
WJG https://www.wjgnet.com 4417 November 7, 2024 Volume 30 Issue 41

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2024 November 7; 30(41): 4417-4438

DOI: 10.3748/wjg.v30.i41.4417 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

REVIEW

Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon?

Anna S Gukovskaya, Markus M Lerch, Julia Mayerle, Matthias Sendler, Baoan Ji, Ashok K Saluja, Fred S 
Gorelick, Ilya Gukovsky

Specialty type: Gastroenterology 
and hepatology

Provenance and peer review: 
Unsolicited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s classification
Scientific Quality: Grade B 
Novelty: Grade B 
Creativity or Innovation: Grade B 
Scientific Significance: Grade B

P-Reviewer: Miao MS

Received: April 23, 2024 
Revised: June 19, 2024 
Accepted: July 16, 2024 
Published online: November 7, 
2024 
Processing time: 183 Days and 1.8 
Hours

Anna S Gukovskaya, Ilya Gukovsky, Department of Medicine, David Geffen School of 
Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States

Anna S Gukovskaya, Ilya Gukovsky, Department of Medicine, VA Greater Los Angeles 
Healthcare System, Los Angeles, CA 90073, United States

Markus M Lerch, Department of Medicine, Ludwig Maximilian University Hospital, Munich 
81377, Germany

Julia Mayerle, Department of Medicine II, Ludwig Maximilian University of Munich, Munich 
81377, Germany

Matthias Sendler, Department of Medicine A, University of Greifswald, Greifswald 17475, 
Germany

Baoan Ji, Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States

Ashok K Saluja, Department of Surgery, University of Miami Miller School of Medicine, 
Miami, FL 33136, United States

Fred S Gorelick, Departments of Cell Biology and Internal Medicine, Yale University School of 
Medicine and VA West Haven, New Haven, CT 06519, United States

Co-corresponding authors: Anna S Gukovskaya and Ilya Gukovsky.

Corresponding author: Anna S Gukovskaya, AGAF, DSc, PhD, Director, Full Professor, Senior 
Scientist, Department of Medicine, David Geffen School of Medicine, University of California 
at Los Angeles, 11301 Wilshire Blvd, Bldg. 258/340, Los Angeles, CA 90073, United States.  
agukovsk@ucla.edu

Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine 
pancreas. Its pathogenesis remains obscure, and no specific or effective treatment 
is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a 
small portion of patients the disease is hereditary. Pancreatitis is believed to be 
initiated by injured acinar cells (the main exocrine pancreas cell type), leading to 
parenchymal necrosis and local and systemic inflammation. The primary function 
of these cells is to produce, store, and secrete a variety of enzymes that break 
down all categories of nutrients. Most digestive enzymes, including all proteases, 
are secreted by acinar cells as inactive proforms (zymogens) and in physiological 
conditions are only activated when reaching the intestine. The generation of 
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trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. 
It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/ina-
ppropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experi-
mental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has 
been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This 
review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, 
particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary 
pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its’ 
damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future 
research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some 
pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or 
normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death 
and unrelenting inflammation.

Key Words: Pancreatic acinar cell; Hereditary pancreatitis; Autophagy; Endolysosomal system; Cholecystokinin; Cerulein; 
Cathepsin
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Core Tip: Pancreatitis is a common life-threatening disease of the exocrine pancreas. Its pathogenesis remains obscure, and 
no specific/effective treatments are available. The current paradigm is that pancreatitis is initiated by premature, intra-acinar-
cell conversion of trypsinogen to trypsin. This 130-year-old concept has only recently been tested in genetic mouse models. 
Our review analyzes the mechanisms mediating trypsinogen activation and protecting against its’ effects, controversies in the 
available data, potential therapeutic approaches, and future research directions. We conclude that intra-acinar trypsinogen 
activation is not the culprit but at best one of disease mediators, and possibly an epiphenomenon. This conclusion represents 
a paradigm shift.
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INTRODUCTION
Pancreatitis is a common, life-threatening disease of the exocrine pancreas, with obscure pathogenesis and no specific or 
effective treatment. Pancreatitis is the 3rd most common reason for hospital admissions of those with gastrointestinal (GI) 
disease in the United States, the 5th most common nonmalignant GI cause of death, a heavy burden on the United States 
healthcare system, and a major risk factor for the deadly pancreatic cancer[1-3]. Three major forms represent the disease 
continuum: Acute pancreatitis (AP), recurrent AP (RAP), and chronic pancreatitis (CP). AP is mostly a one-time episode, 
but it can sensitize the pancreas to RAP, progressing further to CP[4,5]. The most common causes of AP are gallstones 
obstructing the common bile duct, and heavy alcohol and cigarette use. Other etiologies include direct trauma, genetic 
factors, medications, infections, and tumors. The key pathologic responses of AP are increased serum amylase and lipase, 
acute pancreatic inflammation, and parenchymal cell death. Tissue changes of CP include chronic inflammation, pancreas 
atrophy, fibrosis, and acinar-ductal metaplasia.

The established mechanistic paradigm is that AP is initiated by injured acinar cells (the main exocrine pancreas cell 
type), leading to inflammatory cell infiltration, parenchymal necrosis, and systemic inflammation. There is compelling 
evidence that mechanisms initiating and driving pancreatitis are common to all clinical forms of the disease[1-3,6,7].

The primary function of pancreatic acinar cells is to produce, store, and secrete a broad spectrum of enzymes that break 
down all categories of nutrients[6,8,9]. Under physiological conditions, many digestive enzymes, including all proteases, 
are secreted by acinar cells as inactive proforms (zymogens) and are only activated when reaching the intestine. Over a 
century ago, Austrian pathologist Hans Chiari proposed that premature activation of proteolytic enzymes within the 
pancreas causing autodigestion is the underlying mechanism of pancreatitis[10]. Trypsin is a major and potent digestive 
protease, and its generation from inactive trypsinogen plays a critical role in physiological activation of other zymogens 
in the intestine (see below). Extrapolating from this physiological process, the premature (“inappropriate”) intra-acinar 
conversion of trypsinogen to trypsin was postulated, and universally accepted, to be the driving pathogenic mechanism 
of pancreatitis. Indeed, intrapancreatic trypsinogen activation occurs in acute and chronic, experimental and human 
pancreatitis, and is now considered a disease hallmark[11-16]. The concept of trypsin’s central pathogenic role has been 
strengthened by the finding of David Whitcomb’s group[17], followed by other researchers, that hereditary pancreatitis 
(HP), an autosomal dominant disease, is associated with mutations in trypsinogen[13,14,16,17]. Later, alterations in other 
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proteins mediating the “trypsin-dependent pathway” - such as chymotrypsin C and serine peptidase inhibitor Kazal type 
1 (SPINK1) - were linked to increased risk of developing pancreatitis[13]. However, despite decades of intense research, 
the mechanisms of intrapancreatic trypsinogen activation and its pathogenic role in pancreatitis remain unclear. This 
review aims to summarize current information on trypsinogen activation and its role in pancreatitis; it will emphasize 
recent discoveries, identify gaps in our understanding of the underlying mechanisms, and discuss future research 
directions.

