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SUMMARY

The “innate-like” T cell compartment, known as Tinn, represents a diverse group of T cells 

that straddle the boundary between innate and adaptive immunity. We explore the transcriptional 

landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood 

using single-cell RNA sequencing (scRNA-seq) and flow cytometry. In human blood, the 

majority of Tinn cells share an effector program driven by specific transcription factors, distinct 

from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays 

an effector phenotype, while others share transcriptional features with developing Tconv cells, 
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indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not 

differentiate into multiple effector subsets but develop a mixed type 1/type 17 effector potential. 

Cross-species analysis uncovers species-specific distinctions, including the absence of type 2 Tinn 

cells in humans, which implies distinct immune regulatory mechanisms across species.

In brief

Our study presents a comprehensive atlas of human innate T (Tinn) cells in the thymus and blood, 

highlighting their blended type 1 and type 17 transcriptional profiles. Loh et al. use single-cell 

RNA sequencing and flow cytometry to reveal species-specific distinctions and potential divergent 

developmental pathways of Tinn compared to conventional T cells.

Graphical Abstract

INTRODUCTION

Conventional CD4+ and CD8+ T cells (Tconv) are essential for adaptive immunity, 

recognizing peptide antigens presented by HLA class I or II proteins via their T cell antigen 

receptors (TCRs). Upon antigenic stimulation, these T cells undergo transcriptional and 

epigenetic changes, secreting pro-inflammatory cytokines, acquiring cytotoxic abilities to 

clear pathogens, or forming memory T cells for rapid response upon reencounter. Thus, 

Tconv cells within the circulation are heterogeneous and are commonly classified into naive 
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(Tn), central memory (Tcm), effector memory (Tem), and terminally differentiated effector 

memory (Temra) subsets.1–3

Innate-like T cells (Tinn), such as invariant natural killer T (iNKT) cells, mucosal-associated 

invariant T (MAIT) cells, and certain γδ T cells, maintain consistent TCRs among 

individuals and function without prior pathogen exposure. They account for 10%–20% 

of human T cells.4,5 Tinn cells, originating from thymic progenitors, do not recognize 

peptides presented by HLA class I or II. Instead, iNKT cells use semi-invariant TCRs 

to recognize lipid antigens presented by CD1D.6 MAIT cells, also characterized by semi-

invariant TCRs,7 recognize riboflavin precursor-derived metabolites presented by MR1.8,9 

Some γδ T cells recognize self- and foreign phosphoantigens in conjunction with the 

transmembrane butyrophilin-family receptors BTN2A1-BTN3A1-BTN3A2 complex.10–12 

The antigens recognized by other human γδ T cell populations remain unclear.13 Thus, 

Tinn cells enhance immune detection of diverse threats.14–16 Furthermore, the secretion 

of cytokines at steady state by mouse iNKT cells influences surrounding cells and Tconv 

development,17–19 suggesting that they may also function as gatekeepers, ensuring proper T 

cell development and maturation.

The conservation of Tinn cells throughout mammalian evolution indicates their crucial 

and non-redundant role in the immune system, which may be attributed to their rapid 

activation kinetics and their ability for TCR-independent activation.20–22 In mice, the 

rapid effector capacity of Tinn cells stems from unique transcriptional programs formed 

during their development in the thymus.23,24 Analogous to CD4 Tconv cells, which can be 

polarized by cytokines into T helper (Th) phenotypes such as Th1, Th2, and Th17 that 

secrete interferon-γ (IFN-γ), interleukin-4 (IL-4), and IL-17, respectively, mouse Tinn cells 

diverge into distinct, terminally differentiated subsets that can be readily identified based 

on the expression of specific transcription factors (TFs) such as PLZF, GATA3, T-bet, and 

RORγt.17

In this study, using single-cell genomics and flow cytometry, we assessed the range of 

phenotypic states Tconv and Tinn cells can adopt in vivo in the human thymus and blood. 

We uncovered that unlike adult blood Tinn cells most postnatal thymic Tinn cells resemble 

naive Tconv cells, with few displaying an “effector” state. A distinct transcriptional program 

is shared among human Tinn cells, and major TFs driving this program are also expressed in 

mice. However, unlike the mouse, human Tinn cells do not form distinct subsets but develop 

a mixed type 1/type 17 effector program. We further highlight differences in CD1D and 

SLAMF6 expression in the thymus between the two species, which could potentially impact 

the maturation process of iNKT cells in humans. This comprehensive transcriptomic dataset 

of human Tinn cells provides a valuable resource to explore their fundamental properties and 

may serve as a guide for their strategic application in immunotherapeutic approaches.
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RESULTS

Single-cell RNA-sequencing analysis of T cell maturation and post-maturation stages in 
humans

We explored the transcriptional profiles of Tinn and Tconv cells through single-cell RNA 

sequencing (scRNA-seq) of antibody DNA-barcoded (“hashtags”) tetramer-sorted iNKT 

(PBS57-CD1d tetramer+, TRAV10+), MAIT (5-OP-RU-MR1 tetramer+, TRAV1–2+), and 

total γδ T cells, along with single-positive (SP) CD4 and CD8 Tconv cells from pediatric 

thymus and adult blood samples (Figure S1). A subset of samples was also subjected to VDJ 

sequencing (Figure 1A and Table S1). We analyzed 78,355 cells (37,369 pediatric thymus 

and 40,986 adult blood) after quality control, integrating them into a reference dataset 

(Figures 1B, 1C, S2A, and S2B). Using unsupervised clustering, we identified 18 distinct 

and stable clusters (c), primarily separating into thymus (c0–c9) or blood-associated regions 

(c12–c17, Figures 1C and S2C), with transitioning clusters (c10 and c11) showing cells from 

both tissues (Figures 1D and 1E), representing naive T cells prepared to leave the thymus 

or just entering the blood, in agreement with their over-representation of an “egress” gene 

signature25 (Figure 1F and Table S3).

Cluster identities and transcriptional states were determined using reference genes (Figures 

S3A and S3B; Table S2), with cell types validated by neighbor voting26 with the human 

thymus atlas27 (Figure S4). Early T cell development included immature single positive 

(ISP) cells (c0 and c1), double-positive (DP) thymocytes (c2), and early SP stages 

characterized by CCR9 expression (c3 for CD4 SP and c9 for CD8 SP). Later stages 

expressed CCR7 (c11 for CD4 SP, c10 for CD8 SP; Figure S5A). Differentially expressed 

gene (DEG) analysis comparing CD4 SP cells (c3 and c11) to CD8 SP cells (c9 and c10) 

further confirms these annotations (Figure S5B). Specialized lineages were also detected, 

including CD8αα cells (GNG4 and NUCB2), thymic γδ T cells (TRDC, TRGC2), and 

regulatory T cells (Tregs) with high expression of FOXP3 (c5, c6, and c7, respectively). 

Other signaling states included “agonist” cells with high levels of TF transcripts associated 

with TCR signaling (c4; NR4A1, EGR1, EGR3, and NFKBID), cells with high expression 

of type I IFN signaling genes (IFI6, MX1, and IFI44L in c8), and AP-1 TFs (JUN, FOS, 

JUNB in c12). We also found cells (c13 through c17) expressing effector-encoding genes 

(GZMK, GZMH, GZMB, PRF1, and CCL5), suggesting involvement in effector functions 

of these cells (Figures S3A, S3B, and S5A). Altogether, we observed cells with distinct 

transcriptional profiles, representing unique cell types (CD8αα, Tregs) and stages of T cell 

development and maturation.

Identification of the gene-expression programs that characterize T cell populations in 
thymus and blood

Deciphering scRNA-seq data can be challenging due to the complexity of gene-expression 

patterns reflecting cell identity and activity. We used consensus non-negative matrix 

factorization (cNMF)28 to reduce dimensionality, identifying 12 gene-expression programs 

(GEPs; Figure 1K and Table S4). Each cell type’s contribution to these GEPs was assessed, 

revealing some GEPs shared across cell types, with others unique to specific clusters 

(Figures 1G and 1K). GEPs 7–11 were linked to thymic γδ T cells, Tregs, thymic CD8αα 
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T cells, quiescent ISP, and proliferating ISP, respectively (Figure 1K). GEP 12 was excluded 

due to batch effects (Figure S6). GEPs 1 and 2, marked by CCR9 and CCR7, were active 

in early and late thymic T cells, respectively. GEP3 was expressed by naive T cells. GEPs 

4, 5, and 6, associated with “effectorness,” were active in clusters 12, 13–14, and 15–

17, respectively (Figures 1G–1K). Leveraging insights from these GEPs, we conducted 

an in-depth analysis of thymic and blood T cell populations, providing an integrated 

understanding of T cell differentiation and function.

Gene-expression similarities between αβ thymocyte lineages

We separated each sample by cell type and tissue, using the identifying tag (Figure 1G). 

CD4+ thymic cells were found in clusters 0–4, 7, 8, and 11, while CD8+ thymic cells were 

in clusters 2 and 5–10. Cell proportions in each cluster were consistent across samples, with 

about 1% (1.1% ± 0.4%) of the cells showing an effector signature (Figures 1G–1I and Table 

S3). Thymic iNKT cells were distributed similarly to conventional CD4+ SP, and thymic 

MAIT cells shared clusters with CD8+ SP (Figure 1G). Thymic γδ T cells were distinct, 

mainly in cluster 6 and GEP7 (Figures 1G and 1K).

Global gene-expression analysis between thymocyte lineages revealed three distinct patterns. 

First, effector stages of iNKT, MAIT, and γδ thymocytes (clusters 12–17) exhibited high 

gene-expression similarity. Second, non-effector γδ thymocytes showed no expression 

similarity to other lineages. Third, non-effector iNKT and MAIT thymocytes (clusters 

0–11) resembled CD4+ and CD8+ thymocytes, respectively (Figure 2A). This suggests 

that specific subpopulations of iNKT thymocytes engage transcriptional programs akin to 

those of conventional CD4+ thymocytes, with a parallel observation between MAIT and 

CD8+ thymocytes. Pseudo-bulk DEG analysis between non-effector iNKT/CD4+ and non-

effector MAIT/CD8+ further demonstrated that non-effector iNKT and CD4+ thymocytes 

share 43 commonly upregulated and 38 commonly downregulated genes (Figure 2B). Key 

genes such as GATA3, ZBTB7B, and CD40LG were upregulated in non-effector iNKT 

thymocytes, indicating CD4 lineage differentiation, while CD8A, CD8B, and RUNX3 were 

elevated in non-effector MAIT thymocytes. Using DEG analysis between CD4+/MAIT and 

CD8+/iNKT cells as a negative control revealed only EPHB6, ZFAS1, and EEF1A1 as 

differentially expressed (Figure 2B). Comparing conventional CD4+/CD8+ thymocytes with 

non-effector iNKT/MAIT cells highlighted 11 DEGs (Figure 2C), including ZBTB16 and 

SLAM family receptors SLAMF5 (CD84) and SLAMF6, underscoring specific pathways 

crucial for effector differentiation, similar to observations in mice.23

Unbiased transcriptomic analysis of human Tinn differentiation

To further explore the transcriptional heterogeneity of human Tinn thymocytes, we re-

analyzed iNKT and MAIT cell populations individually (Figures 2D–2E and S7). We 

identified seven clusters for both cell types (Figure 2D), with some variability in their 

proportion across donors (Figures S7B and S7F). Five major cell signatures were shared 

across Tconv, iNKT, and MAIT cells (Figures S3C and S3D). First, we observed a distinctive 

gene signature associated with CD8αα T cells (captured by GEP9; Figure S8; Tables S5 and 

S6). This signature was characterized by the heightened expression of NUCB2, MINDY2, 

and HIVEP3 (Figures S3C and S3D), and intriguingly, it was observed in both iNKT and 
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MAIT cells (termed NKT_c0 and MAIT_c1; Figures S7C and S7G). This subset of thymic 

CD8A-expressing iNKT cells, which also exhibited some PLZF expression while lacking 

KLRB1 (coding for CD161), EOMES, and GZMK expression (Figure 2E), could be readily 

identified using flow cytometry (Figure S9). Second, we identified a shared pattern of 

expression for the CCR9 and CCR7 chemokine receptors across Tconv cells, iNKT cells, and 

MAIT cells (Figure 2E). Initially, iNKT and MAIT cells exhibited an upregulation of CCR9 
in conjunction with TOX and SATB1 (Figures S3C and S3D), resembling the developmental 

program of early developing CD4 SP and CD8 SP cells, respectively. Subsequently, the 

elevated expression of CCR7 marked cells at a seemingly more advanced developmental 

stage (termed NKT_c2 and MAIT_c4). These sequential waves of chemokine receptor 

expression align with gene modules GEP1 and GEP2 (Figure S8 and Table S4), suggesting 

their sequential induction during the development of CD4, CD8, iNKT, and MAIT cells. 

