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Abstract
Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So 
far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling 
on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, 
we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations 
and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of 
nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid 
mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between 
endothelial and intramural arterial cells via nitric oxide and endothelin-1.
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1  Introduction

Most soft tissues consist of a collection of different cell types 
that communicate with each other and work together to pro-
mote tissue homeostasis under normal conditions. Accord-
ing to Adler et al. (2018), nearly all tissues are composed of 
4 key cell types: those responsible for the primary function 
of the tissue plus endothelial cells, fibroblast-like stromal 
cells, and macrophages. This ensemble forms a remarkably 
robust system working reliably under different environmen-
tal conditions.

To study the response of soft tissue to changes in the 
mechanical environment on the macroscale, constrained 

mixture models (Humphrey and Rajagopal 2002) and in par-
ticular their homogenized versions (Cyron et al. 2016) have 
proven very successful. For example, they have been used to 
study the formation of aortic (Wilson et al. 2013; Mousavi 
and Avril 2017; Horvat et al. 2019) or cerebral (Baek et al. 
2006) aneurysms, vascular adaptation to increased blood 
pressure (Valentín et al. 2008; Latorre et al. 2019), optimi-
zation of tissue-engineered vascular grafts (Szafron et al. 
2019), inflammatory effects (Hill et al. 2018; Latorre et al. 
2019; Maes et al. 2023), or cardiac growth and remodeling 
(Gebauer et al. 2023). In both full and homogenized mod-
els, the production of new tissue mass is usually governed 
by phenomenological gain parameters. While this approach 
allows numerically efficient organ-scale simulations, it does 
not allow detailed studies of subcellular processes and their 
effects on the organ-scale.

To study cellular signal processing, it is necessary to 
model the biochemical reactions within cells. These are 
usually triggered by signals sensed by receptors on the 
cell membrane (Alberts et al. 2017). One possibility is 
to model the reactions in detail, which requires param-
eters for each involved chemical reaction (Saucerman 
et al. 2003). This detailed approach, however, requires 
extensive experimental data to determine the reaction 
parameters. A simpler alternative is a graph represen-
tation of the signaling network (Kraeutler et al. 2010). 
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In this approach, biochemical reactions are replaced by 
simpler Hill-type functions, resulting in a logic-gated sys-
tem of ordinary differential equations (ODEs) requiring 
fewer parameters. Despite its simplicity, this approach 
has yielded surprisingly accurate results, ranging from 
cardiac fibroblast signaling (Zeigler et al. 2016) to brain 
endothelial cells in the context of cerebral pathologies 
(Gorick et al. 2022). This approach also facilitates study-
ing genetic defects, such as knockdowns or overexpres-
sion of specific proteins and pharmacological treatments 
(Irons and Humphrey 2020).

By combining constrained mixture models and cellu-
lar signaling models (Irons et al. 2021), one can create 
a scale-bridging model that captures how cell signaling 
affects growth and remodeling (G&R) on the organ-scale 
and vice versa (Karakaya et al. 2022; van Asten et al. 
2022, 2023; Irons et al. 2022). Such scale-bridging mod-
els can benefit from the RNA sequencing data that are 
becoming more and more available. For example, this 
approach has been used to study effects of exogenous 
angiotensin II on aortic smooth muscle cells (Irons et al. 
2021) and effects of notch signaling in hypertension (van 
Asten et al. 2023).

Whereas the above studies couple cell signaling and 
tissue-level constrained mixture models, others focus on 
chemo-mechanical coupling on the organ-scale (Marino 
et al. 2017; Gierig et al. 2021). That is, effects of the dif-
fusion of paracrine signals at the tissue level were mod-
eled by coupling reaction-diffusion equations and those 
for the soft tissue mechanics. Thereby, some have exam-
ined interactions of macrophages, smooth muscle cells, 
and endothelial cells and their effects on the mechanical 
properties of collagen (Marino et al. 2017); others have 
examined effects of matrix metalloproteinases (MMPs) 
and growth factors on the healing process of damaged soft 
tissue (Gierig et al. 2021). So far, to the authors’ knowl-
edge, no constrained mixture models of G&R include both 
intracellular signaling and chemo-mechanical coupling on 
the organ-scale.

In this paper, we introduce the first (homogenized) con-
strained mixture model that includes both intracellular sign-
aling and chemo-mechanical coupling on the organ-scale 
for arbitrary geometries. Numerical implementation is based 
on open-source software packages (deal.ii (Arndt et  al. 
2021), Trilinos (The Trilinos Project Team 2021), SUNDI-
ALS (Hindmarsh et al. 2005)). By making the model and 
the associated code available to the community, we aim to 
facilitate the study of how different aspects of cellular signal 
processing, such as (dysfunctional) intracellular signaling 
pathways or cell–cell communication, affect G&R on the 
organ-scale.

2 � Mathematical model

2.1 � Mechanics

Herein, we use the homogenized constrained mixture 
theory to describe the mechanics of soft biological tis-
sues undergoing growth (changes in mass) and remodeling 
(changes in microstructure). Its main equations will be 
summarized in the following. For more details, the reader 
is referred to previous articles (Cyron et al. 2016; Braeu 
et al. 2017; Mousavi et al. 2019; Maes and Famaey 2023).

2.1.1 � Kinematics

Using the general theory of nonlinear continuum mechan-
ics, soft biological tissue can be modeled as a domain B0 
of material points X referred to as reference configuration. 
A time-dependent deformation maps the domain B0 to its 
current configuration B(s) at G&R time s. This means that 
each material point X is mapped to its current position 
x(s,X) . Without loss of generality, we assume that the 
reference configuration coincides with the initial configu-
ration, that is, B0 = B(s = 0) . The so-called deformation 
gradient at time s is

The determinant of the deformation gradient, det(F) , maps 
differential volume elements dV of the reference configura-
tion to differential volume elements dv of the current con-
figuration with

Although we assume that each volume element is a 
mixture of N structurally significant constituents that are 
constrained to move together, each constituent has its indi-
vidual stress-free reference configuration. For each con-
stituent i, the deformation gradient F can be split into an 
inelastic part Fi

gr
 and an elastic part Fi

e
 . Fi

gr
 represents the 

inelastic change of the tissue geometry due to G&R; it 
maps differential volume elements to a fictitious interme-
diate configuration that is not necessarily geometrically 
compatible. That is, neighboring volume elements in the 
intermediate configuration may overlap, or gaps may arise 
between them. The volume elements in the intermediate 
configuration are mapped by Fi

e
 to the current configura-

tion. This happens such that the current configuration is 
always geometrically compatible and in mechanical equi-
librium (Fig. 1).

(1)F(s) =
�x(s)

�X
.

(2)dv = det(F)dV .
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In the homogenized constrained mixture model, the elastic 
part of the deformation gradient of a constituent i at time s is 
given by

In this case, F is the deformation gradient of the mixture as 
a whole, Fg captures the inelastic change of geometry due to 
growth of all constituents together (change of tissue mass), 
and Fi

r
 captures the inelastic part of the deformation gradi-

ent resulting from remodeling due to mass turnover of each 
constituent i, where Fgr = F

i
r
Fg . Both Fg and Fi

r
 have to be 

defined via evolution equations described below.

2.1.2 � Elasticity

Since growth and remodeling occur on long time scales, we 
solve the quasi-static equilibrium equation div(�) = 0 where 
� is the Cauchy stress of the mixture. The strain energy of the 
mixture per unit reference volume is

Here, a superscript i = e refers to elastin, i = m to (circum-
ferential) smooth muscle, and i = c0, c90, c+�0 , c−�0 to 4 dif-
ferent collagen fiber families with the subscript indicating 
the angle with respect to a specific direction or axis (collec-
tively summarized as cj ). A superscript c without an indica-
tion of an angle refers to a quantity for collagen as a whole. 
Wi denotes the strain energy per unit mass of constituent 

(3)F
i
e
(s) = F(s)Fgr(s)

−1 = F(s)Fg(s)
−1
F
i
r
(s)−1.

(4)Ψ =
∑
i

�i
0
Wi

(
C

i
e

)
.

i, �i
0
 the reference apparent mass density of constituent i, 

and Ci
e
= F

iT
e
F
i
e
 the elastic part of the right Cauchy–Green 

tensor of constituent i. Since inelastic deformations, that 
is, G&R, do not contribute to the stored energy, the strain 
energy of the constituents only depends on the elastic part 
of the deformation.

