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Abstract
Long‐term caloric restriction is a conventional and reproducible dietary
intervention to improve whole body metabolism, suppress age‐related
pathophysiology, and extend lifespan. The beneficial actions of caloric
restriction are widely accepted to be regulated in both growth hormone/
insulin‐like growth factor 1‐dependent and ‐independent manners. Although
growth hormone/insulin‐like growth factor 1‐dependent regulatory mecha-
nisms are well described, those occurring independent of growth hormone/
insulin‐like growth factor 1 are poorly understood. In this review, we focus
on molecular mechanisms of caloric restriction regulated in a growth
hormone/insulin‐like growth factor 1‐independent manner. Caloric restriction
increases mitochondrial quantity and improves mitochondrial quality by
activating an axis involving sterol regulatory element binding protein‐c/
peroxisome proliferator‐activated receptor γ coactivator‐1α/mitochondrial
intermediate peptidase in a growth hormone/insulin‐like growth factor
1‐independent manner, particularly in white adipose tissue. Fibroblast
growth factor 21 is also involved in this axis. Moreover, the axis may be
regulated by lower leptin signaling. Thus, caloric restriction appears to
induce beneficial actions partially by regulating mitochondrial quantity and
quality in white adipose tissue in a growth hormone/insulin‐like growth factor
1‐independent manner.

Pathol. Int. 2023;73:479–489. wileyonlinelibrary.com/journal/pin | 479

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Pathology International published by Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

Abbreviations: ACC, acetyl‐CoA carboxylase; ACLY, ATP citrate lyase; AL, ad libitum; AMPK, AMP‐activated protein kinase; ATGL, adipose triglyceride lipase;
COX4, cytochrome c oxidase subunit 4; CR, caloric restriction; df/df, Ames dwarf mice; eNOS, endothelial nitric oxide synthase; eWAT, epididymal white adipose
tissue; FA, fatty acid; FASN, FA synthase; FGF21, Fibroblast growth factor 21; FGFR1, FGF receptor 2; FOXO, forkhead box O; GH, growth hormone; GHR, growth
hormone receptor/binding protein; GHRH, growth hormone‐releasing hormone; GSSG/GSH, oxidized glutathione to reduced glutathione; HSL, hormone sensitive
lipase; IGF‐1, insulin‐like growth factor 1; KLB, beta‐klotho; LEPR, leptin receptor; MDH2, malate dehydrogenase 2; ME‐1, malic enzyme 1; MEFs, mouse embryonic
fibroblasts; MIPEP, mitochondrial intermediate peptidase; MnSOD, Manganese superoxide dismutase; MPP, mitochondrial processing peptidase; mTORC1,
mechanistic target of rapamycin complex 1; MtSPases, mitochondrial signal peptidases; NRF, nuclear respiratory factor; ob, obese gene; PGC‐1α, peroxisome
proliferator‐activated receptor γ coactivator‐1α; pHSL, phosphorylated hormone sensitive lipase; QFM, quadriceps femoris muscle; rWAT, retroperitoneal white
adipose tissue; Sir2, silent information regulator 2; SREBPs, sterol regulatory element binding proteins; sWAT, subcutaneous white adipose tissue; Tg,
heterozygous transgenic dwarf rats bearing an anti‐sense GH transgene; TOM20, translocase of outer mitochondrial membranes 20 kDa; vWAT, visceral white
adipose tissue; WAT, white adipose tissue; Wd, wild‐type; γ‐GCS, γ‐glutamylcysteine synthetase.

http://orcid.org/0000-0003-1381-0777
mailto:higami@rs.tus.ac.jp
https://wileyonlinelibrary.com/journal/pin


(B) / 20H0413, Japan Society for the
Promotion of Science KEYWORDS

aging, caloric restriction, fibroblast growth factor 21, growth hormone/insulin‐like growth factor
1, mitochondria, mitochondrial intermediate peptidase, peroxisome proliferator‐activated
receptor γ coactivator‐1α, sterol regulatory element binding protein‐c, white adipose tissue

INTRODUCTION

Obesity is a serious problem for human health in the
modern world. In 2016, the World Health Organization
reported that more than 1.9 billion adults over 18 years
of age are overweight, of whom 650 million are obese.
The number of obese people in 2016 is nearly three
times the number in 1975. Overweight and obesity
cause and promote age‐related diseases including type
2 diabetes, atherosclerosis, cardiovascular diseases,
and certain cancers.1

