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Human ITGAV variants are associated with immune
dysregulation, brain abnormalities, and colitis
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Jan K. Nowak3, Yijing Liang6, Daniel J. Mulder7, Lorraine Stallard8, Michael Li6, Daniel D. Yu1, Fred G. Pluthero2, Vritika Batura1,
Mo Zhao9, Iram Siddiqui10,11, Julia E.M. Upton12,13, Jessie M. Hulst13,14, Walter H.A. Kahr1,2,13, Roberto Mendoza-Londono13,15,
Fabienne Charbit-Henrion3,16, Lies H. Hoefsloot17, Anis Khiat3, Diana Moreira18, Eunice Trindade19, Maria do Céu Espinheira19,
Isabel Pinto Pais19, Marjolein J.A. Weerts17, Hannie Douben17, Daniel Kotlarz20,21,24, Scott B. Snapper22,23, Christoph Klein20,21,
James J. Dowling9,13, Jean-Philippe Julien4, Marieke Joosten17, Nadine Cerf-Bensussan3, Spencer A. Freeman1,2*, Marianna Parlato3*,
Tjakko J. van Ham17*, and Aleixo M. Muise1,2,13,14*

Integrin heterodimers containing an Integrin alpha V subunit are essential for development and play critical roles in cell
adhesion and signaling. We identified biallelic variants in the gene coding for Integrin alpha V (ITGAV) in three independent
families (two patients and four fetuses) that either caused abnormal mRNA and the loss of functional protein or caused
mistargeting of the integrin. This led to eye and brain abnormalities, inflammatory bowel disease, immune dysregulation, and
other developmental issues. Mechanistically, the reduction of functional Integrin αV resulted in the dysregulation of several
pathways including TGF-β–dependent signaling and αVβ3-regulated immune signaling. These effects were confirmed using
immunostaining, RNA sequencing, and functional studies in patient-derived cells. The genetic deletion of itgav in zebrafish
recapitulated patient phenotypes including retinal and brain defects and the loss of microglia in early development as well as
colitis in juvenile zebrafish with reduced SMAD3 expression and transcriptional regulation. Taken together, the ITGAV
variants identified in this report caused a previously unknown human disease characterized by brain and developmental
defects in the case of complete loss-of-function and atopy, neurodevelopmental defects, and colitis in cases of incomplete loss-
of-function.

Introduction
Integrin heterodimers comprised of an Integrin alpha V (In-
tegrin αV) subunit that pairs with one of five β subunits (1, 3, 5,
6, and 8) execute a wide array of functions in various cells and
tissues (Choi, 2012). In mice, ITGAV null embryos are largely

nonviable due to developmental defects in the placenta and
abnormal vascularization of the brain (Bader et al., 1998). One in
five ITGAV null pups survive and are developmentally normal,
other than having a cleft palate, but ultimately die perinatally
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due to brain hemorrhaging and colonic bleeding (Bader et al.,
1998). Since this initial study, the conditional deletion of ITGAV
in mouse models has served to further reveal important roles for
the integrin, notably in immune cells and in the nervous system.
For example, mice bearing a conditional knockout of ITGAV in
myeloid cells (Lacy-Hulbert et al., 2007) and αVβ8 specifically in
dendritic cells (Travis et al., 2007) develop severe colitis, dem-
onstrating an important protective function of the integrin in
innate immune cells of the gut. The conditional knockout of
ITGAV in glial cells located in the central nervous system (CNS)
leads to improper cerebral blood vessel development and hem-
orrhage, while knockout of the integrin in glial cells as well as
neurons leads to seizures and severe neurological defects
(McCarty et al., 2005). These observations indicate that αV in-
tegrins play critical cell-autonomous roles in neural function
and non-autonomous roles in the coordination of vasculariza-
tion of the mammalian brain.

Integrins containing an Integrin αV subunit are now well-
established for their ability to activate the TGF-β family of cytokines
(TGF-β1–3, hereafter referred to as TGF-β), which aremultifunctional
and have roles in development and immunity. Generally, TGF-β is
secreted in its inactive form that is non-covalently bound to a latency-
associated peptide (LAP) and sequestered from its receptor (Robertson
et al., 2015). TheTGF-β–LAP complex is embedded in the extracellular
matrix (Hyytiäinen et al., 2004) and is only released and activated
upon the application of tensile force and/or revealed to its re-
ceptor via structural rearrangement, depending on the integrin
heterodimer involved (Campbell et al., 2020; Dong et al., 2017).
Integrin αV–containing integrins facilitate this mechanism of
activation through their recognition of an RGD motif (Arg-Gly-
Asp) found in the LAP (Ludbrook et al., 2003; Yang et al., 2007).
Once bound to LAP, force applied by the actin cytoskeleton
through adaptors that bind to the β6 subunit of αVβ6 releases
TGF-β (Dong et al., 2017), which can then act at a distance. αVβ8
also activates TGF-β signaling; however, this integrin does not
connect to the cytoskeleton nor provide the force to release the
cytokine (McCarty, 2020). Instead, the engagement of TGF-β by
αVβ8 reveals a cryptic binding site in the cytokine for TGF-β
receptors in trans (Campbell et al., 2020). These structural in-
sights help to explain the complexity of TGF-β signaling and its
clear interplay with Integrin αV. Many of the defects in ITGAV-
null mice, in fact, phenocopy observations made in patients with
loss-of-function variants in TGFB1, which also have brain defects
and colitis for example (Kotlarz et al., 2018).

In addition to playing a role in TGF-β activation and signal-
ing, Integrin αV contributes to immunomodulatory signaling
pathways and binds to extracellular matrix proteins to facilitate
cell adhesion, migration, and phagocytosis (Horton, 1997; Nandrot
et al., 2007). αVβ3 downregulates Toll-like receptor (TLR) sig-
naling in B cells by directing the traffic of ligated TLRs to degra-
dative compartments. As a result, ITGAV-deficient lymphocytes
have increased and prolonged TLR signaling and enhanced B cell
activation and antibody production, predisposing the mice to au-
toimmunity (Acharya et al., 2016, 2020). Through similar means,
αVβ3 also limits cytokine production by plasmacytoid dendritic
cells and prevents the activation of autoreactive B cells (Lorant
et al., 2024).

ITGAV clearly has widespread and pleiotropic impacts on
development and immunity. Here, we report ITGAV variants in
patients with brain defects and colitis and provide insight into
the pathogenesis.