The main constituents of the tissues considered herein 
are an isotropic elastin matrix, reinforced by several fami-
lies of quasi-one-dimensional fibers of collagen and smooth 
muscle. The elastin matrix is modeled by the strain energy 
(Braeu et al. 2017; Maes and Famaey 2023)

where �e and � are material parameters, Īe
1
 is the trace of 

the isochoric elastic Cauchy–Green tensor of elastin C̄e

e
 

(including prestretch), and Je
e
 is the determinant of the elas-

tic part of the deformation gradient of elastin, Fe
e
 . Note that 

C̄
e

e
=
(
Je
e

)−2∕3
F
eT
e
F
e
e
 (Holzapfel 2000). The quasi-one-dimen-

sional fibers reinforcing the elastin matrix are modeled using 
Fung-type constitutive equations

with the superscript � referring to fiber constituents (i.e., 

� = m, cj ), I�4e =
(
a�
gr

)T

C
�

e
a�
gr

 the fourth pseudo-invariant of 
the elastic Cauchy–Green tensor of constituent � and a�

gr
 its 

fiber orientation in the inelastically deformed intermediate 
configuration (Braeu et al. 2017; Gebauer et al. 2023). Note 
that I�

4e
=
(
��
e

)2 with the elastic fiber stretch ��
e
.

In certain cases, an additional active stress contribution 
of the smooth muscle cells may be considered and added in 
Eq.  (4) as part of their strain energy. In this case, the stress 
of smooth muscle is the sum of the passive and active con-
tributions. This is based on the assumption that active and 
passive contributions act in parallel with the contractile units 
embedded in a passive matrix (Murtada et al. 2010). Fol-
lowing Wilson et al. (2012), we model this contribution as

Here, �max is the maximal active stress where the factor 
ycon(s) ∈ [0, 1] modulates that stress according to intra-
cellular signaling in a way described in Sect.   2.2. The 
stretches �max and �0 are the stretches at which force gen-
eration is maximal and minimal, respectively. The active 
smooth muscle stretch in the fiber direction �act is modeled 
as 𝜆act = 𝜆∕𝜆̂act where � is the total stretch in the fiber direc-
tion and 𝜆̂act represents the (evolving) reference configura-
tion for active smooth muscle. We assume that this reference 

(5)We =
𝜇e

2

(
Īe
1
− 3

)
+

𝜅

2

(
Je
e
− 1

)2

(6)W� =
c�
1

4c�
2

[
exp

(
c�
2

(
I�
4e
− 1

)2)
− 1

]

(7)Wm
act

=
�max

�0(0)
ycon(s)

[
�act +

(
�max − �act

)3
(
�max − �0

)2
]
.

Fig. 1   Kinematics of the homogenized constrained mixture model: 
For each constituent i, the deformation gradient F can be split into an 
inelastic part Fi

gr
 and an elastic part Fi

e
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configuration evolves due to fast muscle remodeling such 
that 𝜆̂act = 𝜆 (Wilson et al. 2012). Hence, 𝜆act = 𝜆∕𝜆̂act = 1 at 
all times s in the quasi-static equilibrium but ��act∕�� = 1∕� 
(Braeu et al. 2017).

2.1.3 � Growth

Different possibilities exist for defining the growth tensor Fg . 
For simplicity, we choose an anisotropic growth tensor (Braeu 
et al. 2017) used in several studies (Mousavi and Avril 2017; 
Maes and Famaey 2023). In this case, the growth tensor in 
equation (3) can be written as

with ag the unit growth direction vector in the reference con-
figuration, �0(s) =

∑
i �

i
0
(s) , and Jg = det(Fg) = �0(s)∕�0(0) . 

For ease of comparison with previous studies, we chose to 
use transversely isotropic growth, noting that other ways of 
defining the growth tensor can be implemented in the model 
(Braeu et al. 2019).

2.1.4 � Remodeling

The evolution equation for Fi
r
 in equation (3) is detailed in 

(Cyron et al. 2016) and (Maes and Famaey 2023); see these 
articles for details. Briefly, constituents are subject to continu-
ous mass turnover where extant tissue mass is degraded and 
new mass is added. This process adapts the stress-free configu-
ration of a constituent over time in a manner that is, in many 
respects, similar to inelastic deformations in viscoelasticity. 
Assuming new mass is added with a preferred stress �i

h
 , this 

can effectively be captured for constituent i by an evolution 
equation

where Li
r
= Ḟr

(
Fr

)−1 represents the remodeling velocity 
gradient, 𝜌̇i

0
 the rate of change of the referential mass den-

sity �i
0
 , Ti the degradation time constant (Cyron et al. 2016; 

Maes and Famaey 2023; Gebauer et al. 2023; Braeu et al. 
2017), and �i

h
 the assumed homeostatic target value for the 

Cauchy stress experienced by constituent i. We assume that 
only the fiber constituents representing collagen and smooth 
muscle ( � = m, cj ) are subject to G&R. Further assuming 
incompressible remodeling of the fibers, F�

r
 can be written 

as (Cyron et al. 2016)

(8)Fg =
𝜌0(s)

𝜌0(0)
ag ⊗ ag +

(
I − ag ⊗ ag

)

(9)

[
𝜌̇i
0

𝜌i
0

+
1

Ti

][
�
i − �

i
h

]
=

[
𝜕�i

𝜕Fi
e

∶
(
F
i
e
L
i
r

)]

F,Fg=const.

(10)F
𝛼

r
= 𝜆𝛼

r
a
𝛼
0
⊗ a

𝛼
0
+

1√
𝜆𝛼
r

�
I − a

𝛼
0
⊗ a

𝛼
0

�

with a�
0
 the fiber orientation in the reference configuration, 

and ��
r
 the inelastic remodeling stretch in the fiber direction, 

the only unknown. Hence, equation (9) can be simplified to 
a scalar evolution equation for 𝜆̇𝛼

r
 (see Appendix 1 in (Cyron 

et al. 2016) or (Maes and Famaey 2023) for a derivation)

This evolution equation can be integrated using standard 
time integration schemes; we use a forward Euler scheme. 
Following (Gebauer et al. 2023), the initial remodeling 
stretch is set to

where ��
h
 represents the (homeostatic) deposition stretch of 

constituent � . This ensures a homeostatic initial state for 
constituents subject to G&R.

2.1.5 � Initial configuration

The reference (and also initial) configuration with F = I is 
typically not load-free; we assume that it is a homeostatic state. 
That is, the constituents subject to G&R (collagen ( � = cj ) and 
smooth muscle ( � = m )) are in their respective homeostatic 
state with an initial elastic part of the deformation gradient

with ��
h
 the homeostatic stretch of collagen or smooth mus-

cle, and a�
0
 the orientation of the respective fiber family in 

the reference configuration (Cyron et al. 2016; Braeu et al. 
2019; Maes et al. 2019).

We determine the initial elastic stretch of elastin such that 
the constrained mixture as a whole is in mechanical equilib-
rium at F = I for a given external loading (e.g., the blood pres-
sure p0 in a vessel) and that smooth muscle and collagen are 
in their respective homeostatic state (Bellini et al. 2014). An 
iterative approach is adopted to this end as detailed before 
(Mousavi and Avril 2017; Famaey et al. 2018; Maes et al. 
2019). As a starting point for the iterations, an axial prestretch 
of elastin �e

z
 (estimated, e.g., from experimental data) is pre-

scribed, and the initial elastin prestretch tensor is constructed 
assuming incompressibility (Famaey et al. 2018)

At iteration step k, a mechanical equilibrium problem is 
solved based on an assumed elastic prestretch Fe

e,k
(s = 0) 

(11)𝜆̇𝛼
r
=

(
𝜌̇𝛼
0

𝜌𝛼
0

+
1

T𝛼

)
𝜆𝛼
r

2I𝛼
4e

[
𝜕𝜎𝛼

𝜕I𝛼
4e

]−1(
𝜎𝛼 − 𝜎𝛼

h

)
.

(12)��
r
(0) =

1

��
h

(13)F
𝛼

e
(s = 0) = 𝜆𝛼

h
a
𝛼
0
⊗ a

𝛼
0
+

1√
𝜆𝛼
h

�
I − a

𝛼
0
⊗ a

𝛼
0

�
,

(14)F
e
e,k=0

(s = 0) =

⎡⎢⎢⎢⎣

1√
�e
z

0 0

0
1√
�e
z

0

0 0 �e
z

⎤⎥⎥⎥⎦
.