These findings establish that the human thymus harbors iNKT and MAIT cells with a 

transcriptome resembling that of developing naive Tconv cells. The existence of such naive-

like populations (CD161−EOMES−GZMK−) of iNKT and MAIT cells in the human thymus 

was confirmed by flow cytometry (Figure S9).

Third, we discovered iNKT and MAIT cells characterized by upregulation of genes 

associated with type I IFN signaling such as MX1 and IFI6, similar to CD4 and 

CD8 SP cells (NKT_c3 and MAIT_c5; Figures S3C and S3D). Fourth, TCR signaling/

AP-1 signatures were found in iNKT cells, with AP-1 TFs FOS and JUN upregulated 

alongside ZBTB16 and KLRB1. These cells also expressed CD4 transcripts but not CD8A 
(NKT_c5; Figures 2E and S3C). The TCR signature was more pronounced in MAIT 

cells, where a small subset showed clear upregulation of genes involved in TCR signaling 

(NR4A1, NFKBID, REL; MAIT_c3; Figure S3D). Unlike Tconv, a proportion of both 

thymic iNKT and MAIT cells displayed an “effector” signature. iNKT cells in cluster 6 

(NKT_c6) express classically iNKT-associated genes along with upregulation of effector 

genes usually associated with type 1 or type 17 immunity (EOMES/GZMK and RORA/

CCR6, respectively; Figures 2E and S3C). Some of these cells expressed CD8A transcripts, 

suggesting that CD4+ and CD8+ iNKT cells might develop into transcriptionally distinct 

subsets, with CD8+ iNKT cells having a more effector-associated signature. We found the 

same type 1 (EOMES/GZMK) and type 17 (RORA/CCR6) immunity effector co-expression 

signatures in MAIT cells (MAIT_c6; Figures 2D and S3D), with upregulation of genes 

encoding for granzymes (GZMA and GZMK) and chemokines (CCL5), as well as genes 

previously associated with MAIT cells29,30 (KLRB1, SLC4A10, IL23R; Figure 2E).

Analysis of the thymic γδ T cells identified eight distinct clusters (Figures 2D, S3E, 

and S7I–S7L; Table S7), confirming previous findings on pediatric γδ thymocytes25 with 

immature populations (GD_c0, 1, 2), TCR activation profiles (GD_c3), type I IFN response 

(GD_c6), and effector γδ T cells with egress and mixed type 1/type 17 effector potential 

(GD_c7). We also observed cells with a cycling gene signature (GD_c4), which was notably 

absent in iNKT and MAIT cells. Overall, we found a shared utilization of a mixed type 

1/type 17 effector programs by iNKT, MAIT, and γδ T cells, with 28.7% ± 22.3% of thymic 

Tinn cells displaying this effector signature (Figures 1G and 1I, in clusters 12–17).
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Lastly, because effector Tinn cells in the thymus might represent cells that initially acquired 

an effector signature in the blood and subsequently recirculated back to the thymus, we 

compared expression profiles between thymic and blood effector iNKT and MAIT cells. We 

found distinctive tissue-specific gene-expression profiles for both cell types (Figure S5C), 

indicating that thymic effector Tinn cells are unlikely to be derived from recirculating blood 

cells.

Effect of clonal selection on iNKT, MAIT, and γδ T cells’ effector states

To investigate whether Tinn cells with an effector transcriptome had distinct TCR repertoires 

compared to naive Tinn cells, we conducted paired VDJ sequencing (Figure 3).

For iNKT cells, most VDJ sequenced cells used the TRAV10 gene segment (encoding for 

the Vα24 chain) rearranged with TRAJ18 (Figures 3A and 3B), resulting in a canonical 

CDR3α sequence of 14 amino acids (Figure 3C), crucial for antigen recognition.31 This 

invariant TCRα chain paired with diverse TCRβ rearrangements, mainly involving the 

TBV25 chain (Figure 3D), and was used evenly across all clusters (Figure 3E). The Shannon 

index, a measure of TCR diversity, revealed that no clonal selection had occurred or 

was associated with effector transcriptome development (Figure 3F), and no shared TCR 

clonotypes were identified between naive- and effector-like cells.

Thymic MAIT cells primarily used the TRAV1–2 gene segment (encoding for the Vα7.2 

chain) with TRAJ33, TRAJ20, and TRAJ12 (Figures 3G and 3H), maintaining a conserved 

Y95 residue in the CDR3α loop (Figure 3I) essential for MAIT cell activation.32,33 These 

TCRα chains paired with diverse TCRβ chains (Figure 3J) dominated by TRBV6, TRBV20, 

and TRBV4 gene segments.34,35 Like iNKT cells, MAIT cells showed no shared TCR 

clonotypes and no clonal selection in effector transcriptome cells (MAIT_c6) compared to 

naive-like cells (MAIT_c2–4), based on the Shannon index (Figure 3K).

Effector γδ T cells (GD_c7) were enriched for cells expressing TRDV2 and TRGV9 gene 

segments, while TRDV1 and TRDV3 segments were excluded from this cluster (Figure 

3L). Some TRDV2+ or TRGV9+ cells were also found in non-effector clusters, suggesting 

a potential role for these gene segments in the development of effector γδ T cells in the 

postnatal human thymus. Supporting this hypothesis, we observed that the rearrangements of 

both the Vδ2 chains and associated Vγ9 chains differed largely between cells in the effector 

versus non-effector clusters (Figure 3N). Specifically, the Vγ9 chains of effector cells were 

found to be preferentially rearranged with the TRGJP gene segment and enriched for the 

public CDR3 sequence typically found among Vδ2Vγ9 γδ T cells in adult blood36 (Figure 

3O), whereas Vδ2+ cells in the non-effector clusters showed more diverse Vg gene usage 

and rearrangements (Figure 3N). In summary, the acquisition of effector programs in iNKT 

and MAIT cells is not associated with changes in TCR diversity, whereas Vδ2 and Vγ9 

chain rearrangements in γδ T cells suggest a predisposition toward the effector program.

Gene-expression programs that characterize T cell effector functions

To further characterize the functionality of Tinn and Tconv cells in the blood, we examined 

the distribution of these cell types across transcriptional clusters. Conventional CD4+ T 

cells were primarily located in cluster 11 (naive CD4 T cells) and cluster 7 (Tregs). CD4+ 
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T cells also appeared in effector clusters, particularly clusters 12 and 16, with proportions 

varying among donors (18.4%–93.7%; Figures 1G and 1J). Blood CD8+ T cells were 

predominantly in cluster 10 (naive CD8 T cells), with varying proportions in effector 

clusters, reflecting differences in donor immunological history (16.5%–94%; Figure 1J). 

In contrast, the majority of blood Tinn cells (~94.3% ± 6.7%) were distributed across effector 

clusters 12–17, regardless of donor (Figure 1J).

We next investigated transcriptional states in blood T cell populations using cell hashtags 

to reanalyze blood iNKT cells, MAIT cells, γδ T cells, and Tconv CD4+ and CD8+ T cells 

individually (Figures 4A and 4B). Each cell type was found within previously identified 

GEPs (GEP3–6; Figure 1K; Tables S8, S9, S10, S11, and S12), albeit with varying 

proportions for each cell type (Figures 4C and 4D). To contextualize these GEPs, we 

computed overlap scores and statistically assessed their enrichment with literature-derived 

signatures.37–40 Subsequently, we scored the joint signature-GEP interactions in our dataset 

(Figure S10). GEP3 was found to be closely associated with signatures of naive T cell 

characteristics. In contrast, GEP4 displayed similarities with Tcm, Tem, or literature-derived 

signatures classified as a mix thereof (Tcm/Tem), while GEP6 exhibited characteristics akin 

to Temra. GEP5, on the other hand, shared elements with Tem cells and previously identified 

CD8 MAIT signatures (Figure S10A).

Blood iNKT cells predominantly expressed GEP3 or GEP5, with some expressing GEP4 

or GEP6 (Figure 4D). GEP4-expressing iNKT cells had CD4 transcripts, while GEP5 and 

GEP6 cells lost CD4 expression (Figures S11A and S11B). To validate this observation, we 

examined the cellular phenotype of blood iNKT cells. Blood CD4+ iNKT cells were mostly 

PLZF−CD161−EOMES−GZMK− but CCR7+, indicating a naive GEP3 program (Figure 

S11C). In contrast, CD8+ and double-negative iNKT cells were mostly PLZF+CD161+ 

and displayed an effector phenotype (EOMES+GZMK+CCR7−CD62L−; Figure S11). 

Interestingly, the distribution of these programs varied significantly among different donors 

(Figure 4B). These findings are in line with previous data indicating that CD4-negative 

iNKT cells become more prevalent in the blood with age, eventually becoming the dominant 

population in the adult blood iNKT cell compartment.41,42 This suggests that CD4-negative 

iNKT cells may originate from CD4+ iNKT cells that undergo a loss of CD4 expression 

as they transition toward a more effector-like state. Conversely, when examining MAIT 

cells in the blood, we observed that the majority of them exhibited the GEP5 program, 

with only a minor fraction utilizing the GEP6 program (Figure 4D). This GEP phenotype 

was further confirmed by flow cytometry, revealing that most MAIT cells were CD8+ 

and, interestingly, that all MAIT cells displayed a uniform effector state (characterized 

by PLZF+CD161+EOMES+GZMK+CCR7−CD62L−), regardless of CD8 expression (Figure 

S12). These findings indicate that MAIT cells in the bloodstream primarily exist in an 

exclusive transcriptional state.

Blood γδ T cells were stratified into five clusters: naive (c0, GEP3), cycling (c4, GEP11), 

and clusters c1–c3 categorized into GEP5 or GEP6 programs (Figures 4C and 4D). This 

division in GEP utilization closely mirrored the specific TCR usage among these cells. 

TRDV2/TRGV9-expressing cells were predominantly GEP5, while TRDV1+ or TRDV3+ 

cells were enriched in GEP6 (Figures S13A–S13C). Flow cytometry confirmed Vγ9+Vδ2+ 
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T cells primarily expressed PLZF and GZMK, while Vδ2− T cells were increased in 

GZMB+ cells (Figures S13D and S13E). Thus, GEP5 is an effector gene module unique 

to Tinn cells, indicating common transcriptional states in human Tinn cells.

The distribution of CD4 and CD8 Tconv cells in the blood revealed two primary patterns. 

Tconv cells were found either within clusters containing naive cells (clusters 0 and 1) 

characterized by high expression of GEP3 or dispersed across clusters of cells displaying 

a gradient of the GEP6 program, with intermediary cells expressing GEP4 (Figure S14). 

The proportions of cells in these clusters exhibited variations among donors (Figure 4B). 