Results and discussion
Clinical histories
Patient 1 (P1), born to non-consanguineous parents of Indige-
nous Canadian ancestry with a history of miscarriages, was di-
agnosed with a bifid uvula, exudative vitreous retinopathy, and
developed atopic dermatitis and intractable seizures within the
first year of life. Brain magnetic resonance imaging (MRI)
showed bilateral polymicrogyria, delayed myelination, white
matter loss, calcifications, dysplastic corpus callosum, enlarged
ventricles, and microcephaly (Fig. 1 A). Patient 2 (P2) was born
at 33 wk gestation with intrauterine growth restriction and
microcephaly to non-consanguineous parents. While P1 had
more severe disease, both P1 and P2 had several overlapping
clinical features (outlined in Table S1). These included devel-
opmental delay and vision defects, severe colitis recalcitrant to
medical therapy requiring a colectomy in P1 (Fig. 1, B–D), and
immune dysregulation together with atopy features including
chronic infections, atopic dermatitis, multiple allergies, elevated
serum IgE levels, eosinophilia, and eosinophilic enteropathy
(Fig. 1, E–H). A third family was identified after four pregnancies
were terminated due to brain malformations (fetuses F1–F4).
Each fetus had multiple brain abnormalities including Dandy–
Walker malformation, ventriculomegaly/hydrocephaly, poste-
rior fossa cyst, and corpus callosum agenesis/hypoplasia. There
were also other developmental defects including cleft palate and
abdominal wall defects.

Genetic and functional significance of ITGAV variants
All families underwent exome sequencing (ES), and rare or novel
ITGAV biallelic variants were identified (Fig. 2, A–D; see Table S2
for annotation, damaging scores, and population frequency data).
In P1, we identified an NM_002210.4: c.432G>C homozygous
variant (Fig. 2 A). The predicted Integrin αV protein variant,
Trp144Cys, was functional in vitro (Fig. S1, A and B). However,
the ITGAV variant created a novel acceptor splice site in exon 4
that was predicted to be stronger than the canonical acceptor site.
Accordingly, RNA sequencing of cDNA from patient-derived fi-
broblasts and lymphoblasts showed abnormal ITGAV splicing
(Fig. 2 E and Fig. S1 C). The novel transcript encoded a premature
stop codon (p.Ala137AsnfsTer1; Fig. S1 D) that would be elimi-
nated by nonsense-mediated mRNA decay. Consistent with this
prediction, ITGAV mRNA and Integrin αV protein were reduced
to ∼15% of normal levels in patient-derived fibroblasts (Fig. 2, F
and G).

In P2, the ITGAVNM_002210.4: c.1136A>T homozygous variant
was predicted to result in a p.Asp379Val Integrin αV variant
protein (Fig. 2 B and Table S2; see below). The Integrin αV ex-
pression from a P2-derived lymphoblastoid cell line was reduced
when compared to a line derived from his healthy brotherwho did
not carry the variant (Fig. 2 H). Moreover, the surface expression
of Integrin αV and one of its associated β subunits, ITGB3, which
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Figure 1. Clinical features. (A and B) Brain MRI (A) and colonoscopy (B) of P1. (C) Gross image showing colectomy specimen from P1 with diffuse pancolitis.
(D) H&E stains, left (10× magnification), showing full thickness section of the distal colon with inflammation limited to the superficial submucosa and in-
flammatory pseudopolyps with lymphoid aggregates (arrows). The uninflamed muscularis propria and subserosa with congested vessels can be seen.
(D) Center and right (200× magnification), showing lamina propria with numerous neutrophils and eosinophils accompanying two multinucleated giant cells,
indicating a site of crypt rupture. (E) Colonoscopy of P2. (F) Image of P2 showing severe atopic dermatitis. (G) Screening for IgE against 295 allergens with the
ALEX Allergy Explorer. (H) Eosinophil counts in whole blood (n = 7), normal upper limit <0.5 × 109/liter; and IgE concentrations (n = 4), normal upper limit (IgE <
100 kU/liter) for P2 (red dots).
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Figure 2. Genetic and functional significance of ITGAV variants. (A–C) Pedigrees of (A) Family 1, (B) Family 2, and (C) Family 3. Symbols: unknown
genotype, ‘‘E?’’; fetus, triangle. (D) Cartoon of Integrin αV protein domain structure demonstrating protein-coding and splicing defects. TM, transmembrane.
(E) Sashimi plots of RNA sequencing from fibroblasts demonstrating the novel splice acceptor site in ITGAV exon 4 of P1 (red tracks) compared with healthy
control (HC, blue tracks). y axis: number of reads in log2 scale; x axis: genomic location. Only the canonical transcript model and junctions with ≥5 reads are
shown. (F and G) Immunoblotting of Integrin αV protein level (n = 3) (F) and ITGAVmRNA by qPCR in fibroblasts derived from an HC or P1 (G). GAPDHwas used
as a loading control. qPCR was normalized to GAPDH, normalized to HC fibroblasts. (n = 3, paired t test, P < 0.01, error bars, mean ± SEM). (H and I) Im-
munoblotting (n = 3) (H) and Flow cytometry (I) of Integrin αV and Integrin β3 surface expression in lymphoblastoid cell lines derived from HC and P2 (n = 3).
(J) Ca2+ ion (depicted as a white circle) coordination by the Asp379 Integrin αV sidechain mutated in P2, as well as the sidechains of Asp381, Asp383, and
Asp387, are shown (black dashes). Stabilizing hydrogen bonds between backbone atoms and the Integrin αV Asp379 sidechain are also shown (magenta
dashes). Models generated from PDB: 4G1M. (K) Spinning disc confocal microscopy of Integrin αV-FLAG alone (left) or co-expressed with Integrin β3 (right) in
HeLa cells (n = 3). (L) Sashimi plots of RNA-sequencing data showing alternative ITGAV splicing of exon 16 (left) and exon 23 (right) in the mother (blue tracks),
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are both normally well-expressed in lymphocytes, was virtually
undetected in P2 comparedwith his healthy brother (Fig. 2 I). This
negatively charged Asp379 residue in Integrin αVmaps to a loop in
the sixth blade of the β-propeller domain and is fully conserved
not only across species orthologs but also across other alpha in-
tegrin paralogs (Table S3). The traffic of integrin heterodimers to
the surface is exquisitely dependent on this region: heterodimers
first assemble in the endoplasmic reticulum (ER) in their bent
conformation which is regulated by ER Ca2+ that binds near this
site (Tiwari et al., 2011). Given the loss of surface p.Asp379Val
Integrin αV, we used a previously reported crystal structure of the
αVβ3 ectodomain to determine the putative impact of this variant
on divalent cation binding. This model first indicated that Asp379
indeed contributes to the coordination of divalent cation binding
while also stabilizing the backbone of adjacent residues (Fig. 2 J,
left). The Asp379Val ITGAV variant was predicted to possess a
diminished capacity to bind Ca2+ due to a loss of a metal-
coordinating interaction, as well as decreased backbone stability
of the binding site (Fig. 2 J, right). To further determine the traffic
of WT and Asp379Val Integrin αV, we expressed these versions,
each containing a c-terminal FLAG, in HeLa cells with andwithout
ITGB3. Expectedly, the co-expression of ITGB3 was essential for
the transport of Integrin αV from the ER to the surface (Fig. 2 K).
Strikingly, however, the Asp379Val variant of Integrin αV re-
mained trapped in the ER despite ITGB3 expression, suggesting a
defect in its traffic to the plasma membrane (Fig. 2 K).

