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Abstract

Breast cancer is the most common cancer diagnosed in women worldwide. However, the

effective treatment for breast cancer progression is still being sought. The activation of can-

nabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival. Our

previous study also reported that breast cancer cells responded to various combinations of

CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and

whether this phenomenon can be seen in other cancer characteristics remain unknown.

Therefore, this study aims to further elucidate the effects of highly selective CB agonists and

their combination on triple-negative breast cancer proliferation, cell cycle progression, inva-

sion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer

cells. The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination,

prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-

MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231

were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our

proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure

that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell

proliferation and AXL/VAV2/RAC1-mediated cell motility pathways. Our findings showed

that selective CB agonists and their combination suppressed breast cancer characteristics

in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of

MDA-MB-231, which could lead to cell proliferation and motility suppression.
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Introduction

Endocannabinoid system (ECS) is an endogenous signaling system that regulates a wide range

of biological processes in organisms such as immune response, brain development and bone

metabolism, etc. [1–4]. ECS system consists of 3 main components including cannabinoid

receptors (CB), endogenous cannabinoids (eCBs), and the enzymes for eCB synthesis and deg-

radation [4]. There are 2 types of canonical CBs namely cannabinoid receptor 1 (CB1) and

cannabinoid receptor 2 (CB2), both of which express throughout human body [5]. These

receptors are activated by their agonists, such as anandamide (AEA) and 2-arachimoylglycerol

(2-AG), the most well-known eCBs in humans. While eCBs were produced primarily by nerve

cells, this could result in different combination in eCBs presence in each organ innervated by

them [6, 7].

Besides its essential roles in maintaining many cellular processes, ECS was shown to have a

potential protective role against cancer progression. Both CB1 and CB2 were expressed and

influenced cell metabolism in many types of cancer including breast cancer [8, 9]. The pres-

ence of CB agonists hindered breast cancer cell survival and migration, and the exposure of

various combinations of CB1 and CB2 agonists were shown to have different impacts on breast

cancer cell behaviors [10]. Furthermore, the presence of CB2-selective agonist was shown to

disrupt breast cancer-bone cell interaction and decrease breast cancer-induced bone remodel-

ing in both in vitro and in vivo [10, 11]. The activation of ECS was shown to affect several cell

survival pathways in breast cancer, such as epidermal growth factor (EGF), insulin-like growth

factor-1 (IGF-1), casepase3 and nuclear factor kappa B (NF-κB) p65 [10, 12, 13]. Regardless,

how different combinations of CB1 and CB2 agonists affect cellular signaling pathways in

breast cancer is not known.

As previous study indicated the negative effects of specific combination of CB agonists on

cancer cell viability, whether this mechanism involves cell cycle regulation is not known. In

addition to uncontrollable cell proliferation, breast cancer recurrence is one of the critical

problems in cancer treatment. This involved the retention of rapid self-renewal of cancer stem-

ness, which is essential for both primary tumor proliferation and metastatic colonization [14–

16]. However, whether the exposure of CB agonists could affect breast cancer cell growth and

colony formation even after treatment removal is yet to be elucidated. Furthermore, cancer

metastasis happening in later stages in cancer progression also possess a great challenge in can-

cer therapy. This mechanism involves the initial epithelial-to-mesenchymal transition (EMT),

resulting in the formation of cellular lamellipodia to facilitate cancer cell movement and inva-

sion [17, 18]. Previous report showed that CB activation suppressed breast cancer cell migra-

tion [10]. However, the effect of CB agonist exposure on cancer invasion through extracellular

matrix, which is another key mechanism facilitating cancer metastasis [19], is not known.

Herein, effects of CB1 and CB2 agonists and their combination on cancer progression-related

behaviors including colony formation, invasion and cellular lamellipodia formation were

investigated. Moreover, a high throughput proteomic approach was utilized to broaden the

understanding and reveal the potential signaling pathways, by which CBs suppressed

MDA-MB-231 breast cancer characteristics.

Materials and methods

Cell culture

In this study, MDA-MB-231 (RRID CVCL_0062; HTB-26, ATCC, VA, USA) was used as a

human triple-negative breast cancer cell model; while, MCF-7 (RRID CVCL_0031; HTB-26,

ATCC) was used as a control less aggressive breast cancer model. The cells were maintained in

PLOS ONE Combinatorial effects of CB agonists on breast cancer characteristics and proteomic alterations

PLOS ONE | https://doi.org/10.1371/journal.pone.0312851 November 11, 2024 2 / 28

University [Fundamental Fund: fiscal year 2023 by

National Science Research and Innovation Fund

(NSRF)] (FF66; FF-060/2566) to KL. PW was

supported by grants from Innovation Policy

Council by Program Management Unit for Human

Resources and Institutional Development,

Research and Innovation (PMU-B; grant number

B05F640047), and by Fundamental Fund, Mahidol

University (FF66; FF-067/2566). NC is NRCT

Distinguished Research Professor awarded by

NRCT–Mahidol University, and Mahidol University

[Fundamental Fund: fiscal year 2023 by National

Science Research and Innovation Fund (NSRF)].

Proteomic platform and central instrument facility

were supported by the CIF and CNI Grant, Faculty

of Science, Mahidol University to KL, PW and NC.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0312851


Dulbecco’s modified Eagle’s medium (DMEM) (12800017, Gibco, Texas, USA) supplemented

by 10% fetal bovine serum (F7524, Sigma-Aldrich, MO, USA) and 1% penicillin-streptomycin

(15140122, Gibco, Texas, USA). Moreover, 4T1 (RRID CVCL_0125; CRL-2539, ATCC) was

used as a mouse triple-negative breast cancer cells, which were maintained in RPMI 1640

medium (Gibco) supplemented 10% fetal bovine serum (Sigma-Aldrich), 1% Sodium pyruvate

(11360070, Gibco) and 1% penicillin-streptomycin (Gibco). The cells were maintained at 37˚C

with 5% CO2 in a humidified incubator and routinely tested for mycoplasma contamination

by using the MycoStrip™ (Mycoplasma detection kit; rep-mys-50, InvivoGen, CA, USA).

