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Abstract

-adrenergic receptors (BARs) play significant roles in regulating Ca%* signaling in cardiac myocytes,
g p play sig g g g g yocy

thus holding a key function in modulating heart performance. BARs regulate the influx of extracellular
Ca®* and the release and uptake of Ca?* from the sarcoplasmic reticulum (SR) by activating key compo-
nents such as L-type calcium channels (LTCCs), ryanodine receptors (RyRs) and phospholamban (PLN),
mediated by the phosphorylation actions by protein kinase A (PKA). In cardiac myocytes, the presence
of B,AR provides a protective mechanism against potential overstimulation of $;AR, which may aid in
the restoration of cardiac dysfunctions. Understanding the Ca?* regulatory signaling pathways of BARs
in cardiac myocytes and the differences among various BAR subtypes are crucial in cardiology and hold
great potential for developing treatments for heart diseases.
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INTRODUCTION

-adrenergic receptors (BARs) belong to the G protein-
coupled receptor (GPCR) superfamily, and are essential
for regulating the function of the cardiovascular system.
BARs are activated by catecholamines released from
sympathetic nerve terminals and adrenal medulla
under stress conditions, which increase heart rate and
blood pumping capability of the heart (Bers 2002). The
positive chronotropic, dromotropic and inotropic
effects ensure the energy supply of emergent needs.
Currently, there are three identified subtypes of
BARs (B;AR, B,AR, B3AR), while the existence of a
fourth subtype (B,AR) is still a subject of debate
(Gauthier et al. 1996). These three isoforms exhibit
different affinities for different ligands, rendering the
selectivity of isoform activation (Bristow et al. 1986).
The ratio of B;AR/B,AR expression in the healthy
human heart is approximately 4:1, while the expression
of B3AR is minimal. Both ;AR and (,AR respond to
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catecholamine stimulation and mediate positive
inotropic effects in heart cells. ;AR plays a dominant
role in increasing chronotropy and inotropy in cardiac
myocytes, whereas [(,AR produces only modest
chronotropic effects (Xiang and Kobilka 2003; Xiao et
al. 2006).

Epinephrine and norepinephrine are native cate-
cholamine ligands of BARs (Bunemann et al. 1999; Hain
et al. 1995; Nikolaev et al. 2006; Nikolaev et al. 2010).
With catecholamine binding, ARs undergo conforma-
tional changes that enable its coupling to heterotrimer-
ic G proteins, resulting in the substitution of the GDP on
the G, subunit of G-proteins by GTP and subsequent
dissociation of Gg, subunits (Wess 1997). G,-GTP then
stimulates adenylyl cyclase (AC) to catalyze the forma-
tion of cyclic AMP (cAMP). cAMP regulates a wide vari-
ety of cellular processes through activating a variety of
downstream signaling molecules, including protein
kinase A (PKA). PKA phosphorylates L-type Ca®* chan-
nels (LTCCs) in the cell membrane or T-tubules, ryan-
odine receptor (RyR) Ca?* release channels and phos-
pholamban (PLN) in the sarcoplasmic reticulum (SR),
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and thereby up-regulates LTCC Ca?* influx, SR Ca®* re-
lease and cytosolic Ca?* uptake (Fig. 1).

REGULATION OF LTCC

LTCCs are the predominant mediator of Ca?* influx in
the cardiomyocytes playing an initiation role in the
excitation-contraction coupling. In general, LTCCs are
composed of a4, a,, B, 6 and y subunits. «; is the pore-
forming subunit with voltage sensors. a,/8 and f3
subunits modulate the expression, voltage dependence
and gating kinetics of the channel (Bodi et al. 2005).
Several PKA phosphorylation sites in the ay subunit
have been identified (Fu et al. 2014; Hulme et al. 2006;
Yang et al. 2016). BAR agonists, such as isoproterenol,
increase the phosphorylation level of S1928 in the
distal C-terminal domain (Hulme et al. 2006), which can
be blocked by BAR antagonists. Interestingly, LTCCs
with S1928 mutated to alanine still retain 70%-80%
response to BAR stimulation, indicating that S1928 is
not the major phosphorylation site for fAR stimulation
(Benitah et al. 2010; Ganesan et al. 2006; Hulme et al.
2003, 2006). S1700 and T1704 located at the interface
between the proximal and distal C-terminal domain are
also phosphorylated in BAR regulation of LTCCs (Fu et
al. 2013, 2014). Again, mutations of both S1700 and
T1704 cannot eliminate BAR effects (Fu et al. 2013).