In F1-4. we identified a paternally inherited ITGAV variant
(NM_002210.5:c.1564_1564+3delAGTA; p.Cys502*) at the end of
exon 16 that removed the canonical splice donor site (GT) (Fig. 2
C). RNA sequencing of cDNA from fibroblasts obtained from F3
showed that ITGAV transcripts were nearly undetectable com-
pared with 100 control samples (Fig. S1 E and Table S2) and
likely eliminated by nonsense-mediated mRNA decay (Dekker
et al., 2023). RNA sequencing of fibroblast cDNA also showed a
few reads splicing to a new cryptic acceptor site in exon 17 re-
sulting in an in-frame deletion in the transcript corresponding
to chr2: 187516816-187521046 (Fig. 2 L, left). ES also identified a
maternally inherited ITGAV variant (NM_002210.5:c.2247-1G>A;
p.[Ser749_Gly776delinsArg]), one nucleotide upstream of exon
23, which removes the splice acceptor site (Fig. 2 D). RNA se-
quencing of fibroblast cDNA showed that the maternally in-
herited ITGAV variant resulted in a transcript with almost
complete skipping of exon 23 (>95% of reads) (Fig. 2 L, right).

To examine the potential impact of the in-frame deletions
observed in F1–4, we mapped the 27 amino acid deletion of res-
idues S750 to G776 spanning the CALF1 and CALF2 (maternal
variant) and the 44 amino acid deletion of residues F503 to S546
within the THIGH domain (paternal variant) onto a previously
reported crystal structure of the αVβ3 ectodomain in the “bent”
conformation (PDB: 4G1M [Dong et al., 2012]). Visual inspection
of the deletion spanning the CALF1 and CALF2 domains suggested
a disruption of the interdomain linkage that would invert the

orientation of the CALF1 domain relative to CALF2 and thereby
misalign the quaternary structure of the alpha-beta complex (Fig
S1, F i and ii). Similarly, the deletion within the THIGH domain
suggested a disruption of the β-sandwich structure which would
ablate a stabilizing electrostatic interaction between the alpha
and beta chains (Fig. S1, F iii and iv). Consistent with these se-
quencing and protein predictions, fibroblasts derived from F3 had
very few overall ITGAV mRNA reads and grew poorly in culture
making the determination of Integrin αV protein expression
unobtainable.

ITGAV variants cause defects in TGF-β signaling and gene
expression
Given the role of Integrin αV in regulating TGF-β activation and
that TGF-β deficiency causes severe inflammatory bowel disease
(IBD) and abnormal brain development (Kotlarz et al., 2018), we
investigated gene expression and signaling in cells derived from
patients carrying the ITGAV variants. To this end, differential
gene expression analysis of P1 fibroblasts and a P1-derived lym-
phoblast cell line examined by RNA sequencing revealed dysre-
gulation of genes downstream of TGF-β signaling and SMAD
transcription comparedwith healthy controls (HCs) (Fig. 3, A and
B). While Integrin αV expression was clearly absent from
integrin-based adhesions that formed in the P1 fibroblasts, these
structures appeared normal in size and number formed per cell
(Fig. 3, C–F), suggesting that defects in these cells may relate
more to TGF-β signaling rather than integrin signaling per se.
Consistent with this, when we compared TGF-β signaling be-
tween P1 fibroblasts and that of a HC, the P1-derived fibroblasts
had reduced total SMAD3, which regulates its own transcription,
and reduced phosphorylation of SMAD3 even at rest and also
when activated by TGF-β1 (Fig. 3, G and H). This would suggest a
failure to activate TGF-β in culture to then promote TGF-β re-
ceptor signaling and SMAD activation in an autocrine fashion.
Accordingly, histological staining of colonic biopsies taken from
P1 demonstrated reduced SMAD3 positive nuclei compared with
IBD control samples (Fig. 3, I and J), suggesting decreased activity
and confirming this effect in vivo. Taken together, the TGF-β
pathway appeared severely disrupted in ITGAV variant cells and
tissues.

Brain defects with loss of microglia in itgav−/− zebrafish larvae
The identified ITGAV variants resulted in partial or complete loss
of Integrin αV expression/localization. To better understand the
potential pathogenic impacts of these variants and to model these
effects through development, we created zebrafish deficient for
itgav using CRISPR/Cas9 genome editing (itgav−/−) (Fig. S2).
Approximately, 10% of the itgav−/− larvae died before 8 days post
fertilization (dpf) and showed brain hemorrhage (Fig. 4 A). Also,
consistent with ITGAV-deficient patients, upon performing gene
expression and pathway analysis of whole 8 dpf itgav−/− larvae,
we determined perturbation in the expression of downstream

F3 (red tracks), and unrelated control (light yellow tracks). Left panel also indicates skipping and a novel cryptic acceptor site in exon17 in ITGAV (arrow). y axis:
number of reads. x axis: genomic location. Only the canonical transcript model and junctions with ≥5 reads are shown. Source data are available for this figure:
SourceData F2.
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Figure 3. ITGAV variants cause defects in TGF-β signaling and gene expression. (A) Volcano plot of differentially expressed genes between P1 and HC
derived fibroblasts (n = 3, adjusted P value <1e−10, DESeq2 Wald) (left). A subset of genes related to TGF-β signaling obtained from Harmonizome 3.0 (right).
(B) Volcano plot of overall differentially expressed genes between P1 and a HC derived lymphoblastoid cell line (n = 3 replicates per sample, adjusted P value
<1e−10, DESeq2Wald test) (left). P1 lymphoblasts show loss of ITGAV transcript and upregulation of some immune regulatory genes. A subset of genes related
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targets of TGF-β signaling pathways known to regulate brain
development (Fig. 4, B and C).

Given the observed hemorrhaging in the itgav−/− larvae and the
known role of TGF-β signaling in angiogenesis, we crossed the
itgav−/− zebrafishwith the Tg(flk1:EGFP) reportermodel to examine
the vasculature network by confocal microscopy. As shown in
Fig. 4 D and quantified in Fig. 4, E and F, imaging of 6 dpf itgav−/−;
Tg(flk1:EGFP) larvae revealed a clear disruption of the intraocular
vasculature network and decreased vessel branching. The activa-
tion of TGF-β has also been demonstrated to be critical formicroglia
development in the CNS (Spittau et al., 2020). Curiously, we noted
that lgasl3bpb and ccl34b.1, which are genes associatedwithmicroglia
in zebrafish, were the most downregulated in the itgav−/− zebrafish
larvae compared with wt. Upon staining the zebrafish larvae with
neutral red, a well-established histological dye that accumulates in
lysosomes of microglia, we found that the CNS of itgav−/− larvae
showed a pronounced reduction of resident microglia (Fig. 4, G and
H). Taken together, these data suggest that TGF-β signaling is
grossly disrupted in the itgav−/− zebrafish model.

