumes were then transformed into 
z-scores, based on the mean and standard deviation, and used 
as input variables for the model. The classification perfor-
mance was compared using the area under the curve (AUC) 
from receiver operating characteristic (ROC) curve analysis, 
with significant differences determined using DeLong's algo-
rithm (Sun and Xu 2014). A p value less than 0.05 in two-sided 
tests was considered statistically significant. We used the co-
efficients of the LASSO model to identify the top 20 anatomi-
cal areas crucial in the classification.

3   |   Results

3.1   |   Agreement With GT Manual Labels

3.1.1   |   Parcellation Performance

Table 3 and Figure 3 compare the parcellation results of 3D U-
Net (nnUNet) and OpenMAP-T1 when the manual labels of JHU 
multi-atlas library were set to GT. In DSC, OpenMAP-T1 sig-
nificantly outperformed 3D U-Net in the 8–19 age range for cor-
tical and white matter, and in HD, OpenMAP-T1 significantly 

outperformed 3D U-Net except in the 50–90 age range for deep 
gray matter. In addition, there were multiple outliers in DSC for 
3D U-Net compared to OpenMAP-T1.

3.1.2   |   Generalizability

Figures  3 and 4 illustrate the DSC and HD across age, sex, 
and diagnosis. The DSC value was greater than 0.7 in all con-
ditions. However, age was observed to affect the performance 
of OpenMAP-T1 significantly. The DSC tended to be lower in 
adolescents and young adults than in older adults. Similarly, 
the HD results also showed that OpenMAP-T1 performed best 
for images of older adults. The sex did not affect DSC and HD. 
The diagnosis significantly affected the DSC and HD values, 
with decreased performance for individuals with AD com-
pared with the CN group. Please refer to Supporting informa-
tion: Table B for further details on the ANOVA results of each 
biological effect.

3.1.3   |   Volumetric Analysis

The results of an analysis comparing manual labels 
to OpenMAP-T1 for region volumes are presented in 
Figure  5A. The analysis found a significant correlation with 

TABLE 3    |    Comparison of 3D U-Net (nnUNet) and OpenMAP-T1 in Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance 
(HD) for cortical (ROI = 74), deep gray matter (ROI = 26), white matter (ROI = 116), and others (ROI = 64).

Age Method DSC HD DSC HD

Cortical 
(ROI = 74)

8–19 3D U-Net (nnUNet) 0.689 (±0.080) 13.8 (±10.1) Deep gray 
matter 

(ROI = 26)

0.803 (±0.041) 3.7 (±3.1)

OpenMAP-T1 0.740 (±0.027) 3.8 (±0.5) 0.817 (±0.027) 1.6 (±0.2)

ANOVA p < 0.001 P < 0.001 p = 0.089 p < 0.001

22–50 3D U-Net (nnUNet) 0.737 (±0.085) 9.3 (±10.7) 0.845 (±0.034) 2.7 (±3.3)

OpenMAP-T1 0.767 (±0.027) 2.9 (±0.3) 0.855 (±0.010) 1.3 (±0.1)

ANOVA P = 0.089 p = 0.004 p = 0.145 p = 0.037

50–90 3D U-Net (nnUNet) 0.759 (±0.092) 4.8 (±3.7) 0.828 (±0.074) 1.6 (±0.4)

OpenMAP-T1 0.794 (±0.033) 2.7 (±0.4) 0.847 (±0.030) 1.4 (±0.2)

ANOVA p = 0.094 p = 0.009 p = 0.277 p = 0.051

White matter 
(116)

8–19 3D U-Net (nnUNet) 0.684 (±0.078) 11.2 (±7.9) Others 
(ROI = 64)

0.620 (±0.066) 10.5 (±6.4)

OpenMAP-T1 0.727 (±0.027) 3.6 (±0.7) 0.623 (±0.031) 5.2 (±0.7)

ANOVA p = 0.002 P < 0.001 P = 0.089 P < 0.001

22–50 3D U-Net (nnUNet) 0.736 (±0.075) 8.1 (±8.8) 0.689 (±0.046) 8.6 (±7.0)