Aging, also called senescence, involves irreversible
and progressive morphological and functional deterio-
rative processes that occur with time. Age‐related
diseases are widely accepted to occur based on the
aging process. Therefore, to prevent age‐related
diseases, we must understand the mechanisms of
aging. Recent advances in molecular, genetic, and
reproductive technologies provide several clues to
understand aging. Recently, 12 aging hallmarks (geno-
mic instability, telomere attrition, epigenetic alterations,
loss of proteostasis, disabled macroautophagy, de-
regulated nutrient sensing, mitochondrial dysfunction,
cellular senescence, stem cell exhaustion, altered
intercellular communication, chronic inflammation,
and dysbiosis) were proposed;2 however, the mecha-
nism of aging has yet to be fully clarified.

In 1935, McCay and colleagues reported that long‐
term caloric restriction (CR) after weaning extends the
lifespan of rats.3 Thereafter, a number of studies using
rodents suggested that CR improves whole body
metabolism, suppresses age‐related pathophysiologi-
cal changes, and extends lifespan. Indeed, the
beneficial actions of CR are observed in various
species from yeast and Caenorhabditis elegans to
mammals.4,5 In the late 1980s, two parallel CR studies
were initiated using rhesus monkeys. The University
of Wisconsin study reported a significant positive
impact of CR on survival, but the National Institute on
Aging study did not detect it. Thereafter, two studies
were comprehensively analyzed and concluded that
CR is effective in nonhuman primates as well.6

Therefore, the beneficial action of CR may also be
effective for humans.

In 1996, Ames dwarf mice (df/df) were reported to
live longer than wild‐type (Wd) mice.7 Ames dwarf
mice, which bear a Prop1 mutation, lack growth
hormone (GH), prolactin, and thyroid‐stimulating hor-
mone. This was the first report of a prolongevity effect
induced by a single gene mutation in mammals.

Thereafter, more than 40 rodents bearing a single
gene mutation or genetic modification have been
reported to live longer than Wd rodents. Approximately
one‐third of reported rodents showing a prolongevity
phenotype are involved in GH/insulin‐like growth factor
1 (IGF‐1) signaling. Because CR also suppresses GH/
IGF‐1 signaling, it has been suggested that the
beneficial action of CR might be largely regulated in a
GH/IGF‐1‐dependent manner. However, the longevity
of various long‐lived rodents exhibiting suppressed
GH/IGF‐1‐signaling is further extended by CR. The
findings suggest that the beneficial action of CR may be
regulated by both GH/IGF‐1‐dependent and ‐
independent mechanisms.8 GH/IGF‐1 signaling and
sirtuin are well researched; in contrast, the beneficial
actions of CR regulated in a GH/IGF‐1‐independent
manner are not well understood.

In this review, we first discuss the impacts of GH/
IGF‐1 signaling and sirtuin on the beneficial actions of
CR, then focus on novel GH/IGF‐1‐independent signal-
ing mechanisms.

GH/IGF‐1 signaling in the beneficial
actions of CR

GH/IGF‐1 signaling, which is involved in anabolic
processes, is important for insulin sensitivity and
lifespan regulation.9,10 Ames dwarf mice, mini
rats bearing an anti‐sense GH transgene, growth
hormone‐releasing hormone (GHRH)‐knockout
mice, and GH receptor/binding protein (GHR)‐
knockout mice live longer than Wd rodents.11–14

CR further extends the longevity of Ames dwarf
mice, mini rats and GHRH‐knockout mice.11–13 On
the other hand, the significant positive impact of CR
on lifespan disappears in GHR‐knockout mice.14

Thus, GH/IGF‐1 signaling is well researched, but the
conflicting results on lifespan regulation by CR are
not well understood.