itgav−/− juvenile zebrafish have reduced SMAD activity and
develop colitis
As described above, both P1 and P2 developed severe and diffi-
cult-to-treat very early onset IBD (VEOIBD; IBD diagnosed be-
fore 6 years of age) and for which zebrafish have been used as a
model system. The surviving juvenile itgav−/− zebrafish (50 dpf)
showed mortality and growth retardation in both body length
and weight (Fig. 5, A–D), which can be associated with colitis.
(Immuno)histological analysis of the intestine of the juvenile
itgav−/− zebrafish showed IBD-associated pathology including
cryptitis and gross disruption of the normal intestinal archi-
tecture (Fig. 5, E–G). By performing RNA sequencing of the
dissected gut from 50 dpf itgav−/− zebrafish, differential gene
expression analysis showed increased expression of genes
known to be involved in colitis including innate immunity-
related cytokines il1b, il6st, and il17a/f3, and pathway analysis
demonstrated increased immune, cytokine, and stress responses
(Fig. 5 H). On staining serial sections taken from these same
tissues that were immunostained for villin, we noted TGF-β
dysregulation in itgav−/− zebrafish, with a clear reduction of total
and phospho-smad3 staining throughout the bowel including in
the enterocytes and muscle shown in Fig. 5, I and J and quan-
tified in Fig. 5, K and L. These analyses are entirely consistent
with P1 colonic biopsy and fibroblast RNA-sequencing results,
demonstrating conservation of the Integrin αV/TGF-β pathway
across cell types and species and further confirming the pro-
tective role of Integrin αV in intestinal homeostasis.

In this report, we described a novel disease caused by biallelic
ITGAV variants identified in three families and provided insight

into pathogenesis. The variants each caused loss of functional αV
integrins through either transcriptional dysregulation and/or
destabilization of Integrin αV. RNA sequencing revealed var-
iants in ITGAV that either resulted in new acceptor splice sites or
the loss of donor sites that ultimately caused destabilization of
the transcript. We also found an exonic variant that resulted in
abnormal Integrin αV expression, folding, and trafficking to the
plasma membrane. Reduced Integrin αV expression/function
led to brain and vision defects, the development of atopy and
severe colitis, and severe embryonic defects.

Our RNA, cellular, and zebrafish studies showed that TGF-β
signaling was dysregulated in ITGAV deficiency. Several of the
phenotypical aspects of ITGAV deficiency, including brain de-
fects and colitis, were also observed in patients with TGFB1 loss-
of-function variants (Kotlarz et al., 2018). They also overlapped
in patients with TGFBR1 (Loeys et al., 2005) and IPO8 (Ziegler
et al., 2021) variants and other TGF signalopathies (Rodari et al.,
2022), including a recently described single case of ITGB6-
deficiency (Weil et al., 2020), but were limited to organs with
high ITGAV expression including the retina, brain, and colon
(see Table S1 for comparison). However, many of the immune
and atopy features observed in P1 and P2 may also be due to
Integrin αV’s role that are independent of TGF-β activation in-
cluding limiting TLR signaling and preventing autoimmune
B cell responses (Acharya et al., 2016, 2020; Lorant et al., 2024).

We took advantage of zebrafish as a model to study Integrin
αV function since they express all beta integrin pairs found in
humans on their surface, though also have multiple forms of the
β1 (β1a, β1b, β1b.1, β1b.2) and β3 (β3a, β3b) integrin subunits
(Ablooglu et al., 2010). Using CRISPR to establish a stable
knockout, we could study itgav deficiency throughout the life-
span of the organism which is different from what had been
done previously using morpholinos against itgav in which only
the very early stages of embryonic development could be ex-
amined (Ablooglu et al., 2010). In addition to establishing the
role of itgav in protecting against colitis, our zebrafish knockout
model was critical in implicatingmicroglia as contributing to the
brain disease observed in all ITGAV deficiency subjects. Mi-
croglia are highly specialized resident phagocytes of the CNS
that are essential for upholding the structural integrity of the
brain during development (Lawrence et al., 2024), maintaining
long-term synaptic plasticity (Paolicelli et al., 2011), and serve as
central players in several neurodevelopmental brain disorders
(Salter and Stevens, 2017). The local availability of TGF-β is
critical for microglia to assume their specialized phenotype and
function which does not occur in mice lacking TGF-β1 produc-
tion in the CNS (Butovsky et al., 2014).

Patients with loss-of-function variants of TGFB1 develop
seizures and leukoencephalopathy (Kotlarz et al., 2018). Curiously,

to TGF-β signaling (right). (C–F) Fibroblasts from P1 or HC immunostained for Integrin αV (magenta) and vinculin (cyan) together with phalloidin (yellow) for
F-Actin. In D–F, each dot represents a field of view (paired t test, P < 0.0001, ns, ns, n = 3). (G and H) Immunoblotting for pSMAD3 (Ser 423/425), SMAD3, and
Integrin αV protein levels in fibroblasts derived from HC or P1 as indicated before and after 20 ng/ml mature TGF-β stimulation for 15 min (n = 3). GAPDH was
used as a loading control. Values were normalized to HC (paired t test, P < 0.05, error bars, mean ± SEM). (I and J) Immunohistochemistry staining for SMAD3 in
biopsies of the ascending colon obtained from an IBD control patient and P1. Slides were also stained with H&E. Sections were quantified using thresholding of
signal in the nucleus by HALO. Three independent sections of the same gut were analyzed (paired t test, P < 0.01, n = 3). Source data are available for this
figure: SourceData F3.
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deficiencies in another microglial protein, NRROS/LRRC33, which
tethers TGF-β and provides the anchorage-necessary αVβ8 inte-
grins to release the cytokine from LAP (Qin et al., 2018), also
result in the loss of microglia (Dong et al., 2020; Smith et al.,

2020; Wong et al., 2017). LRRC33-deficient patients have brain
calcification, hypoplasia of the corpus callosum, and develop
seizures and neurodegeneration that resemble the disease ob-
served in P1 with ITGAV deficiency (Dong et al., 2020; Smith

Figure 4. Zebrafish: Early microglia phenotype. (A) Brightfield images of wt and itgav−/− zebrafish at 5 dpf demonstrating intracranial hemorrhage, swollen
hearts, and gut abnormalities in the knockouts (arrowheads). (B) Volcano plots of differentially expressed transcripts in 8 dpf itgav−/− compared with wt whole
zebrafish, annotated on GRCz11 (left). (n = 3, adjusted P value 0.05, DESeq2 Wald). A subset of genes related to TGF-β signaling (right). (C) Heatmap of the top
30 unbiased differentially expressed genes in 8 dpf itgav−/− larvae (n = 3). (D–F) Representative images of the eye vessels of itgav−/−;Tg(flk1:EGFP) and wt;
Tg(flk1:EGFP) zebrafish larvae at 6 dpf. Confocal images of intraocular vasculature network (lateral view) of the whole mount. The intensity of EGFP of the
intraocular vasculature (E) and the number of vessels branching in the intraocular vasculature network were quantified (F) (n = 4 zebrafish per group, t test, P <
0.01, P < 0.05, error bars mean ± SEM). (G and H) Representative images of zebrafish larvae microglia (arrowheads) stained with neutral red. Dorsal view
(right) and lateral view (left) of wt and itgav−/− zebrafish microglia at 6 dpf. Quantification of microglia numbers is shown on the right. (n = 16, unpaired t test,
P < 0.0001, mean).
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Figure 5. Zebrafish: Late colitis phenotype. (A) Representative image of wild-type (wt) and itgav−/− zebrafish at 50 dpf. (B) Kaplan–Meier survival curve of
zebrafish wt and itgav−/− (n = 20, log-rank Mantel–Cox test, P < 0.05) (C and D)Measurements of body weight (C) and body length (D) (n = 12, unpaired t test,
P < 0.0001). (E) Representative images of H&E staining of cross sections corresponding to the mid-intestine of zebrafish at 50 dpf (n = 3). (F) Total enterocolitis
score of the gut for zebrafish wt and itgav−/− (n = 3, unpaired t test, P < 0.001). (G) Representative images of villin1 (green) and DAPI (nuclei, blue) imaged with
immunofluorescence in the mid-intestine of wt and itgav−/− zebrafish at 50 dpf (n = 3). (H) Volcano plot of RNA-sequencing data showing differential gene
expression between 50 dpf itgav−/− versus wt fish dissected gut tissue, annotated on GRCz11 (left). Subset of differentially expressed inflammatory cytokine
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et al., 2020; Wong et al., 2017). Thus, Integrin αV–based activa-
tion of TGF-β would seem to be critical for microglial develop-
ment and function.

