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Abstract

Aiming at the problems of slow detection speed, large prediction error and weak environ-

mental adaptability of current vehicle collision warning system, this paper proposes a recog-

nition method of slippery road surface and collision warning system based on deep learning.

Firstly, this paper uses the on-board camera to monitor the environment and road conditions

in front of the vehicle in real time, and a residual network model FS-ResNet50 is proposed,

which integrated SE attention mechanism and multi-level feature information based on the

traditional ResNet50 model. The FS-ResNet50 model is used to identify the slippery states

of the current road, such as wet and snowy. Secondly, the yolov5 algorithm is used to detect

the position of the vehicle in front, and a driving safety distance model with adaptive traffic

environment characteristics is established based on different road conditions and driving

conditions, and an early warning area that dynamically changed with the speed and the road

slippery states is generated. Finally, according to the relationship between the warning area

and the position of the vehicle, the possible collision is predicted and timely warned. Experi-

mental results show that the method proposed in this paper improves the overall warning

accuracy by 6.72% and reduces the warning false alarm rate for oncoming traffic on both

sides by 16.67% compared with the traditional collision warning system. It can ensure safe

driving, especially in bad weather conditions and has a high application value.

1. Introduction

With the continuous development of transportation industry, road traffic safety has become a

concern problem, and the road slippery states are an important factor affecting driving safety.

For example, when driving on rainy days, the water on the road will bring safety hazards such

as prolonged braking distance and tire slip to the driver, especially in the forward collision

accident, due to the driver’s misjudgment of the distance between the vehicles.

Causing serious casualties and property losses [1]. In order to solve this problem, more and

more research and engineering practice focus on the development of vehicle front collision

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0310858 November 11, 2024 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Du H, Wang L, Cai M (2024) Research on

recognition of slippery road surface and collision

warning system based on deep learning. PLoS

ONE 19(11): e0310858. https://doi.org/10.1371/

journal.pone.0310858

Editor: Zhihong (Arry) Yao, Southwest Jiaotong

University, CHINA

Received: May 29, 2024

Accepted: September 7, 2024

Published: November 11, 2024

Copyright: © 2024 Du et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research was funded by the Natural

Science Foundation of Tianjin City (grant number

21JCQNJC0O810) and the Tianjin Transportation

Commission Project (grant number No. 2023-7)",

the funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0009-0005-8999-8974
https://doi.org/10.1371/journal.pone.0310858
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310858&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310858&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310858&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310858&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310858&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310858&domain=pdf&date_stamp=2024-11-11
https://doi.org/10.1371/journal.pone.0310858
https://doi.org/10.1371/journal.pone.0310858
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


warning system. Advanced driving assistance system can assist drivers to perform correct

operation to a certain extent, thus improving driving safety and reducing the occurrence of

traffic accidents [2, 3].

Many domestic and international scholars have conducted research in the field of forward

collision warning system, and the main approaches can be divided into Lidar-based, millime-

ter wave radar-based and deep learning-based collision warning research. Lidar-based and

millimeter-wave radar-based technologies rely heavily on Lidar and millimeter-wave radar,

however, these sensors are not good at recognizing static objects, and the equipment is expen-

sive and cannot visualize road information. In comparison, machine vision-based collision

warning has a series of advantages such as low cost and the ability to visualize road informa-

tion, which is favored by a wide range of manufacturers [4, 5].Therefore, the recognition of

slippery road surface and collision warning system based on deep learning can directly solve

the pain points, improve some defects of the previous vehicle forward collision warning algo-

rithm, improve the accuracy of early warning, reduce the false alarm rate, and improve the

driver’s trust in the early warning system.

