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Abstract 

Background Single-cell RNA sequencing experiments commonly use 10x Genomics (10x) kits due to their high-
throughput capacity and standardized protocols. Recently, Parse Biosciences (Parse) introduced an alternative tech-
nology that uses multiple in-situ barcoding rounds within standard 96-well plates. Parse enables the analysis of more 
cells from multiple samples in a single run without the need for additional reagents or specialized microfluidics equip-
ment. To evaluate the performance of both platforms, we conducted a benchmark study using biological and techni-
cal replicates of mouse thymus as a complex immune tissue.

Results We found that Parse detected nearly twice the number of genes compared to 10x, with each platform 
detecting a distinct set of genes. The comparison of multiplexed samples generated from 10x and Parse techniques 
showed 10x data to have lower technical variability and more precise annotation of biological states in the thymus 
compared to Parse.

Conclusion Our results provide a comprehensive comparison of the suitability of both single-cell platforms 
for immunological studies.
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Background
Single-cell RNA sequencing (scRNA-seq) has become an 
integral tool in immunology research as it enables study-
ing the dynamics of various immune cell populations at 
high resolution [1]. In less than a decade, the exponential 
development in the field of scRNA-seq has streamlined 

multiple workflows with the possibility to analyze more 
than a million cells in the same kit with higher cell yields, 
higher sensitivity, straightforward and quicker work-
flows, and lesser instrumentation. These advancements 
in technology have promoted deeper understanding in 
numerous immune landscapes including thymic organo-
genesis and cellular development [2–4], cellular hetero-
geneity [5–7], ageing and diseased conditions [8–10], 
as well as the generation of large informative atlases [2, 
11] in both mice and humans revealing potential clinical 
applications.

Among several scRNA-seq technologies, 10x Genom-
ics (10x) is currently the de-facto leading platform pro-
viding a standardized way of processing individual 
cells with microfluidics benchtop equipment. 10x uses 
emulsion-based kits wherein individual cells are cap-
tured in water-in-oil emulsion droplets. 10x facilitates 
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multi-omics studies, enabling simultaneous measure-
ments of the immune receptors and cell surface proteins. 
Nevertheless, large-scale studies remain challenging due 
to the high reagent costs and substantial batch effects 
[12]. To overcome these challenges, experiments with 
multiple samples often use multiplexing techniques such 
as oligo-conjugated antibodies or lipids, which allow bar-
coding sample-specific cells [13].

Recently, Parse Biosciences developed an alternative 
scRNA-seq assay that relies on split-pool combinatorial 
indexing instead of microfluidics equipment [14]. Here, 
cells are fixed and permeabilized to facilitate the intra-
cellular indexing. This is followed by four rounds of bar-
coding wherein transcripts are labelled with well-specific 
barcodes to ensure that each cell has a unique label con-
sisting of a random combination of the four barcodes. 
Parse kits allow experiments with up to 96 samples with-
out using molecular hashtags and enable scaling up to a 
million cells in a single run.

The wide use of scRNA-seq technologies has brought 
forth numerous challenges during cell processing as well 
as data analysis. Issues associated with cell processing 
include low cell numbers, low purity, and low target cell 
recovery which depends on various factors such as tis-
sue type, cell type, dissociation method, and kit used. 
There are different approaches to analysis of scRNA-seq 
data and tricky issues have been raised at each stage from 
quality control to expression analysis irrespective of the 
approach. During quality control, one of the major chal-
lenges is dropouts wherein a gene is moderately or highly 
expressed in one cell but not detected in another cell 
[15]. However, this has been shown to be similar for both 
10x  and Parse [16]. Another challenge is background 
noise due to the presence of ambient RNA or barcode 
swapping [17]. Ambient RNA is majorly present in drop-
let-based technology and can be described as the mRNA 
released in cell suspension from damaged or dying cells 
which contaminates the true cellular gene transcripts 
[18]. Barcode swapping, on the other hand, is predomi-
nant in plate-based technology and involves mislabe-
ling of gene transcripts with free floating barcodes [19]. 
Ambient RNA removal is essential to ensure accurate 
identification of cell types and to avoid biological misin-
terpretation of scRNA-seq data.

Several studies have recently comprehensively com-
pared multiple scRNA-seq technologies including 10x 
and Parse kits in terms of cell processing and data analysis 
[16, 20–22]. However, most of these studies use human 
PBMCs or cell lines for comparison between technolo-
gies. Additional challenges to processing and sequencing 
single-cell transcriptomes are posed while working with 
immunological organs because of their cellular complex-
ity and several differentiation and activation stages of the 

cells. One of these complex organs is the thymus, where 
T cells differentiate, starting from the double-negative 
 CD4−CD8− stage and progressing through double-pos-
itive  CD4+CD8+ towards the single-positive  CD4+ or 
 CD8+ stage [23, 24]. Thymocytes are sensitive to apop-
totic cell signals, and a large number of cells that fail the 
negative and positive selection are removed through 
apoptosis during normal differentiation [25]. Therefore, 
processing and analyzing scRNA-seq data requires vigi-
lance to preserve and identify fragile populations.

In this study, we investigated the performance of 10x 
and Parse scRNA-seq methods on the thymus as an 
immune organ with a well-established cellular composi-
tion. We applied these methods to the thymus isolated 
from two age- and sex-matched C57BL/6N mice to assess 
their performance for cell processing as well as down-
stream data analysis by analyzing their ability to capture 
relevant cell states at a transcriptomic level. In addition, 
we included technical replicates to measure the degree 
of reproducibility of the single-cell experiments. To our 
knowledge, we present the first comprehensive bench-
mark evaluation of multiplexed commercial scRNA-seq 
solutions in a primary immune organ.

Results
Experiment design and data generation
Many studies have explored the heterogeneity of thymic 
populations using single-cell technology and provided 
a comprehensive outline of the distinct cell types and 
marker genes by sorting out specific thymocyte popula-
tions [11, 26–28]. We, therefore, used mouse thymus as 
a model tissue to study the performance of the 10x and 
Parse platforms and compare their quality control met-
rics in capturing single-cell transcriptome.