The regulatory (3, subunit plays a crucial role in
LTCCs regulation in response to BAR stimulation
(Haase et al. 1993). S478 and S479 were identified as
the phosphorylation sites of PKA in f(, subunit
(Gerhardstein et al. 1999). Mutating S478 and S479 to
alanine in the B, subunit inhibits PKA-mediated Ca®*
current increase in transfected cells (Bunemann et al.
1999). This result suggests that phosphorylation of
S478 or S479 contributes to PKA-mediated regulation
of LTCCs.

Monomeric G proteins, such as Rem and Rad, func-
tion as endogenous LTCC inhibitors (Beguin et al. 2001;
Finlin et al. 2003). Recent analysis from a proximity
proteomics screen provided solid evidence that Rad is
enriched in the LTCC microenvironment but is deplet-
ed during B-adrenergic stimulation. Phosphorylation by
PKA decreases Rad affinity for 3 subunits and increases
LTCC open probability (Liu et al. 2020). Four serines in
Rad have been identified as PKA phosphorylation sites,
and mutation of these four serines or disrupting the in-
teraction between LTCC [ subunit and Rad reduced
heart rate and basal contractility, and greatly dimin-
ished B-adrenergic contractile response (Papa et al
2022,2024).

A kinase anchoring protein 15 (AKAP15) is a lipid-
anchored protein with a single amphipathic helix that
binds PKA. AKAP15 colocalizes and associates with
LTCC in T-tubules (Gray et al. 1998). PKA tethered to a
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Fig. 1 Illustration of B-adrenergic regulation of Ca?* signaling in heart cells
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leucine zipper motif in the C-terminal domain of the
LTCC o4 subunit via AKAP15 (Hulme et al. 2002), which
is essential for 3-adrenergic regulation of LTCC (Hulme
etal 2003).

LTCCs are also phosphorylated by Ca?*/calmodulin-
dependent kinase II (CaMKII). CaMKII is activated by
BAR stimulation via guanine nucleotide exchange
protein directly activated by cAMP (Epac) (Curran et al
2007; Grimm and Brown 2010). Mutations at sites
S1512 and S1570 of a; subunit (Hudmon et al. 2005)
and T498 of B2 subunit (Koval et al. 2010) reduce Ca®*
influx.

Besides, cardiac phosphatase activities also play im-
portant roles in the regulation of Ca?* homeostasis.
Phosphatase type 1 (PP1) and 2A (PP2A) are the major
isotypes of cardiac phosphatases, comprising over 90%
of the protein phosphatases in cardiomyocytes (Liiss et
al. 2000). PP1 is reported to contribute to the dephos-
phorylation of LTCC, RyR, and PLB. Whereas, PP2A is
mainly involved in the dephosphorylation of myofibril-
lar proteins, including troponin I and myosin-binding
protein C (Metzger and Westfall 2004).

In recent years, a few proteins have been reported
to modify the f-adrenergic regulation of LTCCs.
Sphingosine-1-phosphate (S1P), a circulating bioactive
sphingolipid, has been implicated in the regulation of
several cellular processes including cardiac Ca®*
handling (Means and Brown 2009). S1P does not affect
the basal LTCC current, but partially reverses the regu-
lation of BAR activation on LTCCs through a signaling
pathway involving the interaction between P21-
activated kinase 1 (Pak1) and protein phosphatase 2A
(PP2A) (Egom et al. 2016). Ahnak functions as a sup-
pressor of LTCCs by sequestering the {3, subunit
through a strong binding to the LTCC B, subunit
(Hohaus et al. 2002). Rem GTPase interacts with LTCC
B, subunit and inhibits LTCC currents. The inhibitor
effects can be rescued by LTCC activators such as
BayK8644, but not by the BAR stimulation (Xu et al
2010). Besides the functional coupling regulators, there
were some structural coupling factors, such as Bridg-
ing Integrator 1 (BIN1) and caveolin-3. BIN1 is essen-
tial for the localization of LTCCs to T-tubules in car-
diomyocytes and affects LTCC regulation by BAR
stimulation (Kumari et al. 2018). In heart cells, a sub-
population of LTCCs localizes in caveolae. Caveolae are
specialized membrane microdomains and are support-
ed by the structural protein caveolin-3. It is well known
that B,AR is enriched in caveolae. There is evidence
showing that regulation of LTCCs by (,AR, but not
B1AR, is eliminated when caveolae were disrupted
(Balijepalli et al. 2006). This indicates that LTCCs are
coupled to B;AR signaling outside of caveolae.
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REGULATION OF RyRs