2119Multiscale homogenized constrained mixture model of the bio‑chemo‑mechanics of soft tissue…

of elastin and yields for the constrained mixture as a whole 
the deformation gradient Fk compared to the desired initial 
state. The objective of the iterations is to achieve Fk = I , 
with k the iteration step, which indicates that the elastic 
prestretch of elastin has been chosen such that mechani-
cal equilibrium is satisfied directly in the desired initial 
configuration. To achieve Fk = I , we compute for itera-
tion step k + 1 for elastin the assumed elastic prestretch 
F
e
e,k+1

(s = 0) = FkF
e
e,k
(s = 0) and continue such iterations 

until we have found a Fe
e,k+1

(s = 0) which yields within a 
certain tolerance Fk+1 = I when solving the associated 
mechanical equilibrium problem. To facilitate the solution, 
external forces, predefined deposition stretches of the fiber 
constituents, and the axial deposition stretch of elastin are 
applied gradually in the first few iterations.

2.2 � Intracellular signaling

As mentioned in Sect.  1, different approaches exist to 
model the intracellular signaling network of cells. We 
focus on the approach introduced by Kraeutler et  al. 
(2010), which, despite its relative simplicity, has produced 
excellent results (Zeigler et al. 2016; Irons and Humphrey 
2020; Gorick et al. 2022). This model uses a logic-based 
representation of the chemical reactions of cellular sig-
nal processing. Each chemical species is represented by a 
node yi in a directed graph. Under normal conditions, the 
value of each node ranges in the continuous interval [0, 1] 
with 0 representing an inactive state and 1 a fully active 
state. However, diseases or pharmacological treatments 
might change the maximal activity level of a node to some 

different upper bound yi,max , which will be discussed at the 
end of this section. In a graph of N nodes, the change of 
activation of node yi is given by the following (nonlinear) 
ODE,

where �i is a time constant (determining the reaction speed). 
To understand this model, consider the simplest case where 
node yi depends only on one other node yj . In this scenario, 
we distinguish 2 cases. First, yj is assumed to have a posi-
tive (activating) effect on yi , and fi(y1,… , yN) is assumed 
to reduce to

This function is illustrated in Fig. 2a. Second, if yj has a 
negative (inhibitory) effect on yi , fi(y1,… , yN) is assumed to 
be (Kraeutler et al. 2010; Khalilimeybodi et al. 2020)

Activating functions of the type f +
i

 and inhibitory 
functions of the type f −

i
 similarly form the main building 

blocks of a signaling network in more complex scenarios. 
They represent normalized Hill functions, with nij the 

(15)
dyi

ds
=

1

�i
fi(y1,… , yN)yi,max − yi

(16)fi(yj) = f +
i
(yj) ∶= Wij

Bijy
nij

j

(Bij − 1)nij + y
nij

j

.

(17)

fi(yj) = f −
i
(yj) ∶= 1 − f +

i
(yj)

= 1 −Wij

Bijy
nij

j

(Bij − 1)nij + y
nij

j

.

Fig. 2   a Dashed blue line 
shows activation function with 
default parameters Wij = 1 , 
EC50,ij = 0.5 , nij = 1.4 , solid 
lines show variations of a single 
parameter (see legend) from 
the default case and its effect 
on the activation function. 
b Contour plots of logical 
operators described by the Eqs.  
(20) through (22). c A simple 
example of a signaling network 
with 2 input nodes ( y1 , y2 ) and 3 
output nodes ( y3 , y4 , y5)
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Hill coefficient, Wij a reaction weight, and the constant Bij 
enforcing the constraints

where EC50,ij is the value at which the activation function is 
half-maximal, i.e., 0.5Wij . Based on these constraints, Bij is

with 
(
EC50,ij

)nij < 0.5 to ensure Bij remains positive. If a 
node yi depends on 2 nodes yj and yk , their combined effect 
is modeled by the logical operations ‘AND,’ ‘OR,’ and ‘AND 
NOT’ (Irons et al. 2022). In the first of these 3 cases, yi is 
activated if both yj and yk are active and we have

In the second case, yi is activated if yj or yk are active and 
we have

In the third case, yi is activated if yj is active and yk is inac-
tive, and we have

These logical operators are illustrated in Fig. 2b. Note that 
Eqs.  (20) and (22) deviate slightly from the original defini-
tions (Kraeutler et al. 2010) and use a modification (Khal-
ilimeybodi et al. 2020; Irons et al. 2022) to ensure proper 
scaling. This avoids issues where the classical ‘AND’ defini-
tion, f +

i
(yj)f

+
i
(yk) , would lead to outputs that are too small if 

not scaled by 2∕
(
f +
i
(yj) + f +

i
(yk)

)
 (similar for ‘AND NOT’). 

If a node yi depends on several other nodes, their effect on 
yi can be modeled by a recursive combination of the logical 
operators in Eqs.  (20) through (22).

Based on the above model, the dynamics of the  net-
work are governed by a system of nonlinear ODEs. A 
simple example with 5 nodes is illustrated in Fig. 2c. The 
inputs could represent, e.g., the stress of the smooth mus-
cle fibers (node y1 ) and the nitric oxide concentration in 

(18)

f +
i
(yj = 0) = 0,

f +
i
(yj = 1) = Wij,

f +
i
(yj = EC50,ij) = 0.5Wij

(19)Bij =

(
EC50,ij

)nij − 1

2
(
EC50,ij

)nij − 1

(20)fi(yj, yk) = AND(yj, yk) ∶=
2f +

i
(yj)f

+
i
(yk)

f +
i
(yj) + f +

i
(yk)

.

(21)
fi(yj, yk) = OR(yi, yj)

∶= f +
i
(yj) + f +

i
(yk) − f +

i
(yj)f

+
i
(yk).

(22)

fi(yj, yk) = AND NOT(yi, yj)

∶=
2f +

i
(yj)f

−
i
(yk)

f +
i
(yj) + f −

i
(yk)

=
2f +

i
(yj)

(
1 − f +

i
(yk)

)

f +
i
(yj) +

(
1 − f +

i
(yk)

) .

the tissue (node y2 ). The outputs could represent smooth 
muscle proliferation (node y3 ), collagen production (node 
y4 ), and the active contraction of smooth muscle (node y5 ). 
By changing yi,max , it is possible to simulate overexpres-
sion ( yi,max > 1 ) or knockdown ( yi,max < 1 ) of a species that 
could result from a pathogenic variant or a pharmacologi-
cal treatment.

2.3 � Continuum‑scale biochemistry

2.3.1 � Reaction‑diffusion equations

One way cells communicate is by secreting signaling mol-
ecules that diffuse through the surrounding tissue and are 
sensed by neighboring cells (paracrine signaling) or the cell 
itself (autocrine signaling). We model such processes on the 
continuum scale by a coupled system of reaction-diffusion 
equations

with superscript k denoting the kth species tracked by the 
model in the extracellular space ( k = 1, ...,N +M ). Here, �k

0
 

is the density in the reference configuration of species k, N is 
the number of structurally significant species (such as elas-
tin, collagen, smooth muscle), and M is the number of rel-
evant biochemical species, for example, signaling molecules 
secreted by the cells that are not structurally significant (see 
Fig. 3). Dk

0
 is the (constant) diffusion coefficient of species 

k, rk
0
 represents possible reactions between species, and sk

0
 is 

a potentially time-dependent source term. The source term 
can, for example, represent the exogenous addition of certain 
molecules or potential endocrine signals.

In the present coupled chemo-mechanical model (see 
below), the tracked species include the N = 3 structural con-
stituents of the soft tissue (elastin, collagen, smooth muscle) 
and potentially the concentrations of M biochemical species, 
such that k = e, c,m, ...,N +M . For the 3 mechanically rel-
evant constituents in the constrained mixture, we assume

For elastin, we assume no deposition, degradation, or diffu-
sion, that is, se

0
= 0 , re

0
= 0 , De

0
= 0 . By contrast, we assume 

that collagen production depends on the intramural cell 

(23)
��k

0

�s
= Dk

0
∇2�k

0
+ rk

0
(�1

0
, ..., �N+M

0
) + sk

0
(s)

(24)

Dc
0
= 0,

rc
0
=

1

Tc

�c
0
(0)

�m
0
(0)

�m
0
(s)(1 + Δ�c(s)) −

1

Tc
�c
0
(s),

sc
0
= 0,

(25)
Dm

0
= 0,

rm
0
=

1

Tm
�m
0
(s)(1 + Δ�m(s)) −

1

Tm
�m
0
(s), sm

0
= 0.
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density since more cells, all producing collagen at a basal 
rate, leads to more collagen production. Here, the factor �

c
0
(0)

�m
0
(0)

 

ensures a homeostatic state at G&R time s = 0 . The Ti are 
degradation time constants and the Δ� i(s) are normalized 
deviations of the relevant signaling network output of node 
yi from its baseline level yi0 with (Irons et al. 2021)

Following Irons et al. (2021, 2022), we assume a constant 
relative distribution of the different collagen fiber families, 
which leads to

For simplicity, we assume that rates of collagen degradation 
and cell apoptosis are constant and Dc

0
= Dm

0
= 0.