2. Related work

At present, the method of road condition recognition is mainly based on machine vision. The

current mainstream machine vision recognition methods are mainly divided into image pro-

cessing algorithms and deep learning based methods. The image processing algorithm mainly

uses OpenCV technology and support vector machine (SVM) to extract image features. Chen

et al. [6] extracted pavement texture features by grey co-occurrence matrix, and then classified

5 common road surfaces by SVM. The method based on deep learning mainly extracts the

image feature information through the neural network. Gin [7] designed a new residual unit,

the Ref-Block, and built a lightweight network, RefNet, which was accelerated by the Tensor

RT inference machine to classify road surfaces. Chen et al. [8] used adversarial neural networks

to first remove the road surface shadow, and then used residual networks to classify the road

surfaces. Yang et al.[9] firstly designed an adaptive correction algorithm based on two-dimen-

sional gamma function to correct and process the photo data with uneven illumination, and

then ResNet18 model was used for the road surface recognition. In summary, although the

existing recognition methods can recognize the road surface, they are easy to be interfered by

other irrelevant information, and the generalization performance is not high. To solve these

problems, this paper proposes a recognition method of slippery road surface based on

improved ResNet50 network.

There is a wide variety of research on machine vision-based collision warning systems. Cai

ChuangXin constructed a safety distance model by conducting a detailed study of lane line

detection, however, this method can only be applied in roads with distinct lane lines and is not

suitable for unstructured driving scenarios [10]. He Yong judged whether the overlap between

the left and right vehicles in front and the lane line exceeds 50%, combined with the vehicle’s

turn signal to determine the cut-in of the vehicle in front, but this method requires high accu-

racy for the detection algorithm and does not make good detection when encountering

extreme weather such as rainy and snowy [11]. Hiraoka and Takada proposed the concept of

"collision avoidance reduction" parameter to predict the probability of collision with the vehi-

cle in front, but this concept is based on the premise that the vehicle is driving at a constant

speed, not in line with the actual road driving situation [12]. ShenHaiyang proposed to delin-

eate different safe driving zones according to different vehicle speeds, the method does not

consider the friction coefficient between vehicle tires and the ground under different road con-

ditions, which has certain limitations [13]. In summary, machine vision-based vehicle collision
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warning technology currently has problems such as slow detection speed, large prediction

error in the warning area, and environment weak adaptability, which lead to drivers’ distrust

of the warning system.

In view of the problems of the above collision warning algorithm, this paper proposes a col-

lision warning system based on the recognition of slippery road surfaces. The main idea of the

algorithm is to build a safety distance model with adaptive traffic environment characteristics,

which can considering the influence of forward obstacle types, motion states and road condi-

tions on forward collision, thereby generating a warning area that changes dynamically with

the speed of the self vehicle and the slippery states of road surface. Finally, according to the

relationship between the area of the warning and the location of the vehicle, timely warning is

provided for possible collision situations.

3. Recognition of slippery road surface

3.1 FS-ResNet50 model

In the process of road driving, road conditions can be broadly divided into: dry road, wet road

and snowy road, etc. The traditional method of acquiring road status mainly relies on the

meteorological department to detect and obtain data sets of various weather elements, identify

the current weather, and then transmit the road status of the current car driving section to the

driver through the broadcast, network and other ways. Subsequently, the recognition method

of road surface is mainly realized through image recognition, that is, the image is preprocessed

by image enhancement, denoising and color conversion, and then the features in the image,

such as brightness, fullness and degree, are extracted to complete the recognition of different

road surfaces. However, this method is easily affected by lighting and complex traffic scenes.

Compared with traditional image recognition, convolutional neural network can extract more

abundant image features with higher recognition accuracy [14, 15]. Therefore, ResNet50 net-

work model in convolutional neural network will be used in this paper to identify road

surfaces.

The ResNet50 model is a commonly used architecture in deep residual networks, which

effectively addresses the common problem of gradient vanishing in the training of deep neural

networks by introducing residual connections (skip connections) [16]. The FS-ResNet50

model proposed in this paper is based on the ResNet50 model and further enhances the mod-

el’s detection speed and accuracy by introducing new mechanisms and strategies.

The traditional ResNet-50 model employs a 7×7 convolutional layer in its first layer, which

can lead to increased computational burden and parameter count, thereby affecting the effi-

ciency of model training and inference. The proposed FS-ResNet50 model replaces the 7×7

convolutional layer in the first layer of the original ResNet50 model with three consecutive

3×3 convolutional kernels. This approach maintains the receptive field while adding more

nonlinear transformations and network depth, enabling the network to learn more complex

features. Additionally, smaller convolutional kernels effectively reduce model parameters,

thereby decreasing model computational complexity and the risk of overfitting.

