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Abstract

Cardiovascular MRI (CMRY) is a non-invasive imaging technique adopted for assessing the
blood circulatory system’s structure and function. Precise image segmentation is required

to measure cardiac parameters and diagnose abnormalities through CMRI data. Because of
anatomical heterogeneity and image variations, cardiac image segmentation is a challenging
task. Quantification of cardiac parameters requires high-performance segmentation of the left
ventricle (LV), right ventricle (RV), and left ventricle myocardium from the background. The
first proposed solution here is to manually segment the regions, which is a time-consuming

and error-prone procedure. In this context, many semi- or fully automatic solutions have been
proposed recently, among which deep learning-based methods have revealed high performance in
segmenting regions in CMRI data. In this study, a self-adaptive multi attention (SMA) module
is introduced to adaptively leverage multiple attention mechanisms for better segmentation. The
convolutional-based position and channel attention mechanisms with a patch tokenization-based
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vision transformer (ViT)-based attention mechanism in a hybrid and end-to-end manner are
integrated into the SMA. The CNN- and ViT-based attentions mine the short- and long-range
dependencies for more precise segmentation. The SMA module is applied in an encoder-decoder
structure with a ResNet50 backbone named CardSegNet. Furthermore, a deep supervision method
with multi-loss functions is introduced to the CardSegNet optimizer to reduce overfitting and
enhance the model’s performance. The proposed model is validated on the ACDC2017 (n=100),
M&Ms (n=321), and a local dataset (n=22) using the 10-fold cross-validation method with
promising segmentation results, demonstrating its outperformance versus its counterparts.

Keywords

Cardiac magnetic resonance imaging; Deep learning; Hybrid attention mechanism; Image
segmentation; Vision transformer

1. Introduction

Cardiovascular diseases (CVDs) is a general term applied to defining diseases related to

the heart and vessels, like coronary artery disease, valvular heart disease, and congenital
heart disease (Lum and Tsiouris, 2020). According to the WHO, CVDs have been and

still are the primary cause of death in recent years, with almost 31.8 % attributed to
cardiovascular disease in the last decade (von von von Knobelsdorff-Brenkenhoff et al.,
2017). CVD is one of the chronic non-communicable diseases with a prevalence of over

12 % (Topol and Califf, 2007). Next to physical examinations and blood tests, there are
many non-invasive tests like computed tomography (CT) scans, cardiac magnetic resonance
imaging (CMRI), electrocardiograms (ECG), echocardiograms, and exercise stress test (or
ergospirometry) reports that can be run to diagnose CVDs. The CMRI is one of the safest
and most effective imaging techniques for the heart, even during pregnancy, because it

is free of radiation (Lum and Tsiouris, 2020). In cardiovascular diseases, this technique

has a key impact on evidence-based diagnostic and therapeutic pathways (von von von
Knobelsdorff-Brenkenhoff et al., 2017). A precise image segmentation step is required

to assess the structure and function of the cardiovascular system through CMRI data,

which enables clinicians to measure local and global cardiac parameters for more accurate
diagnosis, treatment, and surgical planning. Segmentation of the LV, RV, and LVM in CMRI
is challenging due to anatomical heterogeneity, image quality restrictions like similarity in
image intensities of the heart chambers, and motional aberrations at acquisition time. The
precision of segmentation directly influences the CVDs’ diagnosis. Manual segmentation of
cardiac images can be beneficial in some cases, while the diagnostic procedure cycles due
to the subjective, time-consuming, and expert-level nature of the process can be protracted
with no satisfying accuracy. Consequently, computer-aided diagnostic systems based on Al
can be adopted to automate the segmentation process and assist cardiologists in reducing
diagnostic errors, is a must in cardiac function analysis (Topol and Califf, 2007). There
exist many image processing and machine learning techniques that seek to analyze cardiac
regions automatically and accurately (Zhao et al., 2022), and a briefing of the relevant
literature is presented in Section [”I1. Despite recent advances, accurate cardiac segmentation
in CMRI remains challenging due to the distinctions in cardiac structures, variations in
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size and shape, heart axes orientation due to the disease, low-contrast boundaries of heart
regions, and the presence of motional artifacts. Due to the organ’s dynamic nature, these
obstacles prevent accurate segmentation.

The following is a brief summary of our most significant technological contributions to this
work:

1 A novel self-adaptive multi-attention (SMA) module is developed and introduced
for image representation in deep learning models, capturing key information
in multi-range dependencies simultaneously. It leverages the strengths of both
convolutional neural networks (CNN)-based and vision transformers (ViT)-based
attentions in the processing scale. The SMA module applies pixel-group
attention to input tensors using a hybrid attention mechanism that considers
local-global interdependencies. With the least number of trainable parameters,
this module automatically weighs and highlights local and global information
provided by CNN-based (Fu et al., 2019) and ViT-based (Lee et al., 2021)
attentions in an end-to-end and adaptive manner, thereby enhancing the
performance of the attention process. By learning multi-semantic, contextually
representative features in addition to efficient local representations, the SMA
module significantly improves the overall model’s representation capability.

2. CardSegNet model, a new U-shaped deep learning structure with a ResNet50
(He et al., 2016) backbone, is introduced and assessed for heart region
segmentation in CMRI analysis. The enhancement of visual features at multiple
scales in both the encoding and decoding paths of the model, facilitated by the
proposed SMA attention mechanism, is projected to enhance the local and global
modeling proficiencies of CardSegNet, leading to a more accurate and robust
performance.

3. A deep supervision learning (DSL) (Reis et al., 2021; Peng and Wang, 2021)
scheme based on multiple combined loss functions is proposed to optimize
the CardSegNet model. The model output is converged into the target through
multiple scale-dependent penalties and a mixed loss function superposition
technique to alleviate the imbalanced samples due to the high proportion of
non-desired regions in CMR images. It also leverages a curvature-based loss
function to direct the model toward the closed contour of the heart regions.

4, A new local CMRI dataset, is collected and will be accessible upon academic
requests by researchers in the field. The dataset, called Rajaie CMRI dataset,
was obtained from Tehran’s Shahid Rajaie Hospital, Iran between 2022 and
2023. This dataset represents a valuable resource for academic research, offering
scholars access to locally sourced data for further study and analysis.

