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Abstract

Cardiovascular MRI (CMRI) is a non-invasive imaging technique adopted for assessing the 

blood circulatory system’s structure and function. Precise image segmentation is required 

to measure cardiac parameters and diagnose abnormalities through CMRI data. Because of 

anatomical heterogeneity and image variations, cardiac image segmentation is a challenging 

task. Quantification of cardiac parameters requires high-performance segmentation of the left 

ventricle (LV), right ventricle (RV), and left ventricle myocardium from the background. The 

first proposed solution here is to manually segment the regions, which is a time-consuming 

and error-prone procedure. In this context, many semi- or fully automatic solutions have been 

proposed recently, among which deep learning-based methods have revealed high performance in 

segmenting regions in CMRI data. In this study, a self-adaptive multi attention (SMA) module 

is introduced to adaptively leverage multiple attention mechanisms for better segmentation. The 

convolutional-based position and channel attention mechanisms with a patch tokenization-based 
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vision transformer (ViT)-based attention mechanism in a hybrid and end-to-end manner are 

integrated into the SMA. The CNN- and ViT-based attentions mine the short- and long-range 

dependencies for more precise segmentation. The SMA module is applied in an encoder-decoder 

structure with a ResNet50 backbone named CardSegNet. Furthermore, a deep supervision method 

with multi-loss functions is introduced to the CardSegNet optimizer to reduce overfitting and 

enhance the model’s performance. The proposed model is validated on the ACDC2017 (n=100), 

M&Ms (n=321), and a local dataset (n=22) using the 10-fold cross-validation method with 

promising segmentation results, demonstrating its outperformance versus its counterparts.

Keywords

Cardiac magnetic resonance imaging; Deep learning; Hybrid attention mechanism; Image 
segmentation; Vision transformer

1. Introduction

Cardiovascular diseases (CVDs) is a general term applied to defining diseases related to 

the heart and vessels, like coronary artery disease, valvular heart disease, and congenital 

heart disease (Lum and Tsiouris, 2020). According to the WHO, CVDs have been and 

still are the primary cause of death in recent years, with almost 31.8 % attributed to 

cardiovascular disease in the last decade (von von von Knobelsdorff-Brenkenhoff et al., 

2017). CVD is one of the chronic non-communicable diseases with a prevalence of over 

12 % (Topol and Califf, 2007). Next to physical examinations and blood tests, there are 

many non-invasive tests like computed tomography (CT) scans, cardiac magnetic resonance 

imaging (CMRI), electrocardiograms (ECG), echocardiograms, and exercise stress test (or 

ergospirometry) reports that can be run to diagnose CVDs. The CMRI is one of the safest 

and most effective imaging techniques for the heart, even during pregnancy, because it 

is free of radiation (Lum and Tsiouris, 2020). In cardiovascular diseases, this technique 

has a key impact on evidence-based diagnostic and therapeutic pathways (von von von 

Knobelsdorff-Brenkenhoff et al., 2017). A precise image segmentation step is required 

to assess the structure and function of the cardiovascular system through CMRI data, 

which enables clinicians to measure local and global cardiac parameters for more accurate 

diagnosis, treatment, and surgical planning. Segmentation of the LV, RV, and LVM in CMRI 

is challenging due to anatomical heterogeneity, image quality restrictions like similarity in 

image intensities of the heart chambers, and motional aberrations at acquisition time. The 

precision of segmentation directly influences the CVDs’ diagnosis. Manual segmentation of 

cardiac images can be beneficial in some cases, while the diagnostic procedure cycles due 

to the subjective, time-consuming, and expert-level nature of the process can be protracted 

with no satisfying accuracy. Consequently, computer-aided diagnostic systems based on AI 

can be adopted to automate the segmentation process and assist cardiologists in reducing 

diagnostic errors, is a must in cardiac function analysis (Topol and Califf, 2007). There 

exist many image processing and machine learning techniques that seek to analyze cardiac 

regions automatically and accurately (Zhao et al., 2022), and a briefing of the relevant 

literature is presented in Section ↱II. Despite recent advances, accurate cardiac segmentation 

in CMRI remains challenging due to the distinctions in cardiac structures, variations in 

Aghapanah et al. Page 2

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



size and shape, heart axes orientation due to the disease, low-contrast boundaries of heart 

regions, and the presence of motional artifacts. Due to the organ’s dynamic nature, these 

obstacles prevent accurate segmentation.

The following is a brief summary of our most significant technological contributions to this 

work:

1. A novel self-adaptive multi-attention (SMA) module is developed and introduced 

for image representation in deep learning models, capturing key information 

in multi-range dependencies simultaneously. It leverages the strengths of both 

convolutional neural networks (CNN)-based and vision transformers (ViT)-based 

attentions in the processing scale. The SMA module applies pixel-group 

attention to input tensors using a hybrid attention mechanism that considers 

local-global interdependencies. With the least number of trainable parameters, 

this module automatically weighs and highlights local and global information 

provided by CNN-based (Fu et al., 2019) and ViT-based (Lee et al., 2021) 

attentions in an end-to-end and adaptive manner, thereby enhancing the 

performance of the attention process. By learning multi-semantic, contextually 

representative features in addition to efficient local representations, the SMA 

module significantly improves the overall model’s representation capability.

2. CardSegNet model, a new U-shaped deep learning structure with a ResNet50 

(He et al., 2016) backbone, is introduced and assessed for heart region 

segmentation in CMRI analysis. The enhancement of visual features at multiple 

scales in both the encoding and decoding paths of the model, facilitated by the 

proposed SMA attention mechanism, is projected to enhance the local and global 

modeling proficiencies of CardSegNet, leading to a more accurate and robust 

performance.

3. A deep supervision learning (DSL) (Reis et al., 2021; Peng and Wang, 2021) 

scheme based on multiple combined loss functions is proposed to optimize 

the CardSegNet model. The model output is converged into the target through 

multiple scale-dependent penalties and a mixed loss function superposition 

technique to alleviate the imbalanced samples due to the high proportion of 

non-desired regions in CMR images. It also leverages a curvature-based loss 

function to direct the model toward the closed contour of the heart regions.

4. A new local CMRI dataset, is collected and will be accessible upon academic 

requests by researchers in the field. The dataset, called Rajaie CMRI dataset, 

was obtained from Tehran’s Shahid Rajaie Hospital, Iran between 2022 and 

2023. This dataset represents a valuable resource for academic research, offering 

scholars access to locally sourced data for further study and analysis.

Extensive experiments and ablation studies conducted on the ACDC 2017 (Zheng et al., 

2018), M&Ms-2 (Campello et al., 2021), and Rajaie CMRI datasets provide evidence of 

the effectiveness of the proposed framework and technological contributions. CardSegNet, 

with comparable results, outperforms other baselines and state-of-the-art deep learning 
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(DL) methods in the CMRI data segmentation task. It demonstrates acceptable inference 

performance and execution time.

The structure of the paper is organized as follows: The related works are reviewed in Sec. 

↱II; material and method are expressed in Sec. ↱III; the experimental study and results 

are presented in Sec. ↱IV; the findings are discussed in Sec. ↱V; and finally the study is 

concluded in Sec. ↱VI.

2. Related work

The automatic analysis of cardiac data is influenced by the rapid development of machine 

learning techniques and DL during the last few decades. Research groups from all over 

the world constantly compete on challenging CMRI topics. To extract both local and 

global parameters of the heart in CMRIs, the greatest technical challenge that developers 

face is maintaining synchronicity across multiple range dependencies. The primary issue 

with DL networks is that their training requires a large quantity of data. To address this 

issue, several techniques, like image data augmentation, regularization methods, and transfer 

learning, are proposed for the limited dataset analysis. The recent studies on the CMRI 

segmentation problem based on dataset, model, cross-validation (CV), assessments, and 

results are tabulated in Table 1. The details of the winners of the ACDC 2017 challenge and 

the recently developed methods (Isensee et al., 2017; Khened et al., 2017; Zotti et al., 2018; 

Bernard et al., 2018) are expressed in this table. The contributions of the listed studies are 

summarized as follows: (I) U-Net (Graves et al., 2021), TransU-Net (Chen et al., 2021a), nn-

TransU-Net (Zhao et al., 2022), FCN (Khened et al., 2017), VAE (Painchaud et al., 2020), 

U-Net++ (Le et al., 2022), Deeplabv3 (Chen et al., 2017), Seg-Net (Yan et al., 2022), and 

GridNet (Zotti et al., 2018) are the most widely adopted DL architectures for medical image 

segmentation. The U-shape model is a common deep learning architecture for medical 

image segmentation among previous approaches examined for the CMRI segmentation 

problem. (II) Some researchers have introduced new modules that prevent overfitting and/or 

enable DL models to converge in a more efficient and precise manner (Wang et al., 2022). 

(III) Introduced new or mixed loss functions and penalty terms are among the contributions 

in this context (Shi et al., 2021; Zhou et al., 2021). (IV) The attention mechanism is 

viewed in two distinct manners: CNN-based and transformer-based, respectively (Niu et 

al., 2021; Guo et al., 2022). Due to their inherent character as convolutional processes, 

CNN attentions extract local and short-range dependency information from the image, 

while vanilla transformers primarily extract global data to model long-range dependency. 

Self-attention (Guo et al., 2022), co-attention and hierarchical mechanisms (Niu et al., 

2021), bilinear attention (Guo et al., 2022), attention-over-attention (Niu et al., 2021), and 

coordinated attention processes (Chen et al., 2022) are frequently applied to improve the 

attention mechanisms performance. According to (Zhao et al., 2022), self-attention modules 

are developed to demonstrate the benefits of spatial and/or channel attention in enhancing 

different image analysis tasks. As to segmentation and attention mechanisms for medical 

images, SCA Net (Shan and Yan, 2021) is among the first models to incorporate spatial and 

channel attentions.
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ViT is extensively utilized by the vision community for computer vision problems (Khan 

et al., 2022; Dosovitskiy et al., 2020). There exist several distinct categories of transformer-

based attention studies: (I) In the ViT (Dosovitskiy et al., 2020) and PVT (Wang et al., 2021) 

models, information extraction is applied predominantly to capture long-range dependencies 

for data modeling purposes. With the main disadvantage of not presenting local features 

perfectly. (II) The Swin (Liu et al., 2021) model is designed to extract local features by 

applying the self-attention mechanism in transformers. (III) There exist a few additional ViT 

structures, like Twins (Chu et al., 2021), ViL (Zhang et al., 2021), RegionViT (Chen et al., 

2021b), and shifted patch marker (Lee et al., 2022), that simultaneously acquire local and 

global representations. A spatial feature pyramid transformer applied in image segmentation 

is Tempera (Galazis et al., 2021) in this category. (IV) The combination of local and 

global attentions is applied in TransU-Net (Chen et al., 2021a) and its affiliations (like 

nn-TransU-Net (Zhao et al., 2022) and Ds-TransU-Net (Lin et al., 2022)) for enhanced data 

representation. Although in the aforementioned techniques, the TransU-Net model family 

applies the proper attention combinations, to the best knowledge of the researchers here, 

the effects of adaptive attention fusion techniques are not assessed or applied to the CMRI 

data segmentation field. Motivated by attention fusion models, an attempt is made here 

to combine CNN and transformer-based attention processes in a new, end-to-end attention 

block. To extract multi-range dependencies through a new paradigm, the proposed attention 

fusion module, SMA, adaptively combines CNN-based (spatial, channel) and ViT-based 

attention mechanisms at different scales. To prevent overfitting and improve and generalize 

the model segmentation performance, the DSL and multiple loss functions are applied here.