OpenMAP-T1 0.760 (±0.022) 3.0 (±0.4) 0.701 (±0.032) 4.5 (±0.5)

ANOVA p = 0.114 p = 0.005 P = 0.145 P = 0.004

50–90 3D U-Net (nnUNet) 0.744 (±0.085) 4.6 (±2.8) 0.717 (±0.092) 5.8 (±2.5)

OpenMAP-T1 0.774 (±0.032) 2.9 (±0.5) 0.748 (±0.037) 4.0 (±0.9)

ANOVA p = 0.118 p = 0.006 P = 0.277 p = 0.003

Note: Bold type indicates scores where OpenMAP-T1 significantly outperformed 3D U-Net (nnUNet).
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correlation coefficients above 0.95 when using both the Pearson 
and Spearman methods. Figure  5B, which shows a Bland–
Altman plot, demonstrates excellent agreement between the 
manual labels and OpenMAP-T1, with most regions having er-
rors within the 2σ range. However, a few regions had disagree-
ments exceeding 2σ. Figure 5C demonstrates a weak correlation 
between the volumes of the regions and their DSC. Specifically, 
the correlation was found to be R = 0.138 for cortical, R = 0.649 
for deep gray matter, R = 0.379 for white matter, and R = 0.201 
for others. This weak correlation implies that smaller regions 
tend to have greater discrepancies between the measurements 
from manual labels and OpenMAP-T1 despite most regions hav-
ing a DSC higher than 0.7.

3.2   |   Comparison With MALF

3.2.1   |   Parcellation Performance

Figure  6 shows a comparative analysis of parcellation re-
sults between MALF and OpenMAP-T1. Despite significant 
variations in head appearance across different datasets, 
OpenMAP-T1 demonstrated satisfactory performance for 
all eight datasets. Notably, the median DSC exceeded 0.8 for 
every dataset, with the exception of LPBA40, which did not 
utilize MPRAGE imaging.

Figure 7 shows the average DSC obtained from comparing 280 
anatomical regions in the parcellation maps between MALF 
and OpenMAP-T1. These scores, exceeding 0.75 in all datasets, 
signified a considerable level of agreement between the two 
methods. However, it should be noted that some datasets dis-
played extreme outliers.

Figure  8 shows the image with the lowest average DSC of 
280 anatomical regions and its underlying causes. The causes 
were predominantly attributed to mislabeling by MALF, ex-
cept for one image from OASIS4. In the image from ADNI2, 
ROIs for gray and white matter in the cerebellum erroneously 
included neck areas. In the image from ADNI3, a portion of 
the occipital lobe was absent from the parcellation map. The 
image from AIBL was affected by extremely high-intensity 
noise, leading to significant mislabeling in the MALF results. 
In the image from CC359, the labels extended beyond the pa-
rietal lobe boundaries. In images from LPBA40 and OASIS1, 
parts of the cerebellum were missing in the parcellation map, 
a pattern also observed in other OASIS1 images. The image 
from NFBS had an issue with a missing section of the frontal 
lobe in its parcellation map. The exception was an image from 
OASIS4 with a large arachnoidal cyst that neither method suc-
cessfully labeled.

3.2.2   |   Influence of Biological and Technical Effects

Figure  9 shows the DSC across biological (age, sex, and di-
agnosis) and technological (scanner manufacturer and field 
strength) categories, for the ADNI3 and OASIS4 datasets. The 
results from other databases are provided Supporting infor-
mation: Table C. The red boxplots illustrate the influence of 
biological factors, while the blue boxplots represent the im-
pact of technological factors. The DSC exceeded 0.8 in all 
conditions. Age had a significant effect in ADNI2, where the 
DSC tended to decrease in individuals in their 90s. A similar 
trend was observed in OASIS4, although the effect was not 
statistically significant. No significant differences were noted 
based on sex in either database. Regarding the diagnosis, a 

FIGURE 3    |    Boxplots of 3D U-Net (nnUNet, blue) and OpenMAP-T1 (orange) in Dice similarity coefficient (DSC) and 95th percentile Hausdorff 
distance (HD) by age for cortical (ROI = 74), deep gray matter (ROI = 26), white matter (ROI = 116), and others (64). Black stars indicate significant 
differences between 3D U-Net (nnUNet) and OpenMAP-T1. Orange stars indicate significant differences due to age.
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significant effect was observed in OASIS4, where a diagnosis 
of VCI was associated with lower DSC compared to other diag-
noses (Supporting information: Table D); however, in ADNI3, 
the diagnosis did not significantly affect DSC. Among the 
scanner manufacturers, GE systems showed lower DSC com-
pared with those from Philips and Siemens. In terms of field 
strength, scanners operating at 1.5T had a lower DSC com-
pared with those operating at 3T.