The attention mechanism is a technique used to enhance the performance of convolutional

neural networks. It enables the network to focus more on critical feature channels by adap-

tively learning the weights of each channel. Therefore, FS-ResNet50 introduces the SE

(Squeeze-and-Excitation) attention mechanism at the end of each residual block in the original

model. The SE attention mechanism reshapes the feature channels through two steps: squeeze

and excitation, enhancing the model’s ability to recognize important regions in images. The

structure of the SE attention mechanism is shown in Fig 1.
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In road surface conditions recognition tasks, environmental factors such as uneven or

extreme lighting conditions can increase the difficulty of recognition. To improve the recogni-

tion rate of road surface conditions, the FS-ResNet50 model enhances the model’s ability to

capture global features by applying global average pooling to the output of each residual block.

Subsequently, these four globally averaged pooled features are fused to achieve cross-level fea-

ture integration. Through feature fusion, features from different network levels complement

and enhance each other, thereby improving the model’s recognition accuracy of road surface

conditions in complex traffic scenes and enhancing the model’s generalization performance.

The structure of the FS-ResNet50 model is shown in Fig 2.

3.2 Experimental analysis

After building the network model, we started image acquisition, and the road surface images

under different weather conditions were collected by the acquisition equipment, and the size

Fig 1. Schematic diagram of the SE attention mechanism module.

https://doi.org/10.1371/journal.pone.0310858.g001

Fig 2. The structure of the FS-ResNet50 model.

https://doi.org/10.1371/journal.pone.0310858.g002
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of the images collected was 1980×1020. For images with insufficient data, this paper selected

road images that were consistent with this experiment from KITTI dataset, BDD100K dataset

and Oxford RobotCardataset [17–19]. In our experiments, we utilized high-performance

GPUs to accelerate model training. Regarding training data volume, we used a total of 6,380

images to train the model, including 4,700 images captured on-site and 1,680 images sourced

from open-source datasets.

All collected images were collected together to form an experimental data set (see S1 Data-

set), labeled and summarized one by one, and resulting classification results were roughly clas-

sified into three major categories: dry, wet and snowy, as in Fig 3 and then trained for

recognition using the FS-ResNet50 network model. The specific parameter settings and envi-

ronment configuration of this research training were shown in Table 1.

This paper compares the accuracy and loss values of the ResNet50 network and the FS-Res-

Net50 model tested on the test set. The comparison results are shown in Fig 4. As can be seen

from the figure, the initial recognition accuracy of the FS-ResNet50 model is 73.55%, and the

highest accuracy is 95.87%; the initial recognition accuracy of the ResNet50 model is 32.87%,

and the highest accuracy is 93.73%. The initial loss value of the FS-ResNet50 model is 0.63, and

the lowest loss value is 0.136; the initial loss value of the ResNet50 model is 3.09, and the lowest

loss value is 0.241. Additionally, the FS-ResNet50 model has a smaller fluctuation range and a

faster descent speed in loss values compared to the ResNet50 model.

In order to further verify the superiority of FS-ResNet50 model, The performance of the

FS-ResNet50 model was compared with the ResNet50, ResNext, MobileViTv3, ResNet101,

DenseNet and EfficientNet models commonly used in the field of image classification. The

experimental results were shown in Table 2.

As can be seen from the Table 3, the average processing time of a single image of FS-RES-

net50 model is similar to that of other models. However, the training set accuracy is respec-

tively improved by 1.14, 0.67, 1.35, 0.121, 0.42 and 0.69 percentage points compared to

ResNet50, ResNext, MoblieViTv3, ResNet101, DenseNet and EfficientNet. The accuracy of

verification set is respectively improved by 3.74, 3.1processing4, 4.53, 4.06, 3.03 and 2.40 per-

centage points. The network models of ResNext, ResNet101, DenseNet and EfficientNet are

Fig 3. Road surface section data diagram.

https://doi.org/10.1371/journal.pone.0310858.g003

Table 1. Experimental environment configuration and parameter setting.