Forkhead box O (FOXO) signaling and mechanistic
target of rapamycin complex 1 (mTORC1) signaling are
well‐known factors involved in aging processes in a
GH/IGF‐1‐dependent manner. FOXO family members
FOXO1, FOXO3, FOXO4, and FOXO6 are negatively
regulated by the GH/IGF‐1/phosphoinsitide‐3 kinase/
Akt signaling pathway.15 Under CR conditions, FOXO1
and FOXO3 contribute to inhibition of tumorigenesis
and lifespan extension, respectively.16,17 mTOR is a
serine/threonine kinase formed by two complexes,
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mTORC1 and mTORC2, which are composed of
special binding partners. mTORC1 is sensitive to
rapamycin and consists of RAPTOR, PRAS40, DEP-
TOR and mLST8 proteins. mTORC2 is relatively
insensitive to rapamycin and consists of RICTOR,
PROTOR, DEPTOR, mLST8, and mSIN1. mTORC1
regulates protein synthesis and cell growth through
downstream molecules, 4E‐BP1 and S6K. mTORC2
plays a crucial role in maintenance of normal and
cancer cells through downstream molecules, AKT,
SGK‐1 and PKCα.18 Interestingly, it has been reported
that rapamycin‐mediated inhibition of mTORC1 ex-
tends the median and maximal lifespan of mice.19

Sirtuin in the beneficial actions of CR

Sir2 (silent information regulator 2) was first discovered
as a gene involved in transcriptional silencing of
budding yeast mating type loci.20 Sir2 is required for
CR‐associated prolongevity in yeast.21 In mammals,
seven Sir2 orthologs (the Sirtuin family) have been
identified; of these, SIRT1, SIRT3, and SIRT6 have
important roles in age‐related phenotypes.22 In addi-
tion, cell survival under high oxidative stress requires
FOXO1, FOXO3a, and FOXO4; SIRT1 regulates the
transcriptional activity of these FOXO family members
through its deacetylase activity.23,24 Increases of
SIRT3, a major deacetylase in the mitochondrial matrix,
reportedly enhance mitochondrial glutathione antiox-
idants to extend lifespan in CR conditions.25 Moreover,
Sirt6 transgenic mice exhibit alterations of key path-
ways in lifespan regulation, including lower serum
levels of IGF‐1, and live longer than Wd mice.26

A novel molecular target of the GH/IGF‐1‐
independent beneficial actions of CR

To identify the molecular targets regulated in a GH/IGF‐
1‐independent manner that underlie the beneficial
actions of CR, we first analyzed the white adipose
tissue (WAT) morphology of Wd rats fed ad libitum
(WdAL) or CR (WdCR), as well as those of heterozy-
gous transgenic mini rats bearing an anti‐sense GH
transgene fed AL (TgAL) or CR (TgCR). The findings
show that the size of adipocytes is markedly reduced in
WdCR and TgAL compared with WdAL, although the
effect is less significant in TgAL. In addition, we
evaluated gene expression profiles using high‐density
oligonucleotide microarrays, which indicates marked
changes in WdCR compared with WdAL but not TgAL.
Genes involved in fatty acid (FA) biosynthesis, particu-
larly those regulated by sterol regulatory element
binding proteins (SREBPs), display the largest
changes by CR but not Tg.27 SREBPs are transcription
factors belonging to the basic helix‐loop‐helix/leucine

zipper family that are known to be master regulators of
FA and cholesterol metabolism. The SREBP family has
three isoforms: SREBP‐1a, SREBP‐1c, and SREBP‐2.
SREBP‐1a and SREBP‐1c are master regulators of FA
biosynthesis, while SREBP‐2 regulates cholesterol
synthesis. SREBP‐1c localizes in insulin‐sensitive
tissues such as liver, WAT, and muscle; in contrast,
SREBP‐1a is more widely distributed than SREBP‐1c
in the jejunum, ileum, thymus, and spleen as well.28–30

The SREBPs‐SREBP cleavage‐activating protein
(SCAP) complex is retained in the endoplasmic
reticulum together with insulin‐induced gene proteins
(INSIGs). INSIGs are ubiquitylated and rapidly
degraded when sterols are absent. In this condition,
the SREBPs‐SCAP complex is transported to the
Golgi. Site‐1 and site‐2 proteases, two proteolytic
enzymes that cleave and release the N‐terminal
domain of SREBPs, are located at the Golgi mem-
brane. Thereafter, the N‐terminal domain of SREBPs is
transported to the nucleus and binds to SRE. Subse-
quently, SREBPs promote transcription of their target
genes.31 Among SREBPs, CR increases Srebp‐1c
expression the most, followed by Srebp‐1a and Srebp‐2.
CR markedly upregulates expression of Srebp‐1c and its
downstream targets including FA synthase (Fasn) and
acetyl‐CoA carboxylase (Acc), whereas Tg does not.27

These findings suggest that CR can promote FA
biosynthesis by increasing SREBP‐1c in a GH/IGF‐1‐
independent manner.