3.2.3   |   Volumetric Similarity

Figure  10A shows a comparison of the region volumes pre-
dicted by MALF and OpenMAP-T1 for the ADNI3 and OASIS4 

databases. The correlation coefficients for these comparisons 
were above 0.99 using both the Pearson and Spearman methods, 
indicating an almost perfect correlation. The Bland–Altman 
plot of Figure 10B revealed that the majority of regions had er-
rors within the 2σ range, demonstrating excellent agreement 
between MALF and OpenMAP-T1. However, a few regions in 
both the ADNI3 and OASIS4 databases exhibited disagreements 
exceeding 2σ. Figure  10C shows a weak correlation between 
the volumes of the regions and their DSC (R = 0.660 in ADNI3, 
R = 0.707 in OASIS4), despite most regions having a DSC higher 
than 0.7. This implies that smaller regions tend to have greater 
discrepancies between the measurements from MALF and 
OpenMAP-T1. Additional results for other databases can be 
found Supporting information: Figures F–H.

FIGURE 4    |    Boxplots of Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD) with biological effects (sex, diagnosis) for 
cortical (ROI = 74), deep gray matter (ROI = 26), white matter (ROI = 116), and others (64).
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We noted that certain anatomical labels were absent from the pre-
dicted parcellation map produced by OpenMAP-T1, specifically in 
the right rostral anterior cingulate white matter and the bilateral 
fimbria. A similar trend of omitting these small structures was 

observed with MALF. MALF results were as follows: 1.26 mm3 
with 924 of 929 instances for the right rostral anterior cingulate 
white matter; 6.37 mm3 with 493 of 929 instances for the left fim-
bria; and 12.86 mm3 with 136 of 929 instances for the right fimbria.

FIGURE 5    |    (A) Correlation between the volumes obtained using manual labels and OpenMAP-T1. (B) Bland–Altman plot demonstrates the 
relationship between regional volumes obtained from manual labels and a volume difference between manual labels and OpenMAP-T1. The volume 
measurements were transformed using a base-2 logarithmic scale. (C) Relationship between the structural volume obtained from manual labels and 
the Dice similarity coefficient (DSC) between manual labels and OpenMAP-T1.



14 of 24 Human Brain Mapping, 2024

3.3   |   Comparison With FreeSurfer

Figure  11 shows the recall, precision, and DSC for the hippo-
campus, amygdala, and entorhinal cortex in the parcellation 
maps of OpenMAP-T1 and FreeSurfer, considering the results 
of FreeSurfer as the GT. Figure  12 compares the volumes in 
the hippocampus, amygdala, and entorhinal cortex between 
OpenMAP-T1 and FreeSurfer. In the hippocampus, the recall, 
precision, and DSC were all high. This result indicated that 
the definition of the hippocampus boundary was nearly iden-
tical in OpenMAP-T1 and FreeSurfer, and both methods were 
equally accurate in identifying the hippocampus. As shown in 
Figure 12, the hippocampal volume measurements obtained by 
both methods correlated well. In the amygdala, although the 
recall was equivalent to that of the hippocampus, the precision 

and DSC were lower. This suggests the existence of a systematic 
bias due to methodological differences in defining the amygdala 
region; the amygdala region defined by FreeSurfer was smaller 
than that defined by OpenMAP-T1, which included the cortical 
amygdala not included in the FreeSurfer definition. As demon-
strated in Figure 12, although the volume measurements of both 
methods correlated well, FreeSurfer consistently underestimated 
the amygdala volume compared with OpenMAP-T1. Conversely, 
FreeSurfer defined the entorhinal cortex area as larger than 
OpenMAP-T1 and often included the adjacent dura mater within 
the entorhinal cortex region (see Figure  13). Therefore, while 
precision was relatively preserved, the recall and DSC were 
lower, and the correlation of volume measurements between 
the two methods was weaker for the entorhinal cortex compared 
with the hippocampus and amygdala.

