Skip to main content
. Author manuscript; available in PMC: 2025 Jan 1.
Published in final edited form as: Comput Med Imaging Graph. 2024 Apr 16;115:102382. doi: 10.1016/j.compmedimag.2024.102382

Table 1.

Review of the Last Segmentation Methodologies and Winners of the ACDC 2017 Challenge.

Reference Dataset
Model
CV Method Reported Result (%)* (LVC, RVC, LVM, Mean)
Dataset Name Sample Size (trains/tests) Class Size Pre processing Data Augment. Crop-Resize Localizer Base Model Attention mechanism Additional data Loss Function (s) Ex. Classifier

Isensee et al. 2017 (Isensee et al., 2017) ACDC-17 100/50 4 - - - 3D U-Net + 2D U-Net - - C+D - 5-fold 94.5, 90.8, 90.5, 91.9
Khened et al. 2017 (Khened et al., 2017) ACDC-17 100/50 4 - Densely FCN - D RF H.O (90 %) 94.1, 90.7, 89.4, 91.3
Zotti et al. 2018 (Zotti et al., 2018) ACDC-17 100/50 4 - - - - Grid net - - C - H.O (75 %) 93.8, 91.0, 89.4, 91.4
Painchaud et al. 2020 (Painchaud et al., 2020) ACDC-17 100/50 4 - - - VAE - KL loss - 10-fold 93.6, 90.9, 88.9, 91.1
Shi et al. 2021 (Shi et al., 2021) ACDC-17
LV-09
RV-12
100 /50
130/20
80/10
4
4
4
- - MIFNet PAM - D - 4-fold Mean: 97.2
Mean: 96.1
Mean: 89.6
Zhou et al. 2021 (Zhou et al., 2021) ACDC-17 100/50 4 - - nnFormer Multi-head self-attention - MSE - H.O (70 %) Mean: 92.1
Chen et al. 2022 (Chen et al., 2022) ACDC-17
2018
ASC
100/50
50
4
5
- - - Multiresolution
Aggregation
Transformer U-Net
Coordinate attention (CA) - C+D - H.O (70 %) Mean: 92.0
Mean: 92.1
Galazis et al. 2021 (Galazis et al., 2021) ACDC-17 100/50 4 - Tempera: Spatial
Transformer Feature
Pyramid
PAM D - H.O (90 %) Mean: 92.1
Fu et al. 2022 (Fu et al., 2022) ACDC-17
Synapse
100/50
50
4
8
- - TF-U-Net - - C - H.O (80 %) Mean: 91.7
Mean: 85.5
D. Li et al. 2022 (Li et al., 2022a) ACDC-17 100/50 4 - U-Net PAM
CAM
- C+D - H.O (80 %) RV: 89.1
Y. Li et al. 2022 (Li et al., 2022b) ACDC-17 100/50 4 - - - ViT Decoder Window
Attention
Unsampled
- MSE - H.O (80 %) Mean: 92.1
Galea et al. 2021 (Galea et al., 2021) 2018
ASC
50 5 - - U-Net + DeepLabV3+ - - MSE - H.O (80 %) Mean: 92.1
Garcia-Cabrera et al. 2023 (Garcia-Cabrera et al., 2023) ACDC-17 100/50 4 - - - U-Net (ImageNet) - - MSE - H.O (80 %) Mean:96.6
Płotka et al. 2023 (Grzeszczyk et al., 2023) ACDC-17 100/50 4 - - - - Swin Transformer/U-Net Shifted-window multi-head - C+D - 5-fold Mean:87.1
Liu et al. 2023 (Liu et al., 2023) ACDC-17 100/50 4 - - - - Successive subspace learning - - MSE - 5-fold Mean:95.0
J.M.Harana et al. 2021 (Mariscal-Harana et al., 2021) ACDC-17
M&Ms-2
Local (NHS)
100/50
360 (321 MRI)
4228
4 - - - 2D U-Net - - C+D - 5-fold 87.8, 81.7, 79.1, 82.9
83.8, 80.7, 82.2, 82.2
90.1, 82.1, 78.9, 83.7
A.K. Yasmina et al. 2023 (Al Khalil et al., 2023) M&Ms-2 360 (200 annotated) 4 - - - Conditional GAN Post processing - D+H - 5-fold 95.9, 90.7, 93.8, 93.4
C. Galazis et al. 2023 (Galazis et al., 2021) M&Ms-2 360 (200 annotated) 4 Tempera Post processing - F+D - H.O (93 %) Mean: 83.6
Gao et al. 2022 (Gao and Zhuang, 2022) M&MS-2 360 (200 annotated) 4 - U-Net+ ViT Self-attention - C+D - H.O (80 %) Mean: 88.1
Habijan et al. 2021 (Habijan et al., 2021) MM-WHS 100/40 7 - - VAE and FM-Pre- ResNet - - D, L2, KL - 10-fold Mean: 89.5
Yang et al. 2022 (Yang et al., 2022a) Synapse 50 8 - - - Encoder-Decoder Fuzzy - - - H.O (80 %) Mean: 85.5
Pereira et al. 2020 (Pereira et al., 2020) MICCAI 2019 1120 +56 4 - - - U-Net - - MAE - 5-fold Mean: 94.2

ACDC-17: Automated Cardiac Diagnosis Challenge dataset, ACC: Accuracy, C: Cross-Entropy Loss, CAM: Channel Attention Module, D: Dice Loss, H: Hausdorff Distance, H.O: Hold Out, KL: Kullback-Leibler Divergence, L2: L2 norm, LV: Left Ventricle, LV-09: Sunnybrook Cardiac dataset, Myo: Myocardium, PAM: Position Attention Module, RF: Random Forest, ROI: Region of Interest, RV: Right Ventricle, RV-12: MICCAI 2012 Right Ventricle Segmentation Challenge dataset, VAE: Variational Autoencoder.

*

The results are reported based on CMRI analyses like LV, RV, Myo, and Overall mean, respectively. Here, class size indicates the segmented heart regions count plus the background.