Extensive experiments and ablation studies conducted on the ACDC 2017 (Zheng et al.,
2018), M&Ms-2 (Campello et al., 2021), and Rajaie CMRI datasets provide evidence of
the effectiveness of the proposed framework and technological contributions. CardSegNet,
with comparable results, outperforms other baselines and state-of-the-art deep learning
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(DL) methods in the CMRI data segmentation task. It demonstrates acceptable inference
performance and execution time.

The structure of the paper is organized as follows: The related works are reviewed in Sec.
”11; material and method are expressed in Sec. [ 111; the experimental study and results
are presented in Sec. 7 1V; the findings are discussed in Sec. "V; and finally the study is
concluded in Sec. VI.

2. Related work

The automatic analysis of cardiac data is influenced by the rapid development of machine
learning techniques and DL during the last few decades. Research groups from all over

the world constantly compete on challenging CMRI topics. To extract both local and

global parameters of the heart in CMRISs, the greatest technical challenge that developers
face is maintaining synchronicity across multiple range dependencies. The primary issue
with DL networks is that their training requires a large quantity of data. To address this
issue, several techniques, like image data augmentation, regularization methods, and transfer
learning, are proposed for the limited dataset analysis. The recent studies on the CMRI
segmentation problem based on dataset, model, cross-validation (CV), assessments, and
results are tabulated in Table 1. The details of the winners of the ACDC 2017 challenge and
the recently developed methods (Isensee et al., 2017; Khened et al., 2017; Zotti et al., 2018;
Bernard et al., 2018) are expressed in this table. The contributions of the listed studies are
summarized as follows: (I) U-Net (Graves et al., 2021), TransU-Net (Chen et al., 2021a), nn-
TransU-Net (Zhao et al., 2022), FCN (Khened et al., 2017), VAE (Painchaud et al., 2020),
U-Net++ (Le et al., 2022), Deeplabv3 (Chen et al., 2017), Seg-Net (Yan et al., 2022), and
GridNet (Zotti et al., 2018) are the most widely adopted DL architectures for medical image
segmentation. The U-shape model is a common deep learning architecture for medical
image segmentation among previous approaches examined for the CMRI segmentation
problem. (1) Some researchers have introduced new modules that prevent overfitting and/or
enable DL models to converge in a more efficient and precise manner (Wang et al., 2022).
(1) Introduced new or mixed loss functions and penalty terms are among the contributions
in this context (Shi et al., 2021; Zhou et al., 2021). (1VV) The attention mechanism is

viewed in two distinct manners: CNN-based and transformer-based, respectively (Niu et

al., 2021; Guo et al., 2022). Due to their inherent character as convolutional processes,
CNN attentions extract local and short-range dependency information from the image,
while vanilla transformers primarily extract global data to model long-range dependency.
Self-attention (Guo et al., 2022), co-attention and hierarchical mechanisms (Niu et al.,
2021), bilinear attention (Guo et al., 2022), attention-over-attention (Niu et al., 2021), and
coordinated attention processes (Chen et al., 2022) are frequently applied to improve the
attention mechanisms performance. According to (Zhao et al., 2022), self-attention modules
are developed to demonstrate the benefits of spatial and/or channel attention in enhancing
different image analysis tasks. As to segmentation and attention mechanisms for medical
images, SCA Net (Shan and Yan, 2021) is among the first models to incorporate spatial and
channel attentions.
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VIiT is extensively utilized by the vision community for computer vision problems (Khan

et al., 2022; Dosovitskiy et al., 2020). There exist several distinct categories of transformer-
based attention studies: (1) In the ViT (Dosovitskiy et al., 2020) and PVT (Wang et al., 2021)
models, information extraction is applied predominantly to capture long-range dependencies
for data modeling purposes. With the main disadvantage of not presenting local features
perfectly. (I1) The Swin (Liu et al., 2021) model is designed to extract local features by
applying the self-attention mechanism in transformers. (111) There exist a few additional ViT
structures, like Twins (Chu et al., 2021), ViL (Zhang et al., 2021), RegionViT (Chen et al.,
2021b), and shifted patch marker (Lee et al., 2022), that simultaneously acquire local and
global representations. A spatial feature pyramid transformer applied in image segmentation
is Tempera (Galazis et al., 2021) in this category. (1) The combination of local and

global attentions is applied in TransU-Net (Chen et al., 2021a) and its affiliations (like
nn-TransU-Net (Zhao et al., 2022) and Ds-TransU-Net (Lin et al., 2022)) for enhanced data
representation. Although in the aforementioned techniques, the TransU-Net model family
applies the proper attention combinations, to the best knowledge of the researchers here,

the effects of adaptive attention fusion techniques are not assessed or applied to the CMRI
data segmentation field. Motivated by attention fusion models, an attempt is made here

to combine CNN and transformer-based attention processes in a new, end-to-end attention
block. To extract multi-range dependencies through a new paradigm, the proposed attention
fusion module, SMA, adaptively combines CNN-based (spatial, channel) and ViT-based
attention mechanisms at different scales. To prevent overfitting and improve and generalize
the model segmentation performance, the DSL and multiple loss functions are applied here.

3. Material and method

This section introduces the dataset and pre-processing pipeline used in this work. The
SMA module and this newly proposed model are then presented and formulated. The
DSL scheme, the proposed weighted objective function, and the learning strategy are later
described.

3.1. Dataset

In this study, three different CMRI datasets were utilized to design and evaluate our
proposed method. The first dataset, ACDC 2017 (Zheng et al., 2018), is a publicly available
dataset of CMRI scans that was released as part of the Automated Cardiac Diagnosis
Challenge (ACDC) at the Medical Image Computing and Computer-Assisted Intervention
(MICCAI) conference in 2017. The second dataset, M&Ms-2 (Campello et al., 2021)
(Multi-Disease, Multi-View, and Multi-Center), is another publicly available dataset that
focuses on cardiac imaging, specifically MRI. It contains images from various imaging
centers and vendors. The third dataset is the Rajaie CMRI dataset, which is a local dataset
obtained from the Shahid Rajaie Research Centre at Tehran University of Medical Sciences
in Iran. This dataset was collected and annotated under the supervision of Dr. H. Pour
Aliakbar and Dr. F. Tabesh. A summary of the research datasets is provided in Table 2.
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3.2. CardSegNet

The proposed framework, CardSegNet, for CMRI data segmentation is shown in Fig. 1.