SREBP‐1c is a key regulator of the GH/
IGF‐1‐independent beneficial actions
of CR

As mentioned above, SREBP‐1c acts as a key regulator
of FA biosynthesis in a GH/IGF‐1‐independent manner.
Therefore, to analyze mechanisms of CR, we used
Srebp‐1c‐knockout mice. SREBP‐1c binds with sterol
regulatory element to activate transcription of its down-
stream genes, some of which are involved in FA
biosynthesis. As shown in Figure 1, CR upregulates
expression of genes and/or proteins involved in FA
biosynthesis including FASN, ACC, ATP citrate lyase
(ACLY), and malic enzyme 1 (ME‐1) in the WAT of Wd
mice but not Srebp‐1c‐knockout mice.32 SREBP‐1c and
its downstream factors increase with adipocyte differen-
tiation. Thus, we consider that CR‐associated upregula-
tion of genes involved in FA biosynthesis occurs in
mature adipocytes in WAT.33 This CR‐associated
phenotypic alteration, which might be regulated by
Srebp‐1c, is observed in WAT but not liver, heart,
quadriceps femoris muscle (QFM), or kidney.32 Our
findings support a previous report that CR promotes de
novo FA biosynthesis in WAT rather than liver.34

In general, CR suppresses oxidative stress.35 Both
aconitase activity and the ratio of oxidized glutathione
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to reduced glutathione (GSSG/GSH) are useful bio-
markers for oxidative stress.36,37 CR increases both
aconitase activity and GSSG/GSH ratios in the
WAT of Wd mice but not Srebp‐1c‐knockout mice.
γ‐glutamylcysteine synthetase (γ‐GCS), a rate‐limiting
enzyme for GSH biosynthesis,38 is slightly upregulated
by CR in Wd, but not in Srebp‐1c‐knockout mice. CR‐
associated phenotypic alterations, which may be
regulated by Srebp‐1c, are observed in WAT but no
other tissues (Figure 1).32 These results indicate that
CR suppresses oxidative stress through the regulation
of GSH biosynthesis, which is mediated by γ‐GCS
expression in a Srebp‐1c‐dependent manner.

It is reported that CR enhances mitochondrial
biogenesis by upregulating peroxisome proliferator‐
activated receptor γ (PPARγ) coactivator‐1α (PGC‐
1α).39–41 PGC‐1α was originally identified as a PPARγ‐
interacting protein that is expressed preferentially in
brown adipose tissue, a key thermogenic tissue.42

Currently, it is recognized as a master transcriptional
regulator of mitochondrial biogenesis. PGC‐1α stimu-
lates mitochondrial biogenesis and respiration by
binding to and activating nuclear respiratory factor
(NRF)‐1 and NRF‐2, which enhance the transcription
of various mitochondria‐related genes.43 In addition,
PGC‐1α induces the expression of transcription factor A
mitochondria (TFAM), which is a mitochondrial tran-
scriptional factor required for the replication and
transcription of mitochondrial DNA.43 SIRT3, a
mitochondria deacetylase, activates various mitochon-
drial matrix enzymes via its deacetylase activity.22

Cytochrome c oxidase subunit 4 (COX4) is a component
of the mitochondrial respiratory chain (electron transport
chain),44 while translocase of outer mitochondrial
membranes 20 kDa (Tom20) imports mitochondrial
proteins into mitochondria from the cytosol.45 Thus,
SIRT3, COX4, and Tom20 are important proteins in
mitochondria and its functions. CR increases expression

levels of SIRT3, COX4, and Tom20 in the WAT of Wd
mice but not Srebp‐1c‐knockout mice. In addition, no
changes in protein expression levels of these factors
occur in other organs of Srebp‐1c‐knockout mice.32 We
found that CR upregulates Pgc‐1α expression in WAT of
Wd mice but not Srebp‐1c‐knockout mice. In addition, a
chromatin immunoprecipitation assay using adipocytes
derived from mouse embryonic fibroblasts (MEFs)
demonstrates that SREBP‐1c directly binds the pro-
moter region of Pgc‐1α.32 The findings indicate CR
activates mitochondrial biogenesis via Pgc‐1α regulated
by SREBP‐1c in adipocytes but not in other tissues and
cells (Figure 1).