RyRs are major Ca?* release channels in the SR of striat-
ed myocytes or endoplasmic reticulum (ER) of other
cells. RyRs bind to ryanodine in their open state. Early
studies using radiolabeled ryanodine have shown that
phosphorylation of RyR2 by PKA increased channel
activity (Takasago et al. 1991). However, the identifica-
tion of the phosphorylation site critical for BAR re-
sponse has been highly controversial. It has been
proposed that the phosphorylation of S2808 by PKA
sensitizes the response of RyRs to cytosolic Ca?* change
(Wehrens et al. 2004a). However, the mouse model
harboring the S2808A mutation has normal inotropic
and chronotropic responses to AR stimulation
(MacDonnell et al. 2008). S2808A cardiomyocytes ex-
hibit blunted enhancement of systolic Ca?* transients at
3 Hz but not at lower frequencies (Benkusky et al
2007). There is also evidence that the phosphorylation
of S2030 by PKA enhances RyR2 responsiveness to lu-
minal Ca%* (Xiao et al. 2005, 2007). However, data from
different labs questioned Ser2030 as a physiological
PKA phosphorylation site (Huke and Bers 2008;
Wehrens et al. 2006).

Besides PKA-mediated phosphorylation, BAR-
activated CaMKII specifically phosphorylates S2815 in
RyRs (Kushnir et al. 2010; Wehrens et al. 2004b). Phos-
phorylation at S2815 increases the open probability
of RyR2 by sensitizing the channel (Wehrens et al
2004b). While cardiac-specific CaMKII overexpression
enhances SR Ca?" fractional release (Maier et al
2003), cardiac-specific inhibition of CaMKII reduces
isoproterenol-induced responses in SR Ca?* release and
heart rate (Wu et al. 2009).

In intact cells, BAR modulation of RyR function is
difficult to measure, because BAR also increases LTCC
Ca?* current and SR Ca®* loading. With a high-affinity
Ca®* indicator combined with a slow Ca?* buffer agent
EGTA to elicit Ca®* spikes, it is demonstrated that
isoproterenol synchronizes the Ca?* release from RyR
clusters (Song et al. 2001). When the SR Ca?* load and
Ca%* current were controlled, isoproterenol stimulation
of B;AR accelerates SR Ca?* release kinetics without
altering the amplitude of Ca®* transients (Ginsburg and
Bers 2004), agreeing well with the PKA-mediated
synchronization of RyR Ca?* release (Lakatta 2004;
Wang and Wehrens 2010). However, experiments using
UV photolysis to activate RyRs showed that isopro-
terenol enhances both the speed and the magni-
tude of Ca®* transients in cells with controlled SR Ca?*
load (Ogrodnik and Niggli 2010). Using the loose-sealed
patch clamp to trigger individual RyR Ca?* release units,
manifested as a Ca?* spark, we observed that selective
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BAR stimulation enhances the amplitude of triggered
sparks in an LTCC unitary current-independent manner.
The Ca?* release flux that underlies a Ca?* spark is
enhanced when the SR Ca?* content is controlled to a
comparable level. These results demonstrate un-
equivocally that the activation of RyRs is expedited and
synchronized under AR stimulation (Zhou et al. 2009).

REGULATION OF PLN

The rapid removal of Ca®* from the cytoplasm is
primarily facilitated by the sarco(endo)plasmic
reticulum Ca?* ATPase SERCA2a, which pumps Ca®*
back into the SR cavity and thus controls the amount of
Ca?* in the SR (Zhihao et al 2020). PLB is the
endogenous regulatory protein of SERCA2a activity and
is the only regulatory protein of SERCA2a that is
directly involved in the development of heart disease,
including heart failure (Shanmugam et al. 2011; Weber
etal 2021).

There are two phosphorylation sites in PLN, Ser16
and Thrl7, which are phosphorylated by PKA and
CaMKII respectively (Kuschel et al. 1999; Simmerman
et al. 1986; Xiao et al 1994). Experiments with
phosphorylation of PLN at either site increase SR Ca?*

load, and thus enhance SR Ca?* release and accelerate
cardiomyocyte relaxation (Li et al 2002). Different
from that of Ser16, the phosphorylation of Thrl7 by
B1AR is enhanced with increased frequency of electrical
stimulation possibly because frequency-dependent
accumulation of intracellular Ca?* facilities CaMKII
activation (Hagemann et al. 2000).