Chemicals

CB receptor agonists ACEA (A9719, Sigma-Aldrich) and GW405833 (G1421, Sigma-Aldrich)

were used in this study. Since ACEA has Ki (CB1)/ Ki (CB2) = 1,428-fold and GW405833 has Ki

(CB2)/ Ki (CB1) = 1,217-fold [20, 21]; therefore, ACEA and GW405833 represented the highly

selective CB receptor agonists to CB1 and CB2 in our study, respectively. Since both agents

were dissolved in DMSO, DMSO was used as vehicle control for all experiments. The concen-

tration of CB agonists used in this study included 7.5 μM ACEA, 15 μM ACEA, 30 μM ACEA,

15 μM GW405833, 1:1 combination (15 μM ACEA: 15 μM GW405833), 1:2 combination (7.5

μM ACEA: 15 μM GW405833) and 2:1 combination (30 μM: 15 μM GW405833).

Cell viability assay

The cytotoxic effect of CB agonists was carried out by cell viability assay as previously

described [10]. Briefly, MDA-MB-231, MCF-7 and 4T1 cells were seeded in 96-well tissue cul-

ture plate (Jet Bio-Fil, Guangzhou, China) at a density of 1.0×104 cells/well. After 24 hours of

incubation, cells were treated with CB agonists, ACEA and/or GW405833, for 48 hours. The

cell viability was investigated by using MTT assay. The experiment was carried out in three

independent biological replicates with three technical replicates each.

Clonogenic assay

MDA-MB-231 and MCF-7 cells were seeded in 6-well tissue culture plate (Jet Bio-Fil) at a den-

sity of 3.3×105 cells/well. After incubation for 24 hours, the cells were treated with CB agonists

for 48 hours. Subsequently, cells were harvested by trypsinization (Trypsin, 25200072, Gibco,

Texas, USA) and seeded into the new 6-well plate at a density of 800 cells/well. Then, the cells

were maintained in complete culture medium, and the medium was replaced every two days.

After 12 days of incubation, all cell culture medium was discarded followed by two PBS

washes. The cells were fixed by 100% methanol (106009, Sigma-Aldrich, PA, USA) for 30 min-

utes. Colonies were stained with a staining solution, 0.5% crystal violet (V5265, Sigma-

Aldrich) in 0.25% methanol. After staining, scanned images were processed using ImageJ soft-

ware (National Institutes of Health (NIH), MD, USA). To distinguish separated colony area,

all images were analyzed through colony area plugin for ImageJ developed by Guzmán et al.

[22]. The processed images were then adjusted to separate nearby colonies by using the water-

shed binary. To count the numbers of colonies, colony numbers were measured by using ana-

lyzed particles tool in ImageJ software. The clonogenic assay was performed in at least three

independent biological replicates with two internal technical replicates each.

Cell cycle analysis

The percentage of cells in each cell cycle phase was determined using modified method from

Lertsuwan et. al., [23]. Briefly, MDA-MB-231 cells were seeded in 6-well tissue culture plate
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(Jet Bio-Fil) at a density of 3.3×105 cells/well for 24 hours. Then, they were treated with ACEA,

GW405833 or the combination of ACEA and GW405833 in different ratios for 48 hours. After

that, the cells were collected by trypsinization and fixed in cold 70% ethanol (A6531-04, Full-

time, China) at –20 ˚C. Afterwards, the samples were centrifuged for 5 minutes at 2,500 rpm

and treated with 20 μg/mL propidium iodide (PI) DNA staining solution (P1304MP, Life

Technologies, CA, USA) and 200 μg/mL PureLink™ RNase A (12091021, Life Technologies)

for 30 minutes at room temperature in the dark. Cell cycle distribution was analyzed using a

Flow Cytometer (Accuri™ C6 Plus; BD Biosciences, CA, USA). The experiment was performed

in four independent biological replicates.

Sample preparation for proteomic analysis

MDA-MB-231 cells were plated at 3.3×105 cells/well in 6-well tissue culture plate (Jet Bio-Fil)

and allowed to attach overnight. The cells were then treated with ACEA, GW405833 or the 2:1

combination of both agents for 48 hours. At the end of the experiment, cell pellets were col-

lected and were processed using a modified protocol based on a previously published prote-

ome-profiling pipeline [24, 25]. Briefly, cell pellets were washed twice with PBS supplemented

with protease inhibitor cocktail (04693159001, Roche, Mannheim, Germany). Afterwards,

total proteins were extracted using modified radioimmunoassay precipitation (RIPA) buffer

containing the protease inhibitor cocktail for 60 minutes at 4˚C. Then, samples were centri-

fuged at 12,000 rpm for 30 minutes, and protein-containing supernatants were collected. Pro-

tein concentration of samples was measured by using BCA protein assay kit (23227, Thermo

Scientific). In this study, protein samples from 3 independent experiments were used for fur-

ther analysis.

To investigate protein expression profile in MDA-MB-231 cells exposed to CB agonists,

extracted proteins were precipitated using ice-cold acetone. After precipitation, the protein

pellet was reconstituted and adjusted to 1 μg/μL in reconstitution buffer, 0.2% RapiGest SF

(186001860, Waters, UK) in 10 mM ammonium bicarbonate. To carry out sulfhydryl alkyl-

ation, fifty microliters of the protein solution (50 μg of proteins) were mixed with 5 mM DTT

in 10 mM ammonium bicarbonate for 20 minutes at 90˚C followed by incubation at room

temperature for 40 minutes in the dark. After that, the mixture was placed in a desalting col-

umn (89883, Zebra-spin, Thermo Scientific) with trypsin at a ratio of 1:50 (enzyme: protein)

to digest the peptide at 37˚C. After 6 hours of incubation, 0.2% formic acid was added at a 1:1

(v/v) ratio to terminate the digestion process. The peptides were reconstituted in 0.1% formic

acid and transferred to TruView LCMS vials (186005666CV, Waters, UK) for further analysis.