Note that the purely mechanical homogenized constrained 
mixture model can be obtained by setting D�

0
= 0 , s�

0
= 0 and

where k� is a rate parameter, ��(s) the current stress of fiber 
constituent � , and ��

h
 its homeostatic stress (Braeu et al. 

2017; Gebauer et al. 2023). In this case, equation (27) need 
not hold.

2.3.2 � Endothelium as a boundary condition

Endothelial cells can play important roles in sensing 
mechanical stimuli as well as in cell–cell communication. To 
include these effects, an endothelial cell layer with its own 
signaling network can be added to the model. For example, 

(26)Δ� i(s) =
yi(s) − yi0

yi0
.

(27)
𝜌̇
cj

0

𝜌
cj

0

=
𝜌̇c
0

𝜌c
0

.

(28)r�
0
= ��

0
(s)k�

��(s) − ��
h

��
h

, � = m, cj

when modeling a blood vessel by a tube-like geometry, the 
endothelial cells line the inner surface. Using the current 
(inner) radius of the vessel, the mean wall shear stress can 
be computed based on

assuming a fully developed laminar flow of a Newtonian 
fluid. Here, � is the fluid viscosity, Q the flow rate, and a 
the current (inner) radius. Changes in wall shear stress can 
then serve as an input to the endothelial signaling network 
and trigger a response. For example, by releasing signaling 
molecules, which diffuse through the attached volume, the 
endothelial cells can communicate with intramural cells by 
providing potential inputs to their signaling networks. Note 
that the endothelial cells are assumed not to be structur-
ally significant but instead form a (dynamic) Neumann-type 
boundary condition for the continuum-scale diffusion prob-
lem described in the previous section.

3 � Implementation

3.1 � Coupling

The equations in Sect. 2 related to mechanics, intracellular 
signaling, and continuum-scale biochemistry are coupled 
as illustrated in Fig. 3. For example, nodes in the intracel-
lular signaling model determine mass production rates in 
the continuum-scale biochemistry model; these production 
rates govern the G&R that drives mechanical deformation; 
these deformations result in mechanical stress, which alters 
inputs for the intracellular signaling model.

Hence, the above equations must be solved as a coupled 
system. A geometry, for example, a tube representing a 
blood vessel, is discretized using the finite element method 

(29)�w =
4�Q

�a3
,

Fig. 3   Schematic coupling of 
mechanics, intracellular signal-
ing, and reaction-diffusion prob-
lem (continuum-scale biochem-
istry). Only the first N species in 
the reaction-diffusion problem 
are assumed to be structurally 
significant (elastin, collagen, 
smooth muscle), whereas the 
last M species in the concentra-
tion vector are assumed to be 
structurally insignificant but to 
matter as an environment for the 
intracellular signaling processes
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(FEM) to solve both mechanical and continuum-scale bio-
chemical reaction-diffusion problems. The intracellular sign-
aling is computed at a representative selection of material 
points, that is, at each Gauss point in each finite element. 
To solve time-dependent problems, we discretize time into 
a finite number of times si with i = 1, 2, 3,… . At each time 
si , we solve the coupled problem via the following sequence 
of steps: 

1.	 FEM solution of mechanical problem based on system 
state at previous time si−1,

2.	 Solution of ODE system for intracellular signaling (to 
steady state) at each Gauss point in the FEM discre-
tization based on the mechanical state computed in the 
previous step (1) and mass concentrations from si−1,

3.	 FEM solution of reaction-diffusion problem with 
mechanical state from step (1) and intracellular signal-
ing state from step (2).

This staggered solution scheme allows a flexible combina-
tion of submodules. For example, in certain cases, only 2 of 
the 3 domains of the problem may actually be solved (e.g., 
only mechanics and diffusion or only mechanics and intra-
cellular signaling).

3.2 � Signaling network initialization

To determine normalized changes Δ� i(s) of pathway output 
yi in (26), its baseline pathway output yi0 is needed. This 
value can be determined by fixing all input nodes to a base-
line value and simulating the dynamics of the network until 
a steady state at all output nodes has been reached.

3.3 � Scaling of inputs for intracellular signaling

To use a continuum-level quantity q (e.g., smooth muscle 
stress) as an input to a node yi in the intracellular signaling 
network, it has to be scaled to a suitable range. A simple way 
is to use a sigmoidal function

where sq determines the sensitivity to a perturbation 
from homeostatic, Δq represents the normalized devia-
tion of q from its baseline (e.g., homeostatic) value, qh , 
and � shifts the sigmoidal function horizontally such that 
yi(Δq = 0) = yi0 where yi0 is the baseline input at time s = 0 . 
Figure 4 shows the influence of varying sensitivities on the 
scaling behavior.

(30)yi(Δq) =
1

1 + e�−sq⋅Δq
, with Δq =

q − qh

qh

3.4 � Solvers

3.4.1 � Mechanics

The nonlinear mechanical equilibrium problem was solved 
with a standard Newton solver from the Trilinos NOX 
package (The Trilinos Project Team 2021) (relative and 
absolute tolerances set to 10−12 ). The linearized system 
was solved with a direct solver since all the problems 
studied were relatively small. The code was fully parallel-
ized, supporting iterative linear solvers in case of larger 
problems.

3.4.2 � Intracellular signaling

The system of ODEs modeling the intracellular signal-
ing was solved using the SUNDIALS ARKode package 
(Hindmarsh et al. 2005; Gardner et al. 2022; Reynolds 
et al. 2023) with an explicit Runge–Kutta method of order 
5 with relative and absolute tolerances of 10−10 . Because 
ARKode is a general-purpose ODE solver, there is no 
restriction on using a logic-based model of intracellular 
signaling.

3.4.3 � Continuum‑scale biochemistry

To solve the reaction-diffusion problem modeling con-
tinuum-scale biochemistry, the SUNDIALS ARKode 
package was used with an implicit Runge–Kutta method 
of order 3 in combination with a GMRES solver and an 
algebraic-multigrid (AMG) preconditioner. The relative 
and absolute tolerances of the time integration algorithm 
were set to 10−7 and 10−8 , respectively.

Fig. 4   Influence of sensitivity sq on scaling behavior with yi0 = 0.5
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4 � Numerical examples

4.1 � Validation of mechanical model

To validate the implementation of the (uncoupled) homog-
enized constrained mixture model of G&R (Eq. (28)), we 
recreated the test cases presented in (Maes and Famaey 
2023). See Appendix A.1 for details.

4.2 � Growth and remodeling of murine aorta

In the following section, we use the coupled model to 
study the response of a mouse descending thoracic aorta 
to mild to moderate increases in pressure. To this end, 
we coupled the homogenized constrained mixture model 
to the signaling pathways introduced by Irons and Hum-
phrey (2020) and further used and refined in (Irons et al. 
2021, 2022). The network consisted of 50 nodes and 82 
reactions and represents the behavior of synthetic intra-
mural cells (SMCs and fibroblasts) as one might obtain 
from bulk qPCR or Western blotting. The network has 
5 inputs (Angiotensin II (AngII), smooth muscle stress, 
flow-induced wall shear stress (WSS), integrins, stretch-
activated channels (SACs)) and 4 outputs (Collagen-I, 
Collagen-III, cell proliferation, actomyosin activity). 
The outputs Collagen-I and Collagen-III were combined 
into one output for fibrillar collagen production by tak-
ing their average, noting that this is a simplification as 
collagen fiber formation is highly complex and the con-
tribution of other matrix constituents is omitted (Kadler 
et al. 2008; Liu et al. 1997). For the network, we used 
the default parameters from (Irons and Humphrey 2020) 
unless noted otherwise, see Table 1. Inputs to the network 
were scaled using the sigmoidal function in equation (30). 
In Sect.   4.2.1, the only variable input to the signaling 
network is the smooth muscle stress, while in Sect.  4.2.2, 
the inputs are the smooth muscle stress, the nitric oxide, 
and endothelin-1 concentration.

The geometry and material parameters are based on 
(Irons et  al. 2022; Latorre and Humphrey 2020) and 
represent a radially averaged single-layered arterial 
wall. Assuming axisymmetry, the artery was modeled 
as a cylindrical quarter segment similar to Sect. A.1.2 
with original inner radius A, thickness H, and length L 
(Table 1). Axial displacements were fixed at both ends, 
and the growth direction defined as radial. The geometry 
was discretized using 216 quadratic finite elements: 2 in 
radial and axial directions, and 54 elements in the circum-
ferential direction. The choice of 2 quadratic elements in 
the radial direction was motivated by a convergence study 

(Latorre and Humphrey 2020) that used 4 linear elements 
in radial direction. This was confirmed by a mesh con-
vergence study. The geometry was prestressed using the 
algorithm described in Sect.  2.1.5 with an in vivo pres-
sure of p0 = 14.0 kPa until the average nodal displacement 
(normalized by the reference wall thickness) was less than 
10−6 and a homeostatic state was (nearly) reached.