FIGURE 6    |    Representative results from MALF and OpenMAP-T1 are demonstrated. The median Dice similarity coefficient (DSC) calculated 
between the two sets of results is provided. Note that defacing techniques have been implemented on NFBS and OASIS1 datasets to safeguard the 
privacy of the participants.

FIGURE 7    |    Boxplots of the Dice similarity coefficient (DSC) for cortical (ROI = 74), deep gray matter (ROI = 26), white matter (ROI = 116), and 
othres (64) across each dataset.
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Figure 13 displays representative images linked to the outliers 
in Figure 12. The primary reasons for the low DSC were gener-
ally due to mislabeling by FreeSurfer, differences in anatomical 
definitions between OpenMAP-T1 and FreeSurfer, or a combi-
nation of both. For instance, in image 057_S_6746, FreeSurfer 
incorrectly labeled the left hippocampus. In image 114_S_6347, 

FreeSurfer erroneously included a part of the lateral ventricle in 
the left hippocampus ROI. The boundary of the amygdala was 
delineated smaller by FreeSurfer than defined by OpenMAP-T1 
in images 035_S_6739 and 019_S_6573, which was attribut-
able to the differing anatomical definitions between the two. 
Furthermore, FreeSurfer typically incorporated the perirhinal 

FIGURE 8    |    Image with the lowest average Dice similarity coefficient (DSC) from all datasets (From left to right: Input image, output of MALF, 
enlarged image of MALF failure point, output of OpenMAP-T1). The yellow squares on the images in the second column correspond to the enlarged 
images in the third row and highlight areas where the MALF's parcellation failed.
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cortex and the dura mater adjacent to the entorhinal cortex into 
the entorhinal ROI. In contrast, the definition of the entorhinal 
cortex in OpenMAP-T1 did not include these areas, as evident in 
images 114_S_6063 and 006_S_6610.

3.4   |   Biological Evaluation

AUC values for the ROC curves (Figure  14) were 0.916 for 
MALF, 0.912 for OpenMAP-T1, and 0.916 for FreeSurfer. There 
were no significant differences between these AUC values. The 
p values derived from the DeLong test were 0.666 when com-
paring MALF and OpenMAP-T1, and 0.493 when comparing 
OpenMAP-T1 and FreeSurfer.

Among the top 20 anatomical regions with the highest correla-
tion coefficients derived from the trained LASSO model, 11 
structures were common between MALF and OpenMAP-T1 
(Figure  15). Of these, six structures—namely the hippocam-
pus, amygdala, inferior horn and body of the lateral ventricle, 
and the parahippocampal gyrus—are known to be associated 
with AD pathologies (Chupin et al. 2009; Uchikado et al. 2006; 
Thompson et al. 2004, 1998), indicating the appropriateness of 
the LASSO model.

3.5   |   Runtime

OpenMAP-T1 performed complete parcellation at 90 s/case 
using a single GPU (RTX3090) and 10 min/case using a CPU 
(i9-10980XE). This result shows that OpenMAP-T1 is 40 times 
faster than MRICloud, which is 1 h/case.

4   |   Discussion

We have developed and released a deep-learning model, 
OpenMAP-T1, on GitHub to segment and parcellate brain 3D 
T1-weighted MRI images based on their anatomical structures. 
The performance of the model was evaluated using metrics 
such as DSC and HD, and was correlated based on compari-
sons between the OpenMAP-T1 and the manual labels. The 
results show that the parcellation outcomes of OpenMAP-T1 
were superior to the baseline (3D U-Net) and substantially 
agreed with the existing MALF method. Notably, the process-
ing time was significantly reduced to less than 90 s per image, 
compared to the several hours required by the existing MALF 
method.