LC-MS/MS setting

The tryptic peptides were analyzed using LC-MS instrument consisting of an EASY-nLC 1200

system with a Q Exactive HF Orbitrap (Thermo Scientific). One microgram of peptides was

separated on EASY-SPRAY PEPMAP RSLC C18 column (25 cm length x 75 μm inner diame-

ter, 2 μm particle size (ES802, Thermo Scientific)). The flow rate was set at 300 nL/min with

mobile phase A (0.1% formic acid in LC-MS grade water) and mobile phase B (0.1% in LC-MS

grade acetonitrile). The column was maintained at 60˚C. The linear gradient was changed

from 2% to 45% of mobile phase B in 75 minutes and held for 15 minutes. The gradients were

then increased to 95% of mobile phase B for 5 minutes followed by re-equilibration to 2%

mobile phase B for additional 20 minutes. For MS1, the scanning range was set at 400–1,650

m/z with a resolution of 120,000, 3×106 automated grain control (AGC) and 50 ms injection

time (IT). For MS2, the resolution was set at 15,000 with 1×105 AGC and 25 ms IT. The data

was normalized to the higher energy collisional dissociation (HCD) fragmentation of 28 and
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processed by Proteome Discoverer 2.4 against the UniProt protein database for Homo sapi-
ens. For protein and peptide identification, the parameters were set as follows: 1% of false

discovery rates (FDR); peptide tolerance = 20 ppm; fragment tolerance = 0.05 Da; minimum

fragment ion matches per peptide = 3; digest enzyme = trypsin; fixed modification = cyste-

ine carbamidomethylation; variable modification = methionine oxidation. The normaliza-

tion of relative protein abundance ratio was performed using the total peptide amount of

each LC-runs (across all proteomic samples n = 24; 8 conditions with biological triplicate

each). The proteomics data including raw files and search results have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier

PXD040666.

Data analysis, bioinformatic analysis and meta-analysis

Data analysis of proteomic profile from MDA-MB-231 exposed to CB agonists was performed

by using Reactome (reactome.org) [26]. Then, the proteins with statistical significance

(p< 0.01) were processed to gene ontology enrichment analysis by using Panther (pantherdb.

org) [27]. Differential expression of proteins from each treatment as compared to control was

reported as log2 fold change normalized to control.

After that, protein-protein interaction (PPI) analysis was performed through STRING

(string-db.org) [28] to observe the protein relationship and possible affected pathway. Further-

more, all PPI networks were constructed and visualized by using Cytoscape 3.9.1 software

(cytoscape.org) [29].

For the meta-analysis study of gene expression, the analyses were acquired by using

GEPIA2 (gepia2.cancer-pku.cn) [30]. In addition, to analyze the expression profile of breast

cancer, the 179 datasets were obtained from the Cancer Genome Atlas Program (TCGA) and

the Genotype-Tissue Expression (GTEx) databases for each breast cancer subtype in compari-

son to normal tissues. According to breast cancer subtypes, they are categorized based on their

mutation and expression profiles into 4 molecular subtypes including luminal A (ER+, PR+�

20%, HER2− and Ki67+< 20%), luminal B (ER+, PR+< 20%, HER2− or HER2+, Ki67+�

20%), non-luminal (ER-, PR-, overexpressed HER2) and basal-like, namely triple-negative

breast cancer (TNBC), (ER−, PR−, HER2−) [31, 32]. The statistical analysis was carried out by

using analysis of variance (ANOVA).

Transwell invasion assay

Before cell seeding, the membrane of upper chamber was coated with diluted Matrigel

(356234, Corning, USA) at a ratio of 1:5 with serum-free culture medium. MDA-MB-231 cells

were seeded in serum-free culture media at 5×104 cells per well on an 8 μm pore size Transwell

insert (Falcon, Arizona, USA). In the lower chamber, DMEM culture medium supplemented

with 20% FBS was added. Cells were treated with either 30 μM ACEA, 15 μM GW405833 or

their 2:1 combination. Then, cells were cultured at 37˚C with 5% CO2 for 12 hours before

staining with 0.5% crystal violet at room temperature. Pictures of invasive cells on the under-

side of the membrane were taken under a light microscope (Model MBL3200, A. KRÜSS

Optronic GmbH, Hamburg, Germany). After that, the number of invasive cells was quantified

using ImageJ software (NIH). The quantification of invasive cells was carried out following the

previous published protocol [33]. All images were converted into 8-bit format, and the nearby

invasive cells were separated by watershed binary tool. The numbers of invasive cells were

counted by analyzed particles tool. Invasion assay was carried out for four independent biolog-

ical replicates.
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Lamellipodia formation assay

MDA-MB-231 cells were seeded into 8-well glass bottom chamber (LAB-TEK, New York,

USA) at a density of 1×104 cells per chamber. After 24 hours of seeding, 30 μM ACEA, 15 μM

GW405833 or their 2:1 combination were applied to MDA-MB-231 cells for 12 hours. Then,

cells were fixed with 4% formaldehyde (20909.330, VWR international, Rontenay-Sous-Bois,

France) before staining with Alexa Fluor™ 546 Phalloidin (A22283, Thermo Scientific, MA,

USA) for F-actin staining and Hoechst (62249, Thermo Scientific) for nuclei staining. Filopo-

dia and lamellipodia formation was observed using confocal laser scanning microscope

(FV1000, Olympus, Tokyo, Japan). Image analysis was performed using ImageJ software

(NIH). To perform the measurement, all images were converted into 8-bit format. The quanti-

fication was carried out by using modified protocol from Weaver et. al. [34]. The polygon

selection tool was used to select the edge of individual cells and to measure the whole cell

spread in μm2 according to scale bar. Whole cell spread was the average surface area of individ-

ual cells. Experiments were performed in six independent biological replicates.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

To validate the proteomic results, the expression of representative genes in each figure was

evaluated by qRT-PCR. MDA-MB-231 cells were seeded at a density of 3.3×105 cells/well into

6-well plates (Jet Bio-Fil). Treatments including vehicle control (DMSO), 30 μM ACEA, 15

μM GW405833, and the 2:1 combination (30 μM ACEA and 15 μM GW405833) were applied

to MDA-MB-231 cells after 24 hours of seeding. MDA-MB-231 cells were collected 48 hours

post-treatment, and their RNA was extracted using RNeasy Mini Kit (74104, Qiagen, Hilden,

Germany). One microgram of RNA was converted into cDNA by using iScript™ (1708841,

Bio-Rad, CA, USA). Thereafter, 100 nanograms of cDNA were combined with primers speci-

fied in the S1 Table and Luna1Universal qPCR Master Mix (M3003S, Biolabs, Herts, UK).

After that, the mixtures were added to qPCR microstrips (TLS0801, Bio-Rad), and qRT-PCR

was performed utilizing the Bio-rad CFX connect™ Real-Time PCR Detection System. The rel-

ative expression was quantified from Ct value normalized to β-actin of their own samples.

Experiments were performed in three independent biological replicates.