4.2.1 � Cell signaling network ‑ influence of AngII

In the first study, we compared how the presence of AngII 
via modification of the baseline network input yAngII,0 influ-
ences arterial G&R when subjected to a sustained sudden 
increase in pressure of 15%. To quantify tissue adaption over 
time in response to the pressure perturbation, we computed 
the normalized trace of the tissue-level Cauchy stress and 
the normalized Cauchy stress of the smooth muscle cells 
at the midpoint of the vessel. Additionally, we show nor-
malized wall thickness and inner radius. In this example, 
we assumed that flow rate Q remains constant at its initial 
value Q0 , yielding a flow rate ratio � = Q∕Q0 = 1 and a pres-
sure ratio � = p∕p0 , where p is the blood pressure after the 
pressure increase. It is known (Humphrey 2008) that blood 
vessels tend to regulate their inner radius in accordance with 
the flow rate (to maintain a certain wall shear stress) and 
their wall thickness in accordance with the inner pressure 
(to maintain a certain hoop stress). The markers at the right 
end of the graphs in the third and fourth columns represent 
adaptations that would be expected from these theoretical 
considerations. To maintain the initial wall shear stress, the 
(current) inner radius, a, should adapt to the limit �1∕3A ; to 
maintain a certain hoop stress, the (current) wall thickness, 
h, should adapt to the limit ��1∕3H (Humphrey 2008).

As shown in Fig. 5a, exogenous AngII accelerated the 
adaptive response leading to a slight undershoot in the 
trace of the mixture-level Cauchy stress and the SMC 
stress before recovering baseline values (first 2 graphs). 
The adapted wall thickness was similar in both cases and 
close to the ideal adaptation based on the theoretical con-
siderations (third graph). However, the adapted inner radii 
were different; the simulation with AngII showed a smaller 
radius (fourth graph). These results qualitatively aligned 
with experimental observations (Wu et al. 2014; Ruddy 
et al. 2009) that AngII increases collagen turnover, leading 
to accelerated remodeling. This is, for example, indicated 
by increased activation of the network nodes representing 
Col3mRNA and MMP2 (Fig. 5b). However, note that the 
simulations should be viewed as a proof of concept as the 
model still missed important aspects such as wall shear 
stress sensing, and the parameters were not calibrated to 
specific experimentally observed results.
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4.2.2 � Endothelial cell–intramural cell communication

To ensure an adaptive response of the tissue, different cells 
and cell types need to communicate with each other, for 
example, through signaling molecules. One such exam-
ple of cell–cell communication can be observed between 
endothelial cells (ECs) and intramural cells such as smooth 
muscle cells and fibroblasts. ECs in a blood vessel respond 
to changes in wall shear stress (WSS), �w , by changing their 
production of nitric oxide (NO) and endothelin-1 (ET1) 
(Sriram et al. 2016), which alter smooth muscle contractility 
(Hong et al. 2011) and collagen production (Hershey et al. 
2012). Even though the interaction between the 2 cell types 
is much more complex, involving other signaling molecules 

and growth factors, we reduced their interaction to depend 
only on nitric oxide and endothelin-1. For the following 
simulations, we also included active SMC stresses, as NO 
and ET1 are potent regulators of active smooth muscle tone. 
The parameter regulating active cell contraction ycon(s) used 
in Eq. (7) is computed via a sigmoidal scaling function (Eq.  
(30)) with sensitivity 1.0, Δ�act(s) is the normalized change 
of the output node in the signaling network regulating acto-
myosin activity, and ycon,0 = 0.5.

In addition to cells within the vessel wall, we included 
an EC layer on the inner surface as described in Sect.  2.3.2. 
We used the same intracellular signaling pathway as in Sect.  
4.2.1 but extracted the part that represents endothelial cell 
behavior and assigned it to the ECs, while the remaining 

Table 1   Parameters for coupled 
finite element simulations of 
growth and remodeling of a 
mouse descending thoracic 
aorta

Geometry and material parameters are based on (Irons et al. 2022; Latorre and Humphrey 2020) and rep-
resent radially averaged values for a single-layered G&R model. Cell signaling parameters are based on 
(Irons and Humphrey 2020).

Geometry and material parameters
 Mixture mass density �0 1050 kg∕m3

Initial mass fractions �e 0.34
�m 0.33
�c0 , �c90 , �c±�0 0.01848, 0.02211, 0.1447

Collagen fiber orientation �0 29.91◦

Initial inner radius A 0.647 mm

Initial wall thickness H 0.04 mm

Initial length L 0.04 mm

Elastin parameter �e 89.71 kPa

Elastin bulk modulus � 10�e

Collagen properties cc
1
, cc

2
234.9 kPa, 4.08

SMC properties cm
1
, cm

2
261.4 kPa, 0.24

Elastin axial deposition stretch �e
z

1.62
Collagen deposition stretch �c

h
1.25

SMC deposition stretch �m
h

1.2
Mean survival times Tm, Tc 70 days, 70 days

Initial blood pressure p0 14.0 kPa

Time step size Δs 7 days

Continuum-scale biochemistry parameters
SMC diffusion coefficient Dm

0
0

Collagen diffusion coefficient Dc
0

0
Cell signaling parameters
SMC sensitivity to stress s� 0.5
Reaction time constant � 1.0
Reaction edge weight W 1.0
Half maximal activation EC50 0.55
Hill parameter n 1.25
Maximal node activation ymax 1.0
Initial input values yWSS,0 0.5

yintegrins,0 0.2
ySACs,0 0.2
ystress,0 0.2
yAngII,0 {0.0, 0.1}
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network was assigned to the intramural cells, which now 
have NO and ET1 inputs instead of wall shear stress (Fig. 6).

The ECs respond to changes in wall shear stress (WSS) 
by producing NO and ET1, which then diffuse through the 
vessel wall with diffusion coefficients DNO

0
 and DET1

0
 , but are 

consumed or degrade with mean survival times TNO and TET1 
assuming first-order kinetics (Vaughn et al. 1998; Liu et al. 
2008). The parameter values are based on previous experi-
mentally determined values (Malinski et al. 1993) or theo-
retical studies (Vaughn et al. 1998; Liu et al. 2008; Kavdia 
and Popel 2006) and listed in Table 2, including references 
where available. Compared to NO, data on ET1 are scarce. 
Hence, we used a generic value for the diffusion coefficient 
of a peptide, and the baseline production rate was assumed 
to be of a similar order of magnitude as NO.

One challenge in this scenario was the boundary con-
ditions. Similar to (Vaughn et al. 1998; Kavdia and Popel 
2006), we relate the NO and ET1 production rates Q̇NO

0
 and 

Q̇ET1
0

 to the influx of these 2 quantities and prescribed cor-
responding boundary conditions,

Here, Δ�NO(s) and Δ�ET1(s) are outputs from the EC signal-
ing network regulating NO and ET1 production, while �[NO]

�r
 

and �[ET1]
�r

 represent concentration gradients in the radial 
direction (into the lumen or into the tissue). Some of the 
NO and ET1 produced by the ECs will be released into the 

(31)
Q̇NO

0
(1 + Δ𝜓NO(s)) = DNO

0

𝜕[NO]lumen

𝜕r

− DNO
0

𝜕[NO]tissue

𝜕r

(32)
Q̇ET1

0
(1 + Δ𝜓ET1(s)) = DET1

0

𝜕[ET1]lumen

𝜕r

− DET1
0

𝜕[ET1]tissue

𝜕r
.