PHYSIOLOGICAL ROLE OF TRYPSIN IN DIGESTION
The biochemistry of trypsinogen and trypsin has been discussed in detail[13,18,19]. About 95% of human trypsinogen 
consists of cationic and anionic trypsinogen, the products of the serine protease 1 (PRSS1) and 2 (PRSS2) genes, 
respectively. The predominant mouse isoform is the cationic trypsinogen T7[13]. After synthesis and removal of the 
signal peptide (Figure 1A) in the endoplasmic reticulum (ER), trypsinogen (like other digestive enzymes) is packaged in 
the Golgi into secretory granules, which are condensed along their trafficking to become mature zymogen granules. 
Zymogen granules are subsequently delivered to the plasma membrane for exocytosis; the secreted digestive enzymes 
transit to the duodenum to meet a food bolus[20]. In a healthy pancreas, all the digestive proteases, including 
trypsinogen, remain inactive during their intracellular transport, secretion from acinar cells, and transit to the duodenum. 
After entering the small intestine, trypsinogen becomes activated by duodenal brush-border serine protease ente-
ropeptidase (termed enterokinase), which cleaves off N-terminal trypsinogen activation peptide (TAP; 8-aminoacid-long 
in humans) to convert trypsinogen into trypsin (Figure 1). Trypsin’s role in digestion is central (Figure 1B), as it proteolyt-
ically activates other digestive proteases, including chymotrypsinogen, proelastase, and procarboxypeptidase B1[12,15].

INTRAPANCREATIC TRYPSINOGEN ACTIVATION IN EXPERIMENTAL AND HUMAN PANCREATITIS
Methods to measure trypsinogen activation in pancreas
Trypsin activity is commonly measured with an enzymatic assay in tissue or cell homogenates (Figure 2A), or microscop-
ically in live acinar cells, using a substrate the fluorescence of which increases after its’ cleavage by trypsin[21-25]. 
Another assay measures trypsinogen activation (but not trypsin activity) by quantifying TAP using an ELISA or immuno-
detection on tissue sections (Figure 2B and C). The anti-TAP antibodies do not cross-react with trypsinogen, trypsin, or 
other zymogen activation peptides; therefore, the amount of TAP reflects trypsinogen conversion into active trypsin[26-
28]. Parallel increases in intrapancreatic trypsin activity and TAP (as illustrated in Figure 2) confirm the validity of 
trypsinogen activation measurement.

The total amount of trypsinogen in the pancreas or acinar cells can be determined by converting trypsinogen into 
trypsin with enterokinase, followed by measuring generated trypsin activity with enzymatic assay. Trypsinogen levels in 
the pancreas can also be analyzed by immunoblot, but seeing trypsin as separate protein from trypsinogen is difficult, 
because the difference in molecular masses is < 1 kDa.

Rodent models of pancreatitis
Access to human pancreatitis tissue is limited because surgical treatment of pancreatitis is rare, and also too late in the 
disease to inform studies of early AP biology[1,2,14,15]. Therefore, the mechanisms of pancreatitis, particularly of 
premature trypsinogen activation, are primarily studied using animal models that reproduce the pathologies of human 
disease. The characteristics of these models and methods of their development have been described in detail[29-31].

Experimental pancreatitis models: The best-studied mouse and rat AP models[29-31] include those generated by 
intraperitoneal injections of supramaximal doses of cerulein (CER), an ortholog of cholecystokinin (CCK)-8; retrograde 
infusion of bile acids (e.g., taurolithocholic acid sulfate; TLCS) into the pancreatic duct; administration of high doses of L-
arginine (Arg); or by feeding young female mice choline-deficient, ethionine supplemented diet. Ex-vivo/cellular AP 
models are developed by incubating rodent or, importantly, human acinar cells with pancreatitis inducers, such as CCK-8 
or CER; these models recapitulate the early disease stages that occur within acinar cells[9,32,33]. Experimental CP models 
are usually induced by repeated injections of CER or Arg[29,34,35].

Genetic mouse models of pancreatitis associated with trypsinogen mutations: Gallstones and alcohol consumption 
account for > 80% of pancreatitis cases. Less than 1% of human disease is associated with mutations in the PRSS1 gene[13,
17]. Early attempts to generate mouse models of pancreatitis caused by trypsinogen mutations were unsuccessful, 
possibly because of low transgene expression[36,37]; but later, HP-related genetically engineered mouse models 
(GEMMs) have been developed (Table 1) which reproduced a number of human disease responses[38-50]. Hegyi and 
Sahin-Tóth[13], Geisz and Sahin-Tóth[38], Jancsó et al[39], Geisz et al[40], Jancsó and Sahin-Tóth[43], Demcsák and Sahin-T
óth[45], Geisz et al[47], Jancsó et al[48], and Jancsó et al[49] generated mice with mutations in T7 trypsinogen related to 
those seen in human pancreatitis. Gui et al[41], Huang et al[42], Wan et al[44], and Wang et al[46] expressed in mice full-
length mutated human PRSS1R122H (the most mutated gene in HP) or the combination of PRSS1R122H and PRSS2 genes.

In most cases, the expression of trypsinogen mutants mimicking those in human disease - in particular, PRSS1R122H 
alone - did not cause the development of spontaneous pancreatitis (Table 1). More recently, a spontaneous HP model was 
developed by Wang et al[46] by co-expressing human PRSS2 and PRSS1R122H from their native promoters. Notably, CER-
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Table 1 Trypsinogen activation in hereditary pancreatitis-related genetic mouse models: Representative studies

Genetic mouse 
model Genetic modification Spontaneous 

pancreatitis

Increase in 
basal 
trypsin 
activity

Effects of pancreatitis 
inducers

Trypsinogen 
activation in CER-
AP

Ref.

PRSS1R122H

PRSS1

Mutated human PRSS1
R122H or WT PRSS1 gene 
expressed under full-length 
elastase promoter

No No Severity of AP induced with 
CER, LPS or ethanol 
increased in the order: WT 
mouse < PRSS1 < PRSS1R122H

Increased in the 
order: WT mouse < 
PRSS1 < PRSS1R122H

[42]

PRSS2 Transgenic mice similarly 
expressing human PRSS2 
gene

Focal areas (< 10% of 
total pancreas)

ND CER-AP was more severe in 
PRSS2 expressing mice

ND [44]

PRSS1/PRSS2

PRSS1R122H

/PRSS2

Compound mice co-
expressing WT PRSS1 and 
PRSS2 or PRSS1R122H and 
PRSS2 from their native 
promoters

Yes, in homozygous 
PRSS1R122H/PRSS2 mice, 
but not in PRSS1/PRSS2 
mice

ND One i.p. injection of low-dose 
CER induced pancreatitis in 
PRSS1R122H/PRSS2 but not in 
PRSS1/PRSS2 mice

ND [46]

PRSS1/PRSS2+ 
PRSS2

PRSS1R122H

/PRSS2+ PRSS2

Compound PRSS1/PRSS2 or 
PRSS1R122H/PRSS2 mice 
were further crossed with 
mice expressing WT PRSS2

Yes, in PRSS1R122H

/PRSS2+ PRSS2 mice, but 
not in PRSS1/PRSS2+ 
PRSS2 mice

ND ND ND [46]

T7D23A knock-
in

Heterozygous p.D23A 
mutation in the TAP part of 
T7 trypsinogen gene

Yes Yes ND ND [38]

T7K24R knock-in Heterozygous p.K23R 
mutation in the TAP part of 
T7 trypsinogen gene

No No CER-AP was aggravated Increased [43]

Ctrb1-del Mice deficient in CTRB1 
chymotrypsin that promotes 
trypsinogen degradation

No No CER-AP was aggravated Increased [39,
49]

T7K24R×Ctrb1-
del

Compound mice carrying 
both the trypsinogen mutant 
T724KR and chymotrypsin 
Ctrb1 deletion alleles

Yes ND ND ND [49]

CER: Cerulein; LPS: Lipopolysaccharide; ND: Not determined; TAP: Trypsinogen activation peptide.