Statistical analysis

Statistical analysis of all results was performed by using GraphPad Prism 9 (GraphPad Soft-

ware Inc., USA). The comparison between 2 groups was performed using a T-test. For the

multiple comparisons among treatment groups, the results were analyzed by using one-way

ANOVA. Then, Tukey post-test was carried out to determine the statistical difference between

pairs of means. For all statistical analysis, p-value� 0.05 was considered as statistical

significance.

Results

Pre-exposure of specific combination of ACEA and GW405833 suppressed

MDA-MB-231 colony formation

According to our previous study, ACEA, GW405833 and their combination at different ratios

suppressed MDA-MB-231 cell viability by apoptosis induction, especially in the 2:1 combina-

tion of ACEA and GW405833 [10]. In this study, cytotoxicity of CB agonist treatment was also

investigated in the less aggressive human breast cancer cells (MCF-7) and mouse triple-nega-

tive breast cancer cells (4T1) as shown in S1 Fig. Our results showed that MCF-7 was notably

less sensitive to CB agonists as compared to MDA-MB-231. A specific 2:1 combination ratio
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also showed a significant cytotoxic effect on both human and mouse triple-negative breast can-

cer cell lines but not for MCF-7 (S1I Fig). However, whether the growth inhibitory effects

would still persist in the surviving cells after the treatment withdrawal is not known. CB ago-

nist concentrations were determined by cell viability test as reported in our previously pub-

lished data [10]. Accordingly, the same concentrations were used in this study. The long-term

suppression was then examined by clonogenic assay in this study. After MDA-MB-231 cells

were pre-exposed to ACEA and GW405833 at different concentrations and combination ratios

including vehicle control, 7.5μM ACEA, 15 μM ACEA, 30μM ACEA, 15μM GW405833, 1:1

combination (15 μM ACEA and 15 μM GW405833), 1:2 combination (7.5 μM ACEA and 15

μM GW405833) and 2:1 combination (30 μM ACEA and 15 μM GW405833), surviving cells

were seeded into the new plate for colony formation assay. The pre-exposure of 100 μg/mL

(768.76 μM) of 5-Fluorouracil (5-FU) was used as positive control, which completely inhibited

MDA-MB-231 colony formation even after treatment withdrawal for 12 days. Our results

showed that MDA-MB-231 cells were more sensitive to GW405833 than ACEA as shown in

Fig 1. At the same concentration of 15 μM, MDA-MB-231 colony formation was significantly

lowered in GW405833 treated cells than ACEA treated group. As none of individual treat-

ments significantly decreased colony number as compared to control, our results showed that

only the combination at 2:1 ratio (30 μM ACEA and 15 μM GW405833) significantly reduced

the number of MDA-MB-231 colony formation by 23.14% as compared to control (Fig 1A

and 1B). Nevertheless, the 2:1 combination of ACEA and GW405833 did not affect the colony

formation in MCF-7 cells (S2A and S2B Fig). The findings indicated that the 2:1 combination

of ACEA and GW405833 promoted long-term suppression of MDA-MB-231 colony forma-

tion, while individual treatments and other combinations did not.

Co-activation of CB receptors induced cell cycle arrest in MDA-MB-231

As shown in Fig 1, a specific combination of CB agonists suppressed colony formation ability

of MDA-MB-231 cells. To further study whether cell cycle alteration involved in CB-induced

growth inhibition in breast cancer cells (MDA-MB-231) seen in previous and current studies,

flow cytometry was carried out to investigate changes in cell cycle progression as shown in rep-

resentative histograms in Fig 2A. Our results showed that there was no significant difference

of cells in Sub-G0/G1, G0/G1 and G2/M phases between treatments as compared to control

(Fig 2B, 2C and 2E). However, the proportion of cells in S-phase was markedly increased in

MDA-MB-231 exposed to 30 μM ACEA and the 2:1 (ACEA: GW405833) combination by

33.51% and by 41.18% as compared to control, respectively (Fig 2D). Moreover, this combina-

tion also significantly augmented the percentage of cells in S-phase than the individual treat-

ment of 15 μM GW405833. In addition, the 2:1 combination was shown to have the lowest

proportion of MDA-MB-231 cells in the G2/M phase as compared to other combination treat-

ments (Fig 2E). These results suggested that colony formation suppression in 2:1 combination

corresponded to S-phase cell cycle arrest.

Proteomic profile alteration of proteins related to cell proliferation and

survival of MDA-MB-231

To identify the proteomic signatures that were altered in breast cancer cells exposed to CB ago-

nists, protein expression profile of MDA-MB-231 cells exposed to vehicle control, CB agonists

alone or their different combination was determined using LC-MS/MS. The schematic work-

flow of proteomic study in this research was shown in Fig 3A. Firstly, the differential protein

expression analysis was performed between each treatment group against vehicle control using

Reactome (reactome.org), and the proteins with p-values lower than 0.01 and more than
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1.5-fold-change were shown in volcano plots in Fig 3B–3H. The numbers of significantly

downregulated and upregulated proteins as compared to vehicle control were shown in

Table 1. Among those, the top 5 downregulated and upregulated proteins from each treatment

as compared to control were shown in Table 2, and the numbers of unique proteins that were

significantly altered in each individual and combination treatment were shown in Fig 3I (in

red). Since the 2:1 (ACEA:GW405833) combination was shown to have the most significant

effects on MDA-MB-231 cell growth in previous and current studies, proteomic signature in

this group was further analyzed. The results showed that there were 26 unique proteins altered
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in the 2:1 combination treatment as compared to other treatments (S2 Table and Fig 3I). We

next performed an enrichment analysis of gene ontology on these unique proteins using Pan-

ther (pantherdb.org). Our results indicated that 15 unique proteins in 2:1 combination treat-

ment were involved in cellular processes (Fig 3J). Within these 15 unique changed proteins,

one protein related to cell population proliferation process (Zinc Finger Protein; ZPR1) and

one protein involved in cell cycle (Anaphase Promoting Complex Subunit 1; ANAPC1) were

identified (Fig 3K). For proliferation-related protein, we found that ZPR1 was significantly

decreased by 1.54-fold in MDA-MB-231 treated with the 2:1 combination of CB agonists as

compared to a vehicle control (Fig 4A). Considering all significantly changed proteins in

MDA-MB-231 exposed to the 2:1 combination as compared to control, other cell survival and

proliferation-related proteins were also detected. SHC-transforming protein 1 (SHC1), mito-

gen-activated protein kinase 15 (MAPK15) and tumor protein P53 (TP53) were downregu-

lated by 1.71-, 1.57- and 2.49-fold upon the exposure of this combination, respectively (Fig

4B–4D). Gene expression validation of ZPR1, SHC1, MAPK15 and TP53 in MDA-MB-231

cells exposed to CB agonists was also shown by qRT-PCR (S3A–S3D Fig). On the other hand,

our results showed that the exposure of the 2:1 combination induced the expression of signal

transducer and activator of transcription 1 (STAT1), mucin 1 (MUC1) and caveolin 1 (CAV1)

by 2.75-, 2.42- and 1.71-fold, respectively (Fig 4E–4G).