To this end, we used thymi isolated from two female 
C57BL/6N mice aged two months. The thymic lobes 
from each mouse (biological replicates A and B) were 
separated and considered as two technical replicates 
(replicate 1 and 2). After enzymatic digestion, the four 
thymic samples were divided and processed separately by 
10x and Parse kits (Fig. 1). Hereafter, we refer to the 10x 
samples as 10x_A_1, 10x_A_2, 10x_B_1, and 10x_B_2. 
Similarly, Parse samples were designated as parse_A_1, 
parse_A_2, parse_B_1, and parse_B_2. The 10x  samples 
were further labelled using cell hashing and subsequently 
processed using the 10x microfluidics device. The Parse 
samples were first processed with the cell fixation kit and 
the cells barcodes were added using the split-pool barcod-
ing. We aimed to collect ∼3,000 cells for 10x per sample 
and 5,000 cells for Parse. Accordingly, we loaded ~ 5,100 
cells per sample for 10x and ~ 19,200 cells for Parse. After 
sequencing, we recovered on average 3,477 cells per sam-
ple for 10x with negligible inter-sample variability and a 
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recovery rate of 56.5% (Fig. 2A, Tables 1, S1, S2). Inter-
estingly, we recovered on average 10,460 cells per Parse 
sample with high inter-sample variability and a recov-
ery rate of 54.4% compared to the expected ~ 5,000 cells 
per sample (Fig. 2A, Tables 1, S1, S2). Thus, 10x showed 
higher cell capture efficiency and lower inter-sample 
variability.

10x and Parse show disparities in quality control measures
After demultiplexing the 10x data (Figure S1A), we exam-
ined the distributions of UMI and detected gene counts 
in each cell, as these are often used as quality control 
metrics in scRNA-seq data analysis. We analyzed the 
gene expression matrices using the CellRanger and split-
pipe  pipelines for 10x and Parse data, respectively. The 
data from both assays contained a comparable number of 
UMIs and genes per cell. However, we noted that Parse 
UMI and gene distributions had longer tails in the violin 
plot compared to 10x data, which indicated more outlier 
cells with high gene expression counts (Fig.  2B, C). We 
further checked whether these metrics significantly dif-
fered between the technical replicates in each dataset. 
Interestingly, 10x technical replicates were not differ-
ent in the number of UMIs and genes detected in cells, 
whereas Parse showed a significant difference in techni-
cal replicates.

In addition to UMI and gene counts, the proportion 
of reads mapping to mitochondrial and ribosomal genes 
serve as quality control metrics in scRNA-seq experi-
ments. Furthermore, the presence of long non-coding 
RNA (lncRNA) transcripts is indicative of the cell sam-
ple quality. For example, the presence of long non-coding 
RNA (lncRNA) transcripts is indicative of the cell sam-
ple quality [29–32]. Therefore, we examined how these 

control measurements compared between the 10x and 
Parse datasets. We observed that the average percent-
age of reads mapped to mitochondrial genes was slightly 
lower in the 10x  library compared to Parse (4.4% vs 
5.5%) (Fig. 2D). Conversely, the average fraction of ribo-
somal gene counts was an order of magnitude higher in 
10x data (12.5% vs 0.6%) (Fig. 2E). Additionally, the pro-
portion of lncRNA counts was higher in the 10x samples 
than with the Parse kit (7.5% vs 3.8%) (Fig.  2F). These 
results show that both assays had comparable mitochon-
drial proportions with notable differences in the riboso-
mal and lncRNA genes.

10x and Parse data are enriched for distinct gene sets
We next analyzed the differences between the captured 
genes inthe datasets. We first removed genes detected 
in fewer than three cells and then examined the num-
ber of genes in 10x and Parse data. Despite the compa-
rable depth in sequencing, the Parse dataset detected 
a higher number of unique genes. With 16,390 genes 
shared between the datasets, 14,731 genes were detected 
only in Parse data, compared to 578 in 10x (Fig. 2G). We 
investigated whether this difference was detectable in 
highly expressed genes. When we compared the overlap 
between the 1000 most expressed genes in both data, 
only 364 genes were shared (Fig. 2H).

We found that lncRNA, Malat1, was the top expressed 
gene in 10x data (Fig. 2I). In contrast, Rn18s-rs5, a ribo-
somal RNA, was the top gene in Parse data, while Malat1 
was the sixth most expressed gene (Fig. 2J). Several mito-
chondrial genes were expressed at high levels in both 
10x and Parse data. However, these differed between 10x 
(mt-Co3, mt-Atp6, mt-Co1, and mtCo2) and Parse (mt-
Rnr1 and mt-Rnr2). Notably, 10x and Parse top expressed 

Fig. 1 The experiment design. Thymi from two mice were divided into two technical replicates each. The resulting four samples were further 
divided between 10x and Parse workflows



Page 4 of 13Filippov et al. BMC Genomics         (2024) 25:1069 

genes included the Themis gene, which is involved in pos-
itive and negative T cell selection.

Computational analysis identifies more doublets in Parse 
data
Doublets or multiplets occur when two or more cells 
are encapsulated in a single droplet, leading to mixed 
or hybrid transcriptomic profiles. Including these 

aggregates in downstream analysis can incorrectly iden-
tify rare cell types, intermediate cell states, or specific 
transcriptomic signatures. Our study utilized cell hash-
ing for the 10x samples, enabling us to differentiate dou-
blets from single cells. Cells that were positive for more 
than one sample hashtag were identified as doublets and 
excluded from further analysis. The doublets constituted 
14% of the 10x dataset (Figure S1A, Table S3). The Parse 

Fig. 2 Cell recovery and gene detection. A Number of cells recovered from each replicate, (B) UMI counts/cell for each sample, (C) Genes detected/
cell in each sample, (D) Percentage of expression mapped to mitochondrial genes, (E) Percentage of expression mapped to ribosomal genes, (F) 
Percentage of expression mapped to long non-coding RNA genes, (G) Top expressed genes in 10x library, (H) Top expressed genes in Parse library, 
(I) Overlap of all genes detected in both libraries, (J) Overlap of top 1000 expressed genes in both libraries
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toolkit does not provide a way to distinguish doublets in 
the same manner as 10x since it does not use hashtags 
to multiplex samples. To address this, we employed the 
computational doublet detection method available in 
scDblFinder, which identifies doublets by comparing cells 
to computationally simulated doublet profiles [33]. Nota-
bly, doublets constituted 31% of the Parse WT library 
(Table S3).