AP was aggravated in all GEMMs examined so far (Table 1; discussed below in the section “The role of trypsin in HP-
related GEMMs”).

Intrapancreatic trypsinogen activation is a universal response of pancreatitis
The first report demonstrating that experimental pancreatitis is associated with increased intrapancreatic trypsin was 
published almost 50 years ago[51]. Subsequent studies[21,24,28,51-78] showed that intrapancreatic trypsin increase is a 
signature response of experimental AP (Table 2). Trypsinogen activation in rodent and ex-vivo AP models was measured 
by increased trypsin enzymatic activity in the whole pancreas, acinar cell homogenates and live acinar cells, and by 
increases in pancreatic TAP followed by TAP release into the circulation[21,27,28,53-56,58-60,79]. TAP elevation in serum 
and urine was seen in patients[80-84], as well as in cats and dogs with AP[85,86]. Intrapancreatic trypsin also increased 
during CP progression[87,88]. These observations underscore the generality of trypsinogen activation in pancreatitis 
across mammalian species, including humans.

Trypsinogen activation is an early (within minutes) event of experimental AP, occurring long before acinar cell death 
and inflammatory cell infiltration[24,89-91]. Pancreatic trypsin activity elicited by CER-AP in most mouse strains exhibits 
biphasic kinetics, with a transient peak in the first hour upon disease induction followed by a sustained increase during 
AP progression[60,74]. Of note, less than 1% of trypsinogen is converted to trypsin in experimental pancreatitis[11,12,28].

Trypsinogen activation in HP-related GEMMs
In contrast to experimental pancreatitis models that have been used for decades, investigation of GEMMs associated with 
mutations in the trypsin-dependent pathway has started only recently[13,38-50]. As illustrated in Table 1, there are 
numerous gaps in our current knowledge on whether and to what extent the basal pancreatic trypsin activity increases in 
these models (see the discussion below in “The role of trypsin in HP-related GEMMs”). Moreover, the mutants’ effect on 
trypsin activity was not always measured, even in models that showed worsening of CER-AP (Table 1). Little is known 
about the mutations’ effects on trypsin activity in acinar cells isolated from the GEMMs; and importantly, there has been 
no measurement of TAP levels in the pancreas, blood, or urine.
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Table 2 Trypsinogen activation in experimental AP models: Representative studies

Experimental pancreatitis induced by Trypsin activity measured in tissue or acinar cells (ex-vivo 
models) Ref.

Rat pancreas [21,28,53-55,58,59,62]Cerulein

Mouse pancreas [60,62,74,88,112,135,143,201]

Rat pancreas [56,61]Taurocholate or TLCS

Mouse pancreas [68,70]

Rat pancreas [65]L-arginine

Mouse pancreas [66,78]

L-ornithine, L-lysine Rat pancreas [69,71]

CDE diet Mouse pancreas [51,52]

EtOH + low-dose cerulein Mouse pancreas [72]

EtOH + POA Mouse pancreas [73]

CCK/cerulein Rat and mouse acinar cells [21,24,64,74,129,131,136,143]

TLCS Rat, mouse, and human acinar cells [32,67,75]

EtOH + low-dose CCK Rat and mouse acinar cells [72,76]

NNK (tobacco compound) Rat acinar cells [75]

Agonist of the mechano receptor Piezzo1 Mouse acinar cells [77]

TLCS: Taurolithocholic acid sulfate; CDE: Choline-deficient, ethionine supplemented (diet); EtOH: Ethanol; POA: Palmitoleic acid; CCK: Cholecystokinin; 
NNK: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

MECHANISMS OF TRYPSINOGEN ACTIVATION IN PANCREATITIS
Cathepsin B mediates trypsinogen activation in experimental pancreatitis
Cathepsin B (CTSB) is a major lysosomal cysteine protease; it is synthesized in the ER as an inactive precursor and then 
delivered to lysosomes after trafficking through Golgi and endosomal systems[92-94]. During trafficking, CTSB is 
processed into an active mature form. The activity of CTSB, as well as other lysosomal hydrolases, is maximal in acidic 
milieu.

An essential step in the cathepsins’ delivery to lysosomes is their segregation from digestive enzymes[95]. After being 
synthesized and processed in the ER, lysosomal hydrolases and digestive enzymes are delivered to the Golgi, where they 
are sorted into their respective pathways[95-97]. The separation, however, is not absolute, and a fraction of CTSB is also 
found in the secretory granules[98], with the majority of CTSB contained in endo/lysosomes.

In early 50s, scientists from the New York College of Medicine noted that substrate specificities of CTSB and ente-
rokinase are similar, leading to a seminal study[99] which showed that CTSB can cleave TAP from trypsinogen to 
generate trypsin. Subsequent studies established the role of CTSB as the protease responsible for trypsinogen activation in 
experimental pancreatitis. They showed that trypsinogen activation in AP occurs at acidic pH, that is, at maximal CTSB 
activity[100]. CTSB and trypsinogen colocalize in the pancreas. Pharmacologic inhibition of CTSB with a broad-spectrum 
cysteine protease inhibitor E-64d or specific CTSB inhibitor CA-074Me[25,64,101,102] prevents trypsinogen activation in 
in-vivo and ex-vivo experimental AP models, including in human acinar cells[64,101-103]. Similarly, whole-body[47,60] 
and pancreas-specific[104] CTSB genetic ablation abrogates trypsinogen activation in CER-AP.

Of note, CTSB’s effect on trypsinogen is specific; it does not activate other digestive enzymes[105]. Also, lysosomal 
proteases other than CTSB do not cause trypsinogen activation[106].

Trypsinogen autoactivation is implicated in HP
Trypsinogen can autoactivate in the presence of a minuscule amount of trypsin, which cleaves off TAP, thus converting 
trypsinogen into trypsin[13,15]. This phenomenon was discovered 90 years ago by Kunitz and Northrop[107], who 
observed that crystalline trypsinogen contains a trace of trypsin and is gradually converted into trypsin. Trypsinogen 
autoactivation has been characterized biochemically in great detail (primarily by Sahin-Toth’s group) and is considered a 
principal mechanism of trypsin generation in HP[13,15,38,43,45,47,108].