It is based on the U-Net model, with four stages of transformation in the contraction and
expansion paths. The CardSegNet comprises seven key components: (1) a pre-processing
block, (2) a pre-stage block, (3) encoder units, (4) adaptive attention modules, (5) decoder
units, (6) an output block, and (7) a post-processing block.

The workflow of CardSegNet commences with an image pre-processing block to standardize
the input CMRI data and conduct a quality control check to ensure the inclusion of the
entire heart region in the input image. This is followed by the extraction of powerful and
informative features using the pre-trained Resnet50 at the pre-stage block. Subsequently,
more efficient feature maps are learned through encoder units operating at various depths
and scales to enhance feature representation learning. The embedded adaptive attention
modules (i.e., SMA in decoder/encoder/output blocks, and multi-scale SMA (MSMA) in
skip-connections) enhance attention across different data dependency ranges by dynamically
adapting during training based on the specific characteristics of the data representation at
the given scale within the operating node. This dynamic adjustment of attention enables
the model to focus on relevant features, leading to improved performance in segmentation
tasks. The decoder units then up-sample and refine the abstracted representations learned
by the encoders. Utilizing attention-based skip connections, they efficiently preserve key
spatial information that may have been lost during the encoding and down-sampling
process. Subsequently, the output block generates a multi-channel output for the multiclass
segmentation task, where each channel corresponds to a heart region, and each pixel

in a channel represents the probability of belonging to the corresponding class. Finally,

the post-processing block refines and validates the segmentation results produced by the
output block, ensuring their accuracy and meaningfulness. To achieve this, a pipeline of
morphological transformations, boundary refinement, and label assignment operations is
performed.

The model integrates a joint loss function explicated in Section C to enhance overall
performance, employing an adaptive deep supervision learning scheme for the refinement of
lower-level network layers during the model’s optimization.

The details of the processing blocks and units are presented in the following:

3.2.1. Pre-processing block—First, all image slices are scaled to 128x128 pixels. To
avoid the intensity variation effects of different types of scanners, the voxel intensities of the
dataset samples are then normalized by applying the min-max normalization method, which
transforms the input slice Xx; into the X, according to Eq. (1):

v __ X = Min(x)
"7 Max(X) — Min(X)

@)

where Max(X,) and Min(X,) are the maximum and minimum of the i/ image, respectively.

Comput Med Imaging Graph. Author manuscript; available in PMC 2025 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Aghapanah et al.

Page 7

In the research datasets, there are some CMRI slices that do not intersect with the heart
region during the acquisition time. These slices may not provide a clear view of the heart,
especially those located far from the apex. For example, there are 61 slices without any
heart region in the ACDC CMRI dataset. To address this issue, the YOLOvV7 model (Wang
et al., 2023) is employed. The YOLOvV7 model is fine-tuned to determine whether a given
CMR scan includes at least one complete heart region. Initially, the CMR images and
segmentation masks for a given dataset are automatically annotated with bounding boxes to
indicate the location and extent of the regions of interest (ROIs). The largest bounding box
is then selected to indicate the presence of an ROI in the input image, aligning with YOLO’s
object detection requirements. Images without bounding box annotation are processed by the
YOLO network with black mask targets. As part of the proposed CardSegNet framework,
the YOLO model is trained and evaluated using the k-fold CV method. In each iteration

of the k-fold CV method, all training cardiac images and their detection annotations,
including CMR images with or without any heart region, are input to the YOLO network
for optimization. The CMR images identified by the YOLO model as containing any heart
region are subsequently forwarded to the segmentation sub-network for further analysis. In
cases where the YOLO model’s output is empty, indicating that the given image does not
contain any heart region, a zero mask (pure background) is utilized to represent the final
segmentation output predicted by the overall framework.

3.2.2. Pre-stage block—The pre-stage block aims to efficiently extract feature patterns
from the given image data. It incorporates a Resnet50 (He et al., 2016) backbone with
pre-trained weights on ImageNet data, enabling downscaling operations on CMR images to
obtain feature representations at various resolutions. The use of the pre-trained backbone in
the proposed deep structure is motivated by the rich and generalizable features learned

from the extensive ImageNet dataset. Leveraging the Resnet50 model as a backbone

can significantly enhance the performance of our deep model by transferring knowledge
and feature representations. This approach reduces the need for a large training sample

size, training from scratch with randomly initialized weights, and can lead to improved
convergence and generalization on specific tasks and datasets.

In this work, the backbone network is imported, and the last blocks of the pre-trained
model are trimmed (Kora et al., 2021). The sampling step is eliminated, and the dilated
convolutions are applied instead in the final two blocks of ResNet50, forming an output
feature map tensor with half the spatial size of the input image, where more details are
preserved without adding extra parameters.

3.2.3. Encoder units—Each encoder unit in the proposed CardSegNet comprises two
Conv2D-BN-ReLU layers with a 3x3 kernel block, followed by a 2x2 max pooling
operation and the subsequent SMA module. The inclusion of maximum pooling operations
serves to abstract data information and reduce model complexity. The incorporation of SMA
modules in the encoder units at different scales is driven by their advantageous ability

to dynamically adjust attention across various parts of the data representation, allowing

the model to focus on pertinent features. The adaptability of SMA modules contributes

to capturing multi-range dependencies and amplifying the model’s capability to represent
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intricate relationships within the input data, particularly beneficial during the encoding phase
of the deep structure.

3.2.4. Adaptive attention modules

3.24.1. SMA module.: In this study, the novel SMA module is introduced for adaptive
integration of both CNN-based and ViT-based attentions in our UNet-based structure,
offering a compelling approach to leverage the strengths of both attention mechanisms.
This combination allows for the exploitation of CNN’s robust feature extraction capabilities,
complemented by ViT’s proficiency in capturing long-range dependencies and global
context. The proposed hybrid attention approach has demonstrated potential to enhance
representation learning in our structure. The adaptability and tunability of this combined
approach at different processing scales highlight its flexibility and capacity to adjust
attention mechanisms based on specific characteristics and requirements at various levels of
data representation. This adaptability empowers the model to effectively capture both local
and global features, thereby enhancing its performance across diverse scales and contexts.