Together, these findings underscore the distinct associations between different T cell types 

and effector programs. In the blood, CD4− iNKT, MAIT, and Vγ9+Vδ2+ γδ T cells 

predominantly employ the GEP5 program, a program also shared by effector Tinn cells 

in the thymus (Figure S8). Conversely, conventional CD4+ and CD8+ T cells transition into 

effector cells along a gradient defined by the GEP6 program. Notably, this GEP6 program is 

also shared by Vδ3+ and Vδ1+ γδ T cells.

Next, we used pairwise DEG analyses between T cell lineages in human blood to identify 

lineage-specific genes. We uncovered a total of 167 genes that exhibited significant 

differential expression (padj < 0.01) in at least two of the comparisons we conducted (Figure 

4E). These distinct patterns of DEGs provided insights into changes linked to the transition 

from a “naive” state to an “effector” state across cell types. Furthermore, we identified 

genes that were commonly expressed by two distinct cell types when compared to the 

others. Nevertheless, we did not readily discern any gene-expression patterns specific to a 

particular cell type. However, intriguingly, among these, a group of 104 genes distinguished 

γδ, MAIT, and iNKT cells from Tconv CD4 and CD8 T cells, with 63% overlapping with 

GEP5. Given that only Vγ9+/Vδ2+ T cells share the GEP5 program with iNKT and MAIT 

cells, while Vδ2− T cells exhibit greater similarity to Tconv cells as they share the GEP6 

program (Figure S13C), we explored whether we could identify cell-type-specific gene 

signatures specifically among GEP5-expressing cells using the same analytical approach. 

Surprisingly, the results demonstrated that the only significant DEGs between iNKT, MAIT, 

and γδ T cells employing the GEP5 program (Figure 4F) were genes encoding the constant 

regions of the TCR genes (TRGC1, TRAC), the CD8 coreceptor (CD8A, CD8B), and the 

CD94 receptor (encoded by KLRD1). Thus, human blood Tinn cells, which encompass 

iNKT, MAIT, and Vγ9+/Vδ2+ cells, distinguish themselves from Tconv cells by employing 

a specific gene program, but there is minimal transcriptional difference among Tinn cells 

themselves.

The effector GEPs exhibit distinct migration, cytokine, chemokine, and integrin 
characteristics established by distinct gene-regulatory networks

The differentiation states of T cells are intricately linked to their phenotypic, functional, 

and migratory attributes, making their characterization clinically relevant. Each GEP aligns 

with distinct sets of chemokine and cytokine receptors as well as molecules related to 

cytotoxicity, NK receptors, and integrins (Figure 5A). For example, the GEP4 program, 

shared by Tcm/Tem (Figure S10) and some iNKT cells depending on the donor (Figures 

4B–4D), shows high expression of chemokine receptors CXCR3 and CCR4, sphingosine-1-
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phosphate receptor 4, and oxysterol receptor GPR183, with the latter offering survival and 

migratory signals to thymocytes and CD4 T follicular helper cells.43 GEP4 also features 

high levels of IL2RA, IL6R, IL4R, and ITGB1, while conspicuously lacking cytotoxic 

molecules (Figure 5A). In contrast, the GEP5 program, predominant in Tinn cells across 

most donors (Figures 4B–4D), shows elevated expression of CCR1, CCR2, CCR5, and 

CCR6, as well as CXCR6 and cytokine receptors such as IL18R1, IL18RAP, IL12RB1, 

IL12RB2, IL23R, and IFNGR1 (Figure 5A). This pattern includes GZMA and GZMK but 

lacks GZMB and GZMH (Figures 5A and S5A) and features the NK receptor KLRB1. On 

the other hand, the GEP6 program, mainly associated with Tem/Temra cells (Figure S10) and 

Vδ1+ and Vδ3+ γδ T cells across the majority of donors (Figures 4B, 4C, and S13), shows 

increased CX3CR1 expression (Figure S14), correlating with effector state differentiation 

in CD4 and CD8 T cells.44 GEP6 includes IFNG, CCL4, CCL5, and KLRD1, several 

integrins (ITGAL, ITGB2, ITGAM), and cytotoxicity genes such as GZMB, GZMH, and 

granulysin (GNLY), with reduced GZMK compared to GEP5 (Figure 5A). These findings 

align with studies indicating that GZMK+ and GZMB+ cells delineate Tcm and Tem/Temra 

cell populations.45,46

We then used a network inference approach to identify the activity of regulons—TFs and 

their targets—in single cells.47 We identified 149 of such regulons, with 11 regulons more 

active in Tinn compared to Tconv cells (Figure 5B). These regulons were governed by TFs 

such as ELK3, MBD2, CREM, NFE2L2, NR1D2, XBP1, MYBL1, RORA, MAF, CEBPD, 

and FOSL2. Curated analysis of their predicted target genes indicates that these TFs may 

play a central role in shaping the unique transcriptional profile observed in Tinn cells during 

steady-state conditions. This role encompasses the regulation of chemokine and cytokine 

receptors as well as other genes associated with Tinn cells, including ZBTB16 (encoding 

PLZF), the master regulator of the Tinn cell lineage (Figure 5C). A second group of regulons 

exhibited enriched activity within effector Tconv cells, although some shared activity with 

Tinn cells (including EOMES, RUNX3, PRDM1, and FLI1; Figure 5B). As Tconv cells 

differentiate into Tem/emra cells, there is an increased activity of regulons driven by TBX21, 

KLF, and NFAT family TFs (Figures 5B and 5D), in agreement with their functions in 

regulating the cytolytic activity of CD8 T cells.48–50 Taken together, we discovered novel 

candidate regulators of Tinn and Tconv effector programs, along with their predicted target 

genes, which warrant further experimental validation.

Cross-species analysis of thymic Tinn cell development

Only a minority of human Tinn thymocytes display an effector phenotype, contrasting with 

the predominant effector association of mouse Tinn thymocytes, which develop into distinct 

effector subsets.23,51,52 To explore transcriptional similarities between mouse and human 

Tinn cells in the thymus, we constructed a reference mouse Tinn dataset from nine studies.51–

59 This dataset revealed 13 transcriptionally distinct clusters, with iNKT, MAIT, and γδ T 

cells coexisting in variable proportions (Figures 6A and S15; Table S13). Lineage-specific 

clusters included those unique to γδ T cells (c1 and c2, immature Cd24a+Gzma+ cells51,58), 

signaling cells (c3 and c4), cycling cells (c5), type 1 cells (c8 and c9), type 2 cells (c6 and 

c7), and type 17 cells (c10 and c11). Cluster 0, expressing markers such as Sell (encoding 

for Cd62l), Klf2, Ccr7, Foxo1, and S1pr1, likely represents Tinn cells positively selected on 
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thymic epithelial cells (TECs), bypassing the “innate” pathway.23,60 We performed a cross-

species comparison of cell identities by assessing the pairwise correspondence between 

murine Tinn signatures and human iNKT, MAIT, and γδ T cell clusters (Figure 6B). Human 

iNKT cells in cluster 0 (NKT_c0), exhibiting a CD8αα T cell gene signature, showed the 

strongest resemblance to signaling cells (Figure 6B), likely due to shared TCR activation 

genes. Conversely, cells with an effector profile (NKT_c5 and NKT_c6) showed the closest 

relationship to mouse type 1 and to a lower extent type 17 cells (Figure 6B). Importantly, we 

did not find human clusters corresponding uniquely to specific mouse subsets, confirming 

that human iNKT cells do not differentiate into distinct subsets but rather acquire a mixed 

type 1/type 17 transcriptome. We also did not detect any human iNKT cell clusters that 

matched with the mouse type 2 subset with a high degree of confidence (area under the 

receiver operator characteristic curve [AUROC] > 0.65; Figure 6B), suggesting that type 2 

iNKT cells are likely absent in the human thymus. Corroborating this finding, we did not 

detect any expression of IL-4- or IL-13-encoding transcripts in human thymic iNKT cells, 

which are typically associated with mouse type 2 thymic iNKT cells. Similar patterns were 

observed for MAIT and γδ T cells in the human thymus, with effector cells resembling 

more closely mouse type 1 and type 17 effector cells (Figure 6B). This indicates that human 

Tinn cells follow a distinctive path with mixed effector potential, unlike the mouse model 

with multiple effector subsets.

We next assessed whether the TFs driving human Tinn cell regulons (Figure 5A) were also 

expressed in mouse Tinn cells (Figure 6C). Most TFs were indeed expressed in mouse 

Tinn cells, although their expression varied across clusters. However, exceptions included 

CEBPD, EOMES, and MYBL1, which were highly expressed in human Tinn cells (Figure 

S5A) but barely detectable in mouse Tinn cells (Figure 6C). Conversely, mouse type 1 Tinn 

cells exhibited high T-bet levels (encoded by Tbx21, Figure 6C), while human Tinn cells 

had low T-bet expression (Figures S5A, S11B, and S12B). These findings highlight some 

species-specific differences in TF expression that could play a role in modulating Tinn cell 

development and functions.

CD1D, SLAMF6, and SLAMF1 expression in the mouse and human thymus

The existence of Tinn cells in the human thymus with a transcriptome similar to developing 

Tconv cells raises questions about their origin. In mice, a subset of MAIT cells is positively 

selected by radiation-resistant TECs, which do not lead to a memory or effector phenotype 

acquisition.52,59 This is because TECs lack SLAM receptors, crucial for Tinn commitment.61 

Although this is more common among MAIT cells, some thymic mouse iNKT cells also 

exhibit a similar transcriptome.23

We hypothesized that naive Tinn cells in humans might result from a similar TEC-mediated 

selection process. Given the challenge of detecting surface MR1 expression at steady 

state, we investigated CD1D protein expression in the thymus instead. Mouse TECs have 

been reported to express CD1d on their surface.62 scRNA-seq of the mouse thymus27 

confirmed Cd1d1 expression across various cell types, including thymocytes and cortical 

and medullary TECs (Figures 7A and 7B). Flow-cytometry analyses corroborated these 

findings (Figures 7C and 7D).
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In contrast, human thymus scRNA-seq data27 showed a more limited pattern of CD1D and 

SLAMF6 expression (Figures 7E and 7F). Human DP thymocytes express CD1D transcripts 

and surface CD1D molecules, but this expression is lost in mature SP thymocytes. Flow 

cytometry confirmed that, as in mice,61 SLAMF1 is expressed by human DP and SP 

thymocytes, but SLAMF6 is not detectable on the surface of human thymocytes (Figure 7H). 

Additionally, human cortical TECs (cTECs) express CD1D transcripts and have surface 

CD1D protein, whereas medullary TECs (mTECs) do not (Figures 7G and 7H). This 

interspecies difference in CD1D and SLAM family members’ expression might affect iNKT 

cell development, given the crucial role of mTECs in murine iNKT cell development.19,63

DISCUSSION

In this study, we employed multi-modal single-cell transcriptomics to explore the diverse 

phenotypic states of Tinn cells within the human thymus and blood. By comparing these 

states to those of Tconv cells, we provided insights into human T cell biology and a 

comprehensive resource for further studies of health and disease. Our work emphasizes 

Tinn cells as promising candidates for immunotherapies.64–66

Our study demonstrated that the majority of Tinn cells in adult human blood exhibit a 

distinct transcriptional program shared by most iNKT, MAIT, and Vδ2Vγ9+ T cells under 

steady-state conditions. This program implies a blended type 1/type 17 transcriptional 

pattern, driven by specific TFs that enable the expression of distinct chemokine and cytokine 

receptors, NK receptors, and cytotoxic molecules. This equips Tinn cells to swiftly respond 

to cytokines such as IL-12, IL-18, and IL-23 independently of TCR signaling.22,67 Notably, 

human Tinn cells constitutively express GZMK but lack GZMB while also expressing 

cathepsins necessary for activating granzymes.68 This suggests that Tinn cells are prepared to 

release active GZMK upon stimulation,69 which can induce pro-inflammatory cytokines45,70 

and activate complement,71 implying a role in immune regulation and inflammatory 

responses. In contrast, mouse Tinn cells do not express GZMK transcripts but possess pre-

formed cytokine-encoding transcripts, allowing for immediate responses.72,73 Hence, despite 

their evolutionary conservation, Tinn cells may have evolved species-specific mechanisms to 

provide early signaling and amplification of the adaptive immune response.