Fig. 5   Mechanical and network responses of the coupled finite ele-
ment model in response to a 15% pressure increase under 2 differ-
ent levels of exogenous AngII over normalized time ( s∕Tm ). Top (a) 
shows, from left to right, the normalized trace of the mixture-level 
Cauchy stress, normalized Cauchy stress of the smooth muscle fibers, 

normalized wall thickness, and normalized inner radius. The dashed 
lines represent baseline values and markers represent ideal adapta-
tions based on theoretical considerations (see text). Bottom (b) shows 
fold changes in activation levels of 3 network nodes with respect to 
the baseline ( yAngII,0 = 0)

Fig. 6   Schematic illustration 
of the inputs and outputs of 
the endothelial cell signaling 
network (a) and the intramural 
cell signaling network (b). NO 
production by ECs increases 
with increases in WSS; ET1 
production increases with 
decreases in WSS
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lumen and transported away by convection, whereas some 
parts will be released into the tissue and transported via 
diffusion. We estimate the fraction of NO and ET1 that is 
released into the tissue to be � = 0.2 (Vaughn et al. 1998; 
Liu et al. 2008; Zhang and Edwards 2006). This resulted in 
the following boundary conditions on the inner surface of 
the vessel,

Additionally, a second boundary condition is needed at the 
outer surface of the vessel wall. Because the outer surface of 
the vessel is not impermeable to NO and ET1 and the vessel 
is surrounded by perivascular tissue, an outflux boundary 
condition was prescribed. Previous studies (Vaughn et al. 
1998; Liu et al. 2008; Zhang and Edwards 2006) found that 
the concentration profile of NO is nearly linear over short 
distances comparable to the wall thickness of the studied 
vessel. Hence, we assumed that the outflux is proportional to 
the influx with a proportionality factor � . Here, we assumed 
that � = 0.9 , which resulted in a nearly linear concentration 
profile of NO and ET1 and concentrations on the order of 
100-300 nM (Chen et al. 2008).

To analyze the influence of EC–transmural cell com-
munication on tissue adaptation, we first applied a sudden 
10% pressure increase that was sustained over time. The 

(33)−DNO
0

𝜕[NO]tissue

𝜕r
= 𝜂Q̇NO

0
(1 + Δ𝜓NO(s))

(34)−DET1
0

𝜕[ET1]tissue

𝜕r
= 𝜂Q̇ET1

0
(1 + Δ𝜓ET1(s)).

additional stimulus through NO and ET1, mediated by wall 
shear stress sensing of the endothelial cells, led to an almost 
ideal adaptation in inner radius and wall thickness (Fig. 7a). 
After a slight undershoot, the stress of the SMCs slowly 
returned back toward the baseline value while a slight offset 
in the trace of the tissue-level Cauchy stress remained.

With the addition of the EC layer and the NO-mediated 
cell–cell communication, the model could now also account 
for changes in blood flow rate. To study the response of 
the vessel to a change in (blood) flow, we increased the 
flow rate Q by 10% ( � = Q∕Q0 = 1.1 ) while keeping the 
blood pressure constant ( � = p∕p0 = 1 ). As illustrated in 
Fig. 7b, the vessel dilated to reduce the wall shear stress 
close to the value �1∕3A ≈ 1.03A with � = Q∕Q0 = 1.1 . The 
stresses slowly returned toward their baseline values with 
a slight offset in the trace of the tissue-level Cauchy stress. 
After a slight decrease, the thickness of the vessel remained 
unchanged compared to the initial thickness, different from 
the idealized adaptation limit ��1∕3H.

4.3 � Instabilities for high sensitivities

When analyzing the results from the previous Sects.  4.2.1 
and 4.2.2, we found that simulations can exhibit instabili-
ties at longer simulation times (normalized time > 20). 
These instabilities resulted in a continuous deviation of the 
stresses from their baseline values, ultimately leading to 
divergence of the simulations. To further probe this behav-
ior, we replaced the complex intracellular signaling pathway 
with a highly simplified model consisting of only 3 nodes: 

Table 2   Additional parameters 
for the coupled finite element 
simulations including 
endothelial cell–intramural cell 
communication

 Active smooth muscle parameters are based on (Irons et al. 2022)

Material parameters
SMC active contribution �max 170 kPa Irons et al. (2022)

�max 1.1 Irons et al. (2022)
�0 0.4 Irons et al. (2022)

Continuum-scale biochemistry parameters
Nitric oxide diffusion coefficient DNO

0
3300 �m2∕s Malinski et al. (1993); Vaughn et al. (1998)

Nitric oxide mean survival time TNO 15s Malinski et al. (1993); Vaughn et al. (1998)
Nitric oxide production rate Q̇NO

0 5.3 ⋅ 10−14
�mol

�m2s

Vaughn et al. (1998)

Endothelin-1 diffusion coefficient DET1
0

300 �m2∕s –
Endothelin-1 mean survival time TET1 120s Saleh et al. (2016)
Endothelin-1 production rate Q̇ET1

0 1.0 ⋅ 10−14
�mol

�m2s

see text

Fraction diffusing into tissue � 0.2 see text
Outflux fraction � 0.9 see text
Cell signaling parameters
EC sensitivity to wall shear stress s� 0.5 –
SMC sensitivity to nitric oxide sNO 0.75 –
SMC sensitivity to endothelin-1 sET1 0.75 –
SMC sensitivity to changes in acto-

myosin activity
scon 1.0 –
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one input node (smooth muscle stress) that activated 2 out-
puts (cell proliferation and collagen production). For this 
network, � = 1 , W = 1 , EC50 = 0.5 , n = 1.4 , and ymax = 1 . 
Smooth muscle stress as an input for the intracellular sign-
aling network was scaled to the range [0, 1] by a sigmoidal 
function with an adjustable sensitivity as described in Eq. 
(30). Five sensitivities, s� , ranging from 0.25 to 1.25, were 
tested for a 5%, 10%, and 15% pressure increase.

Figure 8 shows that low sensitivities (e.g., s� = 0.25 ) 
led to unbound growth and continuous distension of 
the vessel. This is in agreement with a prior observa-
tion (Braeu et al. 2017) for low rate parameters, ki , using 
a homogenized constrained mixture model without 

intracellular signaling. In fact, too low sensitivities s� led 
to mechanobiological instabilities (Cyron and Humphrey 
2014; Cyron et al. 2014). By contrast, higher sensitivities 
led to a regime of mechanobiological stability, marked by 
the convergence of the vessel geometry to a new stable 
mechanobiological equilibrium state. Higher sensitivities 
decreased the offset in the trace of the tissue-level Cauchy 
stress compared to its initial value. This is in agreement 
with the concept of mechanobiological adaptivity (Cyron 
and Humphrey 2014; Cyron et al. 2014). The response 
in case of corresponding pressure decreases is shown in 
Fig. 11 in Appendix B.1.

Fig. 7   Evolution of selected 
quantities over normalized time 
( s∕Tm ) in response to a 10% 
pressure increase (a) or a 10% 
flow increase (b). Dashed lines 
represent baseline values and 
markers indicate theoretical 
ideal adaptations for the differ-
ent cases

Fig. 8   Evolution of selected 
quantities over normalized time 
( s∕Tm ) for varying sensitivities 
in response to different step 
increases in pressure (5%, 10%, 
15%). Dashed lines represent 
baseline values, and markers 
indicate ideal adaptations based 
on applied pressure perturbation
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For the highest sensitivity ( s� = 1.25 ), instabilities in the 
stresses were observed toward the end of the simulation. 
Interestingly, these instabilities seem independent of the 
magnitude of the applied perturbations and were not imme-
diately visible in geometric quantities (thickness and inner 
radius). To ensure that the instabilities were not introduced 
through the coupling of the different submodules, we tested 
the uncoupled homogenized constrained mixture model 
with the same geometry, material parameters, and a pressure 
increase of 15%. We found similar instabilities when increas-
ing the rate parameters, ki , to high values, which is compa-
rable to increasing the sensitivity s� (Fig. 12 in Appendix 
B.2). Further testing using the uncoupled homogenized 
constrained mixture model with the geometry and material 
parameters described in Braeu et al. (2017) again revealed 
instabilities for high rate parameters when subjected to a 
pressure increase of 15% (Fig. 13 in Appendix B.2).

Furthermore, we tested if the sensitivities leading to sta-
ble adaptations ( s� = {0.5, 0.75, 1.0} ) would show instabili-
ties under pressure perturbations of 30% and 50% (Fig. 14 in 
Appendix B.3). No stress instabilities were observed in these 
cases. However, a sensitivity of 0.5 seemed insufficient to 
achieve a stable state within the observed time period. Fur-
ther tests of reducing the time step size, gradual application 
of the pressure perturbations, or using stricter tolerances did 
not remove the instabilities.

5 � Discussion

5.1 � Intracellular signaling

Adding intracellular signaling networks to the homogenized 
constrained mixture model to replace phenomenological 
parameters for mass production with quantities rooted in 
intracellular signaling allows a more detailed study of how 
specific intracellular processes influence tissue homeosta-
sis. While the example presented in Sect.  4.2.1 should be 
understood as a proof of principle, it showed how signaling 
networks could be used to study how G&R is affected by a 
different biochemical environment, in this case, the pres-
ence of AngII. In these cases, it can be difficult to know 
how certain chemicals influence phenomenological param-
eters for collagen production and cell proliferation a priori. 
Furthermore, the complex intracellular signaling networks 
can also exhibit internal feedback loops, which can lead to 
a more dynamic adaptation process, such as the undershoot 
of the stresses or the reduction in radius observed in Fig. 5.