There is the potential to further enhance the processing speed 
of OpenMAP-T1. For instance, reducing the image matrix size 
could decrease the input size for the PNet. This reduction can 
be achieved by repositioning the center of gravity of the brain 
post skull-stripping, and then trimming areas outside the brain. 
We anticipate periodic updates to OpenMAP-T1, focusing on op-
timizing processing strategies and incorporating new features 
into the algorithms.

4.1   |   Evaluation With GT Manual Labels

The multi-phase U-Net structure adopted for OpenMAP-T1 sig-
nificantly outperformed the 3D U-Net implemented in nnUNet. 
Notably, OpenMAP-T1 had fewer outliers with low DSC than 
3D U-Net. This result shows that the multi-phase strategy in-
troduced in OpenMAP-T1 constructs a robust model for various 

FIGURE 9    |    Boxplots of biological (age, sex, diagnosis) and technological effects (manufacturer and field strength) with Dice similarity coefficient 
(DSC). OASIS4 includes 16 diagnostic labels: 1: AD variant; 2: AD + non neurodegenerative; 3: AD/vascular; 4: Alzheimer disease dementia; 5: 
Cognitively Normal (CN); 6: Dementia with Lewy Bodies (DLB); 7: early onset AD; 8: Frontotemporal Dementia (FTD); 9: Mild Cognitive Impairment 
(MCI); 10: mood/polypharmacy/sleep; 11: non-neurodegenerative neurologic disease; 12: other-miscellaneous; 13: other non-AD neurodegenerative 
disorder; 14: primary progressive aphasia (PPA); 15: uncertain—AD possible; 16: Vascular Cognitive Impairment (VCI).
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imaging environments, compared to a single-phase 3D U-Net 
model that directly generates a parcellation map. In the par-
cellation phase of the OpenMAP-T1, the whole brain was par-
cellated into 141 regions, combining left and right labels. This 
approach was inspired by the approach used in FastSurfer 
(Henschel et  al.  2020), which reduced the number of classes 

(i.e., region labels) and increased each region's size, resulting in 
accurate parcellation.

The OpenMAP-T1 demonstrated the best performance in images 
of individuals aged between 50 and 90 years of age. However, it 
was also applicable for images of individuals between 22 and 

FIGURE 10    |    (A) Correlation between the predicted volumes obtained using MALF and OpenMAP-T1. (B) Bland–Altman plot to demonstrate 
agreement between regional volumes predicted by MALF and OpenMAP-T1. The volume measurements were transformed using a base-2 
logarithmic scale. (C) Relationship between the structural volume obtained from MALF and the Dice similarity coefficient (DSC) between MALF 
and OpenMAP-T1.

FIGURE 11    |    Boxplot of the Recall, Precision, and Dice similarity coefficient (DSC) in the hippocampus, amygdala, and entorhinal regions.
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50 years of age, with the mean DSC exceeding 0.7 in both age 
groups. In contrast, the mean DSC was found to be below 0.7 
in certain regions for individuals between 8 and 19 years of age. 
This reduction in DSC may be attributed to the age range of the 
training data, which was between 55 and 95 years of age. To im-
prove the model performance, MRIs from younger age groups 
could be included to train the OpenMAP-T1. Furthermore, the 
parcellation performance of OpenMAP-T1 was not affected by 
sex and only slightly decreased in cases of AD. With a DSC above 
0.7 for cortical, deep gray matter, and white matter, the perfor-
mance of this algorithm is considered in substantial agreement 
with the GT.

The volume of each region of the parcellation map obtained 
from OpenMAP-T1 was strongly correlated with that obtained 
from manual labels. However, the DSC tends to be lower for 
small regions than for regions with larger volumes. Notably, 
DSC was lower in sulci with significant individual differences 
in their volumes.

4.2   |   Comparison With MALF

The performance of the OpenMAP-T1 was mostly equivalent 
to MALF, while the processing speed was significantly faster 

than MALF. There were some images in which OpenMAP-T1 
and MALF showed disagreement. For these cases, MALF 
tended to mislabel images with noticeable intensity inho-
mogeneity even after correction with the N4 algorithm. For 
instance, MALF tended to mislabel images scanned with 
3D-SPGR sequences on 1.5T scanners (LPBA40), with lower 
contrasts between the white matter and gray matter than 
MPRAGE on 3T scanners. MALF also tended to mislabel 
images that had undergone defacing (NFBS and OASIS1). 
Therefore, the low DSC was due to mislabeling in MALF 
rather than OpenMAP-T1.