For cell cycle-related proteins, ANAPC1, a regulator of metaphase-to-anaphase transition,

was upregulated in MDA-MB-231 exposed to 2:1 combination of ACEA and GW405833 as

compared to vehicle control (Fig 5A). The increase in ANAPC1 expression in MDA-MB-231

cells exposed to CB agonists was also confirmed by qRT-PCR (S3E Fig). On the other hand,

cell division cycle protein 20 homolog B (CDC20B), dynactin subunit 3 (DCTN3), centroso-

mal protein 295 (CEP295), timeless circadian regulator (TIMELESS) and Ras-related nuclear

protein (RAN) were significantly decreased by 1.64-, 1.94-, 1.81-, 1.71- and 1.67-fold upon the

exposure of 2:1 CB agonists, respectively (Fig 5B–5F). As these proteins may also interact with

other proliferation-related and cell cycle-related proteins presented in MDA-MB-231 treated

with 2:1 combination treatment, we next investigated potential protein-protein interaction of

all proteins with significant alterations (p< 0.01) in our samples through STRING analysis.

The protein-protein interaction (PPI) diagram for cell proliferation-related proteins was

shown in Fig 4H and cell cycle-related proteins were shown in Fig 5G. Together, these results

demonstrated the potential regulatory proteins propensity for colony formation suppression

and S-phase cell cycle arrest in MDA-MB-231 exposed to 2:1 (ACEA:GW405833) as compared

to control.

CB receptor activation suppressed MDA-MB-231 cell invasion

Since the exposure of 2:1 (ACEA:GW405833) combination significantly reduced growth and

promoted S-phase cell cycle arrest in MDA-MB-231, we aimed to test whether this condition

also affected metastasis ability of MDA-MB-231 by conducting transwell invasion assay. Our

results demonstrated that 30 μM ACEA significantly reduced number of invasive cells by

27.45% as compared to control (Fig 6A and 6B). Besides, MDA-MB-231 cell invasion was also

markedly reduced in 15 μM GW405833 by 41.65% as compared to control. These results

revealed the higher sensitivity of MDA-MB-231 cells to GW405833 than ACEA. Interestingly,

Fig 2. MDA-MB-231 cell cycle distribution after CB agonist treatment were evaluated. (A) Scatter plot of cells in different cell cycle phases stained with

20 μg/mL PI after 48 hours of CB agonist treatment. Quantitative results of cell distribution in each cell cycle phases (B) Sub G0/G1 phase, (C) G0/G1

phase, (D) S phase, (E) G2/M phase were presented as mean ± SEM from four independent biological replicates. (*p< 0.05, **p< 0.01, while #p< 0.05,

##p< 0.01).

https://doi.org/10.1371/journal.pone.0312851.g002
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combination between ACEA and GW405833 at ratio of 2:1 further suppressed MDA-MB-231

cell invasion by 59.80% as compared to control. Taken together, our results demonstrated that

this specific combination was also shown to have significantly greater suppression of cell inva-

sion as compared to individual treatments.

Whole cell spreading and lamellipodia formation were reduced in

MDA-MB-231 after being exposed to CB agonists

According to Fig 6A, 6B, MDA-MB-231 cell invasion capability was decreased from CB ago-

nist exposure. Since the formation of lamellipodia is known as one of the key characteristics

for migrating cells [35, 36], we then performed fluorescent staining of F-actin in MDA-MB-

231 exposed to CB agonists. Our results revealed that filopodia and lamellipodia formation

was significantly decreased in MDA-MB-231 exposed to CB agonist treatments as shown in

Fig 6C. Whole cell spread area of MDA-MB-231 cells was considerably reduced by 43.18% and

40.52% in 30 μM ACEA and 15 μM GW405833, respectively. The most dramatic reduction

was found in the 2:1 combination with the decreased whole cell spread area by 54.57% as com-

pared to control (Fig 6D). These results showed that reduction of cell invasion-related mor-

phology correspond to decreased cell invasion in CB agonist-treated cells.

Quantitative proteomic analysis revealed the reduction of lamellipodia-

promoting proteins; while, the induction of cell invasion suppressor

proteins was observed upon CB agonist exposure

Proteomic profile of MDA-MB-231 cells exposed to 30 μM ACEA, 15 μM GW405833 and

their 2:1 combination was analyzed to compare the proteomic signature changes against vehi-

cle control. Hence, proteins with statistical difference as compared to control were selected

and analyzed. Among these altered proteins, we found that 421 proteins were commonly

expressed in MDA-MB-231 cells exposed to these 3 conditions (Fig 7A). For proteins associ-

ated with cell locomotion, AXL receptor tyrosine kinase (AXL) was downregulated by

1.68-fold and 1.98-fold in MDA-MB-231 exposed to 30 μM ACEA and 15 μM GW405833,

Fig 3. Proteomic analyzed signature profiles of MDA-MB-231 exposed to different combinations of CB agonists.

(A) The schematic workflow of proteomic profile study of MDA-MB-231 treated with CB agonists. Volcano plot of

differential protein expression shows a negative base 10 log of the adjust p-values plotting against the base 2 log of the

fold change of each protein in CB agonists treated group normalized to control, (B) 7.5 μM ACEA; (C) 15 μM ACEA;

(D) 30 μM ACEA; (E) 15 μM GW405833; (F) 1:1 combination; (G) 1:2 combination; (H) 2:1 combination, versus

vehicle control group. (I) Chart showed the unique proteins after exposed to CB treatments. The GO term enrichment

analysis (J) biological process and (K) cellular process.

https://doi.org/10.1371/journal.pone.0312851.g003

Table 1. The number of downregulated and upregulated proteins in each condition from volcano plots that is pre-

sented in Fig 3.

