Table 1.
Reference | Dataset |
Model |
CV Method | Reported Result (%)* (LVC, RVC, LVM, Mean) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset Name | Sample Size (trains/tests) | Class Size | Pre processing | Data Augment. | Crop-Resize | Localizer | Base Model | Attention mechanism | Additional data | Loss Function (s) | Ex. Classifier | ||||||
| |||||||||||||||||
Isensee et al. 2017 (Isensee et al., 2017) | ACDC-17 | 100/50 | 4 | - | ✓ | - | - | 3D U-Net + 2D U-Net | - | - | C+D | - | 5-fold | 94.5, 90.8, 90.5, 91.9 | |||
Khened et al. 2017 (Khened et al., 2017) | ACDC-17 | 100/50 | 4 | ✓ | ✓ | - | ✓ | Densely FCN | - | ✓ | D | RF | H.O (90 %) | 94.1, 90.7, 89.4, 91.3 | |||
Zotti et al. 2018 (Zotti et al., 2018) | ACDC-17 | 100/50 | 4 | - | - | - | - | Grid net | - | - | C | - | H.O (75 %) | 93.8, 91.0, 89.4, 91.4 | |||
Painchaud et al. 2020 (Painchaud et al., 2020) | ACDC-17 | 100/50 | 4 | - | ✓ | - | - | VAE | - | ✓ | KL loss | - | 10-fold | 93.6, 90.9, 88.9, 91.1 | |||
Shi et al. 2021 (Shi et al., 2021) | ACDC-17 LV-09 RV-12 |
100 /50 130/20 80/10 |
4 4 4 |
✓ | - | - | ✓ | MIFNet | PAM | - | D | - | 4-fold | Mean: 97.2 Mean: 96.1 Mean: 89.6 |
|||
Zhou et al. 2021 (Zhou et al., 2021) | ACDC-17 | 100/50 | 4 | ✓ | ✓ | - | - | nnFormer | Multi-head self-attention | - | MSE | - | H.O (70 %) | Mean: 92.1 | |||
Chen et al. 2022 (Chen et al., 2022) | ACDC-17 2018 ASC |
100/50 50 |
4 5 |
✓ | - | - | - | Multiresolution Aggregation Transformer U-Net |
Coordinate attention (CA) | - | C+D | - | H.O (70 %) | Mean: 92.0 Mean: 92.1 |
|||
Galazis et al. 2021 (Galazis et al., 2021) | ACDC-17 | 100/50 | 4 | ✓ | ✓ | - | ✓ | Tempera: Spatial Transformer Feature Pyramid |
PAM | ✓ | D | - | H.O (90 %) | Mean: 92.1 | |||
Fu et al. 2022 (Fu et al., 2022) | ACDC-17 Synapse |
100/50 50 |
4 8 |
✓ | - | ✓ | - | TF-U-Net | - | - | C | - | H.O (80 %) | Mean: 91.7 Mean: 85.5 |
|||
D. Li et al. 2022 (Li et al., 2022a) | ACDC-17 | 100/50 | 4 | ✓ | ✓ | ✓ | - | U-Net | PAM CAM |
- | C+D | - | H.O (80 %) | RV: 89.1 | |||
Y. Li et al. 2022 (Li et al., 2022b) | ACDC-17 | 100/50 | 4 | ✓ | - | - | - | ViT Decoder | Window Attention Unsampled |
- | MSE | - | H.O (80 %) | Mean: 92.1 | |||
Galea et al. 2021 (Galea et al., 2021) | 2018 ASC |
50 | 5 | ✓ | ✓ | - | - | U-Net + DeepLabV3+ | - | - | MSE | - | H.O (80 %) | Mean: 92.1 | |||
Garcia-Cabrera et al. 2023 (Garcia-Cabrera et al., 2023) | ACDC-17 | 100/50 | 4 | - | ✓ | - | - | U-Net (ImageNet) | - | - | MSE | - | H.O (80 %) | Mean:96.6 | |||
Płotka et al. 2023 (Grzeszczyk et al., 2023) | ACDC-17 | 100/50 | 4 | - | - | - | - | Swin Transformer/U-Net | Shifted-window multi-head | - | C+D | - | 5-fold | Mean:87.1 | |||
Liu et al. 2023 (Liu et al., 2023) | ACDC-17 | 100/50 | 4 | - | - | - | - | Successive subspace learning | - | - | MSE | - | 5-fold | Mean:95.0 | |||
J.M.Harana et al. 2021 (Mariscal-Harana et al., 2021) | ACDC-17 M&Ms-2 Local (NHS) |
100/50 360 (321 MRI) 4228 |
4 | ✓ | - | - | - | 2D U-Net | - | - | C+D | - | 5-fold | 87.8, 81.7, 79.1, 82.9 83.8, 80.7, 82.2, 82.2 90.1, 82.1, 78.9, 83.7 |
|||
A.K. Yasmina et al. 2023 (Al Khalil et al., 2023) | M&Ms-2 | 360 (200 annotated) | 4 | - | ✓ | - | - | Conditional GAN | Post processing | - | D+H | - | 5-fold | 95.9, 90.7, 93.8, 93.4 | |||
C. Galazis et al. 2023 (Galazis et al., 2021) | M&Ms-2 | 360 (200 annotated) | 4 | ✓ | ✓ | ✓ | ✓ | Tempera | Post processing | - | F+D | - | H.O (93 %) | Mean: 83.6 | |||
Gao et al. 2022 (Gao and Zhuang, 2022) | M&MS-2 | 360 (200 annotated) | 4 | ✓ | ✓ | - | ✓ | U-Net+ ViT | Self-attention | - | C+D | - | H.O (80 %) | Mean: 88.1 | |||
Habijan et al. 2021 (Habijan et al., 2021) | MM-WHS | 100/40 | 7 | ✓ | ✓ | - | - | VAE and FM-Pre- ResNet | - | - | D, L2, KL | - | 10-fold | Mean: 89.5 | |||
Yang et al. 2022 (Yang et al., 2022a) | Synapse | 50 | 8 | ✓ | - | - | - | Encoder-Decoder | Fuzzy | - | - | - | H.O (80 %) | Mean: 85.5 | |||
Pereira et al. 2020 (Pereira et al., 2020) | MICCAI 2019 | 1120 +56 | 4 | - | - | - | ✓ | U-Net | - | - | MAE | - | 5-fold | Mean: 94.2 |
ACDC-17: Automated Cardiac Diagnosis Challenge dataset, ACC: Accuracy, C: Cross-Entropy Loss, CAM: Channel Attention Module, D: Dice Loss, H: Hausdorff Distance, H.O: Hold Out, KL: Kullback-Leibler Divergence, L2: L2 norm, LV: Left Ventricle, LV-09: Sunnybrook Cardiac dataset, Myo: Myocardium, PAM: Position Attention Module, RF: Random Forest, ROI: Region of Interest, RV: Right Ventricle, RV-12: MICCAI 2012 Right Ventricle Segmentation Challenge dataset, VAE: Variational Autoencoder.
The results are reported based on CMRI analyses like LV, RV, Myo, and Overall mean, respectively. Here, class size indicates the segmented heart regions count plus the background.