3. Material and method

This section introduces the dataset and pre-processing pipeline used in this work. The 

SMA module and this newly proposed model are then presented and formulated. The 

DSL scheme, the proposed weighted objective function, and the learning strategy are later 

described.

3.1. Dataset

In this study, three different CMRI datasets were utilized to design and evaluate our 

proposed method. The first dataset, ACDC 2017 (Zheng et al., 2018), is a publicly available 

dataset of CMRI scans that was released as part of the Automated Cardiac Diagnosis 

Challenge (ACDC) at the Medical Image Computing and Computer-Assisted Intervention 

(MICCAI) conference in 2017. The second dataset, M&Ms-2 (Campello et al., 2021) 

(Multi-Disease, Multi-View, and Multi-Center), is another publicly available dataset that 

focuses on cardiac imaging, specifically MRI. It contains images from various imaging 

centers and vendors. The third dataset is the Rajaie CMRI dataset, which is a local dataset 

obtained from the Shahid Rajaie Research Centre at Tehran University of Medical Sciences 

in Iran. This dataset was collected and annotated under the supervision of Dr. H. Pour 

Aliakbar and Dr. F. Tabesh. A summary of the research datasets is provided in Table 2.
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3.2. CardSegNet

The proposed framework, CardSegNet, for CMRI data segmentation is shown in Fig. 1. 

It is based on the U-Net model, with four stages of transformation in the contraction and 

expansion paths. The CardSegNet comprises seven key components: (1) a pre-processing 

block, (2) a pre-stage block, (3) encoder units, (4) adaptive attention modules, (5) decoder 

units, (6) an output block, and (7) a post-processing block.

The workflow of CardSegNet commences with an image pre-processing block to standardize 

the input CMRI data and conduct a quality control check to ensure the inclusion of the 

entire heart region in the input image. This is followed by the extraction of powerful and 

informative features using the pre-trained Resnet50 at the pre-stage block. Subsequently, 

more efficient feature maps are learned through encoder units operating at various depths 

and scales to enhance feature representation learning. The embedded adaptive attention 

modules (i.e., SMA in decoder/encoder/output blocks, and multi-scale SMA (MSMA) in 

skip-connections) enhance attention across different data dependency ranges by dynamically 

adapting during training based on the specific characteristics of the data representation at 

the given scale within the operating node. This dynamic adjustment of attention enables 

the model to focus on relevant features, leading to improved performance in segmentation 

tasks. The decoder units then up-sample and refine the abstracted representations learned 

by the encoders. Utilizing attention-based skip connections, they efficiently preserve key 

spatial information that may have been lost during the encoding and down-sampling 

process. Subsequently, the output block generates a multi-channel output for the multiclass 

segmentation task, where each channel corresponds to a heart region, and each pixel 

in a channel represents the probability of belonging to the corresponding class. Finally, 

the post-processing block refines and validates the segmentation results produced by the 

output block, ensuring their accuracy and meaningfulness. To achieve this, a pipeline of 

morphological transformations, boundary refinement, and label assignment operations is 

performed.

The model integrates a joint loss function explicated in Section C to enhance overall 

performance, employing an adaptive deep supervision learning scheme for the refinement of 

lower-level network layers during the model’s optimization.

The details of the processing blocks and units are presented in the following:

3.2.1. Pre-processing block—First, all image slices are scaled to 128×128 pixels. To 

avoid the intensity variation effects of different types of scanners, the voxel intensities of the 

dataset samples are then normalized by applying the min-max normalization method, which 

transforms the input slice Xi into the Xi, n according to Eq. (1):

Xi, n = Xi − Min Xi
Max Xi − Min Xi

(1)

where Max Xi  and Min Xi  are the maximum and minimum of the itℎ image, respectively.
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In the research datasets, there are some CMRI slices that do not intersect with the heart 

region during the acquisition time. These slices may not provide a clear view of the heart, 

especially those located far from the apex. For example, there are 61 slices without any 

heart region in the ACDC CMRI dataset. To address this issue, the YOLOv7 model (Wang 

et al., 2023) is employed. The YOLOv7 model is fine-tuned to determine whether a given 

CMR scan includes at least one complete heart region. Initially, the CMR images and 

segmentation masks for a given dataset are automatically annotated with bounding boxes to 

indicate the location and extent of the regions of interest (ROIs). The largest bounding box 

is then selected to indicate the presence of an ROI in the input image, aligning with YOLO’s 

object detection requirements. Images without bounding box annotation are processed by the 

YOLO network with black mask targets. As part of the proposed CardSegNet framework, 

the YOLO model is trained and evaluated using the k-fold CV method. In each iteration 

of the k-fold CV method, all training cardiac images and their detection annotations, 

including CMR images with or without any heart region, are input to the YOLO network 

for optimization. The CMR images identified by the YOLO model as containing any heart 

region are subsequently forwarded to the segmentation sub-network for further analysis. In 

cases where the YOLO model’s output is empty, indicating that the given image does not 

contain any heart region, a zero mask (pure background) is utilized to represent the final 

segmentation output predicted by the overall framework.

3.2.2. Pre-stage block—The pre-stage block aims to efficiently extract feature patterns 

from the given image data. It incorporates a Resnet50 (He et al., 2016) backbone with 

pre-trained weights on ImageNet data, enabling downscaling operations on CMR images to 

obtain feature representations at various resolutions. The use of the pre-trained backbone in 

the proposed deep structure is motivated by the rich and generalizable features learned 

from the extensive ImageNet dataset. Leveraging the Resnet50 model as a backbone 

can significantly enhance the performance of our deep model by transferring knowledge 

and feature representations. This approach reduces the need for a large training sample 

size, training from scratch with randomly initialized weights, and can lead to improved 

convergence and generalization on specific tasks and datasets.

In this work, the backbone network is imported, and the last blocks of the pre-trained 

model are trimmed (Kora et al., 2021). The sampling step is eliminated, and the dilated 

convolutions are applied instead in the final two blocks of ResNet50, forming an output 

feature map tensor with half the spatial size of the input image, where more details are 

preserved without adding extra parameters.

3.2.3. Encoder units—Each encoder unit in the proposed CardSegNet comprises two 

Conv2D-BN-ReLU layers with a 3×3 kernel block, followed by a 2×2 max pooling 

operation and the subsequent SMA module. The inclusion of maximum pooling operations 

serves to abstract data information and reduce model complexity. The incorporation of SMA 

modules in the encoder units at different scales is driven by their advantageous ability 

to dynamically adjust attention across various parts of the data representation, allowing 

the model to focus on pertinent features. The adaptability of SMA modules contributes 

to capturing multi-range dependencies and amplifying the model’s capability to represent 
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intricate relationships within the input data, particularly beneficial during the encoding phase 

of the deep structure.

3.2.4. Adaptive attention modules

3.2.4.1. SMA module.: In this study, the novel SMA module is introduced for adaptive 

integration of both CNN-based and ViT-based attentions in our UNet-based structure, 

offering a compelling approach to leverage the strengths of both attention mechanisms. 

This combination allows for the exploitation of CNN’s robust feature extraction capabilities, 

complemented by ViT’s proficiency in capturing long-range dependencies and global 

context. The proposed hybrid attention approach has demonstrated potential to enhance 

representation learning in our structure. The adaptability and tunability of this combined 

approach at different processing scales highlight its flexibility and capacity to adjust 

attention mechanisms based on specific characteristics and requirements at various levels of 

data representation. This adaptability empowers the model to effectively capture both local 

and global features, thereby enhancing its performance across diverse scales and contexts.

The proposed SMA block employs CNN-based attentions, including the channel attention 

mechanism (CAM) and the position attention mechanism (PAM) (Fu et al., 2019), as 

well as a patch-based ViT attention sub-module, comprising the shift-patch tokenization 

(SPT) and locality self-attention (LSA) (Lee et al., 2021), to serve as local, regional, and 

global attention-based feature extractors. The SMA module adaptively uses the self-attention 

and multi-head attention mechanisms, which enable the processing pipeline to refine the 

resulting features for better modeling of multi-range data dependency. The SMA module 

structure is shown in Fig. 2 and the output of SMA module, Xatt, can be yielded through Eq. 

(2) for the given input tensor X:

Xatt = X + αXatt,PAM + βXatt,CAM + γXatt, V IT

(2)

here α, β, and γ are trainable parameters optimized in the learning phase of the overall 

model.

The PAM and CAM attention processes are employed in our SMA module, as proposed 

in (Fu et al., 2019; Rasti et al., 2022). The patch-based ViT attention sub-module adopts 

SPT which allows for the enhancement of spatial information for visual markers and the 

mitigation of the low receptive field issue in ViTs. The data processing steps for the SPT 

module begin with a given image, which is then shifted in diagonal directions. These shifted 

images are concatenated with the original image, and many image patches are extracted 

from the concatenated tensor. The SPT and LSA are the two techniques applicable in 

training a ViT on small datasets and effectively solve the lack of locality inductive bias 

while enabling the ViT to learn from scratch even on small datasets (Lee et al., 2021). These 

exist as generic and effective add-on modules, easily applicable in different ViTs. The SPT 

transforms that generate patch features and visual tokens from the input are shown in Fig. 

3. Applying the patch partition as a standard ViT, SPT embeds visual labels sequentially 

through patch flattening, layer normalization, and linear projection.
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Assume the input image as x ∈ ℝH × W × C, where H, W, and C are the image’s height, 

width, and channel, respectively. The SPT module first partitions the input image into 

non-overlapping patches and then, flattens them to produce a vector sequence ρ x . This 

process is expressed through Eq. (3):

ρ x = xp
1; xp

2; …; xp
N

(3)

where xp
i is i-th flatten vector of input. The patch size and the patch count are p and 

N = HW /p2, respectively.

To linearly project each vector into the hidden dimensional space, the transformer encoder Et

of the SPT is applied to generate the patch embedding through Eq. (4):

Γ x = ρ x × Et

(4)

where Et ∈ ℝ P2 . C × d is the trainable linear projection of tokens (embedding matrix) in the 

transformer model, and d is the third dimension of the encoder.

In a ViT pipeline, the input images are first proportioned into patches and then linearly 

projected into tokens (Γ), which refer to the applied visual affine transformation on images. 