Several mouse models have demonstrated the critical role of
Integrin αV in IBD. Conditional knockout of Integrin αV in
myeloid cells (Lacy-Hulbert et al., 2007) and αVβ8 in dendritic
cells (Travis et al., 2007) in mice leads to severe colitis. The
ITGAV/TGF-β signaling axis has been linked to more common
forms of IBD through the identification of risk polymorphisms in
both components of the αVβ8 heterodimer ITGAV and ITGB8 (de
Lange et al., 2017), and SMAD3 (Franke et al., 2010; Huang et al.,
2017). These findings were validated using single-cell RNA se-
quencing of colonic biopsies from IBD patients with the risk
variants (Smillie et al., 2019). Recently, αVβ6 autoantibodies that
correlated with disease severity were identified in ulcerative
colitis (UC) patients and individuals prior to the development of
UC (Kuwada et al., 2021; Livanos et al., 2023). Here, we dem-
onstrate reduced nuclear localization of SMAD3 in colonic bi-
opsies associated with ITGAV deficiency and reduced SMAD3
mRNA in fibroblasts. We provided further evidence of TGF-β
dysregulation in itgav−/− zebrafish with reduced total and
phospho-smad3 staining throughout the bowel. Patients with
loss-of-function TGFB1 (Kotlarz et al., 2018) and TGFBR (Loeys
et al., 2005) variants also develop a very similar progressive
form of IBD. In some patients with polygenic IBD, TGF-β sig-
naling is disrupted through the downregulation of SMAD3 by
SMAD7 (Monteleone et al., 2008). Oral SMAD7 antisense oligo-
nucleotide (mongersen) is an effective treatment for colitis in
humans and mice (Monteleone et al., 2008; Monteleone and
Pallone, 2015), although Phase 3 clinical trials failed due to is-
sues with antisense oligonucleotide production (Monteleone and
Stolfi, 2022; Sands et al., 2020). Together, this suggests that In-
tegrin αV plays an important role in IBD pathogenesis and that
targeting TGF-β signaling via administration of active TGF-β (not
presently available) may be a potential treatment strategy for IBD.

αV integrins bind to a wide variety of extracellular ligands
beyond latent TGF-β (Choi, 2012). Additionally, these integrins
can crosstalk with and regulate other receptors, so we expect
that ITGAV variants may disrupt several other pathways that
were not investigated here. We were also limited by the avail-
ability of appropriate patient-derived cells to test specific In-
tegrin αV functions. P1 was born to non-consanguineous parents
of Indigenous Canadian ancestry, suggesting a possible founder
variant in this isolated population. Unfortunately, there is lim-
ited genetic data available to determine the allelic frequency in
this population; however, ongoing studies by the Silent Genomes
Project (https://www.bcchr.ca/silent-genomes-project) may pro-
vide future insight into this question. Overall, the identification of
human disease-causing ITGAV variants provides insights into the
underlying causes and potential therapies for severe IBD, retinal,
and neurodevelopmental disease.

Materials and methods
Approval
All studies were done with human ethics approval (REB
#1000079104, The Hospital for Sick Children, Toronto, Canada;
2014-01-04 MS6, INSERM France; IRB protocol METC-2012-387,
Erasmus MC, University Medical Center Rotterdam, Rotterdam,
Netherlands). All reported investigations including MRI, en-
doscopy, bone density, etc., and all laboratory tests in clinical
hematology and immunology labs were part of routine clinical
investigations.

All zebrafish studies were carried out at The Hospital for Sick
Children with approval from the Animal Care Committee, ani-
mal protocol #65759.

Generation of patient lymphoblast lines
Immortalized Epstein–Barr virus (EBV)-transformed lympho-
blast cell lines (Anderson and Gusella, 1984) were established
from patient blood by the Biobanking Service at The Centre for
Applied Genomics (Toronto, Canada). Briefly, 5–10 ml of pe-
ripheral blood was collected in tubes containing acid-citrate
dextrose (Becton-Dickinson) as an anticoagulant. Peripheral
blood mononuclear cells were isolated by centrifugation over a
Ficoll–Paque gradient (GE Healthcare) and cultured in RPMI
1640 (Wisent) containing 50% FBS, 2 mM L-glutamine, 2 g/liter
glucose, and 2 g/liter sodium bicarbonate without antibiotics.
Cultures were incubated with 1 ml EBV (strain B95-8) and 1 µg/
ml cyclosporine A for 7–10 days. Cells were then transferred to
RPMI+15% FBS and grown for 21–35 days, subculturing as nec-
essary, until the emergence of clones of suspension cells.
Thereafter, 30–35 ml cells at 1 × 106 cells/ml were cryopreserved
at −80°C.

Cell culture and transfection
Fibroblasts (Johnstone et al., 2020) were isolated from patient
biopsies and prepared at the centre for applied genomics
(TCAG). Fibroblasts were cultured in DMEM (Wisent) with 10%
FBS (Corning) with antibiotics, incubated at 37°C with 5% CO2,
plated on tissue culture–treated plastic. HeLa cells were obtained
from the American Type Culture Collection. The line was cul-
tured in DMEM supplemented with 5% FBS and incubated at
37°C. HeLa cells were transfected with FuGene 6 (Promega) for
24 h.