DIFFERENCE BETWEEN ;AR AND $3,AR SIGNALING

The amino acid sequences of human ;AR and (,AR
share only 71% identity in the transmembrane do-
mains and 54% identity overall (Dixon et al. 1986). In
the heart, ;AR-activated cAMP signaling increases the
phosphorylation of sarcolemmal LTCCs and a multi-
tude of intracellular regulatory proteins, including RyR,
PLB and myofilaments (Xiao 2001). However, (,AR-
mediated cAMP signaling specifically modulates LTCCs
without affecting PLB and myofilaments in most mam-
malian species (Fig.2) (Xiao and Lakatta 1993). Al-
though in the human heart, 3,AR stimulation increases
PKA-dependent phosphorylation of intracellular regu-
latory proteins, its effects are much smaller than that
induced by (;AR stimulation (Altschuld et al. 1995).
Furthermore, $,ARs are expressed preferentially in the
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Fig. 2 Illustration of compartmentalized 3,AR-cAMP signaling in heart cells
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T-Tubule membrane, while $;ARs are distributed in
both T-tubules and surface membrane (Nikolaev et al
2010).

BARs are G protein-coupled receptors. ;AR and
B,AR both couple to G, protein, while (3,AR also cou-
ples to G; protein (Fig. 2). Selective 3,AR stimulation by
zinterol does not enhance cardiomyocyte contraction in
both wild-type (WT) mice and transgenic mice overex-
pressing human 3,AR (TG4) (Zhou et al. 1999). After in-
cubating cells with pertussis toxin (PTX), which abro-
gates G;/G, function via ADP ribosylation, zinterol
markedly increases contraction amplitude in both WT
and TG4 cardiomyocytes, which can be completely
abolished by the specific 3,AR antagonist (Xiao et al
1999). In cell-attached patch clamp experiment, 3,AR
agonist in bath solution outside the patch pipette can-
not cause a discernible change in LTCC activity in the
patch membrane, while local B,AR agonist in the
pipette markedly increases the open probability of the
patched channel. This sophisticated experiment indi-
cates that 3,AR signaling is confined in a highly local-
ized microdomain. After PTX treatment, the channels in
the patch membrane became responsive to agonist in
the bath solution, suggesting that G; plays an essential
role in the compartmentalized 3,AR signaling (Chen-Izu
etal 2000).

In addition to the impact of G; protein, it is proposed
that B,ARs reside in caveolae, which compartmentalize
B,AR signaling. Indeed, caveolin-3 is of vital impor-
tance for the localization of ;AR and compartmenta-
tion of B,AR-cAMP signaling in healthy cardio-
myocytes (Wright et al. 2014). Also, phosphodiesterase
4D (PDEA4D) is recruited by (-arrestin2 to the vicinity of
B,AR. Its hydrolysis of cAMP restricts the spatial diffu-
sion of ,AR-activated cAMP signal (Fischmeister et al.
2006; Richter et al. 2008; Shi et al. 2017). Endogenous
catecholamine ligands of fARs, epinephrine and norepi-
nephrine, induced distinct $,AR signaling through G
protein-coupled receptor kinase 2 (GRK2) phosphory-
lation and selective binding of G, or G; (Heubach et al.
2004; Wang et al. 2008), which further revealed the
complexity of §,AR downstream signaling.

B2AR-MEDIATED OFFSIDE COMPARTMENTALI-
ZATION OF B,AR SIGNALING

Accumulative evidence suggests that ;AR and (,AR
pathways may have crosstalk. The activation of (,AR
has been found to blunt the signaling of 3;AR in failing
heart cells (He et al 2005). In transgenic mice
overexpressing (,ARs, the contractility of cardiomy-
ocytes is enhanced through spontaneous (3,AR-cAMP
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signaling. However, these cells lose their ability to re-
spond to $;AR stimulation (Zhang et al. 2000).

Recently, we have analyzed the interaction between
B,AR and ;AR signaling. While isoproterenol normally
up-regulates Ca?* transients during cardiomyocyte
excitation, salbutamol, a selective $,AR agonist, hinders
the ability of isoproterenol to regulate Ca®* transients
(Yang et al. 2019). This effect can be eliminated either
by rolipram, a PDE4 inhibitor, or by peptides that
antagonize B-arrestinl. In the rat model harboring
mutations of the phosphorylation sites in the C-
terminus of B;AR, a putative binding domain for (-
arrestinl and GRK2, 3,AR agonist no longer interferes
with ;AR signaling. This study suggests that (,AR
stimulation activates GRK2 to phosphorylate the C-
terminus of AR, facilitates the recruitment of PDE4 to
the phosphorylated 3;AR, and compartmentalizes 3;AR-
cAMP signals within a sub-membrane nanodomain,
preventing the PKA-dependent regulation of RyR and
PLB. Because the compartmentalization of the ;AR
pathway is rendered by the $,AR pathway in an offside
manner, this signaling process is described as “offside
compartmentalization” (Fig. 2) (Yang et al. 2019).