The proposed SMA block employs CNN-based attentions, including the channel attention
mechanism (CAM) and the position attention mechanism (PAM) (Fu et al., 2019), as

well as a patch-based VIiT attention sub-module, comprising the shift-patch tokenization
(SPT) and locality self-attention (LSA) (Lee et al., 2021), to serve as local, regional, and
global attention-based feature extractors. The SMA module adaptively uses the self-attention
and multi-head attention mechanisms, which enable the processing pipeline to refine the
resulting features for better modeling of multi-range data dependency. The SMA module
structure is shown in Fig. 2 and the output of SMA module, X,,, can be yielded through Eq.

(2) for the given input tensor X:

Xow = X + (aX o part + BXancam + ¥ Xan,vi7)

@

here «, B, and y are trainable parameters optimized in the learning phase of the overall
model.

The PAM and CAM attention processes are employed in our SMA module, as proposed

in (Fu et al., 2019; Rasti et al., 2022). The patch-based ViT attention sub-module adopts
SPT which allows for the enhancement of spatial information for visual markers and the
mitigation of the low receptive field issue in ViTs. The data processing steps for the SPT
module begin with a given image, which is then shifted in diagonal directions. These shifted
images are concatenated with the original image, and many image patches are extracted
from the concatenated tensor. The SPT and LSA are the two techniques applicable in
training a ViT on small datasets and effectively solve the lack of locality inductive bias
while enabling the ViT to learn from scratch even on small datasets (Lee et al., 2021). These
exist as generic and effective add-on modules, easily applicable in different ViTs. The SPT
transforms that generate patch features and visual tokens from the input are shown in Fig.

3. Applying the patch partition as a standard ViT, SPT embeds visual labels sequentially
through patch flattening, layer normalization, and linear projection.
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Assume the input image as x € R XWX C where H, W, and C are the image’s height,

width, and channel, respectively. The SPT module first partitions the input image into
non-overlapping patches and then, flattens them to produce a vector sequence p(x). This
process is expressed through Eg. (3):

©)

where x, is /-th flatten vector of input. The patch size and the patch count are p and
N = HW/p?, respectively.

To linearly project each vector into the hidden dimensional space, the transformer encoder E,
of the SPT is applied to generate the patch embedding through Eq. (4):

I'(x)=p(x) X E,

4)

2
where E, R(P*-€)x4 is the trainable linear projection of tokens (embedding matrix) in the
transformer model, and 4 is the third dimension of the encoder.

Ina ViT pipeline, the input images are first proportioned into patches and then linearly
projected into tokens (), which refer to the applied visual affine transformation on images.
Tokenization determines the visual tokens’ receptive fields, with no change in their count
after tokenization in the encoder of VIT; therefore, the receptive field cannot be altered
there. The tokenization of standard ViT is similar to the non-overlapping convolutional layer
operation with the same kernel and stride, expressed through Eqg. (5) (Lee et al., 2021):

Froken = rmmx-j + (k - J)

®)

where r,,., and .., are the tokenization and transformer encoder receptive field sizes, and
the convolutional layer stride and kernel size are j and k. In this case, r,.,,, = 1 because

the transformer encoder does not modify the receptive field, and r,,.., equals the kernel

and the VIT patch size. LSA is implemented because the efficacy of these tokens must be
enhanced to improve outcomes. LSA is a readily adaptable add-on module for different
ViTs, and as shown in Fig. 4, temperature scaling can be applied to control the output
distribution smoothness (Lee et al., 2021). LSA mainly improves the distribution of attention
scores by learning the attention parameter of the Softmax activation function. The self-
labeled relations are removed through the diagonal masks, which assure the suppression

of the diagonal components of the similarity matrix calculated by the query and the key.
This masking relatively increases attention scores between different markers, making the
attention score distribution clearer, thus increasing the local induction bias by LSA while the
localizing the VIT focus.
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The advantage of these self-attention sequences versus others is that they determine

which patches are likely to come together in an image. Transformers explicitly mimic
sequence interactions for structured prediction challenges through self-attention, the layers
of which update sequence components by applying the global input sequence data. This is
accomplished by creating three learnable weight matrices for the Queries (wQ e RIX dq),
Keys (WK e R9X %), and Values (WY e R4* ") where dq = dk. The input sequence X is
projected onto these weight matrices through Eq. (6) (Lee et al., 2021):

T
7= soflmax(Q\/I; )

(6)

where Q = XWQ, K =XWK and v = xwV. z e R" X% is the output of the self-attention
layer. To obtain query, key, and value, general ViTs apply a learnable linear

projection to each token in their self-attention process to generate the similarity matrix,

wY e RN+ DXMN+1) \where the semantic relation between tokens is shown by the dot
product operation of query and key. R’s diagonal and off-diagonal components express self-
and inter-token relations in Eq. (7), respectively:

R(x) = )cEq(xE,()2

O

where, E, e R4 4 E e R4 dand E, e R 9 are the learnable linear projections for
query, value, and key. The query and key dimensions are 4, and d,. The attention score
matrix is obtained after dividing R into the square root of the key dimension and applying
the Softmax function. Self-attention is computed based on the dot product of the attention
score matrix and its value through Eq. (8):

SA(x) = Softmax(R/\Jd)xE,
®

As observed in Fig. 2, a SMA block loss term is computed based on the difference between
each attention process’s rescaled output and the given ground truth. In each path, the error
value of the module predicted mask is computed subject to the final target (7) through Eqg.

(9):
LOSSSMA:”a X Oun‘,PAM_/T ||+||ﬂ X Our,cam —,T ||+||7 X Ouvir —/T ||

©

where O,,, . = Conv2D(1 x 1, 1)(X,,.) and T is the ground truth tensor, reshaped to match the
dimensions of the block’s input. The coefficients of «, p and y of attention in each layer
are subjected to a positive condition. The So ftplus(x) = log(e* + 1) function is applied to
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convert these coefficients into positive values. The local losses of the multi-attention block
are utilized in the optimization process to maintain the sub-attention output portions close to
the designated regions on the image mask target.

3.24.2. MSMA module.: This block is designed to efficiently perform a multiscale
attention-oriented feature learning and fusion process. Its mechanism empowers the
model to enhance feature representation by integrating and emphasizing features derived
from diverse levels of semantic representation. It leverages feature maps procured from
various encoders and/or decoders with disparate resolutions, facilitating the identification
of essential image patterns across both short and long dependencies. As shown in Fig.