RNA sequencing
Blood from consenting patients was collected into PAXgene
Blood RNA Tubes (PreAnalytiX) and RNA was prepared using
the PAXgene Blood RNA Kit according to the manufacturer’s
instructions and stored at −80°C. P1 or HC fibroblasts and
lymphoblasts were cultured in biological triplicate and RNA was
isolated using the RNeasy PlusMini Kit (QIAGEN). Spike-in RNA
was added as an internal control (ERCC RNA Spike-In Mix;

genes in the gut at 50 dpf (right) (n = 3, adjusted P value 0.01, DESeq2 Wald). (I and J) Representative images of total smad3 and p-smad3 (green) and DAPI
(nuclei, blue) imaged with immunofluorescence in the mid-intestine of wt and itgav−/− zebrafish at 50 dpf (n = 3). (K and L) Quantification of total smad3 and
p-smad3 in the muscle layer and enterocytes for the mid-intestine of wt and itgav−/− zebrafish at 50 dpf (10 intestinal folds from unpaired t test, n = 3 for each
group).
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Thermo Fisher Scientific). 400 ng of total RNA was used as the
input material RNA library preparation following the Illumina
Stranded Total RNA Prep, Ligation with Ribo-Zero Plus protocol
to generate polyA-enriched, rRNA-depleted libraries. Libraries
were validated on the Fragment Analyzer using the High Sen-
sitivity NGS Kit or on the Bioanalyzer 2100 DNA High Sensi-
tivity chip (Agilent Technologies) to check for size and absence
of primer dimers and quantified by quantitative PCR (qPCR)
using Kapa Library Quantification Illumina/ABI Prism Kit pro-
tocol (KAPA Biosystems). Validated libraries were pooled in
equimolar quantities and 80–100 million reads were sequenced
on the Illumina NovaSeq platform using the S4 flowcell to
generate paired end reads of 150 bases in length.

Itgav+/− zebrafish were crossed and genotyped by tailfin cut
and high-resolution melting (HRM). The WT and itgav−/− mu-
tants were pooled (n = 15) and RNA was extracted using an
RNeasy mini kit, respectively. The quality and integrity of the
RNA was assessed using a Bioanalyzer. mRNA was enriched
from the total RNA using poly-A selection. The enriched mRNA
was then subjected to library preparation, which involved cDNA
synthesis, end repair, adapter ligation, and PCR amplification.
Quality control of the libraries was performed using fluoro-
metric quantification. The resulting libraries were sequenced
using the Illumina NovaSeq instrument, generating paired-end
reads. Raw FASTQ files were trimmed using Trimmomatic-0.39
and quality control checked using FASTQC.

The human (P1) RNAseq reads were aligned to the human
genome (GRCh37; 1000 Genomes Project hs37d5) using STAR
(v2.6.1.c) (Dobin et al., 2013) using basic two modes. Ensembl
GTF (release version 87) was used for the annotation. Gene ex-
pression was quantified using RSEM (v1.2.22) (Li and Dewey,
2011). For splicing visualization, ggsashimi (v1.1.5) (Garrido-
Mart́ın et al., 2018) was used to create the sashimi plots. For
zebrafish data, reads were aligned to the zebrafish genome
(GRCz11.109) using hisat2. Bams were converted to sam, sorted,
and indexed using Samtools. Reads in genes were counted using
featureCounts with the Ensembl GRCz11.109 GTF file. For both
sets of data, differential gene expression was performed in R
with the DESeq2 (Love et al., 2014) package. Pathway enrich-
ment analysis was carried out using g:Profiler. Figures were
made using JMP 17 (SAS Institute).

Western blotting
Cells seeded in 6-well plates were washed with cold PBS and
lysed with radioimmunoprecipitation assay buffer (Sigma-
Aldrich) supplemented with protease and phosphatase inhibitors
(Pierce Thermo Fisher Scientific). Lysates were centrifuged for
10 min at 4°C at 14,000 rpm. Supernatants were collected, mixed
with 4× Laemmli buffer (Bio-Rad), and boiled for 5 min at 95°C.
Samples were loaded onto 4–20% gradient gels (Bio-Rad) and
transferred to nitrocellulose membranes via Trans-Blot Turbo
Blotting System (Bio-Rad). Blots were blocked with 5% BSA
(Bioshop) in TBST for 30 min on a shaking incubator. Primary
antibodies were diluted in 5% BSA in TBST and incubated for
90 min. The following antibodies were used: anti-ITGAV (cat#
ab179475; Abcam), anti-GAPDH (cat# AC027; ABclonal), anti-
pSMAD3 S423/425 (cat#9520; Cell Signaling), and anti-SMAD3

(cat#9523; Cell Signaling). Blots were washed three times with
TBST for 5 min before being incubated with HRP conjugated
secondary antibody (Jackson ImmunoResearch) for 30 min.
Blots were washed again three times for 5 min with TBST. ECL
(Pierce Thermo Fisher Scientific) was added to the blots and
imaged using the BioRad ChemiDoc MP system. For weaker
signals, Immobilon Forte western HRP substrate (Millipore
Sigma) was used.

For conditions to determine pSMAD by western blotting, HC
and P1 fibroblasts were cultured in 6-well dishes for 4 days,
achieving a confluency of 75% by the final day. For stimulated
samples, mature human TGF-β1 (Cat # 100-21; Peprotech) was
added to the cells to a final concentration of 20 ng/ml for 15 min.
Samples were collected as described above. ImageJ was used to
analyze the acquired images. Phospho-SMAD3 measurements
were standardized to GAPDH loading control. Values were
normalized to unstimulated HC values.

RNA isolation and qPCR
Fibroblasts were seeded onto 6-well tissue culture plates for
24 h. Cells were then harvested, and RNA was extracted using
the Thermo Fisher Scientific GeneJet kit. 1 μg of RNA was used
for cDNA synthesis using the qScript mastermix. For qPCR,
equal amounts of cDNA were loaded into a 96-well plate along
with fast reaction mastermix (Thermo Fisher Scientific) and
TaqMan primers for ITGAV (cat#Hs00233808; Thermo Fisher
Scientific) and GAPDH (cat#Hs02758991; Thermo Fisher Scien-
tific). Samples were run in triplicate with GAPDH as a loading
control. qPCR was run on the Thermo QuantStudio3 system.

IgE level quantification on plasma samples
Quantification of IgE levels against 295 allergens was performed
on frozen plasma samples with ALEX Allergy Explorer Test
System (Eurofins Biomnis). The test consisted of an ELISA-based
IgE multiplex assay allowing the screening for 117 extracts and
178 molecular allergens. IgE levels ≥0.30 kU/liter were positive.

Immunofluorescence of cell cultures
Cells seeded onto coverslips were fixed with 4% paraformalde-
hyde (PFA) (Electron Microscope Sciences) for 30 min. Samples
were permeabilized with 1% triton (Bioshop) in PBS for 5 min
and blocked with 2.5% BSA in PBS for 30 min. The primary
antibody was diluted in 2.5% BSA in PBS and incubated for
90 min. The following primary antibodies were used: anti-
ITGAV (cat#ab179475; Abcam), anti-Vinculin (cat# MAB3574;
Millipore Sigma), and anti-FLAG (cat#F3165; Millipore Sigma).
Samples were washed three times with PBS and incubated with
secondary antibody (Jackson ImmunoResearch) and Acti-Stain
(Cytoskeleton, Inc.) diluted 1:500 in 2.5% BSA in PBS. Samples
were washed again three times with PBS. Coverslips were im-
aged using a confocal spinning disk microscope. Briefly, the
microscope obtained from Quorum Technologies Inc. consists of
a microscope (Zeiss Axiovert 200 M), complementary metal-
oxide semiconductor camera (ORCA-Fusion BT; Hamamatsu),
five-line laser module (Spectral Applied Research) with 405, 491,
561, and 655 nm lines and a filter wheel (Ludl MAC5000). Im-
ages were acquired with a 63×/1.4 NA oil objective (Zeiss)
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equipped with a custom 2.4× custom magnification lens. The
microscope was operated using Volocity V6.3 software (Perkin
Elmer). Images were analyzed using ImageJ.