Tokenization determines the visual tokens’ receptive fields, with no change in their count 

after tokenization in the encoder of VIT; therefore, the receptive field cannot be altered 

there. The tokenization of standard ViT is similar to the non-overlapping convolutional layer 

operation with the same kernel and stride, expressed through Eq. (5) (Lee et al., 2021):

rtoken = rtrans ⋅ j + k − j

(5)

where rtoken and rtrans are the tokenization and transformer encoder receptive field sizes, and 

the convolutional layer stride and kernel size are j and k. In this case, rtrans = 1 because 

the transformer encoder does not modify the receptive field, and rtoken equals the kernel 

and the ViT patch size. LSA is implemented because the efficacy of these tokens must be 

enhanced to improve outcomes. LSA is a readily adaptable add-on module for different 

ViTs, and as shown in Fig. 4, temperature scaling can be applied to control the output 

distribution smoothness (Lee et al., 2021). LSA mainly improves the distribution of attention 

scores by learning the attention parameter of the Softmax activation function. The self-

labeled relations are removed through the diagonal masks, which assure the suppression 

of the diagonal components of the similarity matrix calculated by the query and the key. 

This masking relatively increases attention scores between different markers, making the 

attention score distribution clearer, thus increasing the local induction bias by LSA while the 

localizing the ViT focus.
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The advantage of these self-attention sequences versus others is that they determine 

which patches are likely to come together in an image. Transformers explicitly mimic 

sequence interactions for structured prediction challenges through self-attention, the layers 

of which update sequence components by applying the global input sequence data. This is 

accomplished by creating three learnable weight matrices for the Queries (WQ ∈ Rd × dq), 

Keys (WK ∈ ℝd × dk), and Values (WV ∈ ℝd × dv), where dq = dk. The input sequence X is 

projected onto these weight matrices through Eq. (6) (Lee et al., 2021):

Z = softmax(QKT
dq

)

(6)

where Q = XWQ, K = XWK, and V = XWV . Z ∈ ℝn × dv is the output of the self-attention 

layer. To obtain query, key, and value, general ViTs apply a learnable linear 

projection to each token in their self-attention process to generate the similarity matrix, 

WV ∈ ℝ N + 1 × N + 1 , where the semantic relation between tokens is shown by the dot 

product operation of query and key. R’s diagonal and off-diagonal components express self- 

and inter-token relations in Eq. (7), respectively:

R(x) = xEq xEk
2

(7)

where, Eq ∈ ℝd × dq, Ev ∈ ℝd × dv and Ek ∈ ℝd × dk  are the learnable linear projections for 

query, value, and key. The query and key dimensions are dq and dk. The attention score 

matrix is obtained after dividing R into the square root of the key dimension and applying 

the Softmax function. Self-attention is computed based on the dot product of the attention 

score matrix and its value through Eq. (8):

SA(x) = Softmax(R/ dk)xEv

(8)

As observed in Fig. 2, a SMA block loss term is computed based on the difference between 

each attention process’s rescaled output and the given ground truth. In each path, the error 

value of the module predicted mask is computed subject to the final target (T ) through Eq. 

(9):

LossSMA = α × Oatt, PAM − T′ + β × Oatt, CAM − T′ + γ × Oatt, V IT − T′

(9)

where Oatt, z = Conv2D 1 × 1, 1 Xatt, z  and T′  is the ground truth tensor, reshaped to match the 

dimensions of the block’s input. The coefficients of α, β and γ of attention in each layer 

are subjected to a positive condition. The Softplus x = log ex + 1  function is applied to 
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convert these coefficients into positive values. The local losses of the multi-attention block 

are utilized in the optimization process to maintain the sub-attention output portions close to 

the designated regions on the image mask target.

3.2.4.2. MSMA module.: This block is designed to efficiently perform a multiscale 

attention-oriented feature learning and fusion process. Its mechanism empowers the 

model to enhance feature representation by integrating and emphasizing features derived 

from diverse levels of semantic representation. It leverages feature maps procured from 

various encoders and/or decoders with disparate resolutions, facilitating the identification 

of essential image patterns across both short and long dependencies. As shown in Fig. 

5, different inputs, which may be encoder- or decoder-based and undergo a dimension 

reduction step in accordance with the processing scale, contribute to the integration of 

multi-range dependency information in the decoders. The cross-attention method generates 

the outcome of the applied attention mechanism (based on SMA), combines it with the 

residual signal, and passes it to the decoder block.

3.2.5. Decoder units—In deep learning models, the primary utilization of decoder units 

is for the restoration of spatial information. The generation of output by reconstructing 

information from encoded representations, a key role in segmentation task, is facilitated by 

the process in decoder blocks. In the structure proposed in this study, an attention-based 

decoder unit is employed at different scales, enabling the network to obtain longer range 

dependencies on the smallest resolution of activation maps, leading to improved results with 

a minimal increase in model complexity. As displayed in Fig. 1, CardSegNet comprises 

four decoder units, each composed of a Conv2DTranspose layer with a 2×2 transpose 

convolution, three Conv2D blocks with 3×3 kernel sizes, Batch Normalization (BN), and 

ReLU layers, followed by the SMA block for feature enhancement. The decoding of the 

encoded image data and the location of features, while maintaining the spatial resolution 

of the input, are tasks performed by the decoder units. The preservation and enhancement 

of spatial information, lost in the contracting path, is aided by the MSMA-based skip 

connections from the contracting path, thereby assisting the decoder layers in accurately 

locating the features.

3.2.6. Output block—A multi-channel output for the multiclass segmentation task is 

generated by the model output block, with each channel corresponding to a heart region 

in the CMRI data. Each pixel in a channel represents the probability of belonging to the 

corresponding class. This is achieved using a Conv2D with a 1×1 kernel size, the SMA 

block, and a Softmax layer with four nodes.

3.2.7. Post-processing block—Post-processing in deep learning models is used for 

refining and interpreting raw predictions, enhancing model outputs, and ensuring they 

align with specific task requirements or application objectives. Fig. 6 illustrates the post-

processing procedures used in this study.

The first step leverages the image’s prior information to further improve the segmentation 

results through the following rules and constraints: (1) RV, LV, and LV∪Myo are assumed 

to have non-rigid solid forms. So, pixels originating from the exterior region cannot be 

Aghapanah et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



positioned within the layers. (2) The LV and RV are kept separated; any pixel gap between 

them should be filled by Myo pixels. (3) If the RV is present, it is connected to the 

Myo region. If Myo region does not exist for given predicted mask, the RV should be 

removed. (4) If the Myo exists, it should be directly connected to the LV region. If LV 

region does not exist, Myo region should be removed. (5) The edges of each region are 

assumed to be smooth. So, a 5×5 Gaussian kernel followed by an adaptive threshold-based 

image binarization is used. In the second step, eight additional sets of neighboring pixels 

are generated for each pixel, inspired from the pixel connectivity loss function (Yang et al., 

2022b; Yang and Farsiu, 2023). This concept is operationalized by establishing nine distinct 

regions, as depicted in Fig. 7. Following this, a post-refinement step based on mathematical 

transformations is utilized to improve the mask’s quality and yield the final refined mask. 

The pixel groups Ri in Fig. 7 can contribute to mask refinement through various methods. 

After experimenting with different techniques on train subsets, Eq. (10) was derived using a 

trial-and-error approach, which resulted in improved results for our analysis.

P (i, j) = mode{ mode
k = 1:9

Rk(i, j)}

(10)

where P (i, j) represents the approximate value of the pixel P (i, j), the “mode” is the 

statistical function that mathematically returns the value with the highest frequency in a 

given set of data, and Rk(i, j) indicates the kth neighboring region as illustrated in Fig. 7.

3.3. Learning schema: an empirical prospective

In this paper, an adaptive deep supervision learning scheme is integrated into the 

optimization method by conducting intermediate supervision of local errors at various stages 

of the model. The DSL scheme aims to address the issue of gradient vanishing and to 

effectively facilitate the flow of information through the model during training. Through the 

DSL scheme, the network is prone to acquire more meaningful and representative features 

at various levels, resulting in enhanced performance in our multi-class image segmentation 

task. This is achieved in this work by introducing auxiliary output to the intermediate 

encoder and decoder units of the network.

Each unit is supervised through the inclusion of a compound loss function, which calculates 

a weighted sum of five distinct losses where the combination coefficients are adjusted 

through an empirical method. MSE, L1-L2, dSSIM, IoU and Curvature losses are considered 

for this purpose as they are subsequently introduced. MSE is used for pixel-wise precision 

and overall reconstruction improvement, L1-L2 regularization helps prevent overfitting and 

enhances the model’s generalization, dSSIM preserves fine details and textures for global 

and local perceptual quality, IoU encourages the model to focus more accurately on the 

location and size of objects in the image by penalizing false positives and false negatives, 

and Curvature loss enhances segmentation shape accuracy by encouraging smoother and less 

abrupt boundaries.
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Furthermore, to provide additional supervision for the performance of the SMA-based 

attention modules at different scales, LossSMA (according to Eq. (9)) is incorporated into 

the overall loss function during the optimization process. This approach promotes the 

acquisition of more representative features yielded by better attention processes at multiple 

levels of the network, thereby enhancing the model’s performance.

The loss functions are defined as follows:

1. MSE Loss: The mean square error (MSE) is used to construct the loss function 

between P  and T  in Eq. (11), where P and T are the predicted mask and ground 

truth images, respectively. It is recommended to apply MSE to detect differences 

at the image pixel level.

lossMSE = − 1
N i = 1:N

P i − T i
2

(11)

2. L1-L2 Regularization Loss: The regularization loss is expressed through Eq. (12) 

where a term is added to the loss function and is proportional to the absolute 

value of the magnitude of the weights or parameters of the model to avoid 

overfitting.

lossreg = λ1
i = 1:P

wi + λ2
i = 1:P

wi
2

(12)

here, the hyperparameters λ1 and λ2 control the strengths of L1 (Lasso) and L2 

(Ridge) regularization terms, respectively, and are both set to 0.01. P represents 

the number of trainable weights in our model.

3. dSSIM Loss: The structural dissimilarity metric (dSSIM) loss function is 

represented by the following equation, which compares the structural differences 

between the P  and T . The c1 and c2 are applied as constant variables and are set to 

2.55 and 7.65 empirically, respectively (Graves et al., 2021).

lossdSSIM = 1 − 2μPμT + c1 2σPσT + cs

μP
2 + μT

2 + c1 σP
2 + σT

2 + cs

(13)

4. IoU Loss: The intersection over union (IOU) loss is defined according to Eq. 

(14). The IoU measures the similarity between a ground truth image and a 

prediction image by calculating the pixel count in the intersection set divided by 

the pixel count in the union set excluding the intersection region (Zhou et al., 

2019):

lossIoU = AP ∪ AT
AP ∩ AT

= P × T
∑i = 1:N P i + ∑i = 1:N T i − P × T
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(14)

where Ap is the area of all pixels of the predicted mask and AT is the area of all 

pixels of the ground truth.

5. Curvature Loss: In a general context, curvature loss is a loss function used 

to quantify the degree of deviation from straightness or flatness in a curve or 

surface, as indicated by Eq. (15) (Xing et al., 2022).

H = 1 + Uy
2 Uxx + 2UxUyUxy + 1 + Ux

2 Uyy

2 1 + Ux
2 + Uy

2
3
2

(15)

where U is a two-dimensional image, while Ux and Uy are the derivatives along 

the x- and y-axes, respectively. For ease of calculation, H is estimated as H, 

an estimation of the curvature function, and it is calculated through the Euler 

theorem and Eq. (16) (Xing et al., 2022).