It is important to mention that the activation of off-
side compartmentalization can occur in vivo through
the use of epinephrine, which hinders the regulation of
heart contraction by norepinephrine (Yang et al. 2020).
Epinephrine exhibits a limited preference for 3,AR over
B1AR as an adrenal hormone (Baker 2010), while
norepinephrine predominantly stimulates - and a;ARs
as a sympathetic neurotransmitter (Minneman et al
1981) and exhibits selectivity for ;AR over $,AR due
to different entrance pathways to the extracellular
binding pockets (Xu et al. 2021). Epinephrine and a less
quantity of norepinephrine are tonically released from
the adrenal glands (Paur et al. 2012). As prolonged acti-
vation of 3;AR leads to cytotoxicity (Wu et al. 2017; Zhu
et al. 2003), the offside compartmentalization initiated
by (,AR signaling can serve as a negative feed-forward
mechanism preventing the tonic ;AR activation by cir-
culating catecholamines. Under the offside compart-
mentalization, BAR signaling is still able to synchronize
SR Ca?* release by up-regulating LTCC Ca?* influx (Yang
etal 2020) and enhance the transientresponse of ;AR to
norepinephrine during sympathetic excitation. Hence,
in contrast to the robust and predictable E-C coupling
regulation through overall ;AR signaling, the com-
partmentalized BAR regulation of E-C coupling, while
being moderate, exhibits an "autoadaptive" nature in
response to various physiological and pathological
circumstances.
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PATHOLOGICAL IMPLICATIONS

While BARs play essential roles in the physiological
operation of Ca?* signaling, their malfunction is impli-
cated in a variety of pathological processes. Prolonged
B1AR stimulation induces apoptosis in a CaMKII-
dependent manner, and B,AR blockade exaggerates
B1AR-induced apoptosis (Communal et al. 1999) possi-
bly due to the absence of offside compartmentalization.
In contrast, stimulation of 3,AR protects cardiac myo-
cytes against a wide range of apoptotic insults, includ-
ing enhanced ;AR signaling, hypoxic treatment or in-
duction of reactive oxygen species (ROS) (Zhu et al
2001). Inhibition of B,AR-activated G;-Gg,~PI3K-PKB
signaling eliminates these protective effects, and trans-
forms (,AR signaling from anti-apoptotic to pro-
apoptotic (Zhu et al. 2001; Chesley et al. 2000). Emerg-
ing evidence suggests that mitogen-activated protein
kinase (MAPK) and extracellular signal-regulated pro-
tein kinases (ERK1 and ERK2) are also involved in
B,AR-mediated anti-apoptotic signaling (Shizukuda and
Buttrick 2002).

During the early-stage development of heart failure,
the sympathetic nervous system adjusts its activity to
increase cardiac output to compensate for the
alterations of cardiac and peripheral hemodynamics
(Toschi-Dias et al. 2017). However, the continuous
hemodynamic stress promotes the chronic release of
catecholamines. The elevated level of catecholamine
(Bristow et al. 1982; Ungerer et al. 1993) leads to
sustained and toxic (;AR-CaMKII signaling, which
exacerbates the decline in cardiac function as observed
in mid- and late-stages of heart failure (Brede et al
2002; Johnson and Antoons 2018; Zhu et al. 2003).

CONCLUDING REMARKS

Heart disease is the leading cause of death globally.
B-adrenergic signaling plays a pivotal role in the modu-
lation of cardiac function in physiological and patholog-
ical conditions. Understanding the molecular mecha-
nism of B-adrenergic signaling is fundamental for heart
disease therapy. A recent discovery of Rad, a novel en-
dogenous regulator of LTCC, brought new insights into
the BAR-cAMP-PKA signaling pathway, and well ex-
plained the controversial evidence on the functional
phosphorylation sites on LTCC subunits. It is well
known that ;AR mediates global cAMP signaling while
B,AR generates localized cAMP signaling. Recent find-
ings suggest that 3,AR may also blunt ;AR signaling
through GRK2 mediated “offside compartmentaliza-
tion” mechanism, which can also serve as a negative

© The Author(s) 2024

feed-forward mechanism preventing the cell toxicity of
tonic ;AR activation by circulating catecholamines.
This underscores the critical protective role of (,AR
against the detrimental effects of ;AR overstimulation.
Further discoveries of BAR signaling mechanisms will
contribute to novel and effective diagnostic and thera-
peutic heart disease targets.
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