MALF uses whole-head MPRAGE images scanned on 3T scan-
ners as training data and employs image transformation using 
intensity information as a cost function (Mori et  al.  2016). 
Therefore, MALF is vulnerable to intensity inhomogeneity, and 
its parcellation accuracy might be affected by differences in 
scanner magnetic field strength, scan protocols, and defacing. 
In contrast, OpenMAP-T1, which uses deep-learning with data 
augmentation, was more robust than MALF against variations 
in image intensity inhomogeneity and scanning parameters.

Images with notable intensity inhomogeneity, even after inten-
sity correction, were often scanned in a head-extended position 
(ADNI2 and ADNI3 in Figure 8). Such a position is often seen 

FIGURE 12    |    The correlations between the predicted volumes of the hippocampus, amygdala, and entorhinal cortex as obtained by OpenMAP-T1 
and FreeSurfer. The upper row displays the results from the left side, while the lower row presents the results from the right side in ADNI3. The 
red lines represent the regression lines, while the transparent red areas show the range encompassing three standard deviations from these fitted 
regression lines. In the right-bottom corner, the equation of the regression line is provided, where X represents the volume acquired by FreeSurfer. 
The red circles in the graph correspond to the representative images showcased in Figure 13.
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in older participants with neurological conditions (Kashihara 
and Imamura 2013; Muller et al. 2002), leading to a decrease in 
image intensity in areas distant from the physical center of the 
MRI scanner, such as the frontal pole or the posteroinferior oc-
cipital lobe and cerebellum. The robustness of OpenMAP-T1 for 

the abnormal head position seems advantageous for the analysis 
of disease images. Moreover, artifacts that introduce high-signal 
pixels potentially hinder successful intensity correction (AIBL 
in Figure 8). The results with OpenMAP-T1 indicated its robust-
ness against such artifacts.

FIGURE 13    |    The parcellation maps from OpenMAP-T1 and FreeSurfer overlaid on the MPRAGE images that correspond to the red circles in 
Figure 12 are demonstrated. The leftmost column shows the study IDs from the ADNI3 dataset. Axial slices along with magnified images of the 
hippocampus, amygdala, and entorhinal cortex are presented. The red borderlines indicate the regions on the right side, while the yellow borderlines 
mark the regions on the left side. These images adhere to the radiological convention, where the left side of the brain is shown on the right side of 
the image.
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It has been demonstrated that facial appearance can be re-
constructed from a whole-head MRI (Schwarz et  al.  2021). 
Therefore, defacing may become a standard procedure 
when sharing brain MRI images (Weiner et  al.  2023; Theyers 
et al. 2021; Rubbert et al. 2022). However, many brain parcel-
lation methods have not been tested on images that have un-
dergone defacing. Implementing a refacing process, which adds 
artificial facial information after defacing, is being considered to 
avoid changes in parcellation accuracy due to defacing (Schwarz 
et al. 2021). The ability of automated brain parcellation methods 
to handle such defaced MRIs is crucial in the era of open sci-
ence and data sharing. Meanwhile, OpenMAP-T1 has demon-
strated its capability to parcellate images from the NFBS and 
OASIS1 databases, which have used different defacing methods, 

indicating its adaptability for future mainstream databases of 
defaced images.

In recent years, the MPRAGE sequence with 3T scanners has 
been often used for anatomical MRI scans for brain research 
(Ai et al. 2021). However, available open brain MRI databases 
contain legacy images scanned with MRI scanners from various 
vendors, models, and magnetic field strengths. These databases 
also include images scanned with the MPRAGE and other se-
quences, such as the SPGR sequence. The accuracy of brain par-
cellation was affected by variations in scanner types, magnetic 
field strengths, and scan protocols (Figure 9) (Arai et al. 2021; 
Zuo et al. 2023). Thus, automated brain MRI parcellation meth-
ods should be robust to these variations. Our results showed that 
the parcellation maps generated by MALF and OpenMAP-T1 
are substantially similar (average DSC > 0.8, except for LBPA40 
database that collected SPGR images) regardless of the scanner 
vendor, magnetic field strength, scan protocol, or the presence of 
defacing. However, we found that DSC were significantly lower 
in SPGR images than those in MPRAGE images, from 1.5T to 
3T scanners, as well as the DSC in GE scanners, which were 
significantly lower compared with those in Philips or Siemens.