Parse data has a considerable batch effect
We next asked whether the batch effects were associated 
with the significant variability in detected gene and UMI 
numbers between Parse samples. Such technical effects 
might hinder downstream analyses, such as cell type 
annotation or differential expression analysis. We started 
by performing quality control to exclude the low-quality 
cells (Figure S1B, C). Next, we performed a standard 
scRNA-seq analysis workflow that included normaliza-
tion, dimensionality reduction, and clustering separately 
on 10x and Parse datasets. We then examined whether 
the samples were well-aligned on the UMAP plot to 
assess the presence of batch effects. We first examined 
the 10x data and observed that cells from biological and 
technical replicates were well-aligned (Fig.  3A). How-
ever, the replicates of the Parse data formed distinct cell 
communities (Fig. 3B). If the cells of the same type form 
distinct clusters due to technical variability between 
the replicates, such artificial clusters could be mistaken 
for the bona-fide biological states. Therefore, we per-
formed a batch effect correction to eliminate the vari-
ability between the replicates in Parse data. After the data 
integration, we observed that Parse replicates were well-
aligned (Fig. 3C).

We further investigated the differences between the 
replicates in each dataset. Most scRNA-seq workflows 
rely on reducing the dimensionality of the data by select-
ing only highly variable genes (HVG) in each sample. We 
performed this procedure and compared the selected 
genes between replicates and technologies. The number 
of common HVGs between the assays was lower than 

the overlap within each assay (Fig.  3D). The pairwise 
HVG overlaps were similar between the 10x samples. In 
contrast, one sample in Parse data had fewer HVGs in 
common with other samples (parse_A_1). We then per-
formed KEGG enrichment analysis on the HVGs from 
each sample. The gene ontology analysis indicated a simi-
lar representation of the identified pathways as 10x and 
Parse samples were enriched for the same biological 
processes (Fig.  3E). The only difference was in the pro-
cess "Apoptosis", which had a slightly smaller score in the 
Parse samples compared to 10x.

10x resolves thymocyte populations better than Parse
Single-cell datasets often contain diverse cell types and 
their subsets, and granular annotation of cell types and 
states is a critical step of scRNA-seq analysis. We, there-
fore, proceeded to annotate our unsupervised clustering 
results separately on 10x  and Parse data to assess their 
suitability to decipher the stages of thymocyte differenti-
ation (Fig. 4A-D). We started by examining the Cd3d and 
Cd3g expression levels in the unsupervised clustering of 
10x and Parse data and observed a pronounced difference 
in these T cell marker genes between the two datasets. 
In the 10x dataset, Cd3d and Cd3g were highly and con-
sistently expressed in almost all clusters (Figure S2A-D). 
In contrast, the Cd3d expression was undetectable in all 
clusters of the Parse dataset (Figure S3A-D), while its 
paralogue gene Cd3g was present in fewer clusters and at 
a lower level than in 10x data.

We then grouped the clusters according to the stages 
of thymic differentiation based on the expression of 
Cd4 and Cd8a genes. These are represented by dou-
ble-negative (DN; Cd4−Cd8−), double-positive (DP; 
Cd4+Cd8+), and single-positive (SP; Cd4+Cd8− or 
Cd4−Cd8+) cell populations. In the 10x data, we identi-
fied a Cd3d+Cd4−Cd8a− cluster that could be annotated 
as DN thymocytes. This cluster had a high Il2ra expres-
sion, a marker of DN cells. Next, we analyzed the Parse 
data and found that major thymocyte populations were 
congruent with the 10x data.

We then annotated all Cd3d+Cd4+Cd8a+ clusters in 
the 10x  data. The DP group was subdivided into prolif-
erating (DP-P) and recombining (DP-R) populations 
based on the expression of genes associated with the cell 
cycle (Mki67, Top2a) and V(D)J recombination (Rag1), 
respectively. The third stage in the differentiation was 
a DP undergoing selection cluster (DP-S) representing 
thymocytes in the post-recombination positive selec-
tion stage (Tox). In addition, we observed a DP apop-
totic cluster (DP-A) that was enriched in mitochondrial 
gene expression (Figure S2C). We used the same mark-
ers to annotate DP-P, DP-R, and DP-S thymocyte subsets 
in the Parse data. However, we did not observe a DP-A 

Table 1 Sequencing statistics for 10x and Parse libraries

Parse 10x

Cell recovery rate 54.4% 56.5%

Mean reads/cell 42,299 45,959

Sequencing saturation 71.2% 83.8%

Median UMIs/cell 3,128 2,998

Median genes/cell 1,355 1,570

cDNA > Q30 90.8% 91%

Total genes detected 31,121 16,968
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cluster in the Parse dataset, as there were no cell commu-
nities with a pronounced increase in mitochondrial gene 
expression. The SP clusters represent the end stage of 
thymocyte development and have mutually exclusive Cd4 
and Cd8a expression patterns. In 10x data, we identified 
the Cd3d+Cd4+Cd8− SP-CD4 and Cd3d+Cd4−Cd8a+ 
SP-CD8 populations, and these were also distinguish-
able in the Parse data. The remaining clusters were iden-
tified as antigen-presenting cells (APC) and other  CD3+ 
cells in 10x data based on distinct Cd3d expression level 
and MHC-II related genes. However, we could not iden-
tify these clusters in Parse solely by Cd3-related gene 

expression. We annotated the APC cluster in Parse by 
expression of Cd4, Cd8a, and MHC-II related genes but 
other  CD3+ cells could not be annotated due to a lack of 
distinct Cd3d or Cd3g gene expression in the clusters.