As expected, CR extends the lifespan of Wd mice
but not Srebp‐1c‐knockout mice. Elovl6, which is highly
expressed in liver and adipose tissue, is involved in
elongation of C16 saturated and monounsaturated FAs
to form C18 FAs.46,47 Elovl6‐knockout mice display
obesity and low fatty acid oxidation in the liver.46 These
findings implicate the altered quality of FAs due to
Elovl6 deficiency in age‐related pathologies. Thus, CR
likely increases FA biosynthesis and improves FA
quality via SREBP‐1c/ELOVL6. According to our
findings, the CR‐associated prolongevity effect and
metabolic remodeling observed in WAT may be
regulated by SREBP‐1c in a GH/IGF‐1‐independent
manner. In addition, metabolic remodeling in WAT,
which is regulated by SREBP‐1c, likely includes
enhanced FA biosynthesis via FASN and other
markers, conversion of FA quality via ELOVL6,
reduced oxidative stress via γ‐GCS, and activated
mitochondrial biogenesis via PGC‐1α. Furthermore,
Nisoli et al. (2005) reported that CR induces expression
of endothelial nitric oxide synthase (eNOS) and
enhances mitochondrial biogenesis in various tissues
including WAT of mice. These effects are strongly
attenuated in eNos‐knockout mice.48 Thus, mitochon-
drial biogenesis, which plays a fundamental role in the

F IGURE 1 Differential responses of caloric restriction (CR) among various tissues. Based on our previous published report, the
CR‐associated changes involved in fatty acid (FA) biosynthesis, oxidative stress, and mitochondrial biogenesis are summarized.32 All results
were compared among five tissues, white adipose tissue (WAT), liver, heart, quadriceps femoris muscle (QFM) and kidney between
wild‐type mice (Wd) and Srebp‐1c‐knockout mice (KO). Up arrows show “increase,” diagonally up arrows show “increased tendency,” and right
arrows show “no change” in the levels of FA biosynthesis, oxidative stress, and mitochondrial biogenesis.
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processes regulated by CR, is activated by SREBP‐1c
as well as eNOS.

Srebp‐1c upregulates expression of
Pgc‐1α and Fgf21

Fibroblast growth factor 21 (FGF21) is a member of
the endocrine FGF superfamily. FGF21 binds to the
FGF receptor 2 (FGFR1)/beta‐klotho (KLB) complex
to activate local downstream signaling in WAT and
muscle. FGF21 was originally identified as a hepato-
kine; since then, FGF21‐FGFR1/KLB signaling has
been shown to upregulate expression levels of both
glucose uptake‐ and lipogenesis‐related gene.49–52

Because few studies have investigated the impact of
FGF21 on the effect of CR, we focused on FGF21 in
WAT under CR conditions. At adult ages, CR
upregulates messenger RNA (mRNA) and protein
expression levels of FGF21 in WAT but not liver. To
reveal the effects of CR‐induced upregulation of
Fgf21 expression in WAT, we generated and ana-
lyzed 3T3‐L1 adipocytes overexpressing FGF21. Our
findings suggest that FGF21 induces Pgc‐1α mRNA
expression in adipocytes. Thus, FGF21 positively
regulates Pgc‐1α expression, leading to CR activat-
ing the FGF21‐FGFR1/KLB‐GLUT1/PGC‐1α pathway
in WAT.53

Fgf21 expression is negatively regulated by
SREBP‐1c in the liver.54 CR upregulates Fgf21 mRNA
expression in the WAT of Wd mice but not Srebp‐1c‐
knockout mice. In 3T3‐L1 adipocytes overexpressing
SREBP‐1c, Fgf21 mRNA expression is upregulated.
Unexpectedly, unlike regulation in the liver, evidence
suggests that SREBP‐1c positively regulates Fgf21
expression in WAT and adipocytes.55 Because Srebp‐
1c and Pgc‐1α appear to participate in mitochondrial
biosynthesis, we evaluated the involvement of FGF21
in mitochondrial biosynthesis. In 3T3‐L1 adipocytes
overexpressing FGF21, expression of both Pgc‐1α
mRNA and protein is increased. In contrast, expression
of Pgc‐1α mRNA is decreased in Fgf21‐knockout
adipocytes differentiated from MEFs. However, in
3T3‐L1 adipocytes overexpressing Fgf21, FGFR inhib-
itor does not change expression levels of Pgc‐1α
mRNA or protein. Therefore, it is likely that FGF21
and SREBP‐1c upregulate PGC‐1α expression, and
SREBP‐1c‐associated upregulation of PGC‐1α expres-
sion may be predominant under CR conditions.53,55