Ĥ = − 1
16

1 −5 1
−5 16 −5
1 −5 1

⊗ U

(16)

where ⊗ is the convolution operation and U is a 2D image. Curvature loss is then 

expressed through Eq. (17):

lossCur = ∑i = 1:N abs( P i
cT i

T i
c + ε )

(17)

where N is the total pixel count, P c = P ⊗ Ĥ and T c = T ⊗ Ĥ are the curvature 

estimation of the predicted image and the ground truth, respectively, and ε is a 

minor constant applied to stabilize the computation. This function improves the 

contour detection accuracy when the edge value in the predicted image increases.

6. The Proposed Weighted Objective Function: The proposed overall loss function 

which incorporates the adaptive DSL method is calculated through Eq. (18):

LossTotal = V L + ∑i = 1:12 LossSMA, i

(18)

where V  is the loss coefficient vector and is calculated according to a 

normalization method in which, at the beginning of model optimization, all 
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losses should contribute equally to the overall loss. The loss component vector, 

denoted as L , comprises the following components, respectively: MSE (L1), 

Regularization (L2), dSSIM L3 , IoU L4 , and Curvature L5  losses. The last 

term in the equation, LossSMA,i, is the local attention loss of the ith SMA module 

in the model.

The error analysis conducted across diverse losses at the initial epoch in the ACDC 

dataset training process during the first iteration of the k-fold CV method resulted in 

the incorporation of normalized coefficients: v1 = 0.32, v2 = 0.08, v3 = 0.34, v4 = 0.07, and 

v5 = 0.19. The loss coefficients are consistently used throughout the model implementations 

in this study.

4. Experimental study and results

4.1. Evaluation metrics

The following evaluation measures are utilized to calculate the segmentation performance of 

different methods in this study.

The dice similarity coefficient (DSC) is employed to assess the similarity between CMR 

images and ground truths, and it can be expressed as shown in Eq. (19), where the 

segmentation result and ground truth are denoted by P and T, respectively (Li et al., 2022a; 

Zou et al., 2004).

DSC = 2 P ∩ T
P + T

(19)

In this equation, a value of 0 indicates zero overlap between the ground truth and the derived 

segmentation result, while a value of 1 indicates complete overlap between the ground truth 

and segmentation result in both the foreground and background.

The pixel accuracy, utilized for pixel-wise classification performance, is defined through Eq. 

(20):

Pixel Accuracy = TP + TN
TP + TN + FP + FN

(20)

here, the TP, FP, TN, and FN are the true positive and false positive pixels and the true 

negative and false negative pixel counts, respectively. It is the true positive pixels percentage 

of all pixels in an image, providing an overall assessment of prediction.

The Precision metric is also considered to measure the predicted positive pixels’ accuracy 

and Recall metric measures positive predictions’ completeness, defined in Eq. (21) and Eq. 

(22), respectively.
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Percision = TP
TP + FP

(21)

Recall = TP
TP + FN

(22)

4.2. Validation method

In this study, the evaluation of DL models’ performance is conducted using an unbiased 

k-fold CV method. This method entails dividing the dataset into K equal parts, or folds, 

and training the model K times, with each iteration utilizing a different fold as the test set 

and the remaining folds as the training set. Data partitioning is performed at the case level, 

and the final performance metrics are subsequently calculated by averaging the results at 

the test slice level. This technique is particularly useful for small datasets where the risk 

of overfitting is high, as it allows for a more reliable estimate of the model’s performance. 

Additionally, by using all the data for training and testing, this method provides an unbiased 

assessment of the DL model’s ability to generalize to unseen data. The 10-fold CV method 

is selected for reporting the results of the baseline and ablation studies. The newly proposed 

method is also compared to those of other state-of-the-art techniques where the hold out 

(H.O), or 5-fold CV methods are adopted.

4.3. Study design

1. Baseline Study: The segmentation performance of the proposed model is 

compared with that of the common image segmentation CNN models, like U-Net 

(Graves et al., 2021), Deeplabv3+ (Chen et al., 2017), U-Net++ (Le et al., 2022), 

nnU-Net (Isensee et al., 2021), and CE-Net (Gu et al., 2019). All the models are 

trained by applying the same configuration to assure fairness in the evaluation 

stages. On the ACDC 2017 test dataset, the segmentation sample results of 

the baseline and CardSegNet methods are shown in Fig. 8. The first column 

shows input images that were chosen randomly from the test dataset. The second 

column is the corresponding image ground truths, in which the red, green, and 

blue masks are the RV, the myocardium, and the LV, respectively. The U-Net, 

U-Net++, DeeplabV3, nnU-Net, and CE-net models’ performance is compared 

to our proposed method in particular.

2. State-of-the-art Analysis: The state-of-the-art CMRI segmentation techniques 

and the winners of the ACDC 2017 and M&M-2 challenges are compared with 

the proposed model based on dice, recall, f1-score, and precision in this section. 

The evaluation methods and preprocessing pipelines used in the original studies 

were meticulously taken into account for a fair comparison. The segmentation 

results for the ACDC 2017 and M&M-2 datasets are compared in Table 4.
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3. Ablation Study: This investigation is conducted to gain a greater understanding 

of the impact of the model components for the one-training fold on the 10-fold 

CV. In the initial phase, the impact of CNN’s backbone is evaluated.

The effect of the attention fusion-mechanism is then evaluated further. In this study, 

attention options include PAM, CAM, and ViT modules, as well as none. The impact 

of the proposed loss function is subsequently investigated. During training, the same 

dataset index is applied to each experiment. Table 5 presents the cross-validated results 

of the ablation study. Moreover, to evaluate the impact of the YOLO component on the 

overall segmentation outcomes, an additional assessment was carried out on the CardSegNet 

framework’s performance using the ACDC dataset. This evaluation involved excluding the 

YOLO component from the pre-processing block. The segmentation results revealed Dice 

scores of 93.4 %, 93.7 %, and 93.2 % for LV, RV, and Myo, respectively. These findings 

indicate that the utilization of the YOLO component enhances the overall dice score by 

approximately 1.9 % on average on the ACDC dataset.

1. SMA Fusion Coefficients Analysis: In SMA attention modules, the fusion 

coefficients of α, β, and γ for the model’s layers are adaptively optimized during 

the train phase. Fig. 10 depicts the trend of the coefficient values changing 

throughout the optimization process. In the figure, the adaptive coefficients for 

the PAM (i.e., α), CAM (i.e., β), and ViT (i.e., γ) attention processes are marked 

in red, green, and blue, respectively.

In Fig. 11, the optimized coefficients for each CardSegNet processing block are 

further depicted.

2. Complementary Evaluation: To assess the performance of CardSegNet on multi-

center and multi-scanner CMRI datasets with varying scanning protocols, the 

Rajaie CMRI dataset, in addition to the M&M-2 dataset, was employed. The 

Rajaie CMRI dataset includes images from all phases of the cardiac cycle. In 

this experimental evaluation, the model was retrained from scratch and assessed 

using the 10-fold cross-validation method, ensuring the reliability of the model’s 

performance. The outcomes of this experiment are presented in Table 6.

4.4. Training Detail

1. Implementation Detail: The experiments are performed on a system with an 

Intel Core i7@2.6 GHz, an NVIDIA GeForce GTX 1080Ti GPU, and 32 GB of 

RAM. The software environment specifications are Keras 3.7.2, CUDA 10.1, and 

cuDNN 7.6.5.

2. Training Protocol: The Adam optimizer with an initial learning rate of 1e-03 

and a batch size of 4 is used as the optimization algorithm for training deep 

learning models (Kingma and Ba, 2014). A learning rate adjustment strategy is 

also considered based on LRepocℎ = LRinit × (1 − epocℎ
Max Epocℎ + 1 )

Power
 where epoch 

is the current Epoch, Max Epoch is the maximum epoch count equal to 300 

epochs, and Power = 0.5 controls the rate of decay. Furthermore, in the training 

phase, label smoothing and dropout regularization techniques are used. In each 
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processing layer (in both the encoder and decoder blocks for the CardSegNet 

model), to prevent overfitting, a Pdrop value of 0.2 and label smoothing with a 

value of ϵls = 0.1 are applied.

5. Discussion

5.1. Qualitative assessment

The segmentation results of three random samples for the proposed CardSegNet on the 

ACDC 2017 test dataset, along with a comparison to the five high-performance baseline 

networks, are shown in Fig. 8. The competing models, U-Net (third column from the left) 

and U-Net++ (fourth column from the left), lack myocardium mask continuity. The third 

row shows our method detects the boundary of RV and LV better than nnU-Net, CE-Net, 

and DeeplabV3. As a result, CardSegNet outperforms nnU-Net, CE-Net, and DeeplabV3. 

The visual performance of the proposed model is further assessed by evaluating random 

sample images from M&M-2 and Rajaie CMRI datasets in Fig. 9. The qualitative analysis 

demonstrates the model’s adaptability to various scanner vendors and scanning protocols. 

Moreover, Fig. 10 shows that the ViT coefficients in SMA modules are generally increased 

during the training, except for Decoder 4, which means that while the CNN-based attention 

mechanisms have their impact on information fusion in the model blocks, the patch-based 

ViT received greater attention than PAM and CAM in several blocks. As shown in the figure, 

β increases in the latent space, indicating that CAM extracts more efficient features from 

the MSMA 3, MSMA 4, and Decoder 4 blocks. The CardSegNet’s Encoder 1, Encoder 2, 

Decoder 1, and Decoder 2 have higher γ values than the deeper levels. Because the applied 

ViT attention is based on shifted patch tokenization, it can extract regional and global 

features more efficiently than the PAM process, resulting in a decrease in α impact. Fig. 10 

indicates that there exists no linear relation among the coeffects as the index of the layer 

increases. As observed in Fig. 11, α (PAM), β (CAM), and γ (ViT) play different functions 

at processing scales by receiving appropriate attention coefficient values to improve the 

model’s capacity for better representation.

5.2. Quantitative evaluation

The CardSegNet model undergoes a quantitative comparison with several baseline models, 

and Table 3 presents the comparison results. CardSegNet attains the top scores, with Dice 

at 94.6 %, Recall at 95.6 %, Accuracy at 95.2 %, and Precision at 94.7 %. The statistical 

significance of the DSC performance improvement for the proposed CardSegNet model, 

in comparison to Deeplabv3 and nnU-Net (the best performing baselines in terms of DSC 

metric), was assessed using the Wilcoxon signed-rank test. The results showed that all 

improvements in DSC for CardSegNet, compared to the other methods, are statistically 

significant (p<0.05) for LV, Myo, RV, and average segmentation performance. For a reliable 

comparison based on the state-of-the-art study, the Dice results are tabulated in Table 4. The 

CardSegNet performance is promising against the recent SOTA. Shi et al.’s results (Shi et 

al., 2021) on ACDC 2017 (Dice score: 97.2 % with H.O. 80 %) slightly exceed the average 

CardSegNet dice performance by less than 1 %. This difference is due to the fact that Shi’s 

model evaluation method cannot be reproduced precisely because the train and test data 

indices are not explicitly presented by the authors. In CardSegNet optimization using the 
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five repetitions of the H.O. (80 %) method, there is a best test dice value of 98.1 %, which is 

higher than Shi’s model performance.