The interrelationship between the two mechanisms of trypsinogen activation in pancreatitis
Trypsinogen autoactivation and its conversion to trypsin by CTSB are the only 2 known mechanisms of intrapancreatic 
trypsin generation in pancreatitis[12,13,16,45,47,50,109]. In both pathways, trypsinogen is converted to trypsin by 
proteolytic removal of TAP. However, in experimental pancreatitis, trypsinogen is activated solely by CTSB, with no 
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Figure 1 Trypsin structure and functions. A: N-terminal amino acid sequence of the cationic trypsinogen; B: Schematic of trypsin-mediated activation of other 
digestive proteases during physiological process of digestion. SP: Signal peptide; TAP: Trypsinogen activation peptide.

contribution of autoactivation. Indeed, blocking CTSB prevented trypsinogen activation in experimental AP models[25,
47,60,64,101,102,104], whereas blocking trypsinogen autoactivation had no effect on CER-AP[110]. Conversely, the 
available data indicate that CTSB does not modulate the rates of trypsinogen activation in mutations-associated GEMMs
[38]. These data imply that in the currently developed experimental AP models and HP-related GEMMs, the two 
pathways of trypsinogen activation do not operate simultaneously[47,50]. Why this is so is unclear. As discussed below in 
“The role of trypsin in HP-related GEMMs”, one possible explanation for why there is no appreciable extent of 
autoactivation in experimental pancreatitis is a “threshold effect”: The autoactivation rate in HP-related trypsinogen 
mutants is much greater than in the wild type[13,45]. Another putative reason could be a different intrapancreatic 
localization of activated trypsinogen in experimental AP models vs HP-related GEMMs[47,50], as discussed in “The role 
of trypsin in HP-related GEMMs”. Interestingly, trypsinogen mutations that do not measurably increase the basal 
pancreatic trypsin activity enhance trypsinogen activation induced by CER-AP[42,43], indicating a possible cross-talk 
between autoactivation- and CTSB-mediated mechanisms (Table 1).

Where does trypsinogen activation occur in pancreatitis?
The conclusion that the acinar cell is a major site of intrapancreatic trypsin accumulation in experimental pancreatitis is 
based on the following evidence: Trypsinogen activation is prominent in all ex-vivo AP models on rodent and human 
acinar cells (Table 2); microscopy analysis shows TAP accumulation only in acinar but not in endocrine or ductal cells[28,
111]; the magnitude and the kinetics of trypsinogen activation are similar between in-vivo and corresponding ex-vivo 
models. For example, in both mouse and cellular CER-AP, trypsin activity increases within minutes and reaches its 
maximum within 1 hour after AP induction[60,112].

A large amount of trypsinogen in pancreatitis is present in the interstitium[59] and could be activated by CTSB secreted 
by acinar cells[113,114]. Also, in pancreatitis digestive enzymes can access the extracellular space due to blockade of 
apical exocytosis and redirection of acinar cell secretion to the basolateral plasma membrane[115] or because of disrupted 
tight junctions between acinar and ductal cells[116].

A recent study revealed that trypsinogen activation in pancreatitis also occurs in activated macrophages infiltrating the 
pancreas[117]. In areas of pancreatic necrosis, macrophages can ingest zymogen-containing vesicles from damaged acinar 
cells or endocytose trypsinogen and convert it into trypsin in a CTSB-dependent manner[117]. Of note, the second phase 
of intrapancreatic trypsin increase in CER-AP is likely due to the contribution of this mechanism.
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Figure 2 Illustration of the main methods to measure trypsinogen activation in experimental pancreatitis. A and B: Time-course of changes in 
the levels of (A) trypsin activity and (B) trypsinogen activation peptide (TAP) measured in pancreas homogenates from rats subjected to i.v. infusion of 5 μg/kg 
cerulein (adapted from Hofbauer et al[21]), *P < 0.05 versus saline; C: Electron microscopic immunolocalization of TAP in pancreas was measured in (a) untreated 
rats and (b) 60 minutes after cerulein (5 μg/kg) infusion. Note intense punctate TAP immunoreactivity in small vesicles (arrowheads) and large vacuoles (arrows), 
which was absent in control[28]. C: Citation: Otani T, Chepilko SM, Grendell JH, Gorelick FS. Codistribution of TAP and the granule membrane protein GRAMP-92 in 
rat caerulein-induced pancreatitis. Am J Physiol 1998; 275: G999-G1009. Copyright© The American Physiological Society 1998. Published by American Physiological 
Society. Authors of American Physiological Society articles may reuse their content in reused new works (https://journals.physiology.org/publication-
process#copyright).

SITES OF TRYPSINOGEN ACTIVATION WITHIN ACINAR CELLS IN EXPERIMENTAL PANCREATITIS: 
THE COLOCALIZATION HYPOTHESIS
Despite intense investigation, the intra-acinar site(s) of trypsinogen activation in experimental pancreatitis have not yet 
been established. About 25 years ago, Michael Steer and Ashok Saluja put forward a concept termed “colocalization 
hypothesis” - namely, that the induction of pancreatitis is associated with perturbed trafficking of lysosomal hydrolases 
resulting in their colocalization with digestive enzymes within some cytoplasmic organelles where CTSB activates 
trypsinogen[11,12,33,97,118-120]. The hypothesis was supported by immunoelectron microscopy showing colocalization 
of lysosomal hydrolases and digestive enzymes within acinar cells, and confirmed by biochemical studies demonstrating 
that during experimental AP, CTSB activity is redistributed to heavier subcellular fractions containing zymogen granules
[28,98,101,119,120].

The initial interpretation of these results was that during AP, CTSB is missorted into the secretory compartment and 
activates trypsinogen in zymogen granules[120]. However, subsequent studies showed that tryptic activity and TAP do 
not localize to zymogen granules[11,24,28,97]. The failure to identify the exact organelle(s) in which intra-acinar 
trypsinogen activation occurs and the mechanisms mediating “pathologic” colocalization of trypsinogen and CTSB 
undermine the colocalization hypothesis. In this context, recent advances are discussed in the following section on the 
role of endolysosomal and autophagic compartments in trypsinogen activation.

In contrast to numerous studies in experimental AP models (Table 2), we know very little about both the types of cells 
and the intra-acinar sites of trypsinogen activation in HP-related GEMMs.

https://journals.physiology.org/publication-process#copyright
https://journals.physiology.org/publication-process#copyright
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https://journals.physiology.org/publication-process#copyright
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ENDOLYSOSOMAL SYSTEM DISORDERING CAUSES INTRA-ACINAR TRYPSINOGEN ACTIVATION IN 
EXPERIMENTAL PANCREATITIS: A HYPOTHESIS
Intra-acinar trypsinogen activation occurs in organelles of the endolysosomal system
As stated above, studies of trypsinogen, TAP and CTSB immunolocalization in acinar cells, and subcellular CTSB redistri-
bution indicate that in experimental pancreatitis, trypsin localizes to membrane-bound organelles in which digestive 
enzymes and lysosomal hydrolases colocalize; and further, that these organelles are not zymogen granules[11,12,28,97,98,
101,118-120]. The organelles in which trypsinogen activation takes place are acidic. Treatments that neutralize organellar 
acidic pH, such as the weak cell-permeable base chloroquine, the inhibition of vacuolar H+-ATPases with Bafilomycin A1, 
or inhibition of the Na+/H+ exchanger with monensin, all prevent trypsinogen activation in experimental AP models[121-
124].