We identified TFs and their predicted target genes with increased transcriptional activity 

in human Tinn cells compared to naive and effector Tconv cells. Many of these TFs are 

associated with IFN-γ, cytotoxicity,48–50,74 and IL-17 production,75–77 consistent with 

the type 1/type 17 transcriptional program observed in Tinn cells. In mice, the Th1/Th17 

paradigm identifies IL-12 and IL-23 as cytokines that induce IFN-γ and IL-17 production, 

respectively. By contrast, activating human MAIT cells through their TCR or with IL-12 and 

IL-18, and stimulating Tinn cells with IL-23, results in IFN-γ production.67,78 Yet, only a 

subset of these cells produces IL-17 in the same conditions, a phenomenon thought to be 

influenced by epigenetic modifications at the IL-17 gene loci.78 Underlining the importance 

of understanding the regulation of IL-17 production in Tinn cells, IL-17 production in 

human MAIT cells is increased in diseases such as severe asthma, community-acquired 

pneumonia in children,79,80 and colorectal cancer patients.81 Interestingly, NR1D family 

TFs, associated with Th17 cell regulation,77,82 drive regulons in human Tinn cells. These 
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factors are regulated by the circadian clock, suggesting that circadian rhythms might affect 

IL-17 production in Tinn cells, a hypothesis that warrants further investigation.

While many TFs essential for the human Tinn program are also expressed in mouse Tinn 

cells, there are notable exceptions such as CEBPD, EOMES, and MYBL1, which are highly 

expressed in human Tinn cells but barely detectable in mouse Tinn. CEBPD regulates CCR6 

in human MAIT cells83 and may play a crucial role in the human Tinn program. MYBL1 is 

expressed in human Tinn cells,84 but its function remains to be defined. EOMES, essential 

for mouse iNKT cell development, shows low expression under steady-state conditions in 

mice85,86 but is highly expressed in human Tinn cells. By contrast, T-bet is highly expressed 

in type 1 mouse Tinn cells and is essential for their development and functions.86,87 

However, human effector Tinn cells, which are most similar to mouse type 1 Tinn cells, 

express relatively low levels of T-bet. Instead, T-bet’s expression and activity were correlated 

with the acquisition of the GEP6 program by Tconv cells in humans. These findings suggest 

the possibility of species-specific transcriptional regulation of Tinn cells, which could be 

relevant for their future therapeutic applications. Curiously, high-confidence regulons such 

as PLZF and Rorγt were not identified in the gene-regulatory network of human Tinn cells, 

possibly due to the relatively low gene detection in this context.

In the postnatal thymus, iNKT and MAIT cells display a transcriptional profile similar to 

that of developing conventional CD4+ and CD8+ T cells. Unlike conventional thymocytes 

selected by cTECs, murine iNKT and MAIT cells undergo selection by DP thymocytes 

via SLAM family receptors, leading to PLZF expression and effector differentiation.61,88,89 

A minor fraction of murine MAIT cells with a naive-like phenotype is TEC selected.52 

The corresponding expression patterns of CD1d on cTECs and DP thymocytes in both 

murine and human thymus suggests a similar selection of human iNKT thymocytes by 

cTECs or DP thymocytes. The expression of PLZF in non-effector iNKT cells, as observed 

through both scRNA-seq and flow cytometry, supports the hypothesis of DP selection. 

However, the initial selection process may not provide all necessary signals for complete 

maturation, as cells just experiencing positive selection are more akin to CD4+ and CD8+ 

Tconv cells. Additional signals may be required for human iNKT and MAIT cells to acquire 

effector functionalities. This hypothesis aligns with the prevalence of naive iNKT and MAIT 

cells in human cord blood and the gradual increase in effector Tinn cells with age.41,42,90 

Unlike murine Tinn cells, which use SLAMF6 and SLAMF1 to induce PLZF expression 

and effector maturation,61 human thymocytes do not express SLAMF6, possibly affecting 

Tinn cell maturation. Additionally, human mTECs lack CD1D expression, which could also 

contribute to the variations in iNKT cell maturation observed in cross-species analyses.19,63

Our study highlights a distinct path taken by Tinn cells with an effector program in 

the human postnatal thymus, characterized by a mixed type 1/type 17 effector potential, 

contrasting with mice where Tinn cells split into multiple effector subsets. We did not 

observe specific clusters of proliferative human iNKT and MAIT thymocytes. In mice, 

proliferative thymic iNKT and MAIT cell clusters are identifiable52,54,55 and reflect the 

proliferative burst following positive selection,91 crucial for establishing a substantial Tinn 

cell pool. While Tinn cells constitute 1%–2% of thymocytes in mice, their proportion is 

much lower in pediatric humans. Moreover, our analysis did not reveal any type 2 Tinn 

Loh et al. Page 13

Cell Rep. Author manuscript; available in PMC 2024 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells in humans, unlike in mice, where thymus-resident iNKT2 cells significantly impact the 

thymic environment through IL-4 production.17,18,63,92,93 The scarcity of type 2 Tinn cells in 

the human thymus suggests that these phenomena may be species specific or regulated by 

different cell types in humans.

Taken together, our findings hold significance in elucidating the diverse functional attributes 

of human Tinn cells and their potential applications in immunotherapeutic contexts.

Limitations of the study

Our study presents a comprehensive atlas of human Tinn cells in the thymus and blood, 

revealing a blended type 1 and type 17 transcriptional profile. However, there are 

several limitations to consider. We noted variations in effector cell percentages among 

donors, which may be influenced by factors such as age, sex, or immunological history. 

Additionally, our analysis focused on steady-state transcriptional profiles, leaving unclear 

how these profiles might change in various disease states. Comparing pediatric thymic 

T cells with adult blood samples introduces age-related differences that could impact 

transcriptional profiles. Ideally, matched samples would offer a more accurate comparison, 

but the limited availability of iNKT and MAIT cells in neonates presents challenges in 

obtaining sufficient cell quantities. Future research should explore thymus-derived fetal Tinn 

cells to investigate whether they exhibit specific type 1 and type 17 profiles akin to those 

described in mice. Recent studies on fetal γδ T cells suggest that fetal Tinn cells might 

also develop unique transcriptional subsets.25 Given that iNKT and MAIT cells appear 

from gestational weeks 18–2394,95 and fetal hematopoietic stem and progenitor cells are 

predisposed to innate-like lymphocytes,96 examining these cells could yield insights into 

their development and function. Furthermore, the potential for distinct waves of Tinn cells 

arising from fetal versus adult hematopoietic stem cells in mice97 highlights the need for 

further investigation into their transcriptional differences.

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Laurent Gapin 

(laurent.gapin@cuanschutz.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Data that support the findings of this study, including the raw data and 

Seurat object, were deposited in NCBI GEO with the accession code GEO: 

GSE249684. The data from this study is also displayed as a ShinyCell 

application at https://xspeciestcells.cshl.edu/.

• The code used for all analyses presented in this study is publicly available 

on GitHub: https://github.com/meyer-lab-cshl/xspeciestcells. The code for 

the browser application can be found at https://github.com/meyer-lab-cshl/

xspeciestcells-shiny.
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• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice—C57BL/6 mice were purchased from Jackson Laboratories. The Cd1d1d2−/− mice 

backcrossed to the C57BL/6 background were previously described.99 All mice used 

were between 6 and 15 weeks and age-matched for each experiment. Mice were raised 

in a specific pathogen-free environment at the Office of Laboratory Animal Research at 

the University of Colorado Anschutz Medical Campus or the Animal Core Facility at 

Cold Spring Harbor Laboratory. Animal procedures were approved by the UCD (00065) 

Institutional Animal Care and Use Committees and the Cold Spring Harbor Laboratory 

IACUC (23–1); all procedures were carried out in accordance with the approved guidelines.

Human—Thymus tissues were obtained from anonymous human donors who were 

undergoing medically necessary surgery where removal of a portion of the thymus was 

required toa facilitate exposure of the operative field. No tissues were obtained specifically 

for the purposes of this study. This use of discarded tissue was approved by the Institutional 

Review Board (IRB) of the University of Colorado Anschutz Medical Campus (IRB-17–

2159). Additional samples were collected under the Mount Sinai Biorepository with a 

Waiver of Consent and under the Northwell Health Biospecimen Repository (IRB 20–0150) 

with patient consent; the use of these human tissues was reviewed by Cold Spring Harbor 

Institutional Review Board. Pediatric thymus samples for scRNAseq came from individuals 

between 10 and 20 weeks old (Table S1), and samples used for flow cytometry experiments 

came from individuals between 4 days and 5 months old. Plateletpheresis leukoreduction 

filters (LRS chambers) were purchased from Vitalant Blood Center (Denver, CO, USA). 

Additional PBMCs were collected under COMIRB #17–2159 at the University of Colorado 

Clinical and Translation Research Centers (CTRC) which is a part of the Colorado 

Clinical and Translation Sciences Institute (CCTSI), with all donors having provided written 

informed consent. Overview of sample metadata is provided in Table S1.

METHOD DETAILS

Murine thymus samples—To isolate thymocytes, thymus tissue was immersed in RPMI 

1640 media (Corning, #10–040-CV) and gently pressed through a 40mm cell strainer using 

the plunger of a 1 mL syringe. For TEC isolation, the thymus tissue was cut into small 

fragments and submerged in RPMI 1640 media without phenol red (Gibco, #11835030), 

supplemented with 20mM HEPES, 1.3 U/mL Liberase TH, and 100 U/mL DNase I. These 

tissue fragments were incubated for 5 min on ice followed by an additional 20 min at 37°C. 

After digestion, the solution was repeatedly mixed with a micropipette to ensure complete 

tissue disintegration. To stop the digestion process, cells were suspended in HBSS, 4% 

heat-inactivated FBS (HI-FBS, FBS preheated for 20 min at 56°C), 20mM HEPES, and 

10U/mL DNase I. To remove immune cells, the cell suspension was incubated with rat anti-

mouse CD90.2 (clone 53–2.1), anti-mouse CD45 (clone 30-F11), and anti-mouse CD45-

BV605 (clone 30-F11) antibodies for 30 min at 4°C. Subsequently, the cell suspension was 
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placed on panning plates coated with goat anti-rat IgG for 20 min at room temperature. 

Unattached cells were then transferred to new panning plates for a second depletion round. 

The remaining cell suspension, following this depletion process, was prepared for flow 

cytometry analysis.

Human thymus samples – Thymocytes—To extract thymocytes for both scRNAseq 

and flow cytometry, the thymus tissue was placed in complete RPMI 1640 media (Gibco, 

#22400–071), with 10% HI-FBS, 1% non-essential amino acids, 1% sodium pyruvate, 

1X GlutaMAX, 1% Penicillin/Streptomycin, and 1X 2-Mercaptoethanol (Sigma-Aldrich 

#21985–023). The tissue was cut into small pieces, and gently pressed with the back of a 

10 mL syringe to release thymocytes. The resulting suspension was passed through a 70 μm 

filter. Thymocytes were isolated using a Ficoll-Paque density gradient provided by Cytiva. 

Tetramer staining for MAIT and iNKT cells, and surface staining for CD4+, CD8+ and γδ T 

cells was performed on freshly isolated thymocytes.