Category Model Category Value

CPU Intel(R) Core(TM) i7-9750H Input size (pixel×pixel) 224×224

GPU NVIDIA GeForce GTX 1660 Ti Learning rate 0.001

Internal storage 16G Batch size 16

Deep Learning Framework PyTorch 1.10.2 Iterations 100

https://doi.org/10.1371/journal.pone.0310858.t001
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more complex, with larger parameters and larger floating-point computation, while the mod-

els of ResNet50 and MoblieViTv3 have lower floating-point computation. However, the vali-

dation set accuracy of FS-ResNet50 model is much higher than that of ResNet50 and

MoblieViTv3. In this paper, the recognition accuracy of the image takes precedence over the

detection speed, so the FS-ResNet50 model has obvious advantages. Through comparison, it

can be concluded that the improvement strategy and optimization mode of FS-ResNet50

model can obtain better recognition results. Other models performed poorly due to redundant

parameters, simple design, or inadequate capture of local details.

To test the recognition effect of the model in actual traffic scenes, this paper collected

images of different road surfaces through online collection and offline real-life photography

and used the FS-ResNet50 model for recognition. The effect of road surface recognition is

shown in Fig 5, and the values in brackets represent the recognition accuracy of the model in

this paper for the current pavement type. As can be seen from the Fig 5, this method can effec-

tively recognize the conditions of various road surfaces in actual driving environments.

4. Vehicle collision warning strategy

4.1. Vehicle detection

Within the last decade, target detection algorithms have become more and more numerous as

they continue to iterate. However in the final analysis they can be divided into two main cate-

gories: two-stage detectors and one-stage detectors. The one-stage detector outputs localiza-

tion and classification at the same time, much faster than the two-stage detector. Considering

that the traffic information around the vehicle during the driving process are constantly

Fig 4. Iteration curves of accuracy and loss values.

https://doi.org/10.1371/journal.pone.0310858.g004

Table 2. Same model recognition accuracy.

Model Evaluation index

Training set accuracy (%) Verification set accuracy (%) Average processing time of a single image (s) Floating-point arithmetic

ResNet50 97.17 92.13 0.243 3.89×109

ResNext 97.64 92.73 0.301 4.82×109

MoblieViTv3 96.96 91.34 0.284 2.54×109

ResNet101 97.10 91.81 0.457 5.02×109

DenseNet 97.89 92.84 0.451 5.31×109

EfficientNet 97.62 93.47 0.456 5.36×109

FS-ResNet50 98.31 95.87 0.275 4.17×109

https://doi.org/10.1371/journal.pone.0310858.t002
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changing, the early warning system have high requirements for the real-time recognition of

the target object, so the method used in this paper is the yolov5 algorithm in the one-stage

detector. Yolov5 algorithm detects images faster than Haar feature algorithm and R-CNN

algorithm [20]. In order to test the effectiveness of the algorithms, this paper obtained a part

of the video captured by the on-board camera for experiments, and compared the average

accuracy and the frames per second (FPS) of the video detected by the three algorithms. The

experimental results are shown in Table 3. As can be seen from the table, in terms of frame

rate, the detected video frame rate of R-CNN is much lower than the normal video frame rate

of 25–30 frames/s, and the frame rate of Haar feature algorithm is only 10.04 frames/s, while

the frame rate of yolov5 algorithm keeps the same as the original video frame rate. In terms of

accuracy, yolov5 is more accurate than the Haar feature algorithm in terms of average target

detection accuracy and is similar to the accuracy of the R-CNN algorithm. The above proves

that yolov5 can better meet the accuracy and real-time requirements of forward collision warn-

ing system.