We wondered whether we could leverage the 10x data 
annotations to identify the similar clusters and propor-
tions in Parse data. For this, we trained a classifier on 
10x gene expression values and annotations and obtained 
predictions for the Parse data. Based on this model, we 
could accurately annotate the minor thymocyte popula-
tion, other  CD3+, in Parse data (Figure S4). However, the 
model could not identify the DP-A cluster. Interestingly, 

Fig. 3 Batch effect exploration. (A) UMAP representation of 10x data without batch effect correction, (B) UMAP representation of Parse 
data without batch effect correction, (C) UMAP representation of Parse data with batch effect correction, (D) Overlap in HVGs between samples, (E) 
KEGG pathways enriched in HVGs for each sample
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Fig. 4 Cell type annotation. UMAP (A) and marker genes (B) of 10 × data, UMAP (C) and marker genes (D) of Parse data, Proportion of cells in 10x 
(blue) and Parse (purple) in replicates (E) A_1, (F) A_2, (G) B_1, and (H) B_2
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the model could not distinguish between DP-P and the 
SP-cell populations.

Next, we studied the proportion of the thymocyte 
cell types identified using each technology. The DP-R, 
DP-S, and SP-CD4 proportions were relatively consist-
ent between the technologies and replicates (Fig.  4E-
H). However, we noticed significantly fewer SP-CD8 
cells in the Parse data across all replicates compared to 
the 10x  data. At the same time, Parse had more DP-P 
cells than 10x in all replicates. Taken together, these 
results reveal differences in cell subpopulation detection 
between 10x and Parse kits.

We further checked if the inconsistent levels of Cd3d 
and Cd3g genes in Parse data was because of background 
noise due to barcode swapping. We used SoupX to 
remove the background RNA from Parse data but did not 
observe any significant improvements (Figure S5A-D). 
The Cd3d and Cd3g gene expression patterns remained 
similar, as did the lack of DP-A cells, in the Parse data.

We then performed a validation experiment for Parse 
data to analyze whether the issue with Cd3d and Cd3g 
gene expression levels persists. To this end, we used the 
Parse WT Mini kit to capture up to 20,000 cells. As in 
the main experiment, we isolated thymus from two iden-
tical young female C57BL/6N mice that were split into 
two technical replicates each. We performed a similar 
data analysis workflow, with doublet removal and batch 
effect correction, and observed that Cd3-related gene 
expression was present poorly in all the clusters, which 
obstructed the identification of APC and other  CD3+ cell 
subsets (Figure S6A-D). In addition, we observed that 
the SP-CD8 cells could not be distinguished in the Parse 
mini data based on mutually exclusive Cd4 and Cd8a 
expression patterns (Figure S6B). We then used the cell 
classifier trained on 10x  data to predict annotations for 
the Parse mini dataset. The cell classifier identified the 
APC and other  CD3+ cells but could not differentiate 
between DP-P and the SP-cell populations as previously 
(Figure S7). Furthermore, we performed background 
RNA removal and no improvement was seen in the issues 
faced (Figure S8A-D).

RNA velocity analysis shows agreement between 10x and 
Parse datasets
The thymocytes undergo constant turnover, marked by 
the continuous influx of progenitor cells, their specifica-
tion or apoptosis, and exit from the thymus. Therefore, 
our datasets presented an excellent opportunity to bench-
mark computational tools for studying developmental 
dynamics. Using 10x (10x_A_1, 10x_A_2, 10x_B_1, and 
10x_B_2) and Parse (parse_A_1, parse_A_2, parse_B_1, 
parse_B_2) datasets, we performed the RNA veloc-
ity analysis based on the ratio of spliced and unspliced 

transcripts and examined whether both assays captured 
this information. The abundance of spliced and unspliced 
transcripts in 10x were 58% and 39%, respectively, while 
3% were classified as ambiguous (Figure S9A). This ratio 
was inversed in Parse data, where 47% of transcripts were 
spliced and 53% were unspliced (Figure S9C). We stud-
ied whether the velocity vector fields and latent time 
reflected the thymocyte developmental trajectories. We 
found that the DP-R cells had the highest latent time val-
ues in 10x and Parse (Figure S9B, D). The velocity vectors 
pointed towards the DP cells and away from both SP and 
DP-P populations.

Discussion
The scRNA-seq allows to distinguish transcriptionally 
different cell populations within complex multicellular 
tissues. Here, we evaluated the applicability of 10x  and 
Parse scRNA-seq kits to study the dynamics of T cell dif-
ferentiation in mouse thymus and focused on cell type 
annotation as a central task in scRNA-seq data analysis.

Our study reports the differences between 10x  and 
Parse kits, as summarized in Table  2, providing a refer-
ence for selecting the optimal approach for single-cell 
analysis. Considering the set-up costs, the Parse pro-
tocol does not require the purchase of the microflu-
idic device (Chromium Controller) but involves more 
hands-on steps and reagents compared to 10x. However, 
10x  requires additional reagents and steps for sample 
multiplexing, which are integrated into the Parse work-
flow. Technical issues with 10x, such as wetting failures 
and clogging, are associated with generating gel beds-
in-emulsion in the Chromium Controller and can be 
avoided when using Parse.

The time required for the Parse kit workflow, includ-
ing sample processing and library preparation, is nearly 
twice as long as that for the 10x kits with more extensive 
benchwork (Fig. 5). Both kits have the same pause points, 
but 10x offers a more flexible three-day workflow, while 
Parse requires a minimum of a four-day schedule, with 
one day having more than six hours of workflow without 
any pause points. Since the cells can be fixed and stored 
for the Parse kit, it allows samples to be processed from 
different time points. Although 10x  has introduced kits 
in which cells can be fixed and stored, these require the 
purchase of a different instrument.

Regarding cell sample loading, both kits require single-
cell suspensions with high viability. Parse needs at least 
100,000 cells per sample as starting material, whereas the 
minimum number of cells in 10x is just 800 cells per sam-
ple. We obtained slightly higher cell recovery in 10x com-
pared to Parse. Interestingly, three out of four samples in 
Parse had almost double the expected cell recovery rate. 
However, this was not replicated in the Parse mini kit, 
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which had an average cell recovery rate of 36.5%, similar 
to previously reported (16). On the other hand, 10x has 
consistently shown higher cell recovery rates [16, 34]. 
Thus, 10x is advantageous over Parse in exploring minor 
populations such as thymic epithelial cells, which are pre-
sent in low numbers in the thymus.