Human thymus samples – thymic epithelial cells—To enrich TECs for flow 

cytometry, thymus tissue was cut into small pieces and placed in RPMI 1640 media without 

phenol red (Gibco, #11835030), 5% HI-FBS, 1% Penicillin/Streptomycin, 10mM HEPES, 

and 0.55mM 2-Mercaptoethanol (Gibco, #21985023). The thymus tissue in this media was 

stirred on a magnetic plate for 40 min. The supernatant was removed and replaced with 

fresh media every 10 min to remove released thymocytes. The remaining tissue chunks were 

placed in a digestion buffer consisting of RPMI 1640 media without phenol red (Gibco, 

#11835030), 2% HI-FBS, 20mM HEPES, 80 U/mL DNase I, 1.6 U/mL Dispase I, and 0.3 

mg/mL Collagenase IV, for digestion at 37°C with gentle shaking. This digestion process 

was conducted in two sessions of 25 min each, in between which the supernatant was 

extracted and replaced with fresh digestion buffer. At the end of the digestion, the tissue 

chunks had nearly entirely disintegrated, and the digestion was halted by resuspending cells 

in the same buffer used for thymocyte release (RPMI 1640 media without phenol red, 

5% HI-FBS, 1% Penicillin/Streptomycin, 10mM HEPES, 0.55mM 2-Mercaptoethanol). The 

combined supernatants were further incubated in TrypLE Express Enzyme, 1mM MgCl2, 

2mM CaCl2, 100U/mL DNase I for 5 min at 37°C to obtain a single-cell suspension. The 

digestion was stopped by resuspending cells in the previously described thymocyte release 

buffer. To remove immune cells and erythrocytes, cells were incubated with mouse anti-

human CD3 (clone UCHT1), anti-human CD4 (clone RPA-T4), anti-human CD8ɑ (clone 

RPA-T8), anti-human CD45 (clone HI30) and anti-human CD235a (clone HI264) antibodies 

in HBSS, 4%HI-FBS and 20U/mL DNase I, for 30 min at 4°C. Cells were then placed on 

panning plates coated with goat anti-mouse IgG for 20 min at room temperature, and the 

unadhered cells were transferred to new panning plates for a second round of depletion. The 

remaining cells following depletion were then stained for flow cytometry.

Human peripheral blood samples—De-identified peripheral blood samples from the 

Human Immune Tissue Network Biobank (COMIRB # 17–2159) were collected using 

sodium heparin tubes. De-identified peripheral blood samples from the Vitalant Blood 

Center were acquired from plateletpheresis leukoreduction filter chambers (LRS). Peripheral 

blood mononuclear cells (PBMCs) were isolated from these samples using a Ficoll-Paque 
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density gradient provided by Cytiva. PBMCs were cryopreserved in FBS with 10% DMSO 

and stored in liquid nitrogen.

Magnetic-bead enrichment of iNKT and MAIT cells—To enrich for thymic MAIT 

and thymic/blood iNKT cells, up to 2 × 109 cells were incubated with MR1–5-OP-RU-PE 

or CD1d-PBS57-PE tetramers respectively in MACS buffer (1X PBS, 0.5% BSA, 2mM 

EDTA), for 25 min at room temperature. Cells were washed twice and incubated with 

anti-PE microbeads, followed by separation using an autoMACS Pro Separator (Miltenyi) 

according to manufacturer’s instructions. PE-microbead-labelled cells in the enriched 

fraction were stained with the specified panel of antibodies listed below.

Fluorescence-activated cell sorting—To sort CD4+ T, CD8+ T, γδ T, or peripheral 

blood MAIT cells, 2 × 106 cells unenriched cell suspensions were used. To sort iNKT cells 

(thymocytes or PBMCs) or thymic MAIT cells, the staining and sorting was performed 

on magnetic bead-enriched cell suspensions from 0.5 to 10 × 108 cells (above). All 

single cell suspensions were stained with efluor780 viability dye for 10 min at room 

temperature and washed once prior to cell surface staining. The cell suspensions were 

then stained in MACS buffer (1X PBS, 0.5% BSA, 2mM EDTA) at room temperature 

for 20 min, both with cell surface markers and a unique oligonucleotide-tagged antibody 

sample tag (Human Single Cell Sample Multiplexing Kit, BD Biosciences) to allow 

separation in downstream scRNAseq analyses. The following cell surface markers were 

included in the staining: CD3-AF488 (clone OKT3), CD14-eFluor450 (clone 61D3), CD19-

eFluor450 (clone H1B19), Vα7.2-BV785 (clone 3C10), Vα24-PerCP-Cy5.5 (clone C15), 

CD4-redFluor710 (clone OKT4), CD8α-PE-Cy7 (clone SK1), TCRγδ-BV650 (clone 11F2), 

FcγR block. Following cell surface staining, cells were washed twice and resuspended in 

MACS buffer prior to cell sorting on the Aria 3 (BD Biosciences). Purified cell populations 

were sorted into MACS buffer. Validation of the cell sorting panel was performed on 

the Cytek Aurora flow cytometry system using SpectroFlo software (v3.0). Overall, 

from infant thymus and PBMC donors up to 5 populations were sorted after doublet, 

viability, B cell (CD19+CD3−) and monocyte (CD14+CD3−) discrimination: 1. MAIT 

cells (MR1–5-OP-RU-Tet+Vα7.2+CD3+), 2. iNKT cells (CD1d-PBS57-Tet+Vα24+CD3+), 

3. γδ T cells (CD3+TCRγδ+), 4. CD4+ T cells (CD4+CD8α−CD3+) and CD8+ T cells 

(CD8α+CD4−CD3+). Cell subsets sorted for the different donors are listed in Table S1 and 

the gating strategy is shown in Figure S16.

Flow cytometry — Thymic and peripheral blood T cells—To confirm gene 

expression from scRNAseq analysis, MAIT and iNKT cells were enriched from the human 

thymus as described above, as were iNKT cells from human blood. Peripheral blood 

MAIT and γδ T cells were stained directly without enrichment. Single cell suspensions 

were stained as above with efluor780 viability dye prior to incubation at 37°C for 10 

min with CCR7-APC-Fire810 (clone G043H7) and FcγR block. A combination of the 

following cell surface markers were subsequently added and cells were stained at room 

temperature for 15 min: CD3-BUV496 (clone UCHT1), CD14-PE-Cy5 (clone 61D3), 

CD19-PE Cy5 (clone H1B19), Vα7.2-BV785 (clone 3C10), Vα24-PerCP-Cy5.5 (clone 

C15), CD4-BV570 (clone RPA-T4), CD8α-BUV395 (clone RPA-T8), TCRγδ-BV650 
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(clone 11F2), Vδ1-PerCP-Vio700 (clone REA173), Vδ2-FITC (clone 123R3), Vγ9 Vγ9-PE 

(clone B3), CD161-BUV805 (clone HP-3G10), CD62L-BV650 (clone DREG-56). Cells 

were then washed twice with MACS buffer, and intracellular staining was performed with 

BD Transcription Factor Buffer Set according to the manufacturer’s specification. The 

following antibodies were used to stain for intracellular proteins: PLZF-PE-CF594 (clone 

R17–809), Eomes-BUV737 (clone X4–83), T-bet-BV605 (clone 4B10), GZMK-eFluor660 

(clone G3H69), GZMB-AF700 (clone GB11). Phenotypic analyses were performed on the 

Cytek Aurora flow cytometry system using SpectroFlo software (v3.0). Data were analyzed 

using FlowJo software (v10.7.1).

Flow cytometry -— CD1d, SLAMF1, SLAMF6—For murine experiments, thymocytes 

were resuspended in PBS, 5% FBS, 4mM EDTA and stained for 30 min at 4°C with: Fc 

blocker anti-CD16/32 (clone 93), CD4-AF488 (clone GK1.5), CD8α-APC (clone 53–6.7), 

CD1d-PE (clone 1B1). For murine thymus samples which were depleted of immune cells, 

the single cell suspension was resuspended in HBSS, 4% HI-FBS, 20mM HEPES, 10U/mL 

DNase I, 2.5mM EDTA, and stained for 30 min at 4°C with: Fc blocker anti-CD16/32 

(clone 93), EpCAM-BV421 (clone G8.8), CD45-BV605 (clone 30-F11), UEA1-FITC, 

Ly-51-AF647 (clone 6C3), and CD1d-PE (clone 1B1). For flow cytometry experiments 

on human samples, thymocytes were resuspended in PBS, 2% FBS, and stained for 30 min 

at 4°C with: TruStain FcX, CD45-BV421 (clone HI30), CD4-AF488 (clone OKT4), CD8α-

APC (clone RPA-T8), CD1d-PE (clone 51.1). For human samples which were depleted 

of immune cells and erythrocytes, cells were resuspended in PBS, 2% FBS, and stained 

for 30 min at 4°C with: TruStain FcX, CD45-AF647 (clone QA17A19), EPCAM-BV421 

(clone 9C4), CDR2-AF488 (purified CDR2 antibody kindly provided by Dr. Sheena Pinto, 

conjugated with the AF488 antibody labeling kit from ThermoFisher Scientific), HLADR-

BV711 (clone L243), CD1d-PE (clone 51.1). In all experiments, to measure viability cells 

were stained with the live/dead Fixable Near-IR dead cell stain kit, simultaneously with cell 

surface markers. Flow cytometry was performed on a BD LSR Fortessa Cell Analyzer (BD 

Biosciences).

Single-cell RNA sequencing—Prior to cDNA library preparation for the whole 

transcriptome (WTA) and VDJ libraries, all cell subsets from the different donors were 

pooled, with up to 12 unique sample tags combined per library. Single cell WTA and VDJ 

sequencing libraries were prepared using the BD Rhapsody Single-Cell Analysis System 

(BD Biosciences) according to the manufacturer’s specifications. Libraries were quantified 

and pooled according to equivalent molar concentrations and sequenced on the NovaSeq 

sequencing platform at the University of Colorado Genomics Core with the following read 

lengths: read 1–150 cycles; read 2–150 cycles; and i7 index - 8 cycles.

Single-cell RNA-seq data analysis—The quality of sequencing reads was evaluated 

using FastQC and MultiQC. Sequencing reads (FASTQ) were mapped and sample tags 

were deconvoluted with The BD Rhapsody WTA Analysis Pipeline on the GRCh38 genome 

sequence. This pipeline produced a gene expression matrix for each sample, which records 

the number of UMIs for each gene associated with each cell barcode. Aggregated data were 

then imported into the R environment (version ≥4.0.3) and analyzed with Seurat (v4.3.0). 
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Low-quality cells were filtered using the cutoffs nFeature_RNA ≥ 500 & nFeature_RNA 

<3000. Cells with a high mitochondrial content were removed using a batch-dependent 

threshold with the isOutlier function from the scater package (v1.26.1).100 Genes expressed 

in less than 20 cells were ignored. This resulted in 78,607 cells with 17,204 genes for 

downstream analyses. The NormalizeData function of Seurat was performed using default 

parameters to remove the differences in sequencing depth across cells. Dimensionality 

reduction was performed prior to integration for visualization purposes (Figure S2A), by 

selecting 2000 highly variable genes for principal component analysis (PCA) and uniform 

manifold approximation and projection (UMAP). To integrate the data and remove batch-

effects from the PCA subspaces based on the correct cell alignment, we used Harmony101 

following PCA to project cells into a shared embedding in which cells group by cell type 

rather than dataset-specific conditions. We then applied the RunUMAP function on 20 

dimensions of the harmony embedding to obtain bidimensional coordinates for each cell. We 

determined the k-nearest neighbors of each cell using the FindNeighbors function and used 

this knn graph to cluster cells using the Louvain algorithm from FindClusters based on the 

same harmony dimensions as the RunUMAP function (20 dimensions, resolution 1.2). For 

analyses performed on individual lineages (CD4+ T, CD8+ T, iNKT, MAIT or γδ T cells) 

in Figures 2 and 4, the dataset was split up based on cell hashing tags. Each lineage from 

each tissue was re-analyzed individually using the same steps to obtain UMAPs and clusters 

in Figures 2 and 4. Plots displaying cells on UMAPs were generated using the SCpubR 

package (v2.0.2).102

LISI metric and analysis of cluster stability—The local inverse Simpson’s index 

(LISI) was used to assess the degree of mixing during batch correction and dataset 

integration in scRNAseq analysis.101 This approach helps evaluate the effectiveness of 

data integration methods by quantifying how well datasets are merged without introducing 

artificial batch effects. To assess the integration process, we employed the “integration 