CR upregulates Srebp‐1c expression by
suppressing leptin signaling

Leptin, an adipokine, regulates appetite and energy
expenditure via the central nervous system. Leptin is
a product of the obese (ob) gene. In ob/ob mice

bearing a mutation in ob gene, hyperphagia occurs
due to defective leptin, leading to obesity.56,57 Zucker
fatty rats, which carry a mutation of the leptin
receptor (Lepr) gene, also display obesity due to
hyperphagia.58

The disappearance of CR‐induced upregulation of
proteins involved in FA biosynthesis is not observed in
WAT of obese Zucker fatty rats. In Lepr‐knockdown
cells, mRNA levels of Srebp‐1c are upregulated,
suggesting that Srebp‐1c expression levels are nega-
tively regulated by leptin signaling.59 Therefore, we
consider that the CR‐associated upregulation of Srebp‐
1c is regulated by lower leptin signaling.

A novel mechanism of SIRT3 activation
by CR

As mentioned above, SIRT3, a representative mitochon-
drial sirtuin, activates various enzymes in the mitochon-
drial matrix via its deacetylase activity.22,25 Therefore,
SIRT3 is a key regulator of mitochondrial quality. We
found that immunoblotting with an anti‐SIRT3 antibody
detects two bands of different molecular weights in
WAT, and CR increases the low‐molecular‐weight band
and decreases the high‐molecular‐weight band in Wd
mice but not Srebp‐1c‐knockout mice (Figure 2). Perico
and colleagues described a short isoform (28 kDa) and
long isoform (44 kDa) of SIRT3.61 However, our data
show an upper band under 37 kDa and lower band of
approximately 28 kDa (Figure 2a). Moreover, three
bands of varying molecular weights are distinguished
by immunoblotting of 3T3‐L1 adipocytes overexpressing
SIRT3 after treatment with a proteasome inhibitor.60

These results suggest that the upper band under 37 kDa
in Figure 2a is intermediate form of SIRT3 and the
intermediate form is cleaved by some enzymes into a
28 kDa mature form in the mitochondrial matrix. CR
increases proportions of the lower band to upper band in
WAT of Wd mice but not Srebp‐1c‐knockout mice
(Figure 2b). Thus, SIRT3 cleavage and maturation are
regulated by SREBP‐1c.

Most mitochondrial matrix proteins are encoded in
the nuclear genome and translated in the cytosol. To
transfer mitochondria matrix proteins from the cytosol
to mitochondria, these proteins contain an N‐terminal
mitochondrial targeting signal sequence, most of which
are cleaved by one or two mitochondrial signal
peptidases (MtSPases) to produce functional mature
forms.62 Mitochondrial processing peptidase (MPP)
is a representative MtSPase for which SIRT3 is a
substrate.63 Mitochondrial intermediate peptidase
(MIPEP), another MtSPase, sequentially cleaves eight
amino acids from the N‐terminus after cleavage by
MPP.64 Both COX4 and malate dehydrogenase 2
(MDH2) are reported substrates of MIPEP.65 Knock-
down of Mipep reduces protein expression levels of
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SIRT3, COX4, and MDH2. Therefore, SIRT3 may be
cleaved by both MPP and MIPEP, as well as COX4 and
MDH2.64 In fact, CR increases expression of Mipep
mRNA in Wd mice but not Srebp‐1c‐knockout mice
(Figure 3). Mipep mRNA expression levels are
upregulated in 3T3‐L1 adipocytes overexpressing
SREBP‐1c (Figure 4). Moreover, CR upregulates
expression of SIRT3 protein, as well as known MIPEP
substrates COX4 and MDH2.60