Quality metrics of cells in scRNA-seq datasets are 
important for downstream analysis. Some indicators 
used to distinguish high-quality cells include the per-
centage of mitochondrial-coding genes, the presence 

of doublets or multiplets, and the number of UMIs and 
genes detected [35]. Our data showed a slightly higher 
percentage of mitochondrial-coding genes in Parse com-
pared to 10x. Conversely, 10x has been shown to detect 
a higher proportion of ribosomal-coding genes than 
other platforms [36]. Similarly, our data showed more 
than a tenfold increase in the percentage of ribosomal-
coding genes and double the percentage of lncRNA-
coding genes in 10x  compared to Parse. Although 
10x has higher cell recovery rates and lower percentage 

Table 2 Summary

Parse 10x

Inter-sample variability High Negligible

Intra-sample variability High Negligible

Sensitivity in gene detection Higher Lower

Minimum number of cells to load 100,000 800

Minimum number of recovered cells 200 500

Pause points 7 7

Benchwork  ~ 11 h  ~ 7.5 h

Maximum number of samples that can be analyzed in one kit with mul-
tiplexing

40 samples with 2500 cells/ sample (1 WT kit) 16 samples with 2500 cells/ 
sample (1 kit with 4 reac-
tions)

Cell type annotation Difficult Easier

Doublet detection Based on genetic diversity or computational With hashtags

Fig. 5 Workflow and time frame required for each kit. Key differences between the steps and time spent on 10x and Parse protocols have been 
highlighted
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of mitochondrial-coding genes, Parse had lower percent-
ages of ribosomal and lncRNA transcripts. This aspect 
has been linked to the loss of ambient RNA due to the 
multiple washing steps in the Parse protocol [21]. The 
proportion of different gene biotypes in the data impacts 
the downstream analysis and should be considered 
according to applications.

Doublets or multiplets are aggregates of two or more 
cells that are captured into a single droplet, resulting in 
hybrid transcriptomics. Including these in downstream 
analysis can lead to false detection of cell types, inter-
mediate cell states, or transcriptomic signatures [37]. 
In our dataset, we used cell hashing for the 10x samples 
and were able to distinguish the doublets from the single 
cells and exclude them from further analysis. Unfortu-
nately, although Parse employs three rounds of barcod-
ing to ensure minimal doublets generated, we found 31% 
doublets in Parse WT library (4 thymic + 16 non-thymic 
samples) using scDblFinder package as compared to 14% 
in 10x using hashtags. On the other hand, there were 
fewer (21%) doublets in Parse mini kit library but we 
faced issues in identifying the cell types accurately down-
stream. A previous study benchmarking scRNA-seq kits 
using mouse and human cells showed a high doublet rate 
of 49% when using Parse technology [22]. Other studies 
using human PBMCs and tumor nuclei have shown lower 
doublet rates in Parse compared to 10x [16, 20]. These 
results suggest that analyzing different types of tissues or 
cells in the same Parse kit may aid in better detection of 
doublets in the libraries generated and improve down-
stream analysis.

Regarding the UMIs and genes detected, Parse tech-
nology identified nearly double the genes detected by 
10x at similar sequencing depth. However, the consider-
able variability in the detected UMIs and genes between 
the technical replicates in Parse data suggested poor 
reproducibility compared to 10x. The high batch effect 
between samples in Parse data may be due to the minute 
differences in protocol introduced during the fixation, 
freezing, thawing, or filtration steps. While the integra-
tion of computational batch correction tools into the 
scRNA-seq data workflow complicates the data analysis 
pipeline, it becomes essential to utilize these tools while 
analyzing samples from multiple time-points or large 
number of samples in different runs.

In terms of cluster annotations, we found 10x efficiently 
differentiated between all major thymocyte populations. 
Further analysis distinguished between various sub-
sets of DP cell populations as published previously [27]. 
In contrast, Parse did not show the expected Cd3d and 
Cd3g gene expression levels in any of the kits used. This 
resulted in difficulty in accurately annotating the minor 
thymocyte populations. We also could not identify the 

DP-A cluster in Parse. Additionally, Parse mini kit could 
not separate SP-CD4 and SP-CD8, with most clusters 
showing Cd4 expression. While Parse has been claimed 
to accurately identify rare populations due to its ability 
to detect genes with low expression levels, this possibly 
hindered the distinction of SP-CD4 and SP-CD8 [16]. 
Furthermore, the removal of background RNA from the 
Parse data did not improve any of the issues mentioned 
in the respective kits. Overall, 10x  is more efficient in 
clustering the thymocyte subsets. Additionally, we found 
comparable cell trajectories in the thymic populations 
between the two methods despite differences in the ratio 
of spliced and unspliced transcripts.

In conclusion, both methods have advantages and 
limitations that need to be considered when choosing 
the appropriate scRNA-seq kit for experiments. 10x can 
distinguish major subsets in the thymus with fewer cells 
loaded and a smaller workload but requires specialized 
instrumentation. Parse is more sensitive to cell popu-
lations with lower gene expression levels, which can be 
a limitation and has a longer protocol, but provides the 
opportunity to run samples from multiple time points 
together without the instrument.

Methods
Animals
Young (2-month-old) female C57BL/6N mice were used 
for the experiments. This study was conducted in accord-
ance to the permission from the Ministry of Regional 
Affairs and Agriculture (Estonia) and approved by the 
Animal Experiments Ethics Committee at the Minis-
try (Protocol No. 224). All methods were performed in 
accordance with relevant guidelines and regulations. This 
study was carried out in compliance with the ARRIVE 
guidelines (Animal Research: Reporting of In Vivo Exper-
iments). Young mice were acquired from Laboratory Ani-
mal Centre, Institute of Biomedicine and Translational 
Medicine, Tartu. Mice were housed communally with a 
standard 12 h dark cycle and fed ad  libitum. Mice were 
euthanized by administering an overdose of ketamine 
and xylazine intraperitoneally.