Immunohistochemistry of patient biopsies
Intestinal biopsies of P1 and an IBD control were formalin-fixed
and embedded in paraffin and the sections were mounted on
slides. Slides were stained with H&E and SMAD3 (#ab40854;
Abcam) by the STTARR facility at Princess Margaret hospital
(Toronto, Canada). Slides were imaged using a 3DHistech Pan-
noramic Flash II Slide Scanner. Images were analyzed to deter-
mine SMAD3-positive nuclei using the signal threshold function
in the HALO software (Indica Labs).

Recombinant protein production
WT and ITGAV (Trp144Cys) αVβ6 headpieces were prepared
similarly as in Yu et al. (2013). In brief, the αV headpiece (amino
acids 1–594) with a M400C mutation, C-terminal TEV cleavage
site, ACID coiled coil, and Strep II tag, as well as the β6 headpiece
(amino acids 1–474) with a I270C mutation, C-terminal TEV
cleavage site, BASE coiled coil, and 6xHis tag, were each cloned
into pcDNA3.4 expression vectors. αV and β6 headpiece plas-
mids were co-transfected at a 1:1 ratio into FreeStyle 293-F cells
(Thermo Fisher Scientific) at a cell density of 0.8 × 106 cells/ml
for transient expression using FectoPRO DNA transfection rea-
gent (Polyplus). Cells were cultured in GIBCO FreeStyle 293
Expression Medium for 7 days and supernatants were isolated
by centrifugation and filtered through a 0.22-μm membrane.
Proteins were purified using HisTrap HP affinity chromatog-
raphy (Cytiva) and size-exclusion chromatography (Superose
6 10/300 GL; Cytiva) into a final buffer of 20 mM Tris pH 7,
150 mM sodium chloride, 1 mM CaCl2, and 1 mMMgCl2. Purified
protein was concentrated to 1 mg/ml, immediately frozen, and
stored at −80°C.

Biolayer interferometry (BLI)
BLI binding assays were performed using an Octet RED96 (R8)
Biolayer Interferometer. A C-terminally amidated pro-TGF-β3
peptide with an N-terminal–conjugated biotin and an eight
amino acid–spacer (Biotin-GGSGGSGG-HGRGDLGRLKK-NH2)was
purchased from GenScript. The biotinylated peptide was re-
suspended in kinetics buffer (PBS, pH 7.4, 0.01% [wt/vol] BSA,
0.002% [vol/vol] Tween-20, 1 mM CaCl2, and 1 mM MgCl2) to a
final concentration of 1 ng/ml and loaded onto Streptavidin (SA)
Biosensors (Sartorius) for 30 s. Binding kinetics parameters were
determined after a 30 s baseline in kinetics buffer followed by
an association phase in serially diluted recombinant WT or
Trp144Cys αVβ6 protein from 300 to 9.375 nM and then a dis-
sociation phase in kinetics buffer. Data were analyzed and
plotted using FortéBio’s Data Analysis software V8.2.

Circular dichroism (CD)
CD thermal melts were conducted at 218 nm to monitor the
denaturation of β-sheet structures in the headpiece domain.
Using a J-1500 Circular Dichroism Spectrophotometer (Jasco,
Inc.), a temperature ramp from 25°C to 85°C was conducted at a
rate of 1°C increase per min, a bandwidth of 1 nm, a CD scale of

200 mdeg/1.0 dOD, and with three replicate reads per mea-
surement. Proteins were buffer-exchanged into 1× PBS with
1 mM CaCl2 and 1 mM MgCl2 at a concentration of 0.7 mg/ml,
and all analyses were processed with a blank correction using
the same buffer. Data were analyzed and plotted in R software
(version 4.0.0) using the ggplot2 and drc packages. Data were fit
using a sigmoidal logistic function, and melting temperatures
(Tm) were determined at the plotted inflection point.

Flow cytometry
B-EBV cells from HCs and P2 were washed and stained with BD
Pharmingen AF647 mouse anti-human CD51 (NKI-M9), AF647
mouse IgG2a, isotype control, eBioscience PEmouse anti-human
CD61 (VI-PL2), SONY APC/Cy7 CD19 (SJ25C1), and LIVE/DEAD
Fixable Aqua Dead Cell Stain Kit (Invitrogen) for 20 min at 4°C.
Cells were washed in PBS 2% FBS, 2 mM EDTA. Flow data were
acquiredwith a BD FACSCanto II and analyzedwith FlowJo v10.8
software (BD Life Sciences).

Zebrafish care and transgenic lines
Zebrafish strains were raised and maintained using standard
laboratory procedures. Embryos were obtained via natural
mating and cultured in embryo E3 buffer. The larval stage was
defined as between 5 and 8 dpf and juvenile stage as ∼2-mo.
Euthanasia was done in accordance with the AVMA guidelines.

CRISPR/Cas9 was used to edit itgav. The targeting sequence
59-CGTGTGCACCTCTCTACCAG-39 was designed by CHOP-
CHOP. mRNA (150 pg) encoding a zebrafish-codon-optimized
Cas9 together with gRNA (100 pg) were injected at the one-cell
stage. Microinjections and F0, F1 screens were carried out ac-
cording to standard protocols. One mutant allele (−3 bp) dele-
tions were identified from F1 by HRM and confirmed by Sanger
sequencing. The (−3 bp) deletion resulted in a premature stop
codon in the itgav KO mutant. For genotyping, DNA fragments
were amplified with primers (F1:59-CGGCACATGCACACAGAT
TC-39 and R1: 59-CTGGTAGAGAGGTGCACACG-39; F2: 59-CAG
CGTGGGAGACCTTAACA-39, R2:59-CCCTGTGGAACGGCCAT-
TAT-39) and further confirmed by Sanger sequencing.

To investigate vasculature, the itgav(−/+) strain was crossed
with Tg(flk:EGFP) to generate itgav(−/+);Tg(flk1:EGFP). itgav(−/+);
Tg(flk1:EGFP) were then crossed to generate a itgav(−/−);Tg(flk1:
EGFP) strain, which was confirmed by tailfin-cut genotyping.
Zebrafish larvae at 6 dpf were anesthetised by tricaine and
embedded in 1.2% agarose. Confocal images were taken using a
Leica SP8 confocal microscope. The intensity of green fluores-
cence was measured by Fiji and a Student t test was used for
statistical analysis.