The only acidic membrane-bound organelles in acinar cells that contain lysosomal hydrolases and can also acquire 
digestive enzymes are organelles of the endolysosomal system, which comprises early, recycling and late endosomes, 
endocytic vacuoles, lysosomes, and autolysosomes[125]. The endolysosomal system controls several processes critical for 
acinar cell physiology, including: Sorting out lysosomal hydrolases from the digestive enzymes, which occurs in the Golgi 
complex and during post-Golgi trafficking[95,96,126]; post-exocytic membrane retrieval through endocytosis, which is 
necessary to replenish secretory granule pools and maintain plasma membrane integrity[127,128]; digestive enzyme 
secretion through the so-called minor secretory pathway that uses anterograde trafficking through early and recycling 
endosomes[6,75,96]; autophagic elimination of nonfunctional organelles, which depends on lysosomal proteolytic 
capacity[129-131]. Importantly, during these physiological processes endolysosomal organelles acquire digestive 
enzymes.

Pancreatitis causes multiple defects in the endolysosomal system[6,129-145] some of which result in intra-acinar 
trypsinogen activation. Findings from the Liverpool group[134,138,141,144] indicate that endocytosis of post-exocytic 
structures is impaired in pancreatitis, resulting in the formation of abnormally large endocytic vacuoles containing CTSB 
and trypsinogen and where trypsinogen activation can occur. This is in accord with the data that cytoplasmic organelles 
containing TAP carry endosomal membrane markers[28,119]. Further, biochemical studies show that endosomal 
functions are deranged in pancreatitis and that restoring endosomal maturation prevents trypsin accumulation in ex-vivo 
CCK-induced pancreatitis[75,137].

Lysosomal insufficiency (see below) is another defect of the endolysosomal system in pancreatitis which can promote 
trypsin accumulation in acinar cells[129,130,135,136]. Because of acinar cell lysosomal insufficiency, autophagy fails to 
eliminate abnormal trypsin-containing organelles, resulting in trypsin accumulation in autolysosomes as evidenced by 
the colocalization of TAP with the autophagy marker LC3-II in pancreatitis[129,140,143,146].

Based on these data, one can hypothesize that the intra-acinar trypsin accumulation in experimental pancreatitis is a 
result of two processes: The formation of abnormal endolysosomal organelles (e.g., endocytic structures[134]) in which 
CTSB activates trypsinogen, and the inability of impaired autophagy to eliminate these organelles (Figure 3). Detailed 
time-course analysis of colocalization and co-fractionation of TAP, trypsin activity, and LC3-II in CER-AP has indicated 
that the initial site of trypsinogen activation is not in autophagic vacuoles; however, trypsin increasingly accumulates in 
autolysosomes during pancreatitis progression[147]. Abnormal endocytic vacuoles[134] are likely not the sole organelle of 
the endolysosomal system where CTSB activates trypsinogen in pancreatitis. For example, disruption of mannose-6-
phosphate mediated pathway of cathepsins’ delivery to lysosome results in the accumulation in acinar cells of abnormal 
(hybrid early/late) endosomes, in which CTSB activates trypsinogen[143].

One of the criticisms against the original colocalization hypothesis was that colocalization of CTSB and trypsinogen 
occurs not only in pancreatitis but also in normal pancreas[11,148,149]. In this regard, it is worth noting that colocal-
ization of digestive enzymes with lysosomal hydrolases is not a pathologic event; it occurs in endolysosomal organelles 
during physiological processes. In particular, during basal autophagy autolysosomes sequester unneeded or damaged 
zymogen granules, resulting in colocalization of trypsinogen and CTSB[129]; this stage is normally followed by rapid 
cargo degradation[129,150]. In contrast, in pancreatitis autolysosomes fail to degrade sequestered cargo, resulting in the 
intra-acinar trypsin accumulation[6,129-143,145].

SNARE proteins regulate the endolysosomal system, autophagy, and trypsinogen activation in experimental 
pancreatitis
The fusogenic SNARE proteins[151-153] are key molecules involved in vesicle transport and membrane fusion, which 
control exocytosis, endocytosis, release of synaptic vesicles, and inflammation. They have been recently shown to regulate 
autophagy and trypsinogen activation in pancreatitis[133,137,139,142,145,154]. For example, intra-acinar levels of 
Syntaxin 2 markedly decrease in experimental and human pancreatitis[139]. Genetic ablation of Syntaxin 2 promotes the 
pathologic basolateral exocytosis, generation of TAP and trypsin, and inhibits autophagic degradation, thus replicating 
pancreatitis responses[139]. Conversely, knockdown of SNAP23 reduces basolateral exocytosis, stimulates autophagic 
degradation, and decreases intra-acinar trypsinogen activation in experimental pancreatitis[133,142]. These data reveal a 
mediatory role of SNARE proteins in linking exocytosis, autophagy, and trypsinogen activation in acinar cells.

MECHANISMS PROTECTING THE PANCREAS AGAINST TRYPSIN ACCUMULATION
Acinar cells have several mechanisms that protect them from both trypsinogen activation and resultant trypsin activity
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Figure 3 Putative mechanisms whereby endolysosomal and autophagy dysfunctions mediate intra-acinar trypsin accumulation in 
pancreatitis. CTSB: Cathepsin B.

[11-16]. The protein is synthesized as inactive zymogen; both trypsinogen and the resultant trypsin are confined to 
membrane-bound organelles, thus protecting the cytosol; trypsin activity in these organelles is markedly reduced by their 
acidic pH[121-124]. Several molecules counteract or down-regulate trypsin activity, as discussed below. More recently, 
autophagy emerged as a major mechanism protecting the pancreas from trypsin accumulation.

SPINK1
SPINKs are a large conserved family of protease inhibitors named after Louis Kasal, who in 1948 isolated from pancreas 
SPINK1, a specific trypsin inhibitor and the first member of this family[155-157]. SPINK1 is a small (6.2 kDa) protein that 
resides in zymogen granules and is secreted with other digestive enzymes into the juice. Biochemical studies showed that 
complex formation with SPINK1 inhibits trypsin’s activity; the inhibition is temporary, as trypsin gradually degrades 
SPINK1, restoring its own proteolytic activity[158].

In early 2000s, SPINK1 gained attention because its mutations were associated with human pancreatitis[159-162]. 
However, the most common SPINK1 mutation p.N34S affects neither SPINK1’s ability to inhibit trypsin nor its interaction 
with human cationic trypsin[163-165]; and no linkage between the presence of SPINK1 and PRSS1 mutations has been 
found[166,167]. Although p.N34S mutation increases the risk for CP, its frequency in HP families is the same as in the 
general population[166,167]. Recently, the N34S variant was linked to changes in SPINK1 gene enhancer, raising the 
possibility of a decrease in its transcription and hence protein level[168,169]. It was also suggested that in pancreatitis, 
SPINK1 acts together with other genetic or environmental factors[159]. In particular, 20% of patients carrying functionally 
defective variants of the epithelial transient receptor potential vanilloid 6 (TRPV6) Ca2+ channels have p.N34S mutation, 
which may suggest their cooperative effect on trypsin activity[170,171]. In addition, SPINK1 mutations may cause its’ 
misfolding and subsequent degradation[164].

SPINK overexpression reduced intrapancreatic trypsin activity in CER-AP[172-174]. Yet, whether the loss of SPINK1 
affects trypsin activity in the pancreas remains unknown, as mice with genetic deletion of the mouse ortholog of SPINK1 
die shortly after birth[175]. Thus, the role of SPINK1 in modulating trypsin activity in pancreatitis requires further invest-
igation. SPINK1 is a multifunctional protein regulating cancer cell proliferation, transdifferentiation, metastasis, and 
cancer stemness[176,177]. The contribution of trypsin-independent effects of SPINK in the pancreas cannot be excluded.