From the perspective of precision medicine, a significant topic 
has been whether insights gained from basic research and clin-
ical trials can be adapted to actual clinical data. Research often 
involves strict inclusion and exclusion criteria, targeting spe-
cific individuals, inevitably leading to selection bias (Jaramillo 
et al. 2007; LeWinn et al. 2017; Cavallari et al. 2022). Therefore, 
using real-world data is essential when considering the appli-
cability to clinical data. To develop automated brain MRI par-
cellation methods, it is crucial to assess their accuracy using 
brain images obtained through clinical practice. To evaluate the 
applicability of OpenMAP-T1 in real clinical settings, we used 
real-world data from OASIS4. The average DSC exceeded 0.8 in 
OASIS4, suggesting potential adaptability to images obtained 
through clinical practice.

When testing research data such as ADNI, the DSC was unaf-
fected by sex or diagnostic category, including CN, MCI, and 
AD. However, in the real-world data of OASIS4, while the DSC 

FIGURE 14    |    The receiver operating characteristic (ROC) curve to 
distinguish between Alzheimer's disease (AD) and cognitively normal 
(CN) based on predicted volumes using the LASSO model. The blue line 
represents the ROC curve for MALF, the red line for OpenMAP-T1, 
and the green line for FreeSurfer. The shaded areas around each line 
indicate the standard deviation.

FIGURE 15    |    The 20 anatomical regions that exhibited the highest correlation coefficients, as determined by the trained LASSO model. Light blue 
highlights common regions between MALF and OpenMAP-T1. Red stars show regions associated with Alzheimer's disease (AD).
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was not influenced by age or sex, it was affected by clinical diag-
nosis. Average DSC of groups with “other non-AD neurodegen-
erative disorders” and “vascular cognitive impairment” tended 
to be lower than other diagnostic groups, although they still 
demonstrated average DSC above 0.8. Many images with DSC 
below 0.8 were due to mislabeling by MALF in the presence of 
lesions, but, in patients with large arachnoid cysts at the poste-
rior area, both MALF and OpenMAP-T1 mislabeled the lesion. 
This result suggests that OpenMAP-T1 may mislabel images 
containing large lesions, likely due to a lack of such images in its 
training data, indicating potential areas for future improvement.

The volumes of regions obtained from OpenMAP-T1 and MALF 
were similar and well correlated, demonstrating that the volu-
metric result of OpenMAP-T1 is almost identical to MALF, even 
for small regions. Based on their volumetric results, there was no 
difference in the ability to classify AD and CN between MALF 
and OpenMAP-T1. The important regions for the AD-CN classi-
fication derived from the OpenMAP-T1-based and MALF-based 
classification models highly overlapped between the two mod-
els. This result shows that OpenMAP-T1 can be an alternative 
method applicable to neuroscience research that aims to extract 
clinically relevant information from volumetric results.