H&E staining and immunofluorescence in zebrafish
Zebrafish larvae were fixed in 4% PFA/PBS for 48 h at 4°C, de-
hydrated in ethanol, and embedded in paraffin. 3 μm sections
were stained with H&E and Alcian-Blue which stains for mucus-
producing goblet cells. For morphology evaluation, we used a
modified enterocolitis score as described (Brugman et al., 2009).
We scored each intestine sample (n = 3 for each group) for
bowel-wall changing (thinning) (0, normal; 1, slightly changed;
2, moderately changed; 3, severely changed), intestinal-fold
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architecture disruption (0, normal; 1, slight disruption; 2, mod-
erate disruption [characterized by increased interfold distance
and/or disruption of epithelial integrity]; 3 _severe disruption),
and goblet cell appearance (0, normal; 1, decreased in number or
size; 2, complete depletion). Total enterocolitis score represents
the cumulative values of these separate parameters for an in-
testine sample. A total enterocolitis score of 0–3 was defined as
“no enterocolitis.”

Immunofluorescence was also done from fixed tissue em-
bedded in paraffin, which was subject to antigen retrieval using
sodium citrate buffer. To block non-specific binding, the sec-
tions were treated with a blocking buffer containing either 1%
BSA or 10% normal goat serum in PBS. Primary antibodies
specific to the target proteins: villin1 (#16488-1-AP,1:400; Pro-
teintech), p-smad3 (#9520,1:200; Cell Signaling), and smad3 (#
MA5-149391:200; Invitrogen) were then incubated overnight at
4°C. After washing with PBS to remove excess primary anti-
bodies, sections were incubated with secondary antibodies
conjugated to fluorophores (1:3,000 dilution) for 1 h at room
temperature. Nuclear counterstaining was performed using
DAPI. Fiji was used to measure the intensity of green fluores-
cence (subtracted by background intensity) from each group in
enterocytes and muscle from 10 different intestinal folds. The
t test was used for statistical analysis.

Zebrafish survival and measurements
Heterozygous itgav−/+ zebrafish were subjected to in-crossing, and
embryos were subsequently collected and raised in a petri dish in
an incubator. At 5 dpf, a random selection of 50 zebrafish larvae
was collected and reared according to standard protocols. Con-
tinuous daily observations were conducted. By 7 wk after fertili-
zation, 12 individuals exhibited a smaller size. Tailfin cut
genotyping was performed to confirm homozygosity, and those
identified as homozygous were segregated into a distinct tank.
Survival numbers were recorded weekly, and the homozygous
individuals displayed normal feeding habits. Any observed be-
havior meeting specific criteria was considered an endpoint and
the fishwere euthanized. Cumulativemortality data were used to
construct a Kaplan–Meier survival curve over 10 wk. Group
comparisonswere conducted using the log-rankMantel–Cox test.

For measurements of body length and weight, zebrafish larvae
were collected and briefly anesthetized using the tricaine solution.
Length measurements were made from the head to the end of the
tailfin. Weight measurements were conducted by placing larvae
on preweighed filter papers, absorbing excess moisture, and re-
cording weights to the nearest milligram on an analytical balance.

Statistical analysis
All data are presented as mean ± SEM. Statistical comparisons,
unless otherwise indicated, were conducted using unpaired t test.
A significance threshold of P < 0.05 was considered for all statis-
tical tests. All experiments were independently conducted at least
three times to ensure reproducibility and reliability of the findings.

Online supplemental material
The online supplementalmaterial consists of two figures and three
tables. Fig S1 shows the biophysical properties of recombinant

ITGAV and additional RNA sequencing data that supports the role
of ITGAV variants in pathogenesis. Fig S2 shows the molecular
characterization of the zebrafish itgav gene and generation of
itgav knockout mutant. Table S1 summarizes the clinical fea-
tures of ITGAV deficiency patients and compares them to other
TGFopathies. Table S2 outlines the ITGAV variant character-
istics including genetic position and damaging score. Table S3
demonstrates the alignment of human, fly, and worm alpha
Integrins plus Itgav of mice and zebrafish.

Data availability
The ITGAV variants identified in this study have been submitted
to the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/)
with the IDs SCV004170970, SCV004170975, SCV004171022, and
SCV004171104. Human sequencing raw data is not made pub-
licly available is contains information that could compromise
research participant privacy/consent; however, it will be avail-
able to researchers upon request (RML for P1, MP for P2, and
TJvH for F1–3). RNA data are deposited to a public repository
with GEO accession GSE248975. Source data are provided within
this paper.
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Figure S1. Biophysical properties of recombinant ITGAV and additional RNA sequencing. (A) Representative BLI curves of WT and W144C proteins
binding to biotinylated TGF-β3 peptide. KD, kon, and koff, are the equilibrium dissociation constant, on rate, and off rate, respectively. Values are indicated along
with standard error; n = 3. (B) CD melting curves were observed at 218 nm for WT and W144C proteins. Dotted lines at the inflection point indicate melting
temperature (Tm). (C) Sashimi plots showing the novel splicing site in ITGAV exon 4 (only junctions with ≥5 reads are shown), generated by ggsashimi. A blue *
indicates the canonical splice acceptor site while a black arrow marks the novel splice site in exon 4. Three replicates are shown using a lymphoblast cell lines
derived from P1 (top) and an unrelated healthy control (WT, bottom). y axis: number of reads. x axis: genomic location. Only the canonical transcript model is
shown. (D) Cartoon demonstrating the abnormal splicing junction that occurs between exons 3 and 4 of ITGAV, visualized using GenomeBrowse, because of the
c.432G > C variant identified in P1. ITGAV amino acid numbering is shown for the indicated two transcript IDs. The canonical splice acceptor site is highlighted
using a blue box while the novel splice acceptor site is shown using a black box. The position of the variant in P1 is marked by an arrow. The new reading frame
of the novel splice site gives rise to a premature stop codon. (E) Volcano plot showing differentially expressed genes from RNA-sequencing data comparing
fetus (F3) derived fibroblasts versus 100 controls. x axis: z-score. y axis: −log10fold. (F) Structural modeling of inframe deletions identified in Family 3. The 27
amino acid in-frame deletion of residues S750 to G776 spanning the CALF1 and CALF2 domains (indicated in orange) would (i) invert the CALF1 domain
resulting in (ii) the misalignment of the alpha and beta chains. The 44 amino acid in-frame deletion of residues F503 to S546 within the THIGH domain (iii)
would ablate an (iv) electronegative loop interacting with an electropositive pocket on the alpha chain. Models generated from PDB: 4G1M.
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Provided online are Table S1, Table S2, and Table S3. Table S1 shows clinical features of ITGAV-deficient patients and other
TGFopathies. Table S2 shows ITGAV variant characteristics. Table S3 shows alignment of human, fly, and worm alpha integrins plus
Itgav of mouse and zebrafish, using Clustalo (Li et al., 2015) and Seglogo (Crooks et al., 2004).

Figure S2. Molecular characterization of the zebrafish itgav gene and generation of itgav knockout mutant. (A) The zebrafish itgav gene: The genomic
structure of the zebrafish itgav gene, comprising 30 exons, is depicted. (B) itgav−/−mutant generation: CRISPR/Cas9 genome editing was employed to generate
an itgav−/− mutant. The guide RNA targeted exon 4 just before the conserved tryptophan, resulting in a 3-bp deletion and an early stop codon. (C) Molecular
validation: HRM analysis corroborated the deletion, and real-time PCR demonstrated downregulation of itgav mRNA, suggesting nonsense-mediated
RNA decay.
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