Manganese superoxide dismutase (MnSOD), which
is deacetylated by SIRT3, detoxicates superoxide
radicals in mitochondria.66 The ratio of acetylated
MnSOD compared with total MnSOD is increased in
Mipep‐knockdown cells, indicating defective SIRT3
function.60 To further confirm whether SIRT3 is a
substrate of MIPEP, we generated adipose‐specific
Mipep‐knockout mice. As expected, SIRT3 is down-
regulated and the ratio of acetylated MnSOD to total
MnSOD is upregulated (unpublished data). This result
reinforces the earlier idea that, after cleavage by MPP,
SIRT3 is cleaved by MIPEP into its mature form.60

Thus, MIPEP upregulation is a novel SIRT3 activation
mechanism and CR upregulates Mipep expression in
an Srebp‐1c‐dependent manner.

CR‐associated alteration of metabolic
remodeling is location‐dependent in WAT

The characteristics of WAT depend on the location of each
depot. For example, lipolytic activity and FA turnover is
more readily activated in visceral WAT (vWAT) than
subcutaneous WAT (sWAT). vWAT includes retro-
peritoneal WAT (rWAT) and epididymal WAT (eWAT). In

F IGURE 2 Maturation of SIRTUIN 3 (SIRT3) protein by caloric
restriction (CR). Analysis of SIRT3 in wild‐type mice (Wd) and Srebp‐
1c‐knockout mice (KO) by western blotting. (a) Coomassie Brilliant
Blue (CBB) was used as a loading control. CR increased the mature
form of SIRT3 in Wd mice but not KO mice. (b) Relative protein levels
of lower/upper bands are shown. Data derived from Figure 1a in
Kobayashi et al. (2017)60 were recalculated. Values represent
mean ± SEM. *p < 0.05, ***p < 0.001 versus AL or KO, analyzed
using Tukey's test. AL: fed ad libitum, CR: caloric restriction.

F IGURE 3 Effect of Srebp‐1c on changes in mitochondrial
intermediate peptidase (Mipep) messenger RNA (mRNA) expression
induced by CR. Analysis ofMipepmRNA level in wild‐type mice (Wd)
and Srebp‐1c‐knockout mice (KO) by real‐time reverse transcription
– polymerase chain reaction. Values represent mean ± SEM.
**p < 0.01, ***p < 0.001 versus WdAL or WdCR, analyzed using
Tukey's test. AL: fed ad libitum, CR: caloric restriction. Part of the
Figure was reported in our previously published report.55

F IGURE 4 Expression levels of mitochondrial intermediate
peptidase (Mipep) messenger RNA (mRNA) in 3T3‐L1 adipocytes
overexpressing sterol regulatory element binding protein 1c (SREBP‐
1c). Mock and 3T3‐L1 adipocytes overexpressing SREBP‐1c were
differentiated into adipocytes and evaluated at day 8. Total RNA was
extracted from adipocytes and Mipep mRNA expression was
quantified using real‐time reverse transcription – polymerase chain
reaction (RT‐PCR) (n = 3). Rps18 was used as a reference gene to
normalize target gene expression. 3T3‐L1 adipocytes overexpressing
SREBP‐1c and methods of RT‐PCR with primer information have
been described in our previous reports.55,60 Values represent
mean ± SEM. *p < 0.05, analyzed using Student's t‐test.
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addition, expression levels of adiponectin and leptin are
lower in vWAT compared with sWAT.67,68 Therefore, CR
effects may vary across different fat depots. As shown in
Figure 5,69 expression of proteins involved in de novo FA
biosynthesis, ACLY and ME‐1, is upregulated in CR‐fed
rats compared with AL‐fed and AL‐fasted rats, but
decreased in CR‐fasted rats compared with CR‐fed rats.
These phenotypes of ACLY and ME‐1 are identical in
rWAT, eWAT, and sWAT.