5, different inputs, which may be encoder- or decoder-based and undergo a dimension
reduction step in accordance with the processing scale, contribute to the integration of
multi-range dependency information in the decoders. The cross-attention method generates
the outcome of the applied attention mechanism (based on SMA), combines it with the
residual signal, and passes it to the decoder block.

3.2.5. Decoder units—In deep learning models, the primary utilization of decoder units
is for the restoration of spatial information. The generation of output by reconstructing
information from encoded representations, a key role in segmentation task, is facilitated by
the process in decoder blocks. In the structure proposed in this study, an attention-based
decoder unit is employed at different scales, enabling the network to obtain longer range
dependencies on the smallest resolution of activation maps, leading to improved results with
a minimal increase in model complexity. As displayed in Fig. 1, CardSegNet comprises
four decoder units, each composed of a Conv2DTranspose layer with a 2x2 transpose
convolution, three Conv2D blocks with 3x3 kernel sizes, Batch Normalization (BN), and
ReLU layers, followed by the SMA block for feature enhancement. The decoding of the
encoded image data and the location of features, while maintaining the spatial resolution

of the input, are tasks performed by the decoder units. The preservation and enhancement
of spatial information, lost in the contracting path, is aided by the MSMA-based skip
connections from the contracting path, thereby assisting the decoder layers in accurately
locating the features.

3.2.6. Output block—A multi-channel output for the multiclass segmentation task is
generated by the model output block, with each channel corresponding to a heart region
in the CMRI data. Each pixel in a channel represents the probability of belonging to the
corresponding class. This is achieved using a Conv2D with a 1x1 kernel size, the SMA
block, and a Softmax layer with four nodes.

3.2.7. Post-processing block—Post-processing in deep learning models is used for
refining and interpreting raw predictions, enhancing model outputs, and ensuring they
align with specific task requirements or application objectives. Fig. 6 illustrates the post-
processing procedures used in this study.

The first step leverages the image’s prior information to further improve the segmentation
results through the following rules and constraints: (1) RV, LV, and LVUMyo are assumed
to have non-rigid solid forms. So, pixels originating from the exterior region cannot be
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positioned within the layers. (2) The LV and RV are kept separated; any pixel gap between
them should be filled by Myo pixels. (3) If the RV is present, it is connected to the

Myo region. If Myo region does not exist for given predicted mask, the RV should be
removed. (4) If the Myo exists, it should be directly connected to the LV region. If LV
region does not exist, Myo region should be removed. (5) The edges of each region are
assumed to be smooth. So, a 5x5 Gaussian kernel followed by an adaptive threshold-based
image binarization is used. In the second step, eight additional sets of neighboring pixels
are generated for each pixel, inspired from the pixel connectivity loss function (Yang et al.,
2022b; Yang and Farsiu, 2023). This concept is operationalized by establishing nine distinct
regions, as depicted in Fig. 7. Following this, a post-refinement step based on mathematical
transformations is utilized to improve the mask’s quality and yield the final refined mask.
The pixel groups R, in Fig. 7 can contribute to mask refinement through various methods.
After experimenting with different techniques on train subsets, Eq. (10) was derived using a
trial-and-error approach, which resulted in improved results for our analysis.

P(i, j) = mode{ mode R, j)}
k=19
(10)

where P(i, j) represents the approximate value of the pixel P(i, j), the “mode” is the
statistical function that mathematically returns the value with the highest frequency in a
given set of data, and R,(i, j) indicates the k" neighboring region as illustrated in Fig. 7.

3.3. Learning schema: an empirical prospective

In this paper, an adaptive deep supervision learning scheme is integrated into the
optimization method by conducting intermediate supervision of local errors at various stages
of the model. The DSL scheme aims to address the issue of gradient vanishing and to
effectively facilitate the flow of information through the model during training. Through the
DSL scheme, the network is prone to acquire more meaningful and representative features
at various levels, resulting in enhanced performance in our multi-class image segmentation
task. This is achieved in this work by introducing auxiliary output to the intermediate
encoder and decoder units of the network.

Each unit is supervised through the inclusion of a compound loss function, which calculates
a weighted sum of five distinct losses where the combination coefficients are adjusted
through an empirical method. MSE, L1-L2, dSSIM, loU and Curvature losses are considered
for this purpose as they are subsequently introduced. MSE is used for pixel-wise precision
and overall reconstruction improvement, L1-L2 regularization helps prevent overfitting and
enhances the model’s generalization, dSSIM preserves fine details and textures for global
and local perceptual quality, loU encourages the model to focus more accurately on the
location and size of objects in the image by penalizing false positives and false negatives,
and Curvature loss enhances segmentation shape accuracy by encouraging smoother and less
abrupt boundaries.
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Furthermore, to provide additional supervision for the performance of the SMA-based
attention modules at different scales, Losssy4 (according to Eq. (9)) is incorporated into
the overall loss function during the optimization process. This approach promotes the
acquisition of more representative features yielded by better attention processes at multiple
levels of the network, thereby enhancing the model’s performance.

The loss functions are defined as follows:

1 MSE Loss: The mean square error (MSE) is used to construct the loss function
between P and T in Eq. (11), where P and T are the predicted mask and ground
truth images, respectively. It is recommended to apply MSE to detect differences
at the image pixel level.

1
losSysg = — ~ E (P — T,)2
i=1:N

(11

2. L1-L2 Regularization Loss: The regularization loss is expressed through Eq. (12)
where a term is added to the loss function and is proportional to the absolute
value of the magnitude of the weights or parameters of the model to avoid
overfitting.

108 58,0 = /11' El P, |wi| + Az' El P, w?
I=1: I =1:
(12)

here, the hyperparameters 4, and 4, control the strengths of L1 (Lasso) and L2
(Ridge) regularization terms, respectively, and are both set to 0.01. P represents
the number of trainable weights in our model.

3. dSSIM Loss: The structural dissimilarity metric (dSSIM) loss function is
represented by the following equation, which compares the structural differences
between the P and T. The ¢, and ¢, are applied as constant variables and are set to
2.55 and 7.65 empirically, respectively (Graves et al., 2021).