LISI” (iLISI) score. iLISI measures the effective number of datasets within a neighborhood 

and provides an indication of how effectively the individual datasets were harmoniously 

integrated into a unified whole during the process. In addition, we used the “cell-type LISI” 

(cLISI) score to evaluate the accuracy of cell-type assignments in the integrated dataset. 

cLISI is a modified version of the LISI score, but instead of assessing dataset labels, it 

focuses on the accuracy of cell type assignments within the integrated data. As the specific 

identities of individual cells were not known beforehand, we assigned mock cell identities 

based on anticipated gene expression patterns. These mock identities were determined using 

prior knowledge of gene expression markers associated with distinct cell types. For instance, 

we identified DN thymocytes as cells expressing PTCRA > 1; B cells as cells expressing 

CD19 > 1 and IGKC > 1; Tregs as cells expressing FOXP3 > 1; MAIT cells as cells 

expressing SLC4A10 > 1 and FOXP3 < 1; CD4+ T cells as cells expressing CD4 > 1, CD8A 
< 1, SLC4A10 < 1, FOXP3 < 1, and CCR7 > 1; DP thymocytes as cells expressing RAG1 
> 1 and CD1C > 1; and CD8αα thymocytes as cells expressing CD8A > 1 and GNG4 
> 1. These mock identities were used as initial cell type assignments and served as the 

basis for assessing the success of integration, as indicated by increased iLISI scores and the 

maintenance of a cLISI score of 1 (Figure S2B). Only cells with assigned mock identities 

were included in the cLISI analysis. To evaluate the stability of clusters, we conducted 
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a bootstrapping procedure in which cells from each predefined cluster were repeatedly 

sampled and then subjected to re-clustering. Cluster stability was assessed by examining 

co-assignment probabilities (CP), where higher CP values indicated greater cluster stability 

(Figure S2C). In essence, a high CP suggests that the cells within a cluster consistently 

grouped together across multiple iterations, reinforcing the reliability and robustness of that 

cluster’s identity.

TCR analysis—V(D)J single cell sequencing data were mapped and quantified using the 

BD Rhapsody WTA Analysis Pipeline and the GRCh38 genome sequence. To connect the 

VDJ data with transcripts data for each cell, we established links based on cell indexes 

extracted from the consensus annotation files (VDJ_percell.csv) and MolsPerCell.csv files 

from each demultiplexed sample. Only TCR paired sequences were retained for subsequent 

analyses. TCR data from each VDJ-sequenced sample were combined together and added 

to the metadata of the Seurat object. Clonotypes were defined based on unique TCR VJ 

usage and complementary-determining region (CDR3) motifs. Basic TCR statistics, such as 

the distribution of length and counts were computed using the tidyverse package (v1.3.2). 

The assessment of clonotype diversity was conducted using the mean value of the Shannon 

index, computed through the diversity function of the vegan R package (v2.6–4) after 100 

iterations. Prior to the diversity calculation, the data was subjected to rarefaction to match 

the lowest sequence count found within the studied groups. Chord diagrams were generated 

using the circlize package (v0.4.15)103 and CDR3 motif logos using the ggseqlogo package 

(v0.1).104 The stacked letters’ cumulative height at each position signifies the degree of 

sequence conservation, portraying the relative abundance of amino acids, which is further 

depicted by the varying heights of individual letters within the stack.

Identification of differentially expressed genes between clusters—We identified 

cluster-enriched genes by using the FindAllMarkers function in Seurat with test.use = 

wilcox. This function identified differentially expressed genes for each cluster by comparing 

the gene expression for cells belonging to a cluster versus cells belonging to all other 

clusters. Only those genes that passed an adjusted p value (Benjamini-Hochberg) cutoff of 

0.05, log fold change >0.4 and min.pct = 0.3 were included in Figure S3.

Characterizing the replicability of cell types defined by scRNAseq between 
studies and between species—We assessed the consistency of cell clusters in our 

integrated thymic data by comparing them with the human thymus atlas from the Park et 

al. dataset.27 To do this, we focused exclusively on thymocytes, totaling 37,369 cells in 

our dataset. We also acquired the annotated AnnData object from the Park et al. dataset, 

which specifically contained T cells. To enable a meaningful comparison, we combined 

the two raw count matrices, concentrating on the top 2000 highly variable genes shared 

across both datasets. This resulted in a matrix containing 3,106 genes and 114,363 cells. 

To evaluate the consistency of cell types between these datasets, we employed the pyMN 

package to perform unsupervised MetaNeighbor analysis.26 MetaNeighbor assesses the 

similarity of cell types by constructing a network of cells based on the correlation of their 

gene expression profiles. It then predicts cell type labels, hiding them from one dataset 

while using the other. The result is expressed as a mean area under the receiver operator 
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characteristic (AUROC) score, which measures the probability of correctly identifying a 

cell’s type based on its gene expression profile. We used the ggplot2 package to visualize 

the AUROC scores obtained from pyMN, comparing our integrated clusters with the 

thymocyte clusters defined in the Park et al. dataset. For assessing gene expression similarity 

between thymic lineages in Figure 2A, we considered donors as distinct datasets (study_id 

parameter); and cell lineages (based on cell hashing) as the cell groups of interest to 

compare (cell_type parameter), more particularly splitting thymocytes in each lineage into 

non-effector (clusters 0–11) versus effector states (clusters 12–17). MetaNeighbor was run 

on the top 2000 highly variable genes chosen on our integrated dataset. For assessing the 

replicability of cell clusters across species in Figure 6, we utilized the reference scRNAseq 

murine Tinn dataset (see below) and our human thymic iNKT, MAIT, and γδT individual 

Seurat objects from Figure 2. To ensure an appropriate comparison, we obtained orthologous 

genes between mouse and human with the biomaRt package.105,106 We filtered the murine 

count matrix to retain only genes with known 1:1 orthologs in humans. Then, we performed 

unsupervised MetaNeighbor analysis with pyMN on the combined set of highly variable 

genes from both human and mouse datasets. Finally, we used ggplot2 to create visualizations 

of the AUROC scores returned by pyMN, including clusters that contained at least 1% of 

the cells in each species to ensure greater confidence in assessing the replicability of clusters 

across species.

Identification of gene expression programs—The count matrix was used for 

conducting consensus non-negative matrix factorization (cNMF).28 This process enabled 

us to infer both identity and activity programs, along with their respective contributions in 

each cell. The usage of each program for each cell was added to the metadata of the Seurat 

object and displayed as a feature plot (Figure 1K). To determine the genes associated with 

each program, we plotted the gene ranks (ranging from most associated to least associated) 

against the gene_spectra_score output from the cNMF analysis. The plotted gene ranks 

were fitted to a sigmoid curve and the slope at the first elbow point was calculated as the 

minimum threshold for genes to be retained in a given GEP. The same slope was applied to 

every GEP to prevent bias in ranked gene selection, as the gene rankings between GEPs are 

not comparable and are relative to each GEP (as depicted in Figure S17). Cells from blood 

samples were assigned to the GEP with the highest usage (as provided by cNMF), to display 

an alluvial plot with ggalluvial in Figure 4D (v0.12.5).107

Scoring of gene signatures—Gene signatures were scored on our Seurat object, or 

on other dataset’s Seurat or AnnData objects using either the function AddModuleScore 

in Seurat, or scanpy.tl.score_genes in scanpy. In both cases, the score is computed as the 

average expression of all genes contained in the gene list, and subtracting the average 

expression of 100 control genes (randomly chosen to match the expression bins of the gene 

list). Gene signatures used throughout this manuscript and their source can be found in Table 

S2.

Gene regulatory network inference—To deduce gene regulatory networks, we 

employed pySCENIC from a pre-built singularity container, aertslab/pyscenic:0.12.1, a tool 

utilizing cis-regulatory motif analysis to identify potential transcription factors (TFs) that 
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might govern a cluster of co-expressed genes within individual cells.47 pySCENIC was run 

using the –mask-dropouts flag and a normalized enrichment score threshold of 2 to help 

mitigate the effects of the varying degrees of sparsity across the datasets we generated. The 

initial step involved generating modules composed of transcription factors and co-expressed 

genes using GRNboost2.108 These modules were pruned to remove indirect targets that 

lacked significant enrichment for the corresponding TF motif within ±10 kb from the 

transcription starting site of the putative target (cisTarget). This process yielded a collection 

of transcription factor regulons. Considering the inherent stochasticity in gene regulatory 

network inference using GRNBoost2, each run of pySCENIC may yield different quantities 

of regulons, along with distinct target genes associated with each TF. To mitigate this 

variability, we performed 100 pySCENIC runs and retained regulons present in 100% of 

the runs. We also removed regulons that did not have at least 5 target genes defining the 

regulon activity. Due to the high degree of noise in target genes, we retained target genes 

that appeared within a regulon in at least 95% of the runs. Furthermore, each target gene also 

had to overlap with the union of all possible retained ranked gene expression targets across 

all GEPs generated from cNMF. To identify regulons that were specific to the underlying 

biology of our cell types and GEPs, we calculated the AUC scores using the R package 

AUCell, located in the pySCENIC container, for each regulon based on the pruned target 

gene list. A regulon was deemed specific to a defined cell population if at least 20% of the 

cells within the annotated population scored in the 90th percentile of the overall AUC score 

for all cells.

Comparison of gene expression programs with gene signatures from the 
literature—To compare the genes characterizing each GEP with known peripheral blood 

T cell states defined in the literature (Figure S10), we obtained gene signatures identified 

from (1) differential expression (DE) analysis from bulk RNAseq between sorted naive, 

Tcm, Tem CD4+ and CD8+ T cell populations by Rose et al.38; (2) DE genes between cell 

clusters defined from scRNAseq of naive and memory CD4+ T cells isolated from PBMCs 

by Cano-Gamez et al.37; (3) DE genes between cell clusters defined from scRNAseq of 

blood immune cells by Terekhova et al.40 (4) DE genes between cell clusters defined from 

scRNAseq of T cells across nine human tissues by Poon et al.39 In the Rose dataset, 

we kept genes that defined their Figures 2E and 2H (adjusted p-value ≤%0.05). In the 

Cano-Gamez and Poon datasets, we kept DE genes with a minimum log fold-change of 

0.25 (adjusted p-value threshold ≤%0.05 or 0.01, respectively). In the Terekhova dataset, 

we used the top 100 differentially expressed genes shared in their Table S5. We computed 

a weighted Jaccard Index (JI) between the gene lists derived from our GEPs and those 

from the Rose, Cano-Gamez, Terekhova and Poon datasets (see quantification and statistical 

analysis). For the co-expression analysis of GEPs and gene lists from other datasets, we 

scored the gene lists on the entire integrated dataset. This was done using functions like 

Seurat’s AddModuleScore with the blend = TRUE parameter. Additionally, GEP4, GEP5, 

and GEP6 were scored on the Poon et al. dataset using scanpy’s tl.score_genes function, and 

their scores in specific cell clusters of interest were displayed in Figure S10B.