Treatments Number of proteins found

Downregulate Upregulated

7.5 μM ACEA 196 242

15 μM ACEA 272 301

30 μM ACEA 338 301

15 μM GW405833 434 329

1:1 Combination 362 341

1:2 Combination 341 357

2:1 Combination 397 355

https://doi.org/10.1371/journal.pone.0312851.t001
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respectively. The 2:1 (ACEA:GW405833) combination ratio was found to further downregu-

late AXL protein by 2.79-fold as compared to control (Fig 7B). These CB agonist treatments

significantly reduced the expression of cellular actin dynamic regulator, VAV2 guanine nucle-

otide exchange factor (VAV2), by 1.82, 2.13 and 2.08-fold, respectively (Fig 7C). Likewise, Rac

family small GTPase 1 (RAC1) and Ras-related protein Rab-5A (Rab5A) were significantly

downregulated in MDA-MB-231 cells after exposed to 2:1 (ACEA:GW405833) combination

(Fig 7D and 7E). The decreased expression of AXL, VAV2 and RAC1 in MDA-MB-231 cells

exposed to CB agonists was also confirmed by qRT-PCR as shown in S3F–S3H Fig. Addition-

ally, proteins playing a role in cell-to-cell adhesion and actin polymerization, catenin alpha 2

(CTNNA2) and beta-actin-like protein 2 (ACTBL2) were downregulated in MDA-MB-231

Table 2. The top 5 downregulated and upregulated proteins of MDA-MB-231 cells after CB agonist exposure.

Conditions Upregulated proteins Downregulated proteins

Accession Log2 FC Accession Log2 FC

7.5 μM ACEA KRT2 5.105 BIRC6 -5.151

ALDOC 3.568 MTF2 -2.886

GOLPH3 3.409 COMMD9 -2.198

MBD3 3.232 DNAJB4 -2.022

F3 3.161 FN1 -2.019

15 μM ACEA RCN2 4.159 CCNB1 -5.504

ALDOC 3.899 SUPT7L -2.386

GOLPH3 3.398 MAGI1 -2.214

SMC3 3.193 H3-3A -1.942

MBD3 3.147 H4C1 -1.681

30 μM ACEA ALDOC 4.014 SUPT7L -2.854

RCN2 3.983 MAGI1 -2.681

ARHGAP18 3.957 LCN2 -2.540

SMC3 3.365 MT1G -2.306

GOLPH3 3.339 RBM10 -1.968

15 μM GW405833 EIF4H 4.598 MAGI1 -3.050

SMC3 4.275 NOSIP -2.755

RCN2 4.095 MT1G -2.715

ALDOC 4.018 RBM10 -2.490

JPT1 3.920 SUPT7L -2.463

1:1 Combination EIF4H 4.738 MAGI1 -2.984

RCN2 4.401 RBM10 -2.058

KRT2 4.286 CPSF7 -1.993

ALDOC 4.112 SRF -1.694

LRRFIP1 3.882 HIP1R -1.654

1:2 Combination EIF4H 4.833 MAGI1 -4.171

RCN2 4.472 NOSIP -2.557

ARHGAP18 4.401 MTF2 -2.181

ALDOC 4.264 CPSF7 -2.057

SMC3 4.236 RBM10 -1.972

2:1 Combination EIF4H 4.551 MAGI1 -3.836

KRT2 4.390 MT1G -3.222

RCN2 4.336 NOSIP -2.883

ALDOC 4.096 SUPT7L -2.860

SMC3 3.674 MTF2 -2.524

https://doi.org/10.1371/journal.pone.0312851.t002
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****p< 0.0001).

https://doi.org/10.1371/journal.pone.0312851.g004
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exposed to CB agonists as shown in Fig 7D and 7G. On the other hand, engulfment cell motil-

ity 2 (ELMO2) was upregulated after CB agonist treatment (Fig 7H). Similar to Figs 4 and 5,

cell locomotion-related proteins with significant change (p< 0.01) in 2:1 combination treat-

ment were further analyzed for potential interaction by using STRING as shown as PPI dia-

gram in Fig 7I. The PPI diagram illustrated the direct interaction among effected protein

including VAV2, RAC1 and other lamellipodia-related proteins [37, 38]. Accordingly, our

results suggested that CB agonists suppressed MDA-MB-231 cell invasion, and this effect was

associated with lamellipodia formation suppression.

ALDOC was upregulated in MDA-MB-231 exposed to CB agonists

Even though only 2:1 (ACEA:GW405833) combination significantly inhibited MDA-MB-231

colony formation after treatment withdrawal (Fig 1), individual and combination treatments

were shown to suppress MDA-MB-231 cell viability and motility in our previous study [10]

and Fig 6. We then investigated the common altered proteins in MDA-MB-231 cells exposed

to CB agonists. There were 187 commonly altered proteins as compared to control from all

treatments. Among these, our results showed that aldolase C (ALDOC) increased significantly

in all conditions at least 11.85-fold (Fig 8A) as compared to control. The upregulation of

ALDOC expression in MDA-MB-231 cells exposed to CB agonists was also confirmed by

qRT-PCR as shown in S3I Fig. With this significant alteration, meta-analysis of ALDOC was

performed to examine its association with breast cancer. Interestingly, by performing meta-

analysis, the expression of ALDOC was downregulated in all breast cancer subtypes as shown

in Fig 8C. Even though the results were not statistically significant, the increasing trend of per-

cent survival in high ALDOC group was observed (Fig 8B). Since ALDOC downregulation

was shown in all breast cancer subtypes, our results demonstrated the potential negative effect

of CB agonist exposure on breast cancer via ALDOC induction.

Discussions

With its important roles in various organs, different combinations between receptors and con-

centration of endocannabinoids presented in each microenvironment could affect how cells

respond to the endocannabinoid system. Most common endocannabinoids including AEA

and 2-AG were produced mainly by neurons in both peripheral and central nervous system;

hence, these endocannabinoids could be found in many organs innervated by neurons [39].

Interestingly, many studies showed that ECS also affects several pathological conditions

including cancer. ECS could regulate cancer progression via its immune modulation property

as shown in bladder cancer and pancreatic ductal adenocarcinoma [40, 41]. Interestingly, sev-

eral studies showed that endocannabinoid degrading enzymes were upregulated in cancer as

compared to normal tissues, and their upregulation also correlated with cancer progression in

many types of cancer including breast cancer as reviewed in [42, 43]. On the other hand, can-

cer cells also expressed CB1 and CB2 contributing to direct effects of endocannabinoids and

CB agonists on cancer cell behaviors as reviewed in [44].