Quppr + c)2opor + )
3 2 2 3
Hp + Hr + Cl)(O'P + or + Cs)

lossgssin =1 — (

(13)

4, loU Loss: The intersection over union (I0U) loss is defined according to Eq.
(14). The loU measures the similarity between a ground truth image and a
prediction image by calculating the pixel count in the intersection set divided by
the pixel count in the union set excluding the intersection region (Zhou et al.,
2019):

Ap U Ap P x T
Ap N AT—Z/‘:I:NP' + ZI:I:NTI' - P xT

lossy =
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(14)

where A, is the area of all pixels of the predicted mask and A is the area of all
pixels of the ground truth.

5. Curvature Loss: In a general context, curvature loss is a loss function used
to quantify the degree of deviation from straightness or flatness in a curve or
surface, as indicated by Eq. (15) (Xing et al., 2022).

(1 + YU, + 200U, + (1 + UU,,
3
2(1 + U + U2

(15)

where U is a two-dimensional image, while U, and U, are the derivatives along
the x- and y-axes, respectively. For ease of calculation, H is estimated as H,
an estimation of the curvature function, and it is calculated through the Euler
theorem and Eqg. (16) (Xing et al., 2022).

| 1 =51
H = _E_S 16 -5|® U
1 =51

(16)

where ® is the convolution operation and U is a 2D image. Curvature loss is then
expressed through Eq. (17):

PT,
108Scyr = 2i=1:Nabs(T’€' " e)

an

where N is the total pixel count, P,= P® H and T, = T ® H are the curvature
estimation of the predicted image and the ground truth, respectively, and ¢ is a
minor constant applied to stabilize the computation. This function improves the
contour detection accuracy when the edge value in the predicted image increases.

6. The Proposed Weighted Objective Function: The proposed overall loss function
which incorporates the adaptive DSL method is calculated through Eqg. (18):

——
Lossppa =V L + Z . Losssaa.i
=1:

(18)

where V is the loss coefficient vector and is calculated according to a
normalization method in which, at the beginning of model optimization, all
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losses should contribute equally to the overall loss. The loss component vector,
denoted as f, comprises the following components, respectively: MSE (L)),
Regularization (L,), dSSIM (L;), loU (L,), and Curvature (L;) losses. The last
term in the equation, LosSsy,j is the local attention loss of the " SMA module
in the model.

The error analysis conducted across diverse losses at the initial epoch in the ACDC

dataset training process during the first iteration of the k-fold CV method resulted in

the incorporation of normalized coefficients: v, = 0.32, v,=0.08, v; =0.34, v, =0.07, and
vs = 0.19. The loss coefficients are consistently used throughout the model implementations
in this study.

4. Experimental study and results

4.1. Evaluation metrics

The following evaluation measures are utilized to calculate the segmentation performance of
different methods in this study.

The dice similarity coefficient (DSC) is employed to assess the similarity between CMR
images and ground truths, and it can be expressed as shown in Eq. (19), where the
segmentation result and ground truth are denoted by P and T, respectively (Li et al., 2022a;
Zou et al., 2004).

2|P n T|

DSC = —+—=y
[Pl + I7]

(19)

In this equation, a value of 0 indicates zero overlap between the ground truth and the derived
segmentation result, while a value of 1 indicates complete overlap between the ground truth
and segmentation result in both the foreground and background.

The pixel accuracy, utilized for pixel-wise classification performance, is defined through Eqg.
(20):

TP + TN
TP + TN + FP + FN

Pixel Accuracy =

(20)

here, the TP, FP, TN, and FN are the true positive and false positive pixels and the true
negative and false negative pixel counts, respectively. It is the true positive pixels percentage
of all pixels in an image, providing an overall assessment of prediction.

The Precision metric is also considered to measure the predicted positive pixels’ accuracy
and Recall metric measures positive predictions’ completeness, defined in Eq. (21) and Eq.
(22), respectively.
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Percision = — TP
erczszon—iTP T EP
(21)
TP
Recall = 7p—FN
22)

4.2. Validation method

In this study, the evaluation of DL models’ performance is conducted using an unbiased
k-fold CV method. This method entails dividing the dataset into K equal parts, or folds,

and training the model K times, with each iteration utilizing a different fold as the test set
and the remaining folds as the training set. Data partitioning is performed at the case level,
and the final performance metrics are subsequently calculated by averaging the results at
the test slice level. This technique is particularly useful for small datasets where the risk

of overfitting is high, as it allows for a more reliable estimate of the model’s performance.
Additionally, by using all the data for training and testing, this method provides an unbiased
assessment of the DL model’s ability to generalize to unseen data. The 10-fold CV method
is selected for reporting the results of the baseline and ablation studies. The newly proposed
method is also compared to those of other state-of-the-art techniques where the hold out
(H.O), or 5-fold CV methods are adopted.

4.3. Study design

1. Baseline Study: The segmentation performance of the proposed model is
compared with that of the common image segmentation CNN models, like U-Net
(Graves et al., 2021), Deeplabv3+ (Chen et al., 2017), U-Net++ (Le et al., 2022),
nnU-Net (Isensee et al., 2021), and CE-Net (Gu et al., 2019). All the models are
trained by applying the same configuration to assure fairness in the evaluation
stages. On the ACDC 2017 test dataset, the segmentation sample results of
the baseline and CardSegNet methods are shown in Fig. 8. The first column
shows input images that were chosen randomly from the test dataset. The second
column is the corresponding image ground truths, in which the red, green, and
blue masks are the RV, the myocardium, and the LV, respectively. The U-Net,
U-Net++, DeeplabV3, nnU-Net, and CE-net models’ performance is compared
to our proposed method in particular.

2. State-of-the-art Analysis: The state-of-the-art CMRI segmentation techniques
and the winners of the ACDC 2017 and M&M-2 challenges are compared with
the proposed model based on dice, recall, f1-score, and precision in this section.
The evaluation methods and preprocessing pipelines used in the original studies
were meticulously taken into account for a fair comparison. The segmentation
results for the ACDC 2017 and M&M-2 datasets are compared in Table 4.
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3. Ablation Study: This investigation is conducted to gain a greater understanding
of the impact of the model components for the one-training fold on the 10-fold
CV. In the initial phase, the impact of CNN’s backbone is evaluated.