Pseudo-bulk differential expression analysis—To investigate for differentially 

expressed genes between αβ thymocytes lineages in Figure 2, we grouped cells by donor 
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and lineage, restricting our analysis to only donors 2–4 where all αβ lineages were sorted, 

and also restricting ourselves to thymocytes found in clusters 3, 9, 10 and 11 in the 

integrated dataset (where CD4+/iNKT and CD8+/MAIT cells showed high gene expression 

similarity). We then used DESeq2 (v1.40.2)109 to perform pseudo-bulk DE analysis between 

lineages using a Wald test. We restricted our analysis to genes which were significantly 

upregulated (padj < 0.01) in both CD4+ and iNKT cells compared to CD8+ and MAIT 

cells, and likewise for other comparisons shown in Figure 2. To investigate for cell lineage-

specific gene signatures in PBMCs in Figure 4, we grouped cells by batch, cluster and 

lineage, restricting our analysis to only batches E, F and I where at least 3 or more 

cell lineages were sorted and sequenced within the same batch. We then used DESeq2 

(v1.34.0)109 to perform pseudo-bulk DE analysis with a likelihood-ratio test (LRT), where 

the full model included batch + cluster + lineage, and the reduced model included batch 

+ cluster, in order to detect genes whose expression can be explained by lineage, and 

not by batch or cell state (i.e., cluster). We used the LRT test by computing pairwise 

comparisons, contrasting all lineages against each other (CD4vsCD8, CD4vsiNKT, etc.), 

for each comparison keeping DE genes with an adjusted p-value of 0.01. Then, to extract 

lineage-specific genes, for each lineage we kept genes that were commonly upregulated in at 

least 3 or more contrasts. We normalized the raw counts with the rlog function from DESeq2 

and batch-corrected them with removeBatchEffect from the limma package (v3.56.2),110 

before displaying the final list of DE genes on a heatmap with the pheatmap package 

(v1.0.12).

Creation of a reference scRNAseq mouse Tinn dataset—ScRNAseq data from 

mouse thymic iNKT, MAIT and γδ T cells51–59 were downloaded from Gene Expression 

Omnibus or the European Bioinformatics Institute (see key resources table). Data were 

analyzed using the Seurat package. Analyzed cells were selected to express between 800 

and 4200 genes per cell, with less than 5% of mitochondrial reads. Datasets were merged 

and integrated using the FastMNN algorithm,111 using 5000 variable features, k = 20 and 

auto.merge = TRUE. Cell clustering was carried out with a resolution parameter set at 0.5, 

and potential doublets were detected using scDblFinder112 and subsequently eliminated. 

To discern differential gene expression between clusters, the FindAllMarkers function 

was employed, utilizing the MAST algorithm. The analysis considered latent features, 

specifically the number of genes per cell, and the sample identity, with a log2 fold change 

threshold of 0.3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pseudo-bulk differential expression analysis in thymic samples—Differentially 

expressed genes in Figures 2B and 2C between αβ thymocyte lineages were identified using 

a Wald test from the DE-Seq2 package (v1.40.2),109 with a padj < 0.01 threshold. This 

analysis was restricted only to thymocytes from three sequencing batches (B, C, D; see 

Table S1) where all αβ lineages were sorted; and to thymocytes in clusters 3, 9, 10 and 11 

where naive-like CD4+/iNKT and CD8+/MAIT had shown transcriptional similarity (based 

on Figures 1G, 1I, and 2A).
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Pseudo-bulk differential expression analysis in PBMC samples—Differential 

expression analysis in Figure 4 was performed with an LRT analysis, to take into account the 

heterogeneity of batches and cell states among peripheral blood T cells (see method details). 

This analysis was restricted only to PBMCs from three sequencing batches (E, F, I; see Table 

S1), where at least three distinct T cell lineages were sorted and sequenced in the same 

batch. Only DE genes with padj < 0.01 were kept.

Comparison of GEPs with gene signatures from the literature—In Figure S10, 

we computed the Jaccard Index (JI) between the gene lists derived from our GEPs and those 

from the Rose, Cano-Gamez, Terekhova and Poon datasets. Since the gene lists varied in 

length, we weighted the JI to make it comparable across pairwise comparisons. This was 

achieved by dividing the JI by the maximal theoretical JI for each pairwise comparison, 

which is the ratio of the length of the smaller list to the length of the larger list. This 

“weighted Jaccard Index” is shown on the x axis of Figure S10A. To assess the significance 

of the observed JI, we performed a permutation analysis. We generated 1000 random gene 

lists A′ and B′, matching in length and expression pattern to the original lists A and B. 

We computed the weighted JI between these random lists and defined an empirical p-value 

by counting how many of these weighted JIs were greater than the observed weighted JI 

divided by the number of permutations. To account for multiple comparisons, we applied a 

Bonferroni correction to the empirical p-values. Adjusted p-values below 0.01 are shown as 

text in the figure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Comprehensive atlas of human Tinn cells in thymus and blood

• Most postnatal thymic Tinn cells resemble naive Tconv cells

• Adult blood Tinn cells display a mixed type 1/type 17 effector program

• Human Tinn cells do not form distinct subsets like mouse Tinn cells
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Figure 1. Integrative view on Tinn and Tconv development and peripheral function
(A) Experimental setup specifying donor type (postnatal/adult), tissue, and sorted cell types.

(B) Harmony batch-corrected and integrated dataset across donors, tissues, and cell types.

(C–E) (C) Stable Louvain-derived cell clusters distributed across (D) both blood and 

thymus-derived cells and (E) their respective frequencies in these clusters.

(F) “Egress” score on thymus- and blood-derived cells.

(G) Cells color coded by cluster (as in C) visualized by their hashtag-sorted cell type 

(columns) and the tissue they originated from (rows).

(H–J) (H) Projection of naive and effector scores and the proportion of (I) thymic and (J) 

blood cell types per donor, classified on the basis of these scores (bottom row); top row 

shows analogous proportions by cell cluster (as in C).

(K) Gene-expression programs (GEPs) in thymus and blood identified using cNMF, with 

color scale representing GEP usage. Sample numbers for all panels as depicted in (A). Score 

defining genes as described in text.
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Figure 2. Gene-expression patterns in thymocyte lineages
(A) Heatmap showing MetaNeighbor’s AUROC scores between thymocytes split by donor, 

lineage, and non-effector (c0–11) versus effector (c12–17) clusters. Barplots indicate 

thymocyte proportions per lineage.

(B) Pseudo-bulk differential expression analysis between CD4+/iNKT and CD8+/MAIT 

thymocytes in naive clusters (3, 9, 10, 11). As a negative control, the only three genes 

that were differentially expressed between CD4+/MAIT and CD8+/iNKT thymocytes are 

displayed in the center of the heatmap.

(C) Pseudo-bulk differential expression analysis between CD4+/CD8+ and iNKT/MAIT 

thymocytes in naive clusters (3, 9, 10, 11). For both (B) and (C), heatmap displays 

the expression level of genes (represented with color scale as a Z score of the average 

normalized expression) that are significantly differentially expressed (padj < 0.01).

(D) Clustering of hashtag-separated thymic iNKT cells (top), MAIT cells (middle), and γδ 
T cells (bottom). Right panel shows the score of type I and type III effector gene signature 

for the corresponding thymic lineage.

(E) Kernel density estimates of the normalized expression level of genes of interest. The 

expression level distribution varies between genes and lineage. The range of kernel density 

estimate values also varies between each panel (from 0 to 0.04 for the smallest range and 0 

to 0.4 for the largest range). A unique color scale was represented to indicate the direction of 

the values.
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Figure 3. Innate T cell TCR diversity during development
Cells with VDJ sequencing and their cell-type-specific characteristic chain arrangement 

for thymic iNKT cells (A), MAIT cells (G), and γδ T cells (L). For each cell type, the 

respective proportions of gene segment usage in each chain (B and D; H and J; M and N) are 

shown together with their CDR3 length and sequence logo (C, I, O) and their cluster-specific 

usage (E, with clusters as in Figure 2A). Shannon index as an estimation of TCR diversity 

in the naive-like and effector-like iNKT (F) and MAIT (K) cells, based on clusters in Figure 

2D. n = 1 human thymus sample for all panels.

Loh et al. Page 35

Cell Rep. Author manuscript; available in PMC 2024 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Gene-expression programs in circulating Tinn and Tconv
(A–C) (A) Clustering of hashtag-separated blood iNKT, MAIT, γδ T, CD4, and CD8 T 

cells, (B) the respective proportion of cells per cluster and donor, and (C) the effector GEP 

signature scores (as in Figure 1K) per cell type and cluster.

(D) Top GEP usage for each cell type, based on cNMF-derived usage matrix.

(E) Pseudo-bulk, pairwise differential gene expression between cell types.

(F) Cell-type-specific genes among Tinn cells using GEP5. For both (E) and (F), heatmaps 

depict the expression level of genes (represented with color scale as a Z score of the average 

normalized expression) that are significantly differentially expressed (padj < 0.01). n = 4, 4, 

9, 4, and 9 for iNKT, MAIT, γδ, CD4, and CD8 cells, respectively.
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Figure 5. Effector gene-expression programs in Tinn and Tconv
(A) Key genes categorized by function and depicted by their expression level (Z-score color 

scale) and percentage of expression in cells belonging to the indicated GEPs.

(B–D) (B) Single-cell regulatory network inference and clustering of TFs and enrichment 

score per cell (as row-scaled Z scores), ordered by cluster (as in Figure 1C), with tissue of 

origin and GEP assignment (based on cNMF usage) indicated by color bar. Two row clusters 

are marked, which are preferentially enriched in Tinn (upper bracket) and Tconv (lower 

bracket). (C and D) TFs with pronounced activity in (C) Tinn and (D) Tconv (corresponding 

to brackets in B) and their targets. Green dots indicate TFs (y axis) that have other TFs 

as their target (x axis), where purple labels TFs that can interact in either direction. The 

marginal bar chart shows the number of TFs per target, color coded by their functional 

categorization (as in A).
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Figure 6. Cross-species comparison of mouse and human Tinn development
(A) Mouse Tinn reference atlas with seven characteristic cell states highlighted, which are 

found across lineages (as in Figure S15).

(B) MetaNeighbor analyses showing pairwise correspondence (AUROC scores) between 

murine Tinn (as in A) and human iNKT, MAIT, and γδ T cell clusters (as in Figure 2D). 

Marginal bar charts indicate number of cells in the corresponding clusters.