Tissue processing and cell isolation
Briefly, thymi from two female C57BL/6N mice aged two 
months were isolated, and each lobe was separated and 
processed separately as a technical replicate. Each thy-
mus lobe was mashed between frosted glass slides and 
collected in RPMI containing collagenase/dispase and 
DNase I. The thymic lobe samples were incubated at 
37 °C with gentle stirring for 15 min, washed with FACS 
buffer, filtered through 100 µ filter, and counted using 
LUNA-FL™ Dual Fluorescence Cell Counter (Logos 
Biosystems). After counting, each sample was divided 
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equally and further processed by Chromium Next GEM 
Single Cell 3’ Reagent Kit v3.1 (10x Genomics; 10x_A1, 
10x_A2, 10x_B1, 10x_B2) and Parse Evercode Whole 
Transcriptome (WT) kit v2 (Parse Biosciences; parse_
A1, parse_A2, parse_B1, parse_B2), respectively. The 
four 10x  samples were multiplexed using TotalSeq™-B 
hashtag antibodies (BioLegend), washed, counted, and 
20,680 cells were loaded in a single reaction using the 
10 × 3’ kit as per the manufacturer’s protocol. The Parse 
samples were fixed using the Fixation Kit (Parse Bio-
sciences), counted, and stored at -80 °C as per manufac-
turer’s protocol. We loaded 19,230 cells per sample for a 
total of 384,600 cells from 20 samples (4 samples for the 
benchmarking experiment and remaining 16 unrelated 
samples to utilize the maximum capacity of the kit). The 
samples were multiplexed and processed using the Parse 
WT kit as per manufacturer’s protocol. In addition, 
we repeated the experiment with the same experimen-
tal set up using Parse Mini v2 kit (Parse Biosciences) to 
confirm our findings from the WT kit. All libraries were 
sequenced as paired-end 150-bp reads using the Illumina 
NovaSeq 6000 platform.

Raw data processing and quality control
The 10x  data FASTQ files were mapped to the mm10 
mouse reference (downloaded from the 10x  Genom-
ics website) using CellRanger software. For Parse data, 
we first generated an indexed genome using the mm10 
mouse reference downloaded from Ensembl. Next, we 
used the split-pipe tool from Parse to process files from 
each sub-library. The results from each sublibrary were 
then combined into one gene expression matrix. The 
gene expression matrices from 10x and Parse were loaded 
using the Seurat R package [38]. Quality control was con-
ducted on each dataset to remove low-quality and con-
taminating cells. Outlier cells were excluded based on the 
distribution of UMIs and the percentage of mitochon-
drial gene expression. We filtered out the cells with fewer 
than 500 and over 25,000 UMIs (Figures S1B,C). For 10x, 
we excluded cells with more than 10% mitochondrial 
gene expression, while the cutoff was set to 15% for Parse 
data (Figures S1B,C).

Doublet detection
The 10x  data was demultiplexed based on hashtag read 
counts using the HTODemux function. We used the 
scDblFinder package for the Parse data, which performs 
computational doublet detection based on gene expres-
sion profiles [33]. In summary, scDblFinder creates arti-
ficial doublet profiles and identifies cells as doublets if 
their gene expression closely matches the simulated dou-
blets. As the algorithm’s results depend on random ini-
tialization, we performed ten runs with different random 

seeds. We then marked a cell as a doublet if it has been 
called a doublet in more than half of scDblFinder runs. 
This procedure ensures that the number of false-positive 
doublet calls is reduced.

Statistical tests
We used the Wilcoxon Rank Sum test to test the differ-
ences in the number of UMIs and genes between samples 
in Fig. 2.

Clustering and dimensionality reduction
The combined data from each assay (including all sam-
ples) were processed using the standard Seurat work-
flow to investigate the presence of a batch effect. In brief, 
the data were first normalized using the SCTransform 
method as implemented in the glmGamPoi R pack-
age [39]. Next, the principal component analysis (PCA), 
nearest-neighbour graph construction, and UMAP 
dimensionality reduction were performed on the Pearson 
residuals. The clusters were identified with the shared 
nearest neighbour (SNN) modularity procedure imple-
mented in Seurat.

To account for the batch effect in Parse data, we per-
formed the data integration workflow as previously 
described [40]. We first normalized the data for each 
sample using the SCTransform normalization and per-
formed PCA. We then selected 3000 integration features 
and performed the data integration using the recipro-
cal PCA procedure. Next, we proceeded with clustering 
and UMAP analysis as described above. To visualize the 
gene expression values, we obtained the batch-corrected 
counts with the PrepSCTFindMarkers function.

Cell type label transfer
To perform cell type label transfer from 10x to Parse 
data, we used the CellTypist Python package as previ-
ously described [41]. To this end, we first imported the 
raw count data and 10x  cell type annotations using the 
Scanpy package. Next, we performed a feature selection 
step by training a classifier model and identifying the top 
model coefficients for each cell type label. These coef-
ficients correspond to the genes most important for a 
particular cell subset. Next, we trained a classifier model 
using the union of the genes identified during the feature 
selection. Finally, we performed the classification on the 
Parse data with the majority voting enabled.

RNA velocity analysis
We used the scVelo Python package to perform the RNA 
velocity analysis on both 10x  and Parse data. For 10x, 
we used the velocyto package to obtain the spliced and 
unspliced matrices from the BAM files [42]. For Parse, 
the same information was obtained from the split-pipe 
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outputs using a script available from Parse Biosciences 
support website (https:// suppo rt. parse biosc iences. 
com). Using the splicing information, we performed the 
dynamical modelling procedure as previously described.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 024- 10976-x.