The effect of the attention fusion-mechanism is then evaluated further. In this study,
attention options include PAM, CAM, and ViT modules, as well as none. The impact

of the proposed loss function is subsequently investigated. During training, the same
dataset index is applied to each experiment. Table 5 presents the cross-validated results

of the ablation study. Moreover, to evaluate the impact of the YOLO component on the
overall segmentation outcomes, an additional assessment was carried out on the CardSegNet
framework’s performance using the ACDC dataset. This evaluation involved excluding the
YOLO component from the pre-processing block. The segmentation results revealed Dice
scores of 93.4 %, 93.7 %, and 93.2 % for LV, RV, and Myo, respectively. These findings
indicate that the utilization of the YOLO component enhances the overall dice score by
approximately 1.9 % on average on the ACDC dataset.

1 SMA Fusion Coefficients Analysis: In SMA attention modules, the fusion
coefficients of «, B, and y for the model’s layers are adaptively optimized during
the train phase. Fig. 10 depicts the trend of the coefficient values changing
throughout the optimization process. In the figure, the adaptive coefficients for
the PAM (i.e., ), CAM (i.e., p), and ViT (i.e., y) attention processes are marked
in red, green, and blue, respectively.

In Fig. 11, the optimized coefficients for each CardSegNet processing block are
further depicted.

2. Complementary Evaluation: To assess the performance of CardSegNet on multi-
center and multi-scanner CMRI datasets with varying scanning protocols, the
Rajaie CMRI dataset, in addition to the M&M-2 dataset, was employed. The
Rajaie CMRI dataset includes images from all phases of the cardiac cycle. In
this experimental evaluation, the model was retrained from scratch and assessed
using the 10-fold cross-validation method, ensuring the reliability of the model’s
performance. The outcomes of this experiment are presented in Table 6.

4.4. Training Detail

1 Implementation Detail: The experiments are performed on a system with an
Intel Core i7@2.6 GHz, an NVIDIA GeForce GTX 1080Ti GPU, and 32 GB of
RAM. The software environment specifications are Keras 3.7.2, CUDA 10.1, and
CUDNN 7.6.5.

2. Training Protocol: The Adam optimizer with an initial learning rate of 1e-03
and a batch size of 4 is used as the optimization algorithm for training deep
learning models (Kingma and Ba, 2014). A learning rate adjustment strategy is

epoch
Max Epoch + 1

is the current Epoch, Max Epoch is the maximum epoch count equal to 300
epochs, and Power= 0.5 controls the rate of decay. Furthermore, in the training
phase, label smoothing and dropout regularization techniques are used. In each

. Power
also considered based on LR,,.., = LR, X (1 — ) where epoch
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processing layer (in both the encoder and decoder blocks for the CardSegNet
model), to prevent overfitting, a P,.,, value of 0.2 and label smoothing with a
value of ¢, = 0.1 are applied.

5. Discussion

5.1. Qualitative assessment

The segmentation results of three random samples for the proposed CardSegNet on the
ACDC 2017 test dataset, along with a comparison to the five high-performance baseline
networks, are shown in Fig. 8. The competing models, U-Net (third column from the left)
and U-Net++ (fourth column from the left), lack myocardium mask continuity. The third
row shows our method detects the boundary of RV and LV better than nnU-Net, CE-Net,
and DeeplabV3. As a result, CardSegNet outperforms nnU-Net, CE-Net, and DeeplabV3.
The visual performance of the proposed model is further assessed by evaluating random
sample images from M&M-2 and Rajaie CMRI datasets in Fig. 9. The qualitative analysis
demonstrates the model’s adaptability to various scanner vendors and scanning protocols.
Moreover, Fig. 10 shows that the ViT coefficients in SMA modules are generally increased
during the training, except for Decoder 4, which means that while the CNN-based attention
mechanisms have their impact on information fusion in the model blocks, the patch-based
VIT received greater attention than PAM and CAM in several blocks. As shown in the figure,
B increases in the latent space, indicating that CAM extracts more efficient features from
the MSMA 3, MSMA 4, and Decoder 4 blocks. The CardSegNet’s Encoder 1, Encoder 2,
Decoder 1, and Decoder 2 have higher y values than the deeper levels. Because the applied
VIT attention is based on shifted patch tokenization, it can extract regional and global
features more efficiently than the PAM process, resulting in a decrease in a impact. Fig. 10
indicates that there exists no linear relation among the coeffects as the index of the layer
increases. As observed in Fig. 11, o (PAM), g (CAM), and y (ViT) play different functions
at processing scales by receiving appropriate attention coefficient values to improve the
model’s capacity for better representation.

5.2. Quantitative evaluation

The CardSegNet model undergoes a quantitative comparison with several baseline models,
and Table 3 presents the comparison results. CardSegNet attains the top scores, with Dice
at 94.6 %, Recall at 95.6 %, Accuracy at 95.2 %, and Precision at 94.7 %. The statistical
significance of the DSC performance improvement for the proposed CardSegNet model,

in comparison to Deeplabv3 and nnU-Net (the best performing baselines in terms of DSC
metric), was assessed using the Wilcoxon signed-rank test. The results showed that all
improvements in DSC for CardSegNet, compared to the other methods, are statistically
significant (p<0.05) for LV, Myo, RV, and average segmentation performance. For a reliable
comparison based on the state-of-the-art study, the Dice results are tabulated in Table 4. The
CardSegNet performance is promising against the recent SOTA. Shi et al.’s results (Shi et
al., 2021) on ACDC 2017 (Dice score: 97.2 % with H.O. 80 %) slightly exceed the average
CardSegNet dice performance by less than 1 %. This difference is due to the fact that Shi’s
model evaluation method cannot be reproduced precisely because the train and test data
indices are not explicitly presented by the authors. In CardSegNet optimization using the
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five repetitions of the H.O. (80 %) method, there is a best test dice value of 98.1 %, which is
higher than Shi’s model performance.

CardSegNet leverages PAM, CAM, and VIT attention, similar to TransU-Net (Chen et

al., 2021a). The transformer encoder in TransU-Net consists of multi-head self-attention
and multi-layer perceptron blocks. In this newly proposed SMA module, in addition

to applying the above attentions, the pure ViT is modified into patched-based ViT. In
addition, the coefficients of PAM, CAM, and VIiT attentions are optimized in an adaptive
manner to facilitate and control information fusion through SMA. As observed in Table 4,
CardSegNet’s Ave-Dice performance is greater than that of nn-TransU-Net and TransU-Net
by more than 1.6 % and 5.5 %, respectively.