In addition to the influence of exogenous factors, it 
becomes possible to study how specific defects in intracel-
lular signaling, such as a genetic defect, change the behavior 
on the organ-scale. Notably, some defects in intracellular 
signaling may have little effect on the organ-scale due to 

compensatory mechanisms in the signaling networks. Gener-
ally, biological signaling networks benefit from this kind of 
robustness as their surrounding is inherently noisy and they 
have to operate under various conditions. This may explain 
why a unique parametrization of the (logic-gated) signal-
ing networks is challenging to obtain but also might not be 
necessary to promote a stable adaptation (Irons et al. 2022).

Moreover, the intracellular signaling pathways can be 
created with the amount of detail necessary for the studied 
problem. For example, with the highly simplified signaling 
networks used in Sect.  4.3, we observed that a range of 
(stress) sensitivities can promote a stable adaptive response. 
Similar results were obtained with purely mechanical 
homogenized constrained mixture models, where a specific 
range of rate parameters led to stable adaptations (Appendix 
B.2). However, the coupled model allows a more straightfor-
ward interpretation of the physiological meaning and origin 
of the parameters.

5.2 � Effects of cell–cell communication

It is known that different cell types collectively contribute 
to tissue homeostasis. In fact, 4 cell types appear to be suffi-
cient to form a minimal tissue unit: (I) the cell type perform-
ing the core function (for example, smooth muscle cells in 
the aorta, hepatocytes in the liver, etc.), (II) endothelial cells, 
(III) fibroblast-like stromal cells, and (IV) tissue-resident 
macrophages. According to Adler et al. (2018), the last 3 cell 
types are nearly universal to all tissues and mainly support 
the primary cell type in their function.

In this work, we included endothelial cells in addition 
to the intramural cells. The combination of both cell types 
communicating with each other via NO and ET1 produced 
different results (Fig. 7a) compared to a model where only 
intramural cells were included (Fig. 5). The additional influ-
ence of the NO and ET1, regulated by the wall shear stress 
sensed by the ECs, allowed the vessel to adjust its inner 
radius toward ideal values. This underlines one of the many 
important functions of the endothelium. It also allowed the 
study of tissue adaptation in response to changes in flow 
(Fig. 7b), which, to the best of our knowledge, was so far 
not included in 3-dimensional simulations using the homog-
enized constrained mixture model.

Overall, coupled models have the potential to study dif-
ferent combinations of cell types forming basic tissue units. 
For example, including macrophages could help to eluci-
date their role in promoting tissue homeostasis (Zhou et al. 
2018). In particular, studying dysfunctional communication 
between different cell types and the resulting effects on tis-
sue adaptation could improve our understanding of when 
tissue can adapt and under which circumstances it cannot. 
This might help to identify potential pharmacological targets 
or treatments to improve clinical outcomes.
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The flexibility of the model to include several cell types 
offers great potential but can also add considerable complex-
ity. Ultimately, though, it is a trade-off between the amount 
of detail to include, and the resulting complexity to still 
generate interpretable and actionable results or hypotheses, 
which can then be tested experimentally.

5.3 � Long‑term instabilities

Long-term instabilities might arise when high rate param-
eters, ki , or high sensitivities, s� , are used in combination 
with curved geometries such as the cylinder wall studied 
herein. Interestingly, this was independent of the magnitude 
of the applied pressure perturbation. We found that adding 
diffusion of the cells (i.e., Dm

0
> 0 in Eq. (25)), which could 

represent cell migration, was able to stabilize the system for 
all times considered and even larger values of ki and s� (not 
shown). However, this lacks a biological foundation, at least 
in the case of elastic arteries, where migration of SMCs is 
constrained by the elastic laminae, and fibroblasts primarily 
remain in the adventitia. Nevertheless, these results might 
indicate that the homogenized constrained mixture model 
is not able to homogenize the transmural stress gradients 
and maintain them toward the end of the adaptation process.

The question remains as to what exactly causes these 
instabilities potentially resulting from persistent transmural 
stress gradients. The instabilities might be inherent to the 
homogenized constrained mixture model, caused by basic 
assumptions, or of a purely numerical nature. For example, 
Taber and Humphrey (2001) showed that radially varying 
material parameters help to homogenize the transmural 
stresses. Moreover, Azeloglu et al. (2008) showed that a 
gradient in the proteoglycan concentration also provides 
a mechanism by which transmural stresses can be homog-
enized, and cells might modify proteoglycan synthesis and 
degradation in response to altered stresses. These observa-
tions are not included in current implementations. Addition-
ally, we used a radially averaged, single-layered approach to 
model the arterial wall. However, the arterial wall consists 
of 3 distinct layers, the endothelium, media, and adventitia, 
the latter 2 bearing the majority of the load. This bi-layered 
structure can significantly influence transmural stresses. For 
example, Bellini et al. (2014) showed that different material 
properties in the medial and adventitial layer can protect 
the media from excessive stresses when pressure increases 
above normal as the adventitia carries more load at elevated 
pressure levels.

As evidenced by the different possibilities listed above, 
transmural stress gradients are important and complex, and 
different mechanisms have been identified that influence their 
distribution. More work is needed to understand this better 
and examine what exactly causes the long-term instabilities in 
the homogenized constrained mixture model when large rate 

parameters or sensitivities are used and how this influences 
transmural stress distributions.

6 � Conclusion and outlook

In this paper, we proposed the first homogenized constrained 
mixture model of soft tissue growth and remodeling that cou-
ples mechanics, continuum-scale biochemistry, and intracel-
lular signaling. Our model allows one to replace phenomeno-
logical growth parameters of purely mechanical homogenized 
constrained mixture models with models of specific intracellu-
lar processes. This allows one to relate a behavior on the organ-
scale to specific intracellular processes. Moreover, it facilitates 
physiological interpretations of the simulations. Importantly, 
the continuum-scale biochemistry module in our framework 
also allows us to capture long-range communication between 
cells, e.g., the communication between endothelial cells and 
transmural cells via nitric oxide and endothelin-1.

The computational cost of our coupled multiphysical 
model was around 3–5 times higher than that of a purely 
mechanical homogenized constrained mixture model of 
soft tissue G&R. The majority of the additional cost can 
be attributed to the implicit time integration scheme used 
in the diffusion submodule and solving the intracellu-
lar signaling networks. The former could potentially be 
improved by using different time integration schemes. 
The computational cost of solving the intracellular sign-
aling strongly depends on their size and complexity. 
However, the additional level of detail will always incur 
an additional computational cost.

In the future, the model could be used to study specific 
aspects of cell–cell communication or the effect of genetic 
defects on growth and remodeling. Moreover, it provides 
insights into how biochemical processes on the cell-level 
can translate into macroscopic changes on the tissue level. 
While the presented results are promising, more research 
is needed to make the coupled model applicable to real-
world applications. Independent of the coupling to intra-
cellular signaling networks, the instabilities in the homog-
enized constrained mixture model occurring during longer 
simulations with large rate parameters or stress sensitivi-
ties need to be addressed to find their cause.

Appendix A

A.1 Validation of mechanical model

The implementation of the (uncoupled) homogenized con-
strained mixture model of G&R (Eq. (28)) is validated 
based on test cases presented in (Maes and Famaey 2023): 
a unit cube with either a displacement or traction boundary 
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condition and a cylindrical tube as a simplified model of 
arterial adaptations to a pressure increase, see Fig. 9. The 
material parameters for both cases are largely identical and 
summarized in Table 3. Note that while the elastin content 
is higher than in vivo, the material parameters suggested by 
Maes and Famaey (2023) fall into physiological relevant 
ranges and are comparable to parameters used in previous 
studies such as (Wilson et al. 2012) who fitted experimental 
data from (Vande Geest et al. 2004) or (Latorre and Hum-
phrey 2018) who fitted experimental data from (Bersi et al. 
2016).

A.1.1 Unit cube

In the first test case, a unit cube (Fig. 9a) was discretized with 
a single finite element. The cube consisted of a slightly com-
pressible elastin matrix and 4 families of collagen fibers in the 
yz-plane, including angles of 0◦ , 90◦ , +22.5◦ , and −22.5◦ rela-
tive to the y-axis, respectively. The boundary conditions on the 
surfaces are as follows: Surface 1 is free, surface 2 is fixed in 
x-direction, surface 3 is fixed in y-direction, surface 5 is fixed in 
z-direction, and surface 6 is fixed in z-direction. The displace-
ment or stress boundary condition is applied in y-direction to 
surface 4. The growth direction is defined as the x-direction.