Chymotrypsin C
Chymotrypsin C (CTRC) is a secreted serine protease, a minor isoform of chymotrypsin with chymotrypsin-like activity 
that belongs to the elastase family[178]. CTRC acts together with trypsin to degrade trypsinogen. Trypsin first proteolyt-
ically converts chymotrypsinogen C into active CTRC, and then CTRC and trypsin act in concert to fully degrade 
trypsinogen[13,179-181].

An important role of CTRC in regulating intrapancreatic trypsin in human pancreatitis is supported by the finding that 
PRSS1 mutations enhance intrapancreatic trypsin not only by stimulating trypsinogen autoactivation but also by reducing 
CTRC-dependent trypsinogen degradation[180]. Paradoxically, CTRC can also directly stimulate trypsinogen auto-
activation through proteolytic processing of TAP[182,183]. However, this effect is minor, and the predominant action of 
CTRC is trypsinogen degradation[13,180]. Interestingly, C57BL/6 mice widely used in experimental models do not 
express active CTRC[40] and instead express functionally analogous chymotrypsin CTRB1[49]. Restoring CTRC locus in 
C57BL/6 mice reduced trypsinogen activation in CER-AP, demonstrating CTRC’s protective role against intrapancreatic 
trypsin accumulation in experimental pancreatitis[40].



Gukovskaya AS et al. Trypsin in pancreatitis

WJG https://www.wjgnet.com 4426 November 7, 2024 Volume 30 Issue 41

Cathepsin L
Cathepsin L (CTSL) is a lysosomal cysteine protease[184]; trypsinogen is one of its substrates. Unlike CTSB, cleavage of 
trypsinogen by CTSL generates a longer N-terminal oligopeptide and a truncated trypsin devoid of enzymatic activity
[106]. CTSL knockouts, both whole-body and pancreas-specific, and CTSL pharmacologic inhibition all significantly 
increased trypsin activity in CER-AP[104,106,129], thus supporting CTSL’s protective role against intrapancreatic trypsin 
accumulation in experimental pancreatitis. CTSL involvement in protecting against trypsinogen autoactivation in HP-
related GEMMs has not been tested.

Autophagy: A potent mechanism protecting against intrapancreatic trypsin accumulation
Recent studies have established macroautophagy/autophagy as a key acinar cell homeostatic mechanism[6,129-132,135,
136,143,185]. Blocking autophagy (at various steps) by genetic means markedly increased basal trypsin activity in the 
pancreas[135,143,146,185-188]; remarkably, the effect was seen in all 6 examined GEMMs targeting different lysosomal/
autophagic mediators (Table 3). These studies reveal a vital role of autophagy in protecting the pancreas against trypsin 
accumulation. They provide evidence that trypsin is generated during normal acinar cell functioning but is efficiently 
eliminated through autophagy. Impaired autophagic degradation/flux promotes intra-acinar trypsin accumulation in 
experimental pancreatitis; indeed, the pharmacologic autophagy enhancer trehalose markedly reduced intra-acinar 
trypsin accumulation in CER-AP and Arg-AP[78]. Of note, because of autophagy failure, acinar cells in pancreatitis 
accumulate not only trypsin-containing organelles but also dysfunctional mitochondria, ER, and toxic protein aggregates
[6]. The role of autophagy in reducing trypsin accumulation in HP-related GEMMs has not been examined.

EFFECTS OF OTHER PATHOLOGIC RESPONSES OF EXPERIMENTAL PANCREATITIS ON  
TRYPSINOGEN ACTIVATION
Aberrant Ca2+ signaling
Abnormal (global and sustained) increase in acinar cell cytosolic Ca2+ is an early pathologic response associated with 
many AP models[77,189-191]. 25 years ago, trypsinogen activation in CER-AP was shown to be abolished with chelators 
of extracellular or intracellular Ca2+ that prevent the cytosolic Ca2+ increase[192]. Later, Ca2+ influx via store-operated Ca2+ 
entry (SOCE) channels was shown necessary for acinar cell trypsinogen activation. Specific pharmacologic inhibitors of 
SOCE channels Orai1 or TRPV4, or overexpression of SARAF, a protein inhibiting Ca2+ influx, all prevented trypsinogen 
activation in experimental pancreatitis[191,193-195].

How exactly Ca2+ mediates trypsinogen activation in pancreatitis is not well understood. An increase in cytosolic Ca2+ 
per se does not cause trypsinogen activation in acinar cells, suggesting an indirect effect. One likely mechanism involves 
the Ca2+/calmodulin-dependent phosphatase calcineurin; its’ pharmacologic or genetic inhibition significantly reduces 
trypsinogen activation in experimental pancreatitis[196-199]. Another likely mechanism is that Ca2+ influx via SOCE 
channels mediates formation of the above-discussed abnormal endocytic vacuoles[200].

Mitochondrial dysfunction
Loss of the mitochondrial membrane potential in acinar cells, caused by persistent opening of the mitochondrial 
permeability transition pore (mPTP), is a universal early event in experimental pancreatitis[6]. Notably, genetic or 
pharmacologic mPTP blockade prevented trypsinogen activation in multiple dissimilar AP models, highlighting 
mitochondria’s critical regulatory role in this response[72,78,201]. The mechanisms linking mPTP opening to acinar cell 
trypsinogen activation (or trypsin accumulation) are unknown.

Nuclear factor kappa B activation
The master proinflammatory transcription factor nuclear factor kappa B (NF-κB) is activated in acinar cells early in 
pancreatitis and initiates the disease’ inflammatory response[89,202]. The interrelationship between NF-κB and 
trypsinogen activation has been studied for many years, with initially contradictory findings[61,89-91,102,203-207]. The 
preponderance of later evidence indicates, however, that the acinar cell activation of NF-κB and trypsinogen are 2 
separate early pancreatitis responses that do not directly affect each other[206].

Inflammatory mediators
Neutrophil and macrophage depletion reduces intrapancreatic trypsin activity in experimental AP models, indicating 
that immune cells infiltrating the pancreas promote trypsinogen activation[62,208-211]. A number of inflammatory 
mediators produced by these cells, namely reactive oxygen species generated by neutrophil NADPH oxidase[62]; tumor 
necrosis factor[211]; the adhesion molecule P-selectin[210]; neutrophil-derived matrix metalloproteinase 9[209]; as well as 
neutrophil extracellular traps[208], all increased intrapancreatic trypsin in experimental pancreatitis. The mechanisms 
through which these inflammatory mediators stimulate trypsinogen activation remain unclear; however, they may act 
through a common pathway, e.g., by promoting macrophage infiltration of the pancreas. Indeed, as discussed above, 
trypsinogen activation can occur within macrophages[117].

Cholesterol dyshomeostasis
Acinar cell cholesterol metabolism is severely disrupted in experimental and human pancreatitis[143]. Notably, its 
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Table 3 Genetic autophagy blockade increases the basal trypsin activity in the pancreas

Knockout 
mouse Function of ablated protein Effect of the knockout on autophagy Fold increase in trypsin 

activity Ref.