Fig 5. Proteomics study revealed the alteration of uniquely related proteins to cell cycle in MDA-MB-231. The level of cell cycle-related

proteins after exposed to CB agonists and their combination treatment expressed as log2 fold change normalized to control (A) ANAPC1; (B)

CDC20B; (C) DCTN3; (D) CEP295; (E) TIMELESS; (F) RAN; (G) Protein-protein interaction diagram of changed proteins in MDA-MB-231

exposed to CB agonists. The connected lines indicated the potential direct associations of proteins with the bolder lines represented the

stronger interactions. All dot plots were presented as individual log2 fold change ± SEM of three biological replicates. (*p< 0.05, **p< 0.01,

***p< 0.001).

https://doi.org/10.1371/journal.pone.0312851.g005
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Fig 6. ACEA, GW405833 and their 2:1 combination inhibited MDA-MB-231 cell invasion and lamellipodia formation. (A) Representative images of

MDA-MB-231 cell invasion after being treated for 12 hours. (B) Bar graph represented percentage of invasive cells as compared to control. (C) Representative

images of whole cell spread and lamellipodium/filopodium formation (indicated in yellow arrows) in MDA-MB-231 after being treated for 12 hours. (D) Bar

graph represented the percentage of whole cell spreading area. Each bar represents mean ± SEM of four independent biological replicates for transwell invasion

assay and six independent biological replicates for lamellipodia formation assay. (***p< 0.001, ****p<0.0001, while #p< 0.05, ##p< 0.01, ####p< 0.0001).

https://doi.org/10.1371/journal.pone.0312851.g006
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Fig 7. The cell locomotion-related proteomic signature profiles of MDA-MB-231 after exposed CB agonists were investigated. (A) Venn diagram

comparing among 30 μM ACEA, 15 μM GW405833 and 2:1 combination. The dot plots represented protein expression as log2 fold change of CB agonists

treated group normalized to control in MDA-MB-231;(B) AXL; (C) VAV2; (D) RAC1; (E) RAB5A; (F) CTNNA2; (G) ACTBL2; (H) ELMO2; (I) Protein-

protein interaction diagram of cell locomotion related protein in 2:1 combination treatment. All dot plots were presented as individual log2 fold change ± SEM

of three biological replicates. (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001 versus control, while #p< 0.05, ##p< 0.01).

https://doi.org/10.1371/journal.pone.0312851.g007
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Fig 8. The common change of proteins after MDA-MB-231 was exposed to CB agonists was investigated. (A) The dot plot presented the level of

ALDOC protein as log2 fold change normalized to control after 48 hours of treatment. (B) Overall survival analysis of ALDOC protein in triple-

negative breast cancer (TNBC) (n = 67 in both groups). (C) Meta-analysis of ALDOC expression between normal tissues and breast cancer tissues.

(*p< 0.05, ****p<0.0001).

https://doi.org/10.1371/journal.pone.0312851.g008
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CB activation influenced variety of pathways in cancers, such as apoptosis, metastasis and

angiogenesis [10, 45, 46]. For breast cancer, studies showed that breast cancer had elevated

expression of CB1 and CB2, and the increased CB2 expression also associated with cancer

aggressiveness [39, 44]. Exposing to CB agonists induced breast cancer cell death by apoptosis

and ferroptosis [10, 47, 48]. Furthermore, CB activation could interfere with breast cancer

bone metastasis via C-X-C motif chemokine ligand 12 (CXCL12) and C-X-C motif chemokine

receptor 4 (CXCR4) pathway [49, 50]. Previous studies showed that MDA-MB-231, breast can-

cer cell line used in this study, also expressed both CB1 and CB2 [49, 51]. Previous study

showed that MDA-MB-231 is more sensitive to CB agonists than the less aggressive cancer cell

line, MCF-7. Furthermore, in this study also found that ACEA and GW405833 showed a

higher cytotoxicity to MDA-MB-231 and 4T1 cells than less aggressive breast cancer, MCF-7

cells (S1 Fig). On the other hand, CB agonists were shown to have no significant effect on the

non-cancerous breast cell line, MCF-10A, cell viability [52]. Similarly, our previous study

showed that activation of CB2 on MDA-MB-231 not only suppressed breast cancer cell

growth, but it also interfered with breast cancer and bone interaction. Moreover, while both

CB1 and CB2 agonists inhibited breast cancer cell survival, combination of the two further

enhanced this effect, especially the 2:1 (ACEA:GW405833) combination [10]. In this study, we

demonstrated that the combination of CB1 agonist (ACEA) and CB2 agonist (GW405833) at

2:1 ratio also provided the long-term inhibitory effect on breast cancer colony formation even

after treatment withdrawal. As cell cycle arrest could contribute to cell proliferation suppres-

sion, several studies showed that exposing to endocannabinoids, plant-derived cannabinoid or

synthetic cannabinoid resulted in cell cycle arrest in gastric cancer, prostate cancer, renal can-

cer, hepatocellular carcinoma and breast cancer. Specifically, CBD treatment promoted G0/G1

phase and late S/G2 phase arrest in MDA-MB-231 [53]. Besides, exposing to AEA also induced

S-phase cell cycle arrest in MDA-MB-231 resulting in reduction of cell population in G2/M-

phase [54]. Herein, we demonstrated that co-administration of highly specific CB1 and CB2

agonists at a 2:1 ratio (ACEA: GW405833) caused S-phase arrest in MDA-MB-231. This could

explain how ECS activation hindered breast cancer proliferation.