The quantitative analysis for the oblation study, according to Table 5, indicates the direct
effect of the proposed combined loss function, attention module, pre-train backbone,

and post-processing step on segmentation results. The experimental findings support the
effectiveness of the proposed hybrid CNN-Transformer-based attention module and model.
The SMA and CardSegNet enable adaptively capturing both local and global contextual
information in the given CMR image, which is advantageous for more precise segmentation.
Short-to-middle-range and middle-to-long-range dependency modeling in an image would
be effectively handled by the CNN- and ViT-based components, respectively. In order

to significantly highlight local and global structures for more accurate segmentation
performance, the o, B, and y values are adaptively optimized at each processing block

and scale to capture cross-pixel, cross-channel, and cross-patch dependencies. During the
optimization process for a given SMA block, the positional attention sub-module adaptively
aggregates features at each position through a weighted sum of the features at all positions.
Simultaneously, the channel attention sub-module highlights interdependent channel maps
by selectively combining similar features across all channel maps, recognizing that similar
features are relevant regardless of their distances. Additionally, the patch-based ViT sub-
module facilitates attention by explicitly learning visual representations through cross-patch
information interactions. This approach to processing feature patches enables the analysis
of visual feature dependencies over short and long distances, resulting in the generation of
a global receptive field. Consequently, the model can focus on different parts of the input
tensor and comprehend their interrelationships, which is particularly significant for image
analysis tasks. This capability is important for medical images since they often contain
highly complicated structures.

The performance outcomes presented in Table 6 provide evidence of the adaptability of

the proposed CardSegNet framework on the M&M-2 and Rajaie CMRI datasets, which
were obtained using different CMR scanner vendors and scanning protocols. The model
produced acceptable results on both. These findings suggest that the CardSegNet has the
potential to be a versatile tool for analyzing cardiac MRI data from various sources. Based
on the findings presented in Table 5, the incorporation of image post-processing results in an
approximate 0.7 % enhancement in the overall segmentation performance.

The proposed model has limitations, mainly concerning its training time complexity, despite
achieving acceptable testing times of less than 0.9 and 6.5 seconds per slice frame tested
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on the GPU and CPU, respectively. Although CardSegNet has attempted to minimize the
number of module parameters, the DL network built on the Transformer+CNN structure has
relatively high parameters overall. The parameter reduction consideration still has room for
improvement.

In the present work, we employed the image of the heart in the direction of the short-axis
(SA). Experiments show that the accuracy of heart segmentation will be enhanced by
incorporating other long-axes (LA), such as 2ch, 3ch, and 4ch, to the input of the model,
further feeding the SA images to more efficiently handle the complex shapes, variable
intensity, and unclear boundaries of the cardiac structures. By transferring information from
one view to another or by combining them in a spatio-temporal framework, our model will
be able to take advantage of the complementary information from both views and reduce

the ambiguity in the segmentation, and there is room for further improvement. In future
research, we will address these issues to develop the model and make it more efficient in real
clinical situations.

6. Conclusion

In this paper, a hybrid deep learning framework was presented for CMRI data segmentation.
A novel adaptive attention fusion module was designed and applied in the proposed
CardSegNet to assist the overall model in efficiently extracting multi-range dependencies
by leveraging the capabilities of pixel-, channel-, and patch-based ViT attentions. In order to
improve CMRI segmentation, a deep supervision method and a joint loss function were also
incorporated into the optimization of the proposed model. Based on an end-to-end training
procedure, this model employs all the mechanisms in an adaptive fashion design.

To verify the effectiveness of our proposed method, this model was trained and evaluated

on two publicly available datasets ACDC 2017, M&Ms-2, and also on the local Rajaie
CMRI dataset. The average Dice scores for LV, Myocardium, and RV segmentation using
CardSegNet on ACDC 2017 were 95.2 %, 95.5 %, and 95.3 %, respectively. These results
were 95.3 %, 96.1 %, and 94.8 % for LV, Myocardium, and RV segmentation on M&Ms-2.
For the Rajaie CMRI datasets, CardSegNet obtained average Dice scores of 95.3 % and
96.1 % for LV and Myocardium segmentation in both end-diastolic and end-systolic frames,
respectively.

CardSegNet is advantageous to cardiologists for rapid and reliable automated segmentation
of the heart region in cardiac MRI data analysis in order to measure cardiac parameters and
diagnose anomalies.
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Fig. 1.
The proposed CardSegNet architecture for CMRI segmentation.
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The architecture of shift-patch tokenization (SPT): It applies spatial transformers and patch
partitioning to create patch features and convert them into visual tokens.
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The post-processing block consists of two steps for inter- and intra-region refinement. First,
the input mask tensor undergoes modifications based on the anatomical prior information

of LV, RV, and Mayo regions. This is achieved by adhering to the relationships among the
region masks, resulting in a refined mask tensor referred to as the Refined Mask. Second, the
mask obtained in step (1) is further refined by exploring and taking into account the intra-
region neighborhood based on pixel connectivity operations. This leads to the generation of

the final output mask.
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Fig. 7.

This figure demonstrates the pixel neighborhoods definition by the pixel connectivity
function. It defines nine distinct and directional neighborhoods for a candidate mask pixel.
The yellow-labeled pixel neighborhoods are denoted as R,(, j).
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ground truth.
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Training trends for the SMA modules coefficients of a, g and y in different processing
blocks in the CardSegNet model.
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Table 6

Assessment of CardSegNet Framework Segmentation Dice Performance on M&M-2 and Local Datasets Using
10-Fold Cross-Validation.

Dataset Label Cardiac Slices Mean Overall Dataset
Base Middle  Apex
M&M-2 Lv 95.1+0.3 96.5+0.5 94.3+0.9 95.3+0.6 95.4+0.6

Myo  954%0.7 97.8:08 95111 96.1+0.8
RV 94604 95.9:0.4 03.9:0.8 94.8+0.5

Rajaie CMRI Dataset LV~ 954407 96.8+0.6 94.6:09 953+0.7 94507
Myo  931%0.7 94.4+05 02408 96.1+0.6

*
Although images of the long axis were also available in our local database, only images of the short axis were utilized for the comparison purpose.
"Base," "Middle," and "Apex" labels were assigned to the top 30 %, subsequent 40 %, and remaining 30 % of CMR slices, respectively.
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