Atg7Δpan 2.5 [186]

Atg5Δpan 2.0 [187]

VMP1Δac

Key mediators of autophagosome formation Blockade of autophagosome formation and 
autophagy

3.5 [188]

LAMP2 KO Major lysosomal membrane protein Lysosomal dysfunction. Autophagy blockade 3.0 [135]

GNPTAB KO Mediator of hydrolase delivery to lysosomes Lysosomal and endosomal dysfunction. 
Autophagy blockade

8.0 [143]

TfebΔac; Tfe3-/- Transcriptional regulator of lysosomal 
biogenesis, autophagy

Autophagy blockade 2.5 [140,
146]

normalization markedly reduced intra-acinar trypsin in CER-AP[143]. The underlying mechanisms remain to be 
elucidated; one possible mechanism is endolysosomal dysfunction caused by excessive cholesterol accumulation in 
lysosomes/late endosomes.

ROLE OF TRYPSIN IN PANCREATITIS: PARADIGM SHIFT?
For many decades, the prevailing paradigm in the field has been that the inappropriate, intrapancreatic activation of 
trypsinogen is the central pathogenic mechanism driving all forms of pancreatitis. Supporting this concept are the 
findings that human HP is associated with mutations in the PRSS1 gene[13,17,212] and that TAP levels in patients’ blood 
and urine correlate with the severity of pancreatitis[80-84,213,214]. However, experimental testing of this paradigm has 
only started in early 2000s, providing insights on which pancreatitis responses, and to what extent, are mediated by 
trypsinogen activation.

The role of intrapancreatic trypsin in experimental pancreatitis
Intrapancreatic trypsinogen activation is a hallmark response in various experimental models of AP that replicate the 
pathology of human disease induced by gallstones, alcohol consumption, and cigarette use (Table 2). The preponderance 
of the evidence, discussed in detail above in “Mechanisms of trypsinogen activation in pancreatitis”, shows that in experi-
mental AP models (particularly CER-AP) trypsinogen activation is solely mediated by CTSB. Therefore, pharmacologic or 
genetic manipulations of CTSB have been a major tool to assess trypsin’s role in pancreatitis[47,60,64,102,104,110]. CTSB 
has multiple targets other than trypsin[184]; hence, the effects of these manipulations on experimental pancreatitis can be 
through trypsin-independent pathways. However, the findings that CTSB blockade does not affect pancreatitis responses, 
while preventing trypsinogen activation[47,60,64,104,110], strongly indicate that trypsin is not involved. More direct 
information on trypsin’s mediatory role was obtained using mice with ectopic (over)expression of active trypsin (from 
genetically engineered trypsinogen activated by the endogenous serine protease furin[205,215,216]) or with genetic 
ablation of the T7 isoform that abolished intra-acinar trypsinogen activation in experimental pancreatitis models[33,88,
112,199].

The results of these and other studies have challenged the “trypsin central” paradigm of pancreatitis pathogenesis. 
Importantly, they have provided strong evidence that trypsin does not mediate the inflammatory response, a driver of 
pancreatitis and a key determinant of the disease severity: T7 and CTSB genetic ablation and CTSB pharmacologic 
inhibition did not reduce inflammatory cell infiltration, NF-κB activation, and the increases in cyto/chemokines in 
pancreas and serum evoked by CER-AP[33,47,60,102,104,112]; CTSL genetic ablation increased intrapancreatic trypsin 
activity but reduced inflammation in experimental AP models[106]; the furin-mediated ectopic generation of trypsin in 
acinar cells did not increase NF-κB activity or cytokine expression[205,215,216]; in CER-CP, the persistent NF-κB 
activation and T-cell infiltration in pancreas were the same between WT, T7, and CTSB knockout mice[88].

A large amount of trypsinogen in pancreatitis is present in the interstitial space[59], where the extracellularly generated 
(by CTSB or through autoactivation) trypsin could potentially cause acinar cell damage. To assess the effect of extra-
cellular trypsin on pancreatitis, rats were infused with a combination of CER and enterokinase[59]. Administration of 
enterokinase (at relatively low doses) increased blood and lymph TAP levels in CER-AP but not in the basal condition. 
The enterokinase treatment did not worsen CER-induced inflammatory cell infiltration in pancreas; and the infiltration 
was not reduced by co-infusion of a cell-impermeable soybean trypsin inhibitor[59]. These findings suggest that 
extracellular trypsin, at least in CER-AP, does not promote inflammation.

The above data provide evidence that the mechanisms of the inflammatory response in experimental pancreatitis, in 
particular CER-AP and CER-CP models, are trypsin-independent. Studies also indicate that, in addition to inflammation, 
trypsin does not mediate a number of other pancreatitis responses. Both T7 and CTSB knockouts did not alter amylase 
release induced by CCK/CER in mouse acinar cells[60,74,112]. CTSB inhibitor, while blocking trypsinogen activation, did 
not prevent F-actin redistribution and activation of JNK and ERK kinases in mouse CER-AP; nor did it affect CER-
induced amylase secretion in rat acinar cells[64,102]. CER-induced CP displayed the same extent of fibrosis, ductular 



Gukovskaya AS et al. Trypsin in pancreatitis

WJG https://www.wjgnet.com 4428 November 7, 2024 Volume 30 Issue 41

metaplasia, and histopathology in WT, T7, and CTSB knockout mice[88].
The studies indicate, however, that trypsin mediates acinar cell death in experimental AP. T7 genetic ablation caused a 

50% reduction in necrosis in CER-AP, both in vivo and ex-vivo[112]. Extracellular trypsin generated with enterokinase 
increased necrosis and hemorrhage in CER-AP[59,217]. Exogenous trypsin stimulated acinar cell death ex-vivo by 
promoting ferroptosis[218], a form of regulated necrosis[219]. Finally, there is strong correlation between the amount of 
TAP in blood and urine and parenchymal necrosis in pancreatitis patients[81,213,214]. Studies in CTSB deficient mice 
generated contradictory results, reporting no effect[47,104] or reduction of necrosis[60] in CER-AP. However, CTSB 
mediates acinar cell apoptosis in pancreatitis[74,220]; and in AP models, apoptosis causes secondary necrosis[221,222] 
complicating the use of CTSB knockout for the analysis of trypsin’s effect on acinar cell death.

Taken together, the data indicate that trypsinogen activation is not the primary driver of experimental pancreatitis. 
There are several caveats to this conclusion. The involvement of trypsin in pancreatitis responses was mainly studied in 
CER-AP, so the findings must be expanded to other, dissimilar AP and CP models. Another caveat is the absence of 
information on the role of trypsin in major organelles’ disordering (e.g., mitochondria or autophagy) that mediates 
pancreatitis pathologies. But the key limitation is that we do not understand the mechanisms through which trypsin 
affects pancreatitis responses, particularly necrosis.

The finding that trypsin, a potent protease with broad substrate recognition[223], may not cause extensive acinar cell 
damage in experimental AP indicates the decisive role of protective mechanisms, as discussed above in “Mechanisms 
protecting the pancreas against trypsin accumulation”. One can speculate that trypsin would be especially dangerous in 
the cytosol and thus an important role of protective mechanisms is to prevent or counteract its’ escape from membrane-
bound organelles.