4.2 Improved model for safe driving distance

The delineation of travel danger zones is an important issue in collision warning. Accurate

delineation of driving early warning areas can help drivers anticipate potentially dangerous sit-

uations in advance and take appropriate safety measures, thereby reducing the probability of

traffic accidents. The traditional method of traffic Early warning zone classification mainly

relies on manual observation and empirical judgment, which is subjective, easily influenced by

individual experience and subjective consciousness, and cannot meet the needs of large-scale

road networks [21].Therefore, in order to construct an objective road collision warning area

model, a "safe distance" needs to be set to avoid collisions.

In this paper, we use the real-time estimation of road friction coefficient proposed by Tang

Hongdu et al. [22] to change the safe distance between vehicles. This algorithm considers the

influence of the characteristics of different driving styles, the road slippery state and the front

and rear vehicles speed on the safe distance, so as to establish a driving safety distance model

Table 3. Comparative test results of vehicle inspection.

Algorithm Average accuracy FPS

Haar feature algorithm 90.03% 5.30

R-CNN 97.35% 10.04

YOLOV5 96.31% 30.50

https://doi.org/10.1371/journal.pone.0310858.t003

Fig 5. Results of recognition of slippery states of road surface.

https://doi.org/10.1371/journal.pone.0310858.g005
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with adaptive traffic environment characteristics, as shown inEquation1:

D ¼
V2

f

2amj
þ Vf ðTd þ Tf þ TmrÞ �

V2
L

2aL

j ¼

f ðφminÞ φ < φmin

f ðφminÞ þ
f ðφmaxÞ � f ðφminÞ

φmax � φmin

ðφ � φminÞ φmin < φ < φmax

f ðφmaxÞ φmax < φ

8
>>>>>><

>>>>>>:

ð1Þ

Where Vf represents the speed of the self vehicle and VL is the speed of the front vehicle. Td

represents the driver’s reaction time, Tf is the driver’s judgment time, Tm indicates the driv-

er’s time to take braking action, ρ is the driving characteristics weight, according to different

driving styles of drivers to adjust the value, generally take the value of 0.25 ~ 1.00, because

this paper focuses on the impact of road conditions and vehicle speed on the safe distance,

so the value of ρ will be 1.00. am and aL are respectively the acceleration of this self vehicle

and the front vehicle. j represents the influence of the road condition on the safe distance,

and its value is mainly determined by the friction coefficient φ,there into, φmax is the friction

coefficient of the normal road conditions, φmin is the friction coefficient of the worst road

conditions, such as the icing road, etc. According to the relevant research results, when

driving in the normal road environment, the value of f(φmax) is 1, when driving in the snow

and ice road environment, the value of f(φmin) is 0.3.Referring to the results of the other ref-

erence [23], the values of am and aL are tentatively set as 6m/s2, Td = 0.2s, Tf = 0.1s, Tm = 2s,

Vf and VL are the speed of the self and front vehicles, in order to increase the safety vehicle

distance, Vf = Vl is assumed when calculating the safety distance. The safety distance of

each vehicle speed under different road conditions can be obtained from Eq 1, and the

results are shown in Table 4.

The actual safety distance is obtained according to Eq 1. To plot the corresponding dan-

ger area on the camera, the actual distance needs to be converted into a pixel distance on

the image. In this paper, a monocular camera is used to acquire image data, and its

ranging principle is the small-aperture imaging principle. In this paper, we use geometric

relational projections to derive the pixel distances of images. As shown in Fig 6, set the

camera pitch angle is δ, the optical axis and into the camera image coordinate system inter-

sects the image physical coordinate system plane origin Ou. Oc is the pixel coordinate system

origin, O point is the camera lens position, the height between the camera lens and the

ground is OI, IP is the safety distance, P point projection to the camera image coordinate

system coordinates of (xu, yu), PP’ and the angle of the optical axis is α, the camera focal

length is f.

Table 4. Relationship between vehicle speed and safety distance under various road conditions.