CardSegNet leverages PAM, CAM, and ViT attention, similar to TransU-Net (Chen et 

al., 2021a). The transformer encoder in TransU-Net consists of multi-head self-attention 

and multi-layer perceptron blocks. In this newly proposed SMA module, in addition 

to applying the above attentions, the pure ViT is modified into patched-based ViT. In 

addition, the coefficients of PAM, CAM, and ViT attentions are optimized in an adaptive 

manner to facilitate and control information fusion through SMA. As observed in Table 4, 

CardSegNet’s Ave-Dice performance is greater than that of nn-TransU-Net and TransU-Net 

by more than 1.6 % and 5.5 %, respectively.

The quantitative analysis for the oblation study, according to Table 5, indicates the direct 

effect of the proposed combined loss function, attention module, pre-train backbone, 

and post-processing step on segmentation results. The experimental findings support the 

effectiveness of the proposed hybrid CNN-Transformer-based attention module and model. 

The SMA and CardSegNet enable adaptively capturing both local and global contextual 

information in the given CMR image, which is advantageous for more precise segmentation. 

Short-to-middle-range and middle-to-long-range dependency modeling in an image would 

be effectively handled by the CNN- and ViT-based components, respectively. In order 

to significantly highlight local and global structures for more accurate segmentation 

performance, the α, β, and γ values are adaptively optimized at each processing block 

and scale to capture cross-pixel, cross-channel, and cross-patch dependencies. During the 

optimization process for a given SMA block, the positional attention sub-module adaptively 

aggregates features at each position through a weighted sum of the features at all positions. 

Simultaneously, the channel attention sub-module highlights interdependent channel maps 

by selectively combining similar features across all channel maps, recognizing that similar 

features are relevant regardless of their distances. Additionally, the patch-based ViT sub-

module facilitates attention by explicitly learning visual representations through cross-patch 

information interactions. This approach to processing feature patches enables the analysis 

of visual feature dependencies over short and long distances, resulting in the generation of 

a global receptive field. Consequently, the model can focus on different parts of the input 

tensor and comprehend their interrelationships, which is particularly significant for image 

analysis tasks. This capability is important for medical images since they often contain 

highly complicated structures.

The performance outcomes presented in Table 6 provide evidence of the adaptability of 

the proposed CardSegNet framework on the M&M-2 and Rajaie CMRI datasets, which 

were obtained using different CMR scanner vendors and scanning protocols. The model 

produced acceptable results on both. These findings suggest that the CardSegNet has the 

potential to be a versatile tool for analyzing cardiac MRI data from various sources. Based 

on the findings presented in Table 5, the incorporation of image post-processing results in an 

approximate 0.7 % enhancement in the overall segmentation performance.

The proposed model has limitations, mainly concerning its training time complexity, despite 

achieving acceptable testing times of less than 0.9 and 6.5 seconds per slice frame tested 
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on the GPU and CPU, respectively. Although CardSegNet has attempted to minimize the 

number of module parameters, the DL network built on the Transformer+CNN structure has 

relatively high parameters overall. The parameter reduction consideration still has room for 

improvement.

In the present work, we employed the image of the heart in the direction of the short-axis 

(SA). Experiments show that the accuracy of heart segmentation will be enhanced by 

incorporating other long-axes (LA), such as 2ch, 3ch, and 4ch, to the input of the model, 

further feeding the SA images to more efficiently handle the complex shapes, variable 

intensity, and unclear boundaries of the cardiac structures. By transferring information from 

one view to another or by combining them in a spatio-temporal framework, our model will 

be able to take advantage of the complementary information from both views and reduce 

the ambiguity in the segmentation, and there is room for further improvement. In future 

research, we will address these issues to develop the model and make it more efficient in real 

clinical situations.

6. Conclusion

In this paper, a hybrid deep learning framework was presented for CMRI data segmentation. 

A novel adaptive attention fusion module was designed and applied in the proposed 

CardSegNet to assist the overall model in efficiently extracting multi-range dependencies 

by leveraging the capabilities of pixel-, channel-, and patch-based ViT attentions. In order to 

improve CMRI segmentation, a deep supervision method and a joint loss function were also 

incorporated into the optimization of the proposed model. Based on an end-to-end training 

procedure, this model employs all the mechanisms in an adaptive fashion design.

To verify the effectiveness of our proposed method, this model was trained and evaluated 

on two publicly available datasets ACDC 2017, M&Ms-2, and also on the local Rajaie 

CMRI dataset. The average Dice scores for LV, Myocardium, and RV segmentation using 

CardSegNet on ACDC 2017 were 95.2 %, 95.5 %, and 95.3 %, respectively. These results 

were 95.3 %, 96.1 %, and 94.8 % for LV, Myocardium, and RV segmentation on M&Ms-2. 

For the Rajaie CMRI datasets, CardSegNet obtained average Dice scores of 95.3 % and 

96.1 % for LV and Myocardium segmentation in both end-diastolic and end-systolic frames, 

respectively.

CardSegNet is advantageous to cardiologists for rapid and reliable automated segmentation 

of the heart region in cardiac MRI data analysis in order to measure cardiac parameters and 

diagnose anomalies.
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Fig. 1. 
The proposed CardSegNet architecture for CMRI segmentation.
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Fig. 2. 
The proposed SMA block for multi-range data dependency modeling.
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Fig. 3. 
The architecture of shift-patch tokenization (SPT): It applies spatial transformers and patch 

partitioning to create patch features and convert them into visual tokens.
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Fig. 4. 
Architecture of the LSA to increase attention scores distribution.
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Fig. 5. 
MSMA block: multi-scale block of the self-adaptive multi attention module with two 

required inputs and two optional inputs.
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Fig. 6. 
The post-processing block consists of two steps for inter- and intra-region refinement. First, 

the input mask tensor undergoes modifications based on the anatomical prior information 

of LV, RV, and Mayo regions. This is achieved by adhering to the relationships among the 

region masks, resulting in a refined mask tensor referred to as the Refined Mask. Second, the 

mask obtained in step (1) is further refined by exploring and taking into account the intra-

region neighborhood based on pixel connectivity operations. This leads to the generation of 

the final output mask.
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Fig. 7. 
This figure demonstrates the pixel neighborhoods definition by the pixel connectivity 

function. It defines nine distinct and directional neighborhoods for a candidate mask pixel. 

The yellow-labeled pixel neighborhoods are denoted as Rk(i, j).
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Fig. 8. 
Comparison of different DL method segmentation results: visualization using five baseline 

models (U-Net, U-Net++, Deeplabv3, nnU-Net, CE-Net) and CardSegNet over a sample 

subset of ACDC2017 test dataset. Red, green, and blue regions are the right ventricle (RV), 

myocardium, and left ventricle (LV) areas, respectively.
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Fig. 9. 
CardSegNet performance evaluation on random test samples from the M&M-2 and Rajaie 

CMRI datasets. The figure displays input images and their corresponding ground truth, 

the network’s output, and the pixel difference between the network’s output mask and the 

ground truth.
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Fig. 10. 
Training trends for the SMA modules coefficients of α, β and γ in different processing 

blocks in the CardSegNet model.
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Fig. 11. 
Optimized coefficients of α, β and γ in the processing block.

Aghapanah et al. Page 35

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 36

Ta
b

le
 1

R
ev

ie
w

 o
f 

th
e 

L
as

t S
eg

m
en

ta
tio

n 
M

et
ho

do
lo

gi
es

 a
nd

 W
in

ne
rs

 o
f 

th
e 

A
C

D
C

 2
01

7 
C

ha
lle

ng
e.

R
ef

er
en

ce
D

at
as

et
M

od
el

C
V

 
M

et
ho

d
R

ep
or

te
d 

R
es

ul
t 

(%
)*

 
(L

V
C

, 
R

V
C

, 
LV

M
, 

M
ea

n)

D
at

as
et

 
N

am
e

Sa
m

pl
e 

Si
ze

 
(t

ra
in

s/
te

st
s)

C
la

ss
 

Si
ze

P
re

 
pr

oc
es

si
ng

D
at

a 
A

ug
m

en
t.

C
ro

p-
R

es
iz

e
L

oc
al

iz
er

B
as

e 
M

od
el

A
tt

en
ti

on
 

m
ec

ha
ni

sm
A

dd
it

io
na

l 
da

ta
L

os
s 

F
un

ct
io

n 
(s

)

E
x.

 
C

la
ss

if
ie

r

Is
en

se
e 

et
 

al
. 2

01
7 

(I
se

ns
ee

 e
t 

al
., 

20
17

)

A
C

D
C

-1
7

10
0/

50
4

-
✓

-
-

3D
 U

-N
et

 +
 2

D
 

U
-N

et
-

-
C

+
D

-
5-

fo
ld

94
.5

, 9
0.

8,
 

90
.5

, 9
1.

9

K
he

ne
d 

et
 

al
. 2

01
7 

(K
he

ne
d 

et
 

al
., 

20
17

)

A
C

D
C

-1
7

10
0/

50
4

✓
✓

-
✓

D
en

se
ly

 F
C

N
-

✓
D

R
F

H
.O

 (
90

 
%

)
94

.1
, 9

0.
7,

 
89

.4
, 9

1.
3

Z
ot

ti 
et

 a
l. 

20
18

 (
Z

ot
ti 

et
 a

l.,
 2

01
8)

A
C

D
C

-1
7

10
0/

50
4

-
-

-
-

G
ri

d 
ne

t
-

-
C

-
H

.O
 (

75
 

%
)

93
.8

, 9
1.

0,
 

89
.4

, 9
1.

4

Pa
in

ch
au

d 
et

 a
l. 

20
20

 
(P

ai
nc

ha
ud

 
et

 a
l.,

 2
02

0)

A
C

D
C

-1
7

10
0/

50
4

-
✓

-
-

V
A

E
-

✓
K

L
 lo

ss
-

10
-f

ol
d

93
.6

, 9
0.

9,
 

88
.9

, 9
1.

1

Sh
i e

t a
l. 

20
21

 (
Sh

i e
t 

al
., 

20
21

)

A
C

D
C

-1
7

LV
-0

9
R

V
-1

2

10
0 

/5
0

13
0/

20
80

/1
0

4 4 4

✓
-

-
✓

M
IF

N
et

PA
M

-
D

-
4-

fo
ld

M
ea

n:
 

97
.2

M
ea

n:
 

96
.1

M
ea

n:
 

89
.6

Z
ho

u 
et

 a
l. 

20
21

 (
Z

ho
u 

et
 a

l.,
 2

02
1)

A
C

D
C

-1
7

10
0/

50
4

✓
✓

-
-

nn
Fo

rm
er

M
ul

ti-
he

ad
 

se
lf

-
at

te
nt

io
n

-
M

SE
-

H
.O

 (
70

 
%

)
M

ea
n:

 
92

.1

C
he

n 
et

 a
l. 