(C) Expression of human regulon-driving TFs (as in Figure 5) together with murine TFs of 

importance in Tinn development (Rorc, Tbx21) projected on mouse Tinn reference atlas (as 

in A).
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Figure 7. CD1D, SLAMF1, and SLAMF6 gene and protein expression in mouse and human 
thymus
(A) Clustering of thymic cell populations and (E) their expression of Cd1d1 (mouse)/CD1D 
(human) derived from the mouse and human thymus cell atlas, respectively.27 (B and 

F) Normalized expression of Cd1d1/CD1D and Slam/SLAM transcripts across thymic 

cell populations. Flow cytometry of (C and G) mouse and human TECs and (D and H) 

thymocyte subsets.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Human PBS57 CD1d tetramer PE NIH tetramer core facility N/A

Human 5-OP-RU MR1 tetramer PE NIH tetramer core facility N/A

Anti-human CCR7 - APC-Fire810 (clone G043H7) Biolegend Cat#353263; RRID: AB_2894483

Anti-human CD1d - PE (clone 51.1) Biolegend Cat#350305; RRID: AB_10642028

Anti-human CD3 purified (clone UCHT1) Biolegend Cat#300402; RRID: AB_314056

Anti-human CD3 - AF488 (clone OKT3) Biolegend Cat#317310; RRID: AB_571877

Anti-human CD3 - BUV496 (clone UCHT1) BD Biosciences Cat#612941; RRID: AB_2916883

Anti-human CD4 purified (clone RPA-T4) Biolegend Cat#300570; RRID: AB_2810427

Anti-human CD4 - AF488 (clone OKT4) Thermo Fisher Scientific Cat#53-0048-42; RRID: 
AB_10735503

Anti-human CD4 - redFluor710 (clone OKT4) Tonbo biosciences Cat#80-0048; RRID: AB_2621976

Anti-human CD4 - BV570 (clone RPA-T4) Biolegend Cat# 300533; RRID: AB_10896788

Anti-human CD8ɑ purified (clone RPA-T8) Biolegend Cat#301002; RRID: AB_314120

Anti-human CD8ɑ - APC (clone RPA-T8) Thermo Fisher Scientific Cat#17-0088-42; RRID: 
AB_10669564

Anti-human CD8ɑ - BUV395 (clone RPA-T8) BD Biosciences Cat#563795; RRID: AB_2722501

Anti-human CD8ɑ - PE-Cy7 (clone SK1) Tonbo biosciences Cat#60-0087; RRID: AB_3106994

Anti-human CD14 - eFluor450 (clone 61D3) Thermo Fisher Scientific Cat#48-0149-42; RRID: AB_1272050

Anti-human CD14 - PE-Cy5 (clone 61D3) Thermo Fisher Scientific Cat#15-0149-42; RRID: AB_2573058

Anti-human CD19 - eFluor450 (clone H1B19) Thermo Fisher Scientific Cat#48-0199-42; RRID: AB_1272053

Anti-human CD19 - PE-Cy5 (clone H1B19) Thermo Fisher Scientific Cat#15-0199-42; RRID: 
AB_10853658

Anti-human CD45 purified (clone HI30) Biolegend Cat#304002; RRID: AB_314390

Anti-human CD45 - AF647 (clone QA17A19) Biolegend Cat#393406; RRID: AB_2750083

Anti-human CD45 - BV421 (clone HI30) Biolegend Cat#304032; RRID: AB_2561357

Anti-human CD62L - BV650 (clone DREG-56) Biolegend Cat#304832; RRID: AB_2563821

Anti-human CD161 - BUV805 (clone HP-3G10) BD Biosciences Cat#749221; RRID: AB_2873599

Anti-human CD235a (clone HI264) Biolegend Cat#349102; RRID: AB_10612565

Anti-human Eomes - BUV737 (clone X4-83) BD Horizon Cat# 567170; RRID: AB_2916487

Anti-human EPCAM - BV421 (clone 9C4) Biolegend Cat#324220; RRID: AB_2563847

Anti-human GZMB - AF700 (clone GB11) BD Biosciences Cat#560213; RRID: AB_1645453

Anti-human GZMK - eFluor660 (clone G3H69) Thermo Fisher Scientific Cat#50-8897-42; RRID: AB_2574299

Anti-human HLADR - BV711 (clone L243) Biolegend Cat#307643; RRID: AB_11218794

Anti-human PLZF - PE-CF594 (clone R17-809) BD Horizon Cat#565738; RRID: AB_2739339

Anti-human T-bet - BV605 (clone 4B10) Biolegend Cat#644817; RRID: AB_11219388

Anti-human TCR γδ - BV650 (clone 11F2) BD Biosciences Cat#569510; RRID: AB_3106997

Anti-human Vɑ7.2 - BV785 (clone 3C10) Biolegend Cat#351721; RRID: AB_2566041

Anti-human Vɑ24 - PerCP-Cy5.5 (clone C15) Biolegend Cat#360004; RRID: AB_2562495

Anti-human Vδ1 - PerCP-Vio700 (clone REA173) Miltenyi Biotec Cat#130-120-441; RRID: 
AB_2784469
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-human Vδ2 - FITC (clone 123R3) Miltenyi Biotec Cat#130-125-095; RRID: 
AB_2819745

Anti-human Vγ9 - PE (clone B3) BD Biosciences Cat#555733; RRID: AB_396076

CDR2 purified98 Dr. Sheena Pinto N/A

Anti-mouse CD1d - PE (clone 1B1) Biolegend Cat#123509; RRID: AB_1236547

Anti-mouse CD4 - AF488 (clone GK1.5) Biolegend Cat#100423; RRID: AB_389302

Anti-mouse CD8ɑ - APC (clone 53-6.7) Biolegend Cat#100711; RRID: AB_312750

Anti-mouse CD45 (clone 30-F11) Thermo Fisher Scientific Cat#14-0451-85; RRID: AB_467252

Anti-mouse CD45 - BV605 (clone 30-F11) Biolegend Cat#103139; RRID: AB_2562341

Anti-mouse CD90.2 purified (clone 53-2.1) Biolegend Cat#140302; RRID: AB_10641692

Anti-mouse EpCAM - BV421 (clone G8.8) Biolegend Cat#118225; RRID: AB_2563983

Goat anti-mouse IgG Vector Laboratories Cat#AI-9200-1.5; RRID: AB_3107016

Anti-mouse Ly51 - AF647 (clone 6C3) Biolegend Cat#108312; RRID: AB_2099613

Goat anti-rat IgG Vector Laboratories Cat#BA-9400-1.5; RRID: 
AB_3107017

Human Fc receptor blocking FcγR block Miltenyi Biotec Cat# 130-059-901; RRID: 
AB_2892112

Human Fc receptor blocking TruStain FcX Biolegend Cat#422302; RRID: AB_2818986

Mouse Fc receptor blocking anti-CD16/32 (clone 93) Thermo Fisher Scientific Cat#14-0161-85; RRID: AB_467134

UEA1 - FITC Vector Laboratories Cat#FL-1061; RRID: AB_2336767

Human Single Cell Sample Multiplexing Kit BD Biosciences Cat# 633781; RRID: AB_2870299

Biological samples

Healthy human whole blood (Human Immune Tissue Network 
Biobank); COMIRB protocol #17-2159

Colorado Anschutz Medical 
Campus Clinical and 
Translational Sciences 
Institute, Aurora (USA)

N/A

Healthy human blood (from plateletpheresis leukoreduction filter 
chambers); Vitalant

Vitalant Blood Donation 
Center, Denver (USA)

N/A

Human pediatric thymic tissue; IRB protocol #20-0150 Children's Hospital Colorado, 
Aurora (USA)

N/A

Human pediatric thymic tissue; IRB protocol #IRB-23-4 Mount Sinai, New York City 
(USA)

N/A

Human pediatric thymic tissue; protocol #NHBR2101 Northwell Health Biospecimen 
Repository, Lake Success 
(USA)

N/A

Chemicals, peptides, and recombinant proteins

Bovine Serum Albumin (BSA) ThermoFisher Scientific Cat#J10857-22

Collagenase type IV StemCell Technologies Cat#07427

Dispase I Sigma-Aldrich Cat#04942086001

DMSO Sigma-Aldrich Cat#D8418-100ML

DNase I Sigma-Aldrich Cat#11284932001

Fixable Viability Dye efluor780 ThermoFisher Scientific Cat#65-0865-14

Fetal Bovine Serum (FBS) Corning Cat#35-010-CV

GlutaMAX Gibco Cat#35050-061

Liberase TH Sigma-Aldrich Cat#5401135001
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REAGENT or RESOURCE SOURCE IDENTIFIER

2-Mercaptoethanol Sigma-Aldrich Cat#21985-023

2-Mercaptoethanol Gibco Cat#21985023

Penicillin/streptomycin Gibco Cat#15140-122

Non-essential amino acids Sigma-Aldrich Cat#11140-050

Sodium pyruvate Sigma-Aldrich Cat#11360-070

Ficoll-paque Premium Cytiva Cat#17544203

Critical commercial assays

AF488 antibody labeling kit ThermoFisher Scientific Cat#A20181

Anti-PE microbeads Miltenyi Cat#130-048-801

BD Transcription Factor Buffer Set BD Biosciences Cat#562574

Live/dead Fixable Near-IR dead cell stain kit ThermoFisher Scientific Cat#L10119

BD Rhapsody Cartridge Kit BD Biosciences Cat#633773

BD Rhapsody Enhanced Cartridge Kit BD Biosciences Cat#664887

BD Rhapsody Cartridge Reagent Kit BD Biosciences Cat#633773

BD Rhapsody cDNA Kit BD Biosciences Cat#633773

BD Rhapsody TCR/BCR Amplification Kit BD Biosciences Cat#665345

BD Rhapsody WTA Amplification Kit BD Biosciences Cat#633801

Deposited data

Raw data (fastq files) Preprocessed Seurat object This study GEO: GSE249684

Web browser exploration tool (ShinyCell) of human and murine 
integrated datasets

This study https://xspeciestcells.cshl.edu/

Code This study https://doi.org/10.5281/
zenodo.13737916.
https://doi.org/10.5281/
zenodo.13251142

Experimental models: organisms/strains

C57BL/6J Jackson Laboratories Strain #000664; 
RRID:IMSR_JAX:000664

C57BL/6J CD1d1d2-/- Bred in house Chen et al.99

Software and algorithms

Flow cytometry software FlowJo (v10.7.1) BD Biosciences RRID: SCR_008520

Flow cytometry software SpectroFlo (v3.0) Cytek Biosciences RRID: SCR_019826

FastQC (v0.11.9) https://github.com/s-andrews/
FastQC

RRID: SCR_014583

MultiQC (v1.12) https://github.com/MultiQC/
MultiQC

RRID: SCR_014982

cNMF (v1.5) https://github.com/dylkot/
cNMF

RRID: SCR_025495

Python (version ≥3.8) https://www.python.org/ RRID: SCR_008394

R (version ≥4.0.3) https://www.r-project.org/ RRID: SCR_001905

Other
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REAGENT or RESOURCE SOURCE IDENTIFIER

Public dataset - peripheral blood CD4+ T cell gene signatures 
(Cano-Gamez et al.)

Cano-Gamez et al.37 Supplementary Data 6

Public dataset - peripheral blood T cell gene signatures (Rose et 
al.)

Rose et al.38 Supplementary Data 2, Supplementary 
Data 3

Public dataset - peripheral blood T cell gene signatures 
(Terekhova et al.)

Terekhova et al.40 Table S5

Public dataset - T cell gene signatures across human tissues (Poon 
et al.)

Poon et al.39 Table S6

Public dataset - scRNAseq of human thymus (Park et al.) Park et al.27 https://
datasets.cellxgene.cziscience.com/
de8665a2-0476-4865-b4af-
c7b8d3b1b87f.h5ad

Public dataset - scRNAseq of murine iNKT thymocytes (Baranek 
et al.)

Baranek et al.54 https://
datasets.cellxgene.cziscience.com/
de8665a2-0476-4865-b4af-
c7b8d3b1b87f.h5ad

Public dataset - scRNAseq of murine iNKT thymocytes (Krovi et 
al.)

Krovi et al.55 GEO: GSE152786

Public dataset - scRNAseq of murine iNKT thymocytes (Maas-
Bauer et al.)

Maas-Bauer et al.56 GEO: GSE172169

Public dataset - scRNAseq of murine iNKT thymocytes (Wang et 
al.)

Wang et al.57 GEO: GSE130184

Public dataset - scRNAseq of murine iNKT, MAIT, γδ 
thymocytes (Lee et al.)

Lee et al.51 SRA: PRJNA549112

Public dataset - scRNAseq of murine MAIT thymocytes (Chandra 
et al.)

Chandra et al.59 GEO: GSE189484

Public dataset - scRNAseq of murine MAIT thymocytes (Koay et 
al.)

Koay et al.53 GEO: GSE137350

Public dataset - scRNAseq of murine MAIT thymocytes (Legoux 
et al.)

Legoux et al.52 EMBL-EBI: E-MTAB-7704

Public dataset - scRNAseq of murine γδ thymocytes (Li et al.) Li et al.58 GEO: GSE179422

HBSS Gibco Cat#14175079

HEPES (1M) Gibco Cat#15630080

RPMI 1640 Corning Cat#10-040-CV

RPMI 1640 with 25mM HEPES Gibco Cat#22400071

RPMI 1640 without phenol red Gibco Cat#11835030

TrypLE Express Enzyme Gibco Cat#12604013
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