Speed(km/h)

Road

conditions

20 25 30 35 40 45 50 55 60

Dry 12.8m 16.0m 19.2m 22.4m 25.6m 28.7m 31.9m 35.1m 38.3m

Wet 14.8m 19.1m 23.7m 28.5m 33.6m 38.9m 44.4m 50.3m 56.3m

Snow 18.8m 25.3m 32.7m 40.7m 49.6m 59.1m 69.5m 80.5m 92.3m

https://doi.org/10.1371/journal.pone.0310858.t004
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According to the geometric relationship in the figure, it is obtained that:

IP ¼ OI∗tanffPOI

ffPOI ¼
p

2
� a � d

tana ¼
yu
f

yu ¼ ðv � v0Þ∗dy

8
>>>>>>><

>>>>>>>:

ð2Þ

where v0 represents the coordinates of the image physical coordinate system corresponding to

the image pixel coordinate system, and dy is the unit pixel distance in the y-axis direction on

the camera’s light-sensing chip. The relationship between the vertical coordinate v and IP in

the image pixel coordinate system can be seen from Eq 2 as follows:

v ¼ v0 þ
f
dy
∗tan½arccotð

IP
h
Þ � s� ð3Þ

After obtaining the vertical coordinates, the next step is to obtain the horizontal coordinates in

the pixel coordinate system. Let the width of the vehicle be W, then the safe distance width is

extended to W+d, where d is the coefficient of following the actual road conditions change.

According to the similar triangle principle of the monocular camera, it is known that the hori-

zontal coordinates u1, u2 in the pixel coordinate system are calculated as follows:

u1 ¼ ucenter �
ðW þ dÞ∗f

2IP

u2 ¼ ucenter þ
ðW þ dÞ∗f

2IP

8
>><

>>:

ð4Þ

where ucenter represents the horizontal coordinate corresponding to the center of the screen in

the image pixel coordinates.

4.3 Vehicle collision warning strategy

It is assumed that in the world coordinate system, the camera position coincides with the sym-

metry axis of the vehicle, and in the image coordinate system, the bottom of the target detec-

tion frame is exactly in contact with the ground. Then set the coordinates of the lower left

corner of the early warning area as (u1, v1) and the coordinates of the lower right corner as (u2,

v2). u1, v1 and u2, v2 coordinates can be derived from Eq 3 and Eq 4.

Fig 6. Image conversion schematic.

https://doi.org/10.1371/journal.pone.0310858.g006
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In this paper, we predict a warning area in front of the vehicle that changes dynamically with

the speed of the vehicle and the slippery states of road obtained from image detection. The early

warning strategy is divided into several situations that drivers may encounter, such as vehicles

in front are too close, vehicles is coming from the left and vehicles is coming from the right. The

specific warning method is to get the coordinates of the lower left and lower right corners of the

vehicle detection frame and determine whether it is in the warning area. If the coordinates of

the lower left corner and the coordinates of the lower right corner are both within the warning

area, it is considered that the vehicle ahead is too close; if the coordinates of the lower left corner

are not within the warning area and the coordinates of the lower right corner are within the

warning area, it is considered that the vehicle ahead is coming from the right side; if the coordi-

nates of the lower right corner are not within the warning area and the coordinates of the lower

left corner are within the warning area, it is considered that the vehicle ahead is coming from

the left side. The specific warning process algorithm is shown in Fig 7.

5. Results

To verify the effectiveness of the adaptive safe distance model proposed in this paper, the algo-

rithm was tested under different road conditions, and the experimental results were shown in

Figs 8 and 9. As shown in Fig 8, when the current vehicle speed is 25 km/h and the road surface

is dry, the minimum safe warning distance is 16 meters; when the vehicle speed decreases to

10 km/h, the minimum safe warning distance is updated to 2.8 meters. Fig 9 shows that at the

same vehicle speed (both 40 km/h), when the road surface is dry, the length of the dangerous

area is 25.6 meters; when the road surface is wet after rain, the length of the dangerous area is

33.6 meters; and when the road surface is snowy, the length of the dangerous area is 49.6

meters. It can be seen that the algorithm is capable of constructing an adaptive safe distance

for collision warning under different vehicle speeds and road conditions.

Based on the aforementioned experiments, warning experiments for potential collisions of

vehicles on actual roads were conducted according to the positional relationship between the

warning areas and the vehicles. The experimental results are shown in Fig 10. The three images

below respectively show the warning effects for situations where the vehicle distance is too

close, there is an approaching vehicle from the right ahead, and there is an approaching vehicle

from the left ahead.