20
22

 (
C

he
n 

et
 a

l.,
 2

02
2)

A
C

D
C

-1
7

20
18

A
SC

10
0/

50
50

4 5
✓

-
-

-
M

ul
tir

es
ol

ut
io

n
A

gg
re

ga
tio

n
T

ra
ns

fo
rm

er
 

U
-N

et

C
oo

rd
in

at
e 

at
te

nt
io

n 
(C

A
)

-
C

+
D

-
H

.O
 (

70
 

%
)

M
ea

n:
 

92
.0

M
ea

n:
 

92
.1

G
al

az
is

 e
t 

al
. 2

02
1 

(G
al

az
is

 e
t 

al
., 

20
21

)

A
C

D
C

-1
7

10
0/

50
4

✓
✓

-
✓

Te
m

pe
ra

: 
Sp

at
ia

l
T

ra
ns

fo
rm

er
 

Fe
at

ur
e

Py
ra

m
id

PA
M

✓
D

-
H

.O
 (

90
 

%
)

M
ea

n:
 

92
.1

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 37

R
ef

er
en

ce
D

at
as

et
M

od
el

C
V

 
M

et
ho

d
R

ep
or

te
d 

R
es

ul
t 

(%
)*

 
(L

V
C

, 
R

V
C

, 
LV

M
, 

M
ea

n)

D
at

as
et

 
N

am
e

Sa
m

pl
e 

Si
ze

 
(t

ra
in

s/
te

st
s)

C
la

ss
 

Si
ze

P
re

 
pr

oc
es

si
ng

D
at

a 
A

ug
m

en
t.

C
ro

p-
R

es
iz

e
L

oc
al

iz
er

B
as

e 
M

od
el

A
tt

en
ti

on
 

m
ec

ha
ni

sm
A

dd
it

io
na

l 
da

ta
L

os
s 

F
un

ct
io

n 
(s

)

E
x.

 
C

la
ss

if
ie

r

Fu
 e

t a
l. 

20
22

 (
Fu

 e
t 

al
., 

20
22

)

A
C

D
C

-1
7

Sy
na

ps
e

10
0/

50
50

4 8
✓

-
✓

-
T

F-
U

-N
et

-
-

C
-

H
.O

 (
80

 
%

)
M

ea
n:

 
91

.7
M

ea
n:

 
85

.5

D
. L

i e
t a

l. 
20

22
 (

L
i e

t 
al

., 
20

22
a)

A
C

D
C

-1
7

10
0/

50
4

✓
✓

✓
-

U
-N

et
PA

M
C

A
M

-
C

+
D

-
H

.O
 (

80
 

%
)

R
V

: 8
9.

1

Y
. L

i e
t a

l. 
20

22
 (

L
i e

t 
al

., 
20

22
b)

A
C

D
C

-1
7

10
0/

50
4

✓
-

-
-

V
iT

 D
ec

od
er

W
in

do
w

A
tte

nt
io

n
U

ns
am

pl
ed

-
M

SE
-

H
.O

 (
80

 
%

)
M

ea
n:

 
92

.1

G
al

ea
 e

t a
l. 

20
21

 (
G

al
ea

 
et

 a
l.,

 2
02

1)

20
18

A
SC

50
5

✓
✓

-
-

U
-N

et
 +

 
D

ee
pL

ab
V

3+
-

-
M

SE
-

H
.O

 (
80

 
%

)
M

ea
n:

 
92

.1

G
ar

ci
a-

C
ab

re
ra

 e
t 

al
. 2

02
3 

(G
ar

ci
a-

C
ab

re
ra

 e
t 

al
., 

20
23

)

A
C

D
C

-1
7

10
0/

50
4

-
✓

-
-

U
-N

et
 

(I
m

ag
eN

et
)

-
-

M
SE

-
H

.O
 (

80
 

%
)

M
ea

n:
96

.6

Pł
ot

ka
 e

t a
l. 

20
23

 
(G

rz
es

zc
zy

k 
et

 a
l.,

 2
02

3)

A
C

D
C

-1
7

10
0/

50
4

-
-

-
-

Sw
in

 
T

ra
ns

fo
rm

er
/U

-N
et

Sh
if

te
d-

w
in

do
w

 
m

ul
ti-

he
ad

-
C

+
D

-
5-

fo
ld

M
ea

n:
87

.1

L
iu

 e
t a

l. 
20

23
 (

L
iu

 e
t 

al
., 

20
23

)

A
C

D
C

-1
7

10
0/

50
4

-
-

-
-

Su
cc

es
si

ve
 

su
bs

pa
ce

 
le

ar
ni

ng

-
-

M
SE

-
5-

fo
ld

M
ea

n:
95

.0

J.
M

.H
ar

an
a 

et
 a

l. 
20

21
 

(M
ar

is
ca

l-
H

ar
an

a 
et

 
al

., 
20

21
)

A
C

D
C

-1
7

M
&

M
s-

2
L

oc
al

 
(N

H
S)

10
0/

50
36

0 
(3

21
 

M
R

I)
42

28

4
✓

-
-

-
2D

 U
-N

et
-

-
C

+
D

-
5-

fo
ld

87
.8

, 8
1.

7,
 

79
.1

, 8
2.

9
83

.8
, 8

0.
7,

 
82

.2
, 8

2.
2

90
.1

, 8
2.

1,
 

78
.9

, 8
3.

7

A
.K

. 
Y

as
m

in
a 

et
 

al
. 2

02
3 

(A
l 

K
ha

lil
 e

t a
l.,

 
20

23
)

M
&

M
s-

2
36

0 
(2

00
 

an
no

ta
te

d)
4

-
✓

-
-

C
on

di
tio

na
l 

G
A

N
Po

st
 

pr
oc

es
si

ng
-

D
+

H
-

5-
fo

ld
95

.9
, 9

0.
7,

 
93

.8
, 9

3.
4

C
. G

al
az

is
 

et
 a

l. 
20

23
 

(G
al

az
is

 e
t 

al
., 

20
21

)

M
&

M
s-

2
36

0 
(2

00
 

an
no

ta
te

d)
4

✓
✓

✓
✓

Te
m

pe
ra

Po
st

 
pr

oc
es

si
ng

-
F+

D
-

H
.O

 (
93

 
%

)
M

ea
n:

 
83

.6

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 38

R
ef

er
en

ce
D

at
as

et
M

od
el

C
V

 
M

et
ho

d
R

ep
or

te
d 

R
es

ul
t 

(%
)*

 
(L

V
C

, 
R

V
C

, 
LV

M
, 

M
ea

n)

D
at

as
et

 
N

am
e

Sa
m

pl
e 

Si
ze

 
(t

ra
in

s/
te

st
s)

C
la

ss
 

Si
ze

P
re

 
pr

oc
es

si
ng

D
at

a 
A

ug
m

en
t.

C
ro

p-
R

es
iz

e
L

oc
al

iz
er

B
as

e 
M

od
el

A
tt

en
ti

on
 

m
ec

ha
ni

sm
A

dd
it

io
na

l 
da

ta
L

os
s 

F
un

ct
io

n 
(s

)

E
x.

 
C

la
ss

if
ie

r

G
ao

 e
t a

l. 
20

22
 (

G
ao

 
an

d 
Z

hu
an

g,
 

20
22

)

M
&

M
S-

2
36

0 
(2

00
 

an
no

ta
te

d)
4

✓
✓

-
✓

U
-N

et
+

 V
iT

Se
lf

-
at

te
nt

io
n

-
C

+
D

-
H

.O
 (

80
 

%
)

M
ea

n:
 

88
.1

H
ab

ija
n 

et
 

al
. 2

02
1 

(H
ab

ija
n 

et
 

al
., 

20
21

)

M
M

-
W

H
S

10
0/

40
7

✓
✓

-
-

V
A

E
 a

nd
 F

M
-

Pr
e-

 R
es

N
et

-
-

D
, L

2,
 

K
L

-
10

-f
ol

d
M

ea
n:

 
89

.5

Y
an

g 
et

 a
l. 

20
22

 (
Y

an
g 

et
 a

l.,
 

20
22

a)

Sy
na

ps
e

50
8

✓
-

-
-

E
nc

od
er

-
D

ec
od

er
Fu

zz
y

-
-

-
H

.O
 (

80
 

%
)

M
ea

n:
 

85
.5

Pe
re

ir
a 

et
 a

l. 
20

20
 

(P
er

ei
ra

 e
t 

al
., 

20
20

)

M
IC

C
A

I 
20

19
11

20
 +

56
4

-
-

-
✓

U
-N

et
-

-
M

A
E

-
5-

fo
ld

M
ea

n:
 

94
.2

A
C

D
C

-1
7:

 A
ut

om
at

ed
 C

ar
di

ac
 D

ia
gn

os
is

 C
ha

lle
ng

e 
da

ta
se

t, 
A

C
C

: 
A

cc
ur

ac
y,

 C
: 

C
ro

ss
-E

nt
ro

py
 L

os
s,

 C
A

M
: 

C
ha

nn
el

 A
tte

nt
io

n 
M

od
ul

e,
 D

: 
D

ic
e 

L
os

s,
 H

: 
H

au
sd

or
ff

 D
is

ta
nc

e,
 H

.O
: 

H
ol

d 
O

ut
, K

L
: 

K
ul

lb
ac

k-
L

ei
bl

er
 D

iv
er

ge
nc

e,
 L

2:
 L

2 
no

rm
, L

V
: 

L
ef

t V
en

tr
ic

le
, L

V
-0

9:
 S

un
ny

br
oo

k 
C

ar
di

ac
 d

at
as

et
, M

yo
: 

M
yo

ca
rd

iu
m

, P
A

M
: 

Po
si

tio
n 

A
tte

nt
io

n 
M

od
ul

e,
 R

F
: 

R
an

do
m

 F
or

es
t, 

R
O

I:
 R

eg
io

n 
of

 I
nt

er
es

t, 
R

V
: 

R
ig

ht
 V

en
tr

ic
le

, R
V

-1
2:

 M
IC

C
A

I 
20

12
 R

ig
ht

 V
en

tr
ic

le
 S

eg
m

en
ta

tio
n 

C
ha

lle
ng

e 
da

ta
se

t, 
V

A
E

: 
V

ar
ia

tio
na

l A
ut

oe
nc

od
er

.

* T
he

 r
es

ul
ts

 a
re

 r
ep

or
te

d 
ba

se
d 

on
 C

M
R

I 
an

al
ys

es
 li

ke
 L

V
, R

V
, M

yo
, a

nd
 O

ve
ra

ll 
m

ea
n,

 r
es

pe
ct

iv
el

y.
 H

er
e,

 c
la

ss
 s

iz
e 

in
di

ca
te

s 
th

e 
se

gm
en

te
d 

he
ar

t r
eg

io
ns

 c
ou

nt
 p

lu
s 

th
e 

ba
ck

gr
ou

nd
.

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 39

Ta
b

le
 2

Su
m

m
ar

y 
of

 th
e 

R
es

ea
rc

h 
C

ar
di

ac
 M

R
I 

D
at

as
et

s.

D
at

as
et

Sc
an

ne
r

N
o.