4.3   |   Comparison With FreeSurfer

FreeSurfer (Fischl 2012) is one of the most commonly used soft-
ware packages for brain MRI parcellation (Arslan et  al.  2018; 
Eickhoff, Yeo, and Genon 2018). FreeSurfer is suitable for com-
prehensive analysis of the cerebral cortex, with its ability to mea-
sure the thickness of the cerebral cortex. However, OpenMAP-T1 
can parcellate both gray and white matter areas, thus offering the 
advantage of simultaneous analysis of the cortex and white mat-
ter. Since the definitions of the brain regions employed by both 
software packages differ, and their intended uses are different, it 
is difficult to compare the parcellation performance of the two. 
Therefore, their performance was compared in a task that sepa-
rated the brain MRIs of AD and CN individuals. In AD research, 
the amygdala, entorhinal cortex, and hippocampus volumes are 
often used as neurodegeneration markers. When comparing 
these volumes measured by FreeSurfer and OpenMAP-T1, a 
good correlation was found in these regions. On the other hand, 
OpenMAP consistently reported larger amygdala volumes than 
FreeSurfer. This bias does not stem from inaccuracies in delin-
eating structural boundaries. It merely shows a difference in 
anatomical boundary definition. Namely, the JHU-MNI Atlas 
includes the cortical amygdala as part of the amygdala, whereas 
the DKT Atlas excludes this region from its amygdala definition. 
What is most important for neuroimaging and clinical applica-
tions is the high level of correlation between the two methods; 
for instance, small structures must be consistently identified as 
small in both OpenMAP-1 and FreeSurfer, and large structures 
as large. This consistency is the critical factor for ensuring reli-
able measurement and comparability across applications.

The brain regions that played a significant role in separating 
AD and CN, obtained from the LASSO model, were similar, and 
there was no difference between FreeSurfer and OpenMAP-T1 
in separation performance for AD and CN, as analyzed by 
ROC analysis. Therefore, the choice between FreeSurfer and 

OpenMAP-T1 should not be based on which has more accurate 
parcellation, but should be selected according to the research 
objectives and the anatomical structures of interest.

5   |   Limitations

OpenMAP-T1 has several limitations. As with any parcella-
tion method, in small ROIs, precision, recall, and DSC can be 
significantly reduced by minor boundary differences, making 
it challenging to evaluate the accuracy of parcellation itself. 
Furthermore, whether parcellation can be accurately performed 
on images containing various lesions, such as large cerebral 
infarcts, brain hemorrhages, or brain tumors, is a topic for fu-
ture investigation. Using real clinical images as training data 
for clinical applications might be necessary. Also, while the 
analyzed images in this study were high-resolution 3D images, 
many clinical images use 2D imaging methods with a thick-
ness of 5 mm or more. Whether OpenMAP-T1 can be applied to 
such thick-slice 2D images is also a subject for future study. The 
current model performed best on images of older adults, likely 
because we trained the model using images of older adults. We 
plan to enhance the model by including images of younger indi-
viduals to make it more robust across different age groups. This 
Technical Report aims to demonstrate the effectiveness of the 
cascading structure that sequentially applies the four U-Net ar-
chitectures and provides readers with practical solutions for the 
fine gray and white matter parcellation. We have deferred the 
development of a tool to support model training to a later proj-
ect since generating a model training tool applicable for various 
types of atlases is still an ongoing area of active research; such 
tools would need an automated algorithm to fine-tune hyper-
parameters specific to each atlas, along with validation studies.

6   |   Conclusion

We have developed OpenMAP-T1, a deep-learning model that 
can accurately segment and parcellate brain T1-weighted MRI 
images based on anatomical structures. We tested its accuracy 
and consistency on the GT JHU-atlas library and eight publicly 
available MRI datasets to evaluate its accuracy and consistency. 
OpenMAP-T1 performed well under various imaging condi-
tions, including images with postural changes in the head, in-
tensity inhomogeneity, and defacing. In a task to differentiate 
between AD and CN based on volumetric results, we found that 
the classification performance of OpenMAP-T1 was equivalent 
to that of MALF or FreeSurfer, but was much faster in process-
ing images compared to these existing methods. These results 
suggest that OpenMAP-T1 is a promising method for high-speed 
image parcellation that is robust to technological and biologi-
cal variations. OpenMAP-T1 is available on our GitHub (URL: 
https://​github.​com/​Oishi​Lab/​OpenM​AP-​T1).
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info.​org for ADNI2/3, https://​aibl.​org.​au/​ for AIBL, https://​www.​ccdat​
aset.​com/​download for CC359, https://​www.​loni.​usc.​edu/​resea​rch/​
atlas_​downl​oads for LPBA40, http://​prepr​ocess​ed-​conne​ctome​s-​proje​
ct.​org/​NFB_​skull​strip​ped/​ for NFBS, and https://​www.​oasis​-​brains.​
org/​ for OASIS1/4.
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