The principle of traditional forward collision warning systems mainly relied on sensor data

to estimate the distance and relative speed between the host vehicle and the obstacle ahead.

Based on the obtained distance and speed, the system calculated the time to collision (TTC)

between the vehicle and the obstacle ahead, and compared the calculated value with a preset

threshold to issue warnings [24–26]. To further verify the warning effectiveness of the algo-

rithm proposed in this paper, driving videos from different road sections and surface condi-

tions were selected for experiments and the results of the warning effectiveness were shown in

Table 5 compared with traditional warning algorithms. The experimental results indicate that

the accuracy rate of traditional warnings is 87.31%, with a false alarm rate of 12.69%; while the

accuracy rate of the warning system proposed in this paper is 94.03%, with a false alarm rate of

5.97%. The overall accuracy rate has improved by 6.72%, and the false alarm rate for predicting

approaching vehicles from both sides has decreased by 16.67% compared to traditional

warnings.

6. Conclusions

This paper realizes vehicle collision warning based on the recognition of slippery road surface

and vehicle detection algorithm, which solves the problems of weak environmental
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Fig 7. Flow chart of warning strategy.

https://doi.org/10.1371/journal.pone.0310858.g007

Fig 8. Schematic diagram of danger zones at speeds of 25km/h (Left) and 10km/h (Right).

https://doi.org/10.1371/journal.pone.0310858.g008
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adaptability and low detection accuracy of the current research algorithm to a certain extent.

In this paper the on-board camera is used to monitor the environment and road conditions in

front of the vehicle in real time, and a residual network model FS-ResNet50 is proposed, which

integrates SE attention mechanism and multi-level feature information based on the tradi-

tional ResNet50 model. The FS-ResNet50 model is used to identify the slippery states of the

current road, such as dry and wet. Secondly, the yolov5 algorithm is used to detect the position

of the vehicle in front, and a driving safety distance model with adaptive traffic environment

characteristics is established based on different road environments and driving conditions,

and an early warning area that dynamically changed with the speed and the slippery states of

the current road is generated. Finally, according to the relationship between the warning area

and the position of the vehicle, the possible collision is predicted and timely warned. The

experimental results show that the algorithm in this paper can effectively generate an early

warning area that dynamically changes with the speed of the self-vehicle and the slippery states

of the road, which has high application value. In terms of early warning, this algorithm is more

accurate than the traditional collision warning algorithm, and the overall warning accuracy

was improved by 6.72%, and the warning false alarm rate for oncoming traffic on both sides

was reduced by 16.67%.

Fig 9. Schematic diagram of dangerous areas for different road surface conditions.

https://doi.org/10.1371/journal.pone.0310858.g009

Fig 10. Schematic Diagram of Warning Effects: (Left) represents too close distance to the preceding vehicle, (Middle) represents an approaching vehicle from

the right, and (Right) represents an approaching vehicle from the left.

https://doi.org/10.1371/journal.pone.0310858.g010

Table 5. Comparative effect of different vehicle early warning systems.

Type of

warning

Too close distance to the

preceding vehicle

An approaching vehicle from

the left

An approaching vehicle from

the right

True value 86 23 25

traditional collision warning systems False warning 4 6 7

False warning 82 17 18

collision warning systems based on road

condition recognition

False warning 3 2 3

False warning 83 21 22

https://doi.org/10.1371/journal.pone.0310858.t005
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In conclusion, this algorithm can provide better safety for drivers and can play an impor-

tant role in reducing the occurrence rate of traffic accidents and protecting the lives of drivers.

These future research directions include further considering the variation of friction coeffi-

cient between tires and the road surface under different conditions, and developing an algo-

rithm based on the parallel characteristics of lane lines to adapt to different camera installation

locations and driving environments.

Supporting information

S1 Dataset. Experimental data set. All collected images were collected together, labeled and

summarized one by one, and resulting classification results were roughly classified into three

major categories: dry, wet and snowy.
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