 C
as

e
N

o.
 I

m
ag

es
N

o.
 F

ra
m

es
N

o.
 S

lic
es

 p
er

 C
as

e
L

ab
le

s
C

at
eg

or
ie

s
Im

ag
e 

Si
ze

s 
(p

ix
el

s)

A
C

D
C

-1
7

Si
em

en
s 

A
re

a 
1.

5 
T,

 a
nd

 T
ri

o 
T

im
 3

.0
 

T
10

0 
T

r
50

 T
e

19
02

2 
(E

D
,E

S)
SA

 8
–1

0
LV

, M
yo

, R
V

4 
G

ro
up

s
15

4×
22

4–
42

8×
51

2

M
&

M
s 

- 
2

Si
em

en
s,

 P
hi

lip
ps

, G
E

, a
nd

 C
an

on
20

0 
T

r
16

0 
Te

14
40

(7
20

 S
A

)
2 

(E
D

,E
S)

SA
 9

–1
3

L
A

 1
LV

, M
yo

, R
V

4 
G

ro
up

s
19

6×
24

0–
51

2×
51

2

R
aj

ai
e 

C
M

R
I 

D
at

as
et

Si
em

en
s 

M
A

G
N

E
T

O
M

 A
va

nt
o 

ec
o 

1.
5 

T
22

60
87

 (
47

85
 S

A
)

25
 (

Fu
ll 

C
ar

di
ac

 
C

yc
le

)
SA

 7
–1

1
L

A
 0

–4
LV

, M
yo

N
ot

 C
la

ss
if

ie
d

14
4×

15
6 

an
d 

28
0×

20
4

E
D

: 
E

nd
-d

ia
st

ol
ic

, E
S:

 E
nd

-s
ys

to
lic

, T
r:

T
ra

in
, T

e:
Te

st
.

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 40

Ta
b

le
 3

Pe
rf

or
m

an
ce

 c
om

pa
ri

so
n 

of
 U

-N
et

, U
-N

et
+

+
, D

ee
pl

ab
 v

3,
 N

n-
U

-N
et

 C
E

-N
et

, a
nd

 th
e 

pr
op

os
ed

 C
ar

dS
eg

N
et

 (
A

ve
ra

ge
 ±

 s
td

).

M
et

ho
d

P
P

Se
gm

en
ta

ti
on

 M
et

ri
cs

C
om

pl
ex

it
y

D
ic

e 
(%

)
R

ec
al

l (
%

)
A

cc
ur

ac
y 

(%
)

P
re

ci
si

on
 (

%
)

A
T

T
 

(S
)

T
P

 
(M

)
LV

M
yo

R
V

A
ve

.
LV

M
yo

R
V

A
ve

.
LV

M
yo

R
V

A
ve

.
LV

M
yo

R
V

A
ve

.

U
-N

et
, 

20
17

 
(K

he
ne

d 
et

 
al

., 
20

17
)

✕
84

.3
±

0.
8

85
.7

±
0.

9
85

.3
±

0.
6

85
.1

±
0.

8
85

.8
±

0.
7

87
.1

±
0.

8
86

.9
±

0.
6

86
.6

±
0.

7
75

.8
±

0.
8

77
.0

±
1.

1
76

.7
±

0.
8

76
.5

±
0.

9
77

.5
±

0.
6

78
.7

±
0.

9
78

.4
±

0.
8

78
.2

±
0.

6
0.

6
3.

89

✓
84

.9
±

0.
9

86
.8

±
1.

0
87

.2
±

0.
5

86
.3

±
0.

8
86

.0
±

0.
7

88
.2

±
0.

6
87

.6
±

0.
5

87
.3

±
0.

6
79

.6
±

0.
7

76
.6

±
1.

0
77

.3
±

0.
7

77
.8

±
0.

8
77

.1
±

0.
5

80
.5

±
1.

0
80

.7
±

0.
9

79
.4

±
0.

8
3.

4

C
E

-N
et

, 
20

19
 (

G
u 

et
 

al
., 

20
19

)

✕
89

.9
±

0.
6

91
.4

±
0.

5
91

.1
±

0.
4

90
.8

±
0.

5
90

.8
±

0.
6

92
.3

±
0.

8
92

.0
±

0.
7

91
.7

±
0.

7
91

.8
±

0.
6

93
.3

±
0.

8
93

.0
±

0.
6

92
.7

±
0.

6
91

.5
±

0.
4

93
.0

±
0.

5
92

.7
±

0.
3

92
.4

±
0.

4
1.

6
39

.4
4

✓
90

.1
±

0.
5

92
.2

±
0.

6
91

.6
±

0.
3

91
.2

±
0.

4
91

.1
±

0.
6

93
.4

±
0.

6
92

.7
±

0.
5

92
.3

±
0.

5
92

.9
±

0.
6

93
.9

±
0.

7
93

.5
±

0.
5

93
.4

±
0.

6
91

.4
±

0.
3

93
.7

±
0.

3
93

.1
±

0.
1

92
.7

±
0.

2
4.

4

U
-N

et
+

+
, 

20
21

 
(G

ra
ve

s 
et

 
al

., 
20

21
)

✕
89

.6
±

0.
5

91
.1

±
0.

8
90

.8
±

0.
6

90
.5

±
0.

6
90

.3
±

0.
8

91
.8

±
0.

8
91

.5
±

0.
5

91
.2

±
0.

7
87

.9
±

0.
8

89
.2

±
1.

2
89

.0
±

1.
0

88
.7

±
1.

1
90

.2
±

1.
3

91
.6

±
1.

6
91

.2
±

1.
2

91
.0

±
1.

3
0.

9
4.

87

✓
90

.0
±

0.
5

91
.9

±
0.

7
90

.9
±

0.
6

90
.9

±
0.

6
90

.8
±

0.
8

92
.7

±
0.

6
92

.5
±

0.
5

92
.0

±
0.

6
89

.5
±

0.
7

89
.3

±
1.

0
90

.1
±

1.
1

89
.6

±
0.

9
90

.1
±

1.
2

92
.2

±
1.

5
91

.4
±

1.
1

91
.2

±
1.

2
3.

8

D
ee

pl
ab

 v
3,

 
20

21
 (

C
he

n 
et

 a
l.,

 
20

21
a)

✕
90

.8
±

0.
8

92
.2

±
1.

1
91

.8
±

0.
7

91
.6

±
0.

9
91

.8
±

0.
7

93
.3

±
0.

9
93

.0
±

0.
6

92
.7

±
0.

7
90

.9
±

0.
6

92
.3

±
0.

6
91

.9
±

0.
4

91
.7

±
0.

5
91

.5
±

0.
8

92
.9

±
1.

1
92

.5
±

0.
5

92
.3

±
0.

8
1.

1
11

.8
5

✓
92

.0
±

0.
7

93
.1

±
1.

0
92

.5
±

0.
6

92
.5

±
0.

7
92

.1
±

0.
7

93
.4

±
0.

7
93

.7
±

0.
5

93
.1

±
0.

6
90

.8
±

0.
7

92
.2

±
0.

4
92

.5
±

0.
3

91
.8

±
0.

4
91

.9
±

0.
7

93
.5

±
0.

9
92

.4
±

0.
4

92
.6

±
0.

6
4.

0

nn
U

-N
et

, 
20

21
 

(I
se

ns
ee

 e
t 

al
., 

20
21

)

✕
91

.9
±

0.
4

93
.4

±
0.

5
93

.1
±

0.
3

92
.8

±
0.

4
92

.2
±

0.
8

93
.7

±
0.

8
93

.4
±

0.
6

93
.1

±
0.

8
92

.6
±

0.
7

94
.1

±
0.

8
93

.8
±

0.
7

93
.5

±
0.

7
92

.0
±

0.
6

93
.5

±
1.

2
93

.2
±

0.
7

92
.9

±
0.

8
1.

1
52

.1
1

✓
92

.2
±

0.
5

94
.0

±
0.

4
93

.4
±

0.
1

93
.2

±
0.

3
92

.8
±

0.
7

93
.9

±
0.

8
94

.0
±

0.
6

93
.6

±
0.

7
93

.0
±

0.
7

94
.4

±
0.

6
93

.7
±

0.
6

93
.7

±
0.

6
92

.8
±

0.
6

93
.8

±
1.

3
93

.2
±

0.
7

93
.3

±
0.

8
3.

9

C
ar

dS
eg

N
et

✕
94

.8
±

0.
7

94
.4

±
1.

3
94

.7
±

0.
5

94
.6

±
0.

8
94

.7
±

0.
6

96
.2

±
0.

8
95

.9
±

0.
5

95
.6

±
0.

6
94

.3
±

0.
7

95
.8

±
1.

0
95

.5
±

0.
8

95
.2

±
0.

8
93

.8
±

0.
6

95
.4

±
0.

9
94

.9
±

0.
6

94
.7

±
0.

7
3.

7
17

.6

✓
95

.5
±

0.
6

95
.2

±
0.

9
95

.3
±

0.
8

95
.3

±
0.

6
95

.8
±

0.
5

97
.3

±
0.

6
97

.0
±

0.
5

96
.7

±
0.

5
95

.3
±

0.
9

96
.8

±
0.

9
96

.5
±

0.
7

96
.2

±
0.

9
96

.7
±

0.
6

98
.2

±
0.

9
97

.9
±

0.
8

95
.6

±
0.

8
6.

6

P
P

: 
Po

st
 p

ro
ce

ss
in

g;
 A

T
T

: 
A

ve
ra

ge
 te

st
 ti

m
e 

pe
r 

sl
ic

e 
(C

PU
-t

es
te

d:
 I

nt
el

 C
or

e 
i7

@
2.

6 
G

H
z)

; T
P

: 
T

ra
in

ab
le

 p
ar

am
et

er
s;

 S
: 

Se
co

nd
s;

 M
: 

M
ill

io
n 

pa
ra

m
et

er
s.

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 41

Ta
b

le
 4

St
at

e-
O

f-
T

he
-A

rt
 P

er
fo

rm
an

ce
 E

va
lu

at
io

n 
O

ve
r 

St
ud

y 
D

at
as

et
.

D
at

as
et

R
ef

er
en

ce
M

et
ho

d
R

ep
or

te
d 

A
ve

-
D

ic
e 

R
es

ul
t 

(%
)

O
ur

 A
ve

-D
ic

e 
R

es
ul

t 
(%

)*
P

re
-p

ro
ce

ss
in

g
M

ai
n 

M
od

el
P

os
t-

pr
oc

es
si

ng
C

V
 M

et
ho

d

A
C

D
C

 
20

17
Z

ha
o 

et
 a

l. 
20

22
 (

Z
ha

o 
et

 a
l.,

 2
02

2)
Im

ag
e 

C
ro

pp
in

g
nn

-T
ra

ns
U

-N
et

nn
-T

ra
ns

U
-N

et
 P

os
t 

Pr
oc

es
si

ng
 B

lo
ck

5-
fo

ld
 C

V
93

.6
±

0.
6

95
.2

±
0.

7

C
he

n 
et

 a
l. 

20
21

 (
C

he
n 

et
 a

l.,
 2

02
1a

)
-

T
ra

ns
U

-N
et

-
5-

fo
ld

 C
V

89
.7

±
0.