To further investigate the potential cell signaling alteration in breast cancer cells exposing

to CB agonists and their combination, especially the 2:1 combination that showed the most

profound inhibitory effects on breast cancer cells, proteomic analysis was performed. Our

proteomic results revealed the alteration of several cell proliferation and cell cycle regulation-

related proteins in breast cancer cells after 2:1 (CB1: CB2) agonist exposure. Our results

showed that ZPR1, the proteins shown to be upregulated in breast cancer tissue and correlated

with cancer progression, was significantly downregulated after CB agonist exposure [55]. Simi-

larly, the presence of 2:1 combination of CB1:CB2 agonists also downregulated the expression

of other proteins associated with cancer survival and proliferation including SHC1, MAPK15,

RAN and TP53 [56–62]. On the other hand, upregulation of STAT1, MUC1 and CAV1 was

found after treatment. These proteins were shown to suppress cell proliferation [63–65]. Like-

wise, the alteration in cell cycle control-related proteins was also found in breast cancer

exposed to CB agonists. CDC20B, DCTN3, CEP295 and TIMLESS were shown to promote

cell cycle progression and be associated with tumor progression in many types of cancer [66–

77]. These proteins were significantly reduced corresponding to cell cycle arrest in breast can-

cer upon the exposure to 2:1 CB agonists as shown in this study. While other cell cycle-related

proteins were downregulated in breast cancer cells exposed to CB agonists, ANAPC1 was

upregulated in our study. ANAPC1 is one of anaphase-promoting complex (APC) subunits

[78]. Generally, APC was known as a promoting factor for cell cycle progression. However,

mutation of APC was found in many types of cancer, and APC downregulation was associated

with the tumorigenesis and invasive phenotype of breast cancer [78, 79]. Therefore, APC
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upregulation with the exposure of CB agonists may negatively affect breast cancer progression

corresponding to the phenotypes observed in this study. All of these alterations coincided with

the reduced breast cancer cell growth upon the exposure CB agonists.

In the context of cell motility, prior investigations indicated that CB agonist exposure inhib-

ited the metastatic characteristics of breast cancer both in vitro and in vivo [49, 80, 81]. Like-

wise, our group previously reported that ECS activation by CB1 or CB2 agonists significantly

inhibited cell migration in MDA-MB-231 by wound-healing assay [10]. The results were also

consistent in this study as CB agonists suppressed MDA-MB-231 cell invasion through extra-

cellular matrix and lamellipodia formation. Moreover, specific combination of CB agonists

(2:1; CB1:CB2 agonist) further promoted inhibitory effect of CB1 and CB2 agonists on cell

invasion, which demonstrated the stronger effect of simultaneous CB agonist exposure as com-

pared to the individual treatments. Corresponding to these effects, our proteomic analysis

showed the significant alteration of several proteins associated with cell motility. Our results

revealed the reduction in AXL expression, which was known as a regulator for epithelial-to-

mesenchymal transition (EMT) of breast cancer [82]. AXL was shown to interact with several

proteins contributing to cancer cell migration and invasion via RAC1 activation [83]. Even

though the reduction was not significant in other conditions, RAC1 was notably decreased in

MDA-MB-231 exposed to the 2:1 (CB1: CB2 agonists) combination where the most inhibitory

effects were found. Several studies also indicated the involvement of VAV2 in RAC activation

and cancer motility by functioning as RAC guanine exchange factor (GEF) to convert inactive

RAC-GDP to the active RAC-GTP [37, 38, 84]. Our results revealed that VAV2 was also down-

regulated in all conditions in this study. Even though one of AXL interacting proteins,

ELMO2, was found to be upregulated upon the exposure of CB agonists, the significantly

decreased AXL, VAV2 and RAC1 as well as the diminished cell migration and invasion seen in

previous and current studies indicated that negative effects of CB agonists on breast cancer cell

motility might occur in ELMO2 independent pathway [10, 83]. Our data suggested the poten-

tial disruption of AXL-VAV2-RAC1 cell signaling pathway in MDA-MB-231 cells exposed to

individual and combination of CB1 and CB2 agonists contributing to the decreased cell inva-

sion ability.

One important characteristic of migratory cancer cells is lamellipodia formation, which is

the formation of cellular protrusion resulting from actin re-organization [85, 86]. Rab5A was

shown to promote lamellipodia formation and focal adhesion disassembly facilitating cell

motility in RAC-dependent pathway [87–89]. Our results revealed the reduction of Rab5A in

MDA-MB-231 breast cancer cells exposed to individual or the combination of CB agonists

associated with the reduction in cell invasion and lamellipodia formation in this study. Since

Rab5A was also reported to be associated with lymph node metastasis in breast cancer patients

[90], the reduction of this protein upon CB agonist exposure suggested the potential obstruc-

tion of breast cancer metastasis in the presence of CB agonists. In addition to Rab5A, two pro-

teins associated with cell motility, focal adhesion formation and cell-cell adhesion including

ACTBL2 and CTNNA2 were also downregulated in breast cancer cells exposed to CB agonists

[91, 92]. Taken together, our results suggested that the presence of CB agonists could poten-

tially inhibit breast cancer cell invasion and lamellipodia formation by the downregulation of

several cell locomotion-associated proteins. Mechanism wise, several proteins have been

shown to be associated ERK-MAPK signaling pathways, such as RAC1 and Rab5 [93, 94].

Interestingly, we found that the exposure of CB agonists dramatically induced ALDOC

expression of all conditions. While ALDOC is a crucial enzyme in glycolysis, many studies also

showed its contribution in cell proliferation, cell morphology regulation and cancer progres-

sion in non-glycolytic pathways [95–97]. High level of ALDOC was found to correlate with the

improved patient survival and reduced cancer progression in glioblastoma [98]. Moreover, the
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elevation of ALDOC in non-small cell lung cancer (NSCLC) promoted the expression of onco-

genes through Wnt/β-catenin pathway [99]. Interestingly, the opposite trend was seen in

breast cancer. Meta-analysis revealed that ALDOC expression was downregulated in all breast

cancer subtypes, and the higher ALDOC expression was also associated with the higher sur-

vival of breast cancer patients. Similarly, previous study had showed that ALDOC overexpres-

sion was negatively correlated with aggressiveness of breast cancer [100]. Our results showed

that ALDOC expression was dramatically increased in MDA-MB-231 exposed to CB agonists.

This suggested another potential breast cancer suppression mechanism via ALDOC activation

in breast cancer cells exposed to CB agonists. However, more studies are needed to verify the

underlying mechanism for breast cancer suppression upon CB agonist exposure as well as the

roles of ALDOC and its association with ECS in breast cancer progression.

Conclusion

Our study demonstrated that the presence of CB agonists hindered breast cancer cell growth,

cell cycle progression, invasion through extracellular matrices and lamellipodia formation.

The exposure of specific combination of CB1 and CB2 agonists also enhanced their breast can-

cer suppression effects. Moreover, breast cancer survival and motility-related proteins affected

by the presence of these agonists suggesting the potential pathways underlying their effects

were also depicted in this study. Future study is still required to fully understand the role of

ECS and the effects of CB agonist exposure in breast cancer progression.
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