Dirichlet boundary condition In the first test, a displace-
ment of 0.5 mm in the y-direction was applied to the upper 
surface of the cube (surface 4), corresponding to a stretch of 
1.5. In this case, no prestressing for the initial configuration 
was applied since the deposition stretches were assumed to 
be �c

h
= �e

z
= 1.0 . The obtained results compared well to ones 

from Fig. 2(I) in (Maes and Famaey 2023), see Fig. 10a.
Neumann boundary condition In the second test, a Cauchy 

traction was applied to the upper surface of the cube (surface 
4). Since the deposition stretches of collagen and elastin were 
�c
h
= 1.1 and �e

z
= 1.2 , respectively, the iterative prestress algo-

rithm described in Sect.  2.1.5 was used to determine the final 
prestretch of elastin. To this end, a homeostatic Cauchy stress, 
�0 , of 0.1 MPa was applied in y-direction to surface 4, and the 

prestress algorithm was run for 20 iterations (equivalent to the 
procedure in (Maes and Famaey 2023)). In the second step, 
the stress was increased by 20% to 0.12MPa , and the material 
was allowed to remodel for 100 steps, equivalent to 1000 days. 
The obtained results compared well with ones from Fig. 2(II) 
in (Maes and Famaey 2023), see Fig. 10b.

A.1.2 Arterial wall remodeling

Next, consider an idealized model of an artery with a simple 
cylindrical geometry. The inner radius was A = 5 mm, the wall 
thickness H = 1.3 mm, and the length L = 1.3 mm in the refer-
ence configuration. Again, 4 families of collagen fibers were 
included with angles 0◦ , 90◦ , +22.5◦ , and −22.5◦ relative to the 

Fig. 9   Test cases used for verification based on Maes and Famaey 
(2023). a Schematic drawing of a unit cube and the corresponding 
boundary conditions (BC) for each surface. DBC - Dirichlet bound-

ary condition, NBC - Neumann boundary condition. b Schematic of 
arterial growth and remodeling test case

Table 3   Geometry and material parameters for the test cases based on 
Maes and Famaey (2023). DBC - Dirichlet boundary condition

Geometry - Cube
Edge length L 1 mm

Homeostatic Cauchy stress �0 0.1 MPa

Geometry - Artery
Initial inner radius A 5 mm

Initial wall thickness H 1.3 mm

Initial length L 1.3 mm

Initial pressure p0 0.01 MPa

Material parameters
Initial mass fractions �e 0.8

�c0 , �c90 , �c±�0 0.05
Collagen fiber orientation �0 22.5◦

Elastin parameter �e 0.07625MPa

Elastin bulk modulus � 0.7625MPa

Collagen properties cc
1
, cc

2
1.156MPa, 1.23

Elastin axial deposition 
stretch

�e
z

1.0 (cube with DBC), 1.2

Collagen deposition stretch �c
h

1.0 (cube with DBC), 1.1
Collagen rate parameter kc 0.1/Tc

Mean survival time Tc 101 days

Time step size Δs 10 days
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circumferential direction. Due to axisymmetry, the geometry 
was reduced to a quarter cylinder (Fig. 9b) and discretized 
with 448 linear (hexahedral) finite elements, with 4 elements 
in radial and axial directions and 28 in the circumferential 
direction. The growth direction is defined as the radial direc-
tion. Material parameters are listed in Table 3. To obtain a 
prestressed configuration in equilibrium, the iterative prestress 

algorithm described in Sect. 2.1.5 was used with an in vivo 
pressure of 10 kPa for 20 iterations. Once this configuration 
was obtained, a 50% pressure increase to 15 kPa (in the current 
configuration) was applied, and the artery was allowed to grow 
and remodel over 100 time steps with a time step size of 10 
days. Figure 10c depicts the circumferential stretch evolution 
on the cylinder’s inner surface and compares the result to the 
one presented in (Maes and Famaey 2023) (Fig. 4(I)).

Fig. 10   Results of our simulations (continuous line) vs. reference data 
from Maes and Famaey (2023) (black markers). a Cube subjected to 
displacement boundary condition. b Cube subjected to (Cauchy) trac-

tion boundary condition. c Circumferential stretch at the inner surface 
of the cylinder wall in response to a 50% pressure increase. The refer-
ence data were obtained using WebPlotDigitizer (Rohatgi 2022)

Fig. 11   Evolution of selected 
quantities over normalized time 
( s∕Tm ) for varying sensitivities 
in response to step decreases 
in pressure (-5%, -10%, -15%). 
Notably, for low sensitivi-
ties, we observed immediate 
instability. For very high 
sensitivities, we again observed 
long-term instabilities. Both are 
qualitatively similar to what was 
observed for pressure increases
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Appendix B

B.1 Response to decreased pressure

We studied how the model discussed in Sect.   4.3 
responded to a decrease (rather than an increase) in inter-
nal pressure in the cylinder representing a blood vessel. 
Specifically, we studied pressure decreases of 5%, 10%, 
and 15%. Similar to the cases of pressure increases, a low 
sensitivity could not restore a new homeostatic state, while 
high sensitivities led to instabilities toward the end of the 
simulation.

B.2 Instabilities of purely mechanical model 
for large rate parameters

To examine possible reasons for the long-term instabili-
ties observed in Sect. 4.3 for high sensitivities, we simu-
lated comparable scenarios but with a purely mechanical 
homogenized constrained mixture model (based on Eq. 
(28)) using the geometry and material parameters listed 
in Table 1 and in Table 4. Figures 12 and 13 reveal that 
also in the case of a purely mechanical homogenized con-
strained mixture model, long-term instabilities arise for 
high rate parameters, which are comparable to high sensi-
tivities in the model used in Sect. 4.3. This suggests that 
the long-term instabilities observed in Sect.  4.3 are not 

specific for the coupled model presented herein but are 
rather inherent already to the mechanical homogenized 
constrained mixture model (likely only in 3-dimensional 
geometries because they have never been reported in 

Fig. 12   Evolution of selected 
quantities over normalized time 
( s∕Tm ) in a purely mechani-
cal homogenized constrained 
mixture model following a 
pressure increase of 15% with 
rate parameters k = km = kc 
ranging from 0.2/T to 1.0/T with 
T = Tm = Tc the mean survival 
time of smooth muscle and col-
lagen, respectively

Table 4   Geometry and material parameters for the simple model 
aorta used in Braeu et al. (2017)

Mixture mass density �0 1050 kg∕m3

Initial mass fractions �e 0.23
�m 0.15
�c0 , �c90 , �c±�0 0.062, 0.062, 0.248

Collagen fiber orientation �0 45◦

Initial inner radius A 10 mm

Initial wall thickness H 1.41 mm

Initial length L 1.41 mm

Elastin parameter �e 72 J∕kg

Elastin bulk modulus � 10�e

Collagen properties cc
1
, cc

2
568 J∕kg, 11.2

SMC properties cm
1
, cm

2
7.6 J∕kg, 0.8

Elastin axial deposition stretch ge
z

1.25
Collagen deposition stretch �c 1.062
SMC deposition stretch �m 1.1
Mean survival times Tc, Tm 101 days, 101 days

Initial blood pressure p0 14.0 kPa

Time step size Δs 10.1 days
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quasi-2-dimensional models using, e.g., membrane finite 
elements).

B.3 Response to higher step increases in pressure

We repeated the simulations presented in Sect. 4.3 with 
higher pressure increases of 30% and 50% for the previ-
ously stable (stress) sensitivities of 0.5, 0.75, and 1.0. Fig-
ure 14 shows that no long-term instabilities arise for high 

sensitivities (though for the sensitivity 0.5 and a pressure 
increase by 30% and 50%, a stable state is not reached within 
the observed period). Our results support the hypothesis that 
the magnitude of the pressure perturbation is not the decisive 
factor for the long-term instabilities observed in Sect. 4.3. 
It should be noted, of course, that in vivo responses to large 
increases in pressure are expected to elicit an inflammatory 
response Latorre et al. (2021), not modeled here.

Fig. 13   Evolution of selected 
quantities over normalized time 
( s∕Tm ) in a purely mechanical 
homogenized constrained mix-
ture model following a pressure 
increase of 15% with the param-
eters from Braeu et al. (2017) 
(Table 4), using rate parameters 
k = km = kc ranging from 0.1/T 
to 0.4/T with T = Tm = Tc the 
mean survival time of smooth 
muscle and collagen, respec-
tively

Fig. 14   Evolution of selected 
quantities over normalized time 
( s∕Tm ) in a coupled mul-
tiphysical model with pressure 
increases of 10%, 30%, and 
50%. The model parameters are 
listed in Table 1
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