Additional file 1 : Figure S1. (A) Hashtag demultiplexing results for 10x 
library, (B) QC for 10x Genomics data. The UMI distribution and mito-
chondrial expression percentage are shown for each sample. The UMI 
distribution is shown on a logarithmic scale, with red dashed lines 
marking QC thresholds: 500 UMIs as the minimum for filtering low RNA 
content and 25,000 UMIs as the upper limit. The 10% cutoff was used to 
filter out cells with high mitochondrial expression. (C) QC for Parse WT 
data. The UMI distribution and mito % are shown for each sample with the 
same QC thresholds as in panel (B). The UMI distribution is also plotted 
on a logarithmic scale, and the mito % cutoff is set at 15%. The bar plots 
in (B) and (C) show the percentage of excluded (red) and retained (green) 
cells for each library. Figure S2. 10x data (A) clustering, (B) marker gene 
expression, (C) UMAP with technical metrics overlaid, and (D) top DE 
genes in each cluster. Figure S3. Parse WT data (A) clustering, (B) marker 
gene expression, (C) UMAP with technical metrics overlaid, and (D) top DE 
genes in each cluster after doublet removal and batch effect correction. 
Figure S4. Cell classifier trained on the 10x library annotated data applied 
to Parse WT library after doublet removal and batch effect correction. 
Figure S5. Parse WT data after running SoupX (A) clustering, (B) marker 
gene expression, (C) UMAP with technical metrics overlaid, and (D) top DE 
genes in each cluster after doublet removal and batch effect correction. 
Figure S6. Parse mini data (A) clustering, (B) marker gene expression, 
(C) UMAP with technical metrics overlaid, and (D) top DE genes in each 
cluster after doublet removal and batch effect correction. Figure S7. Cell 
classifier trained on the 10x library annotated data applied to Parse mini 
library after doublet removal and batch effect correction. Figure S8. Parse 
mini data after running SoupX (A) clustering, (B) marker gene expres-
sion, (C) UMAP with technical metrics overlaid, and (D) top DE genes in 
each cluster after doublet removal and batch effect correction. Figure S9. 
Detected RNA splicing in (A) 10x and (C) Parse WT data. RNA velocity vec-
tors and pseudotime in (B) 10x and (D) Parse WT data.

Acknowledgements
We thank Dr. Jaanika Kärner for the discussion related to the Parse protocol 
during the initial optimization stages.

Authors’ contributions
C.S.P. performed the experiments and wrote the manuscript, I.F. analyzed the 
data and wrote the manuscript, L.S. and P.P. supervised the work. All authors 
read and approved the manuscript.

Funding
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Marie Skłodowska-Curie 
grant agreement No: 955321. The study was supported by Estonian Research 
Council grant PRG2011.

Data availability
The datasets supporting the conclusions of this article are available in GEO 
repository, GSE253406.

Declarations

Ethics approval and consent to participate
This study was conducted in accordance to the permission from the Ministry 
of Regional Affairs and Agriculture (Estonia) and approved by the Animal 
Experiments Ethics Committee at the Ministry (Protocol No. 224). All methods 
were performed in accordance with relevant guidelines and regulations. 

This study was carried out in compliance with the ARRIVE guidelines (Animal 
Research: Reporting of In Vivo Experiments).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 23 February 2024   Accepted: 29 October 2024

References
 1. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single-

cell transcriptomics to explore the immune system in health and disease. 
Science. 2017;358(6359):58–63.

 2. Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R. A 
Single-Cell Transcriptomic Atlas of Thymus Organogenesis Resolves Cell 
Types and Developmental Maturation. Immunity. 2018;48(6):1258-1270.
e6.

 3. Lee M, Lee E, Han SK, Choi YH, Kwon D il, Choi H, et al. Single-cell RNA 
sequencing identifies shared differentiation paths of mouse thymic 
innate T cells. Nat Commun. 2020;11(1):4367.

 4. Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, et al. Single-Cell RNA Sequenc-
ing Resolves Spatiotemporal Development of Pre-thymic Lymphoid 
Progenitors and Thymus Organogenesis in Human Embryos. Immunity. 
2019;51(5):930-948.e6.

 5. Klein F, Veiga-Villauriz C, Börsch A, Maio S, Palmer S, Dhalla F, et al. Com-
bined multidimensional single-cell protein and RNA profiling dissects 
the cellular and functional heterogeneity of thymic epithelial cells. Nat 
Commun. 2023;14(1):4071.

 6. Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, et al. 
Single-cell transcriptional profiling of human thymic stroma uncov-
ers novel cellular heterogeneity in the thymic medulla. Nat Commun. 
2021;12(1):1096.

 7. Ragazzini R, Boeing S, Zanieri L, Green M, D’Agostino G, Bartolovic K, 
et al. Defining the identity and the niches of epithelial stem cells with 
highly pleiotropic multilineage potency in the human thymus. Dev Cell. 
2023;58(22):2428-2446.e9.

 8. Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman 
ME, et al. Ageing compromises mouse thymus function and remodels 
epithelial cell differentiation. Life. 2020;9:e56221.

 9. Kousa AI, Jahn L, Zhao K, Flores AE, Acenas D, Lederer E, et al. Age-related 
epithelial defects limit thymic function and regeneration. Nat Immunol. 
2024 Aug 7 [cited 2024 Aug 9]; Available from: https:// www. nature. com/ 
artic les/ s41590- 024- 01915-9

 10. Xin Z, Lin M, Hao Z, Chen D, Chen Y, Chen X, et al. The immune landscape 
of human thymic epithelial tumors. Nat Commun. 2022;13(1):5463.

 11. Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz 
DJ, et al. A cell atlas of human thymic development defines T cell reper-
toire formation. Science. 2020;367(6480):eaay3224.

 12. Luecken MD, Büttner M, Chaichoompu K, Danese A, Interlandi M, Mueller 
MF, et al. Benchmarking atlas-level data integration in single-cell genom-
ics. Nat Methods. 2022;19(1):41–50.

 13. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chatto-
padhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome 
measurement in single cells. Nat Methods. 2017;14(9):865–8.

 14. Tran V, Papalexi E, Schroeder S, Kim G, Sapre A, Pangallo J, et al. High sen-
sitivity single cell RNA sequencing with split pool barcoding. Genomics; 
2022 Aug [cited 2024 Feb 12]. Available from: http://biorxiv.org/lookup/
doi/https:// doi. org/ 10. 1101/ 2022. 08. 27. 505512

 15. Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-
cell differential expression analysis. Nat Methods. 2014;11(7):740–2.

 16. Xie Y, Chen H, Chellamuthu VR, Lajam ABM, Albani S, Low AHL, et al. 
Comparative Analysis of Single-Cell RNA Sequencing Methods with and 
without Sample Multiplexing. Int J Mol Sci. 2024;25(7):3828.

https://support.parsebiosciences.com
https://support.parsebiosciences.com
https://doi.org/10.1186/s12864-024-10976-x
https://doi.org/10.1186/s12864-024-10976-x
https://www.nature.com/articles/s41590-024-01915-9
https://www.nature.com/articles/s41590-024-01915-9
https://doi.org/10.1101/2022.08.27.505512


Page 13 of 13Filippov et al. BMC Genomics         (2024) 25:1069  

 17. Janssen P, Kliesmete Z, Vieth B, Adiconis X, Simmons S, Marshall J, et al. 
The effect of background noise and its removal on the analysis of single-
cell expression data. Genome Biol. 2023;24(1):140.