8
95

.2
±

0.
7

Pa
in

ch
au

d 
et

 a
l. 

20
20

 (
Pa

in
ch

au
d 

et
 a

l.,
 2

02
0)

D
at

a 
A

ug
m

en
ta

tio
n

V
A

E
A

na
to

m
ic

al
 V

A
E

 P
os

t-
Pr

oc
es

si
ng

10
-f

ol
d 

C
V

91
.1

±
1.

3
95

.3
±

0.
6

Sh
i e

t a
l. 

20
21

 (
Sh

i e
t a

l.,
 2

02
1)

D
at

a 
E

nh
an

ce
m

en
t a

nd
 

N
or

m
al

iz
at

io
n

M
IF

N
et

-
H

.O
 (

80
 %

)
97

.2
96

.3

Z
ho

u 
et

 a
l. 

20
21

 (
Z

ho
u 

et
 a

l.,
 2

02
1)

-
nn

Fo
rm

er
-

H
.O

 (
70

 %
)

92
.1

94
.8

G
al

az
is

 e
t a

l. 
20

21
 (

G
al

az
is

 e
t a

l.,
 2

02
1)

-
Te

m
pe

ra
L

ar
ge

st
 C

on
ne

ct
ed

 R
eg

io
n 

as
 

R
V

 +
M

ed
ia

n 
Fi

lte
r

H
.O

 (
90

 %
)

92
.1

95
.3

±
0.

6

Pe
re

ir
a 

et
 a

l. 
20

20
 (

Pe
re

ir
a 

et
 a

l.,
 2

02
0)

Im
ag

e 
L

oc
al

iz
at

io
n

C
N

N
-

5-
fo

ld
 C

V
94

.2
±

0.
7

95
.2

±
0.

7

Y
an

g 
et

 a
l. 

20
22

 (
Y

an
g 

et
 a

l.,
 2

02
2a

)
-

FA
-S

eg
N

et
-

H
.O

 (
80

 %
)

92
.4

96
.1

M
&

M
s-

2
C

. G
al

az
is

 e
t a

l. 
20

23
 (

G
al

az
is

 e
t a

l.,
 2

02
1)

D
at

a 
A

ug
m

en
ta

tio
n

Te
m

pe
ra

L
ar

ge
st

 C
on

ne
ct

ed
 R

eg
io

n 
as

 
R

V
 +

M
ed

ia
n 

Fi
lte

r
H

.O
 (

93
 %

)
83

.6
96

.8

J.
M

.H
ar

an
a 

et
 a

l. 
20

22
 (

M
ar

is
ca

l-
H

ar
an

a 
et

 a
l.,

 
20

21
)

D
at

a 
E

nh
an

ce
m

en
t

2D
 U

-N
et

-
5-

fo
ld

 C
V

82
.2

±
1.

2
95

.2
±

0.
7

A
.K

. Y
as

m
in

a 
et

 a
l. 

20
23

 (
A

l K
ha

lil
 e

t a
l.,

 
20

23
)

D
at

a 
A

ug
m

en
ta

tio
n

U
-N

et
 +

 c
G

A
N

R
et

ai
ni

ng
 T

he
 L

ar
ge

st
 

R
eg

io
n 

pe
r 

C
la

ss
5-

fo
ld

 C
V

93
.4

±
0.

9
95

.2
±

0.
7

G
ao

 e
t a

l. 
20

22
 (

G
ao

 a
nd

 Z
hu

an
g,

 2
02

2)
D

at
a 

A
ug

m
en

ta
tio

n
U

-N
et

+
 V

iT
 a

nd
 

Se
lf

-a
tte

nt
io

n
M

ul
ti-

V
ie

w
 R

ul
e 

B
as

e 
Po

st
-

Pr
oc

es
si

ng
 U

si
ng

 L
A

 O
n 

SA
 

Im
ag

es

H
.O

 (
80

 %
)

88
.1

2
95

.2

* To
 m

ak
e 

a 
fa

ir
 c

om
pa

ri
so

n 
be

tw
ee

n 
ex

is
tin

g 
m

od
el

s 
an

d 
th

e 
pr

op
os

ed
 m

od
el

, s
in

ce
 th

e 
au

th
or

s 
do

 n
ot

 e
xp

lic
itl

y 
pr

es
en

t t
he

 tr
ai

n 
an

d 
te

st
 d

at
a 

in
di

ce
s 

in
 th

e 
H

.O
-b

as
ed

 v
al

id
at

io
ns

, t
he

 d
at

a 
pa

rt
iti

on
in

g 
an

d 
C

ar
dS

eg
N

et
 o

pt
im

iz
at

io
n 

st
ep

s 
ar

e 
re

pe
at

ed
 f

iv
e 

tim
es

 b
as

ed
 o

n 
th

e 
H

.O
 p

er
ce

nt
ag

e 
of

 tr
ai

n-
te

st
 d

at
a 

sp
lit

tin
g,

 a
nd

 th
e 

av
er

ag
e 

te
st

 r
es

ul
t i

s 
co

m
pu

te
d 

an
d 

re
po

rt
ed

 a
cc

or
di

ng
ly

.

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 42

Ta
b

le
 5

A
bl

at
io

n 
St

ud
y 

C
ro

ss
-V

al
id

at
ed

 R
es

ul
ts

: I
m

pa
ct

 A
ss

es
sm

en
t o

f 
B

ac
kb

on
e,

 A
tte

nt
io

n,
 a

nd
 L

os
se

s 
ba

se
d 

on
 D

ic
e 

M
et

ri
c.

C
ar

dS
eg

N
et

 C
on

fi
gu

ra
ti

on
D

ic
e 

P
er

fo
rm

an
ce

B
ac

kb
on

e
A

tt
en

ti
on

 F
us

io
n

P
os

t-
P

ro
ce

ss
in

g
L

os
s

LV
 (

%
)

M
yo

 (
%

)
R

V
 (

%
)

O
ve

ra
ll 

(%
)

N
on

e
N

on
e

✕
M

SE
80

.6
±

2.
6

72
.7

±
1.

5
74

.7
±

1.
3

77
.4

±
1.

8

✕
C

om
bi

ne
d

82
.6

±
1.

2
76

.0
±

0.
8

77
.1

±
0.

6
79

.5
±

1.
0

PA
M

+C
A

M
✕

M
SE

84
.6

±
1.

3
79

.4
±

1.
8

79
. 4

±
0.

8
82

.1
±

1.
4

✕
C

om
bi

ne
d

86
.7

±
1.

5
83

.0
±

0.
8

81
.8

±
0.

4
84

.9
±

0.
9

V
iT

✕
M

SE
88

.2
±

1.
3

85
.8

±
0.

5
83

.6
±

1.
6

86
.6

±
1.

1

✕
C

om
bi

ne
d

88
.8

±
0.

6
86

.8
±

1.
2

84
.3

±
0.

7
87

.4
±

0.
8

PA
M

+C
A

M
+V

iT
✕

M
SE

91
.9

±
0.

7
88

.6
±

1.
1

85
.5

±
0.

9
89

.6
±

0.
9

✕
C

om
bi

ne
d

92
.1

±
1.

3
91

.5
±

0.
7

87
.9

±
1.

0
90

.5
±

1.
1

✓
C

om
bi

ne
d

92
.4

±
0.

7
91

.9
±

0.
9

91
.1

±
1.

2
92

.0
±

0.
8

R
es

N
et

50
N

on
e

✕
M

SE
87

.0
±

1.
3

81
.9

±
1.

6
87

.1
±

1.
2

83
.2

±
1.

3

✕
C

om
bi

ne
d

89
.3

±
1.

4
84

.4
±

1.
3

84
.2

±
1.

4
85

.5
±

1.
3

PA
M

+C
A

M
✕

M
SE

91
.3

±
0.

8
87

.5
±

0.
8

86
.1

±
0.

9
88

.2
±

0.
8

✕
C

om
bi

ne
d

91
.7

±
1.

5
89

.7
±

0.
5

88
.5

±
1.

1
89

.4
±

1.
0

V
iT

✕
M

SE
93

.4
±

0.
6

92
.2

±
0.

7
90

.1
±

0.
7

91
.3

±
0.

8

✕
C

om
bi

ne
d

93
.9

±
1.

5
93

.2
±

1.
4

90
.7

±
0.

8
92

.3
±

1.
1

PA
M

+C
A

M
+V

iT
*

✕
M

SE
94

.4
±

1.
2

94
.2

±
0.

5
92

.0
±

0.
7

93
.6

±
0.

8

✕
C

om
bi

ne
d

94
.8

±
0.

7
94

.4
±

1.
3

94
.7

±
0.

5
94

.6
±

0.
8

✓
C

om
bi

ne
d

95
.5

±
0.

6
95

.2
±

0.
9

95
.3

±
0.

8
95

.3
±

0.
7

* T
he

 c
om

pa
ri

so
n 

of
 r

es
ul

ts
 f

or
 th

e 
M

SE
, M

SE
+

R
eg

ul
ar

iz
at

io
n,

 d
SS

IM
, I

oU
, C

ur
va

tu
re

, a
nd

 C
om

bi
ne

d 
lo

ss
es

 o
n 

R
es

N
et

50
+

PA
M

+
C

A
M

+
V

iT
+

no
 p

os
t-

pr
oc

es
si

ng
 d

em
on

st
ra

te
s 

ov
er

al
l D

ic
e 

pe
rf

or
m

an
ce

 
sc

or
es

 o
f 

93
.6

 %
, 9

3.
8 

%
, 9

2.
5 

%
, 9

4.
0 

%
, 9

2.
3 

%
, a

nd
 9

4.
6 

%
, r

es
pe

ct
iv

el
y.

 T
he

se
 f

in
di

ng
s 

se
rv

e 
as

 a
n 

in
di

ca
tio

n 
of

 th
e 

va
lid

ity
 o

f 
th

e 
pr

op
os

ed
 c

om
bi

ne
d 

lo
ss

 f
un

ct
io

n’
s 

co
nt

ri
bu

tio
n.

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aghapanah et al. Page 43

Table 6

Assessment of CardSegNet Framework Segmentation Dice Performance on M&M-2 and Local Datasets Using 

10-Fold Cross-Validation.

Dataset Label Cardiac Slices Mean Overall Dataset

Base Middle Apex

M&M-2 LV 95.1±0.3 96.5±0.5 94.3±0.9 95.3±0.6 95.4±0.6

Myo 95.4±0.7 97.8±0.8 95.1±1.1 96.1±0.8

RV 94.6±0.4 95.9±0.4 93.9±0.8 94.8±0.5

Rajaie CMRI Dataset* LV 95.4±0.7 96.8±0.6 94.6±0.9 95.3±0.7 94.5±0.7

Myo 93.1±0.7 94.4±0.5 92.4±0.8 96.1±0.6

*
Although images of the long axis were also available in our local database, only images of the short axis were utilized for the comparison purpose. 

"Base," "Middle," and "Apex" labels were assigned to the top 30 %, subsequent 40 %, and remaining 30 % of CMR slices, respectively.
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