Regarding lipolytic proteins, phosphorylated HSL
(Ser563) (pHSL) is an activated form of hormone
sensitive lipase (HSL), and the ratio of pHSL to total
HSL protein serves as an indicator of activated HSL
levels. pHSL/total HSL protein levels are increased in
rWAT and eWAT of CR‐fed rats compared with AL‐fed
and AL‐fasted rats, whereas there is no change in CR‐
fasted rats. In contrast, no notable change of pHSL/
total HSL protein levels occurs in sWAT. In addition, the
lipolytic protein adipose triglyceride lipase (ATGL) is
upregulated in all three WAT depots of CR‐fasted rats
compared with AL‐fed and AL‐fasted rats, whereas CR‐
fed rats display no change (Figure 5).69 Because Atgl
mRNA is negatively regulated by insulin signaling,
ATGL might regulate CR‐enhanced lipolysis in place of
insulin signaling during fasting.69

As mentioned above, CR increases Pgc‐1α mRNA
expression levels to induce mitochondrial biogenesis
under CR conditions. In addition, mitochondrial DNA
content and citrate synthase activity are increased by
CR.31 CR increases adiponectin mRNA expression
levels in sWAT and tends to increase levels in eWAT,
but no change occurs in rWAT. mRNA levels of leptin,
another adipocytokine, are increased in rWAT and
eWAT, but unchanged in sWAT. Thus, adipocytokine
expression levels in CR conditions may differ between
vWAT (rWAT and eWAT) and sWAT. Finally, regard-
ing inflammatory cytokines, CR reduces mRNA
expression of Il‐6 in rWAT and eWAT, but not sWAT
(Figure 5).69

CONCLUSIONS AND PROSPECTS

Various compounds, molecules, and signaling path-
ways including CR mimetics have been proposed to
contribute to healthy life expectancy over the past
decade.70 Recently, a senescence‐associated secre-
tory phenotype, so‐called SASP, was identified as a
specific condition by which senescent cells induce
paracrine senescence by secreting inflammatory cyto-
kines, chemokines, matrix‐remodeling proteases, and
growth factors to inflict damage on surrounding cells.
Acosta and colleagues reported that understanding the
importance and regulation of paracrine senescence will
provide a new avenue for therapeutic benefit.71,72

Recently, senescent cells are shown to accumulate in
aged individuals, while their removal improves age‐
related pathologies and extends lifespan.73 Accord-
ingly, compounds to remove senescent cells through
induction of apoptosis (senolytics) have been devel-
oped. For example, the Src/tyrosine kinase inhibitor
dasatinib and natural flavonoids quercetin and fisetin
(as well as their combination), which can activate
senescent cell antiapoptotic pathways, are under
current or planned clinical trials for various age‐
related diseases including idiopathic pulmonary fibrosis
and bone loss.74,75

CR mimetics might also contribute to healthy life
expectancy. mTORC inhibitors, AMP‐activated protein
kinase (AMPK) activators, and sirtuin activators are
potentially effective candidates. For example, rapa-
mycin inhibits mTORC signaling to extend life-
span.19,76 AMPK regulates metabolic homeostasis
as a metabolic checkpoint.77 Metformin activates
AMPK and extends healthy lifespan.78 Moreover,
sodium/glucose cotransporter 2 inhibitors, another
CR mimetic, can promote glycose excretion in proxi-
mal tubules, are used as anti‐diabetic medicines, and
can extend lifespan.79,80 Accordingly, we believe that
development of CR mimetics and senolytics will lead

F IGURE 5 Differential responses of caloric restriction (CR) among white adipose tissue (WAT) with different locations. Based on our
previous published report, the representative metabolic changes of CR in retroperitoneal WAT (rWAT), epididymal WAT (eWAT) and
subcutaneous WAT (sWAT) are summarized.69 Upwards arrow shows “upregulating,” rightwards arrow shows “no change,” downwards arrow
shows “downregulating.” Fed mice sacrificed without removing food, fast mice sacrificed 20 h after removal of food from their cage.
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to successful scientifically based antiaging medicine in
the near future.

In this review, we demonstrate the molecular
mechanism of CR‐associated metabolic remodeling in
WAT (Figure 6). (1) CR increases mitochondrial
quantity via PGC‐1α and improves its quality via
MIPEP, particularly in WAT. (2) Expression of PGC‐
1α and FGF21 increase in a mutually complementary
manner, and both are regulated by SREBP‐1c. (3)
Elevated expression of MIPEP activates SIRT3. (4)
Similar CR‐associated mitochondrial alterations occur
in different parts of WAT. (5) CR‐associated mitochon-
drial alterations are regulated by SREBP‐1c under
conditions with downregulated leptin signaling.

Finally, because better characteristics of WAT are
associated with longer healthy life expectancy, we
propose that mitochondria in WAT are a better target to
use in the development of CR‐mimetic medicines.
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