 18. Caglayan E, Liu Y, Konopka G. Neuronal ambient RNA contamination 
causes misinterpreted and masked cell types in brain single-nuclei data-
sets. Neuron. 2022;110(24):4043-4056.e5.

 19. Griffiths JA, Richard AC, Bach K, Lun ATL, Marioni JC. Detection and 
removal of barcode swapping in single-cell RNA-seq data. Nat Commun. 
2018;9(1):2667.

 20. Brown DV, Anttila CJA, Ling L, Grave P, Baldwin TM, Munnings R, et al. A 
risk-reward examination of sample multiplexing reagents for single cell 
RNA-Seq. Genomics. 2024;116(2):110793.

 21. Gezelius H, Enblad AP, Lundmark A, Åberg M, Blom K, Rudfeldt J, et al. 
Comparison of high-throughput single-cell RNA-seq methods for ex vivo 
drug screening. NAR Genomics Bioinforma. 2024;6(1):lqae001.

 22. Hornung BVH, Azmani Z, Den Dekker AT, Oole E, Ozgur Z, Brouwer RWW, 
et al. Comparison of Single Cell Transcriptome Sequencing Methods: Of 
Mice and Men. Genes. 2023;14(12):2226.

 23. Starr TK, Jameson SC, Hogquist KA. Positive and Negative Selection of T 
Cells. Annu Rev Immunol. 2003;21(1):139–76.

 24. Ashby KM, Hogquist KA. A guide to thymic selection of T cells. Nat Rev 
Immunol. 2024;24(2):103–17.

 25. Daley SR, Teh C, Hu DY, Strasser A, Gray DHD. Cell death and thymic toler-
ance. Immunol Rev. 2017;277(1):9–20.

 26. Karimi MM, Guo Y, Cui X, Pallikonda HA, Horková V, Wang YF, et al. The 
order and logic of CD4 versus CD8 lineage choice and differentiation in 
mouse thymus. Nat Commun. 2021;12(1):99.

 27. Li Y, Li K, Zhu L, Li B, Zong D, Cai P, et al. Development of double-positive 
thymocytes at single-cell resolution. Genome Med. 2021;13(1):49.

 28. Steier Z, Aylard DA, McIntyre LL, Baldwin I, Kim EJY, Lutes LK, et al. 
Single-cell multiomic analysis of thymocyte development reveals drivers 
of CD4+ T cell and CD8+ T cell lineage commitment. Nat Immunol. 
2023;24(9):1579–90.

 29. Clarke ZA, Bader GD. MALAT1 expression indicates cell quality in single-
cell RNA sequencing data. 2024 [cited 2024 Aug 8]. Available from: http://
biorxiv.org/lookup/doi/https:// doi. org/ 10. 1101/ 2024. 07. 14. 603469

 30. Montserrat-Ayuso T, Esteve-Codina A. Revealing the Prevalence of 
Suboptimal Cells and Organs in Reference Cell Atlases: An Imperative 
for Enhanced Quality Control. 2024 [cited 2024 Sep 16]. Available from: 
http://biorxiv.org/lookup/doi/https:// doi. org/ 10. 1101/ 2024. 04. 18. 590104

 31. Arun G, Aggarwal D, Spector DL. MALAT1 Long Non-Coding RNA: Func-
tional Implications. Non-Coding RNA. 2020;6(2):22.

 32. Muskovic W, Powell JE. DropletQC: improved identification of empty 
droplets and damaged cells in single-cell RNA-seq data. Genome Biol. 
2021;22(1):329.

 33. Germain PL, Lun A, Garcia Meixide C, Macnair W, Robinson MD. Doublet 
identification in single-cell sequencing data using scDblFinder. F1000Re-
search. 2022;10:979.

 34. Yamawaki TM, Lu DR, Ellwanger DC, Bhatt D, Manzanillo P, Arias V, et al. 
Systematic comparison of high-throughput single-cell RNA-seq methods 
for immune cell profiling. BMC Genomics. 2021;22(1):66.

 35. Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct Comparative Analyses of 
10X Genomics Chromium and Smart-seq2. Genomics Proteomics Bioin-
formatics. 2021;19(2):253–66.

 36. Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-
cell RNA-sequencing for biomedical research and clinical applications. 
Genome Med. 2017;9(1):75.

 37. Sun B, Bugarin-Estrada E, Overend LE, Walker CE, Tucci FA, Bashford-Rog-
ers RJM. Double-jeopardy: scRNA-seq doublet/multiplet detection using 
multi-omic profiling. Cell Rep Methods. 2021;1(1):100008.

 38. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Inte-
grated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-
3587.e29.

 39. Ahlmann-Eltze C, Huber W. glmGamPoi: fitting Gamma-Poisson general-
ized linear models on single cell count data. Anthony M, editor. Bioinfor-
matics. 2021;36(24):5701–2.

 40. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. 
Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888-
1902.e21.

 41. Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB, Gomes T, 
et al. Cross-tissue immune cell analysis reveals tissue-specific features in 
humans. Science. 2022;376(6594):eabl5197.

 42. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, 
et al. RNA velocity of single cells. Nature. 2018;560(7719):494–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/2024.07.14.603469
https://doi.org/10.1101/2024.04.18.590104

	Comparative transcriptomic analyses of thymocytes using 10x Genomics and Parse scRNA-seq technologies
	Abstract 
	Background 
	Results 
	Conclusion 

	Background
	Results
	Experiment design and data generation
	10x and Parse show disparities in quality control measures
	10x and Parse data are enriched for distinct gene sets
	Computational analysis identifies more doublets in Parse data
	Parse data has a considerable batch effect
	10x resolves thymocyte populations better than Parse
	RNA velocity analysis shows agreement between 10x and Parse datasets

	Discussion
	Methods
	Animals
	Tissue processing and cell isolation
	Raw data processing and quality control
	Doublet detection
	Statistical tests
	Clustering and dimensionality reduction
	Cell type label transfer
	RNA velocity analysis

	Acknowledgements
	References