Involvement of PAR2 in the effects of trypsin in experimental AP
The extracellular trypsin (e.g., in the interstitium) may affect acinar cells in pancreatitis by activating, via site-specific 
proteolysis, protease-activated receptor-2 (PAR2) on the plasma membrane[224]. The effect of PAR2 on the severity of 
experimental pancreatitis is, however, model-dependent: PAR2 genetic ablation decreased acinar cell injury in TLCS-AP 
but had an opposite effect in CER-AP[224-228]. The mechanisms underlying these differences are poorly understood, and 
the impact of PAR2 activation on pancreatitis remains unclear. PAR2 is also present on ductal cells. Its activation by 
extracellular trypsin reduces pancreatic ductal bicarbonate secretion, which could contribute to the development of CP
[229].

The role of trypsin in HP-related GEMMs
HP-related GEMMs employ mutations and other genetic manipulations in trypsinogen and other proteins in the trypsin-
dependent pathway of pancreatitis that promote trypsinogen autoactivation, impede trypsinogen degradation, or inhibit 
trypsin enzymatic activity[13]. As noted above, the development of these genetic models started only recently, and there 
are many gaps in the analysis of their effects on trypsinogen activation and its role in disease development.

First, the effects of genetic modifications on steady-state intrapancreatic trypsin activity have been measured in only a 
few of the GEMMs (Table 1); moreover, there was no measurement of TAP. These measures are critical because the 
available data show that trypsinogen autoactivation in these GEMMs does not necessarily increase trypsin activity in the 
pancreas. For example, inserting in mice the full-length human PRSS1R122H gene, the most mutated gene in HP, did not 
increase the basal intrapancreatic trypsin activity[42]. Moreover, it did not cause spontaneous pancreatitis[42] despite the 
data that this mutation facilitates trypsinogen autoactivation[41,48,180]. A GEMM that did generate both intrapancreatic 
trypsin activity and spontaneous pancreatitis (Table 1) is the “artificial” T7D23A mutant with a 50-fold increased 
autoactivation rate[38]. However, even for this model very few parameters of pancreatitis have been reported. Thus, the 
lack of critical data so far precludes a conclusion about trypsin’s causative or mediatory role in developing spontaneous 
pancreatitis in HP-related GEMMs. A finding that GEMMs that display marked increases in the basal intrapancreatic 
trypsin invariably develop spontaneous pancreatitis would provide strong evidence supporting such role for trypsin; 
conversely, an absence of positive correlation would argue against it.

The second conclusion from the available data is that CER-AP is worsened and CER-induced trypsin activity is greater 
in all HP-related GEMMs examined so far (Table 1), even if they show no increase in basal intrapancreatic trypsin and no 
spontaneous pancreatitis[37,39,41-44,46,49,216]. For example, in T7K24R mice analogous to the HP-associated human 
p.K23R mutant, CER-AP exhibits about 3-fold higher intrapancreatic trypsin activity and increased cyto/chemokine 
levels and inflammatory cell infiltration, as compared to WT[43]. Similar effects were observed in PRSS1R122H mice; 
furthermore, a severe CP developed in these mice 70 days after one episode of CER-AP[41]. The results using “enzymat-
ically dead” PRSS1R122H construct[41] suggested that the intensification of CER-AP in this GEMM requires trypsin activity.

These and similar data indicate that HP-related mutations and other genetic manipulations sensitize the pancreas to 
the damage induced by experimental pancreatitis stressors. The sensitization mechanism(s) remain to be determined; in 
fact, it is not straightforward to understand how the CER-induced/CTSB-mediated trypsinogen activation can be 
augmented by increased autoactivation of mutated trypsinogen in HP-related GEMMs subjected to CER-AP. One can 
speculate that protective mechanisms in HP-related GEMMs are able to counteract increased trypsinogen activation in the 
basal condition, but they become impaired or overwhelmed when these mice are subjected to experimental pancreatitis. 
In a hypothetical scenario, efficient autophagy protects against increased basal trypsin activity in HP-related GEMMs; in 
WT CER-AP, autophagy is impaired and fails to prevent trypsin accumulation[129,130]; and in HP-related GEMMs 
subjected to CER-AP, the impaired autophagy is even less efficient in coping with mutated/auto activated trypsinogen or 
with increased trypsinogen load (as in compound GEMMs expressingPRSS1R122H plus PRSS2[46]).
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Another possible sensitization scenario is a “threshold effect” whereby too much active trypsin overwhelms intact 
pancreas protective mechanisms[45]. In fact, spontaneous pancreatitis developed in transgenic mice co-expressing human 
PRSS2 and PRSS1R122H but not PRSS1R122H alone[46]. T7K24R mice did not develop spontaneous pancreatitis; but the 
T7K24RxCtrb1-del strain, in which chymotrypsin CTRB1 that promotes trypsinogen degradation (see “Mechanisms 
protecting the pancreas against trypsin accumulation”) is also genetically ablated, did[48,49]. Consistent with “threshold 
effect” extensive pancreas damage was only caused by a high but not moderate level of ectopic/furin-mediated trypsin 
activity[205,215].

CONCLUSION
In summary, the intrapancreatic trypsinogen activation is a universal response in experimental (in-vivo and ex-vivo) 
pancreatitis models that reproduce pathologies of the vast majority of human pancreatitis cases of various etiology. 
Acinar cell is the primary site of intrapancreatic trypsin accumulation in experimental pancreatitis. It also occurs in 
activated macrophages infiltrating the pancreas; there could be a contribution from interstitial trypsinogen activation. In 
experimental pancreatitis, intra-acinar trypsinogen activation is CTSB mediated and occurs in acidic organelles, likely of 
endolysosomal system. The data on trypsin generation in HP-related GEMMs are much more limited; they indicate that, 
different from experimental pancreatitis, it is mediated by trypsinogen autoactivation.

The role of trypsin in pancreatitis remains a matter of intense research and much debate, and we have only started 
answering the question posited in the title of this review. However, compelling evidence leads to the conclusion that 
CTSB-mediated trypsinogen activation does not drive experimental pancreatitis. The preponderance of the results 
indicates that increase in trypsin does not mediate the inflammatory response, but it promotes parenchymal cell death in 
experimental AP and CP models. Due to the paucity of available data, the question about the pathogenic (causative or 
mediatory) role of trypsinogen autoactivation in the disease development in HP-related GEMMs remains open.

A number of mechanisms counteract or reduce intra-acinar trypsin levels and/or activity which could elicit damage to 
the pancreas. They protect against basal trypsin activity generated during normal acinar cell functioning; one, recently 
emerged, defense mechanism is autophagy that degrades trypsin-containing organelles. One can think that pancreas 
damage ensues when the protective mechanisms become impaired or overwhelmed - which is the case with autophagy in 
experimental pancreatitis. To what extent the damage is mediated by the increase in intra-acinar trypsin remains, 
however, to be determined. One may further speculate that trypsin becomes pathogenic when it is not contained within 
membraned structures; or when its activity raises over a threshold level. Future research should elucidate these issues.

In addition to detailed characterization of the mechanisms protecting the pancreas against trypsin accumulation, future 
research should explore the involvement of extracellular/interstitial trypsinogen activation. Of note, in contrast to experi-
mental pancreatitis models, even the intra-acinar site(s) where trypsin’s increased activity occurs have not been examined 
in HP-related GEMMs. But perhaps the 2 most important research directions are characterization of downstream 
molecular targets of trypsin in pancreas and acinar cells, in particular those mediating cell death; and elucidation of 
conceivable interrelationships (synergy?) between trypsin-independent pathways driving the disease, such as 
mitochondrial dysfunction, and trypsin.
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