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Abstract
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond 
or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis 
factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex 
role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF 
molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF 
is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved 
and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint 
blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this 
review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and 
co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
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1 Introduction

The clinical development of immune checkpoint inhibi-
tors (ICIs), mainly anti-PD1 or anti-CTLA4 agents, has 
been a game changer for the therapy of several types of 
cancer. However, ICIs are not a one-size-fit-all treatment 
and many patients do not respond or develop resistance to 
them [1]. Thus, other strategies are being explored, includ-
ing blocking co-inhibitory checkpoints such as LAG-3, 
enhancing the activities of immune co-stimulatory recep-
tors, and tumor microenvironment modifications [2–4]. In 
this regard, the tumor necrosis factor (TNF) protein family 
members are of enormous importance in cancer research 
due to their diverse biological and oncogenic activity and 
as potential targets for treatment [5].

The TNF proteins are divided into two superfamilies: the 
TNF receptor superfamily (TNFRSF) and the TNF super-
family (TNFSF) (Table 1) [6–18]. TNFSF is a group of 
soluble or membrane-bound proteins that bind to TNFRSF 
on target cells. There are at least 19 TNFSF ligands and 
they bind to at least 29 TNFRSFs [19]. Some of the best-
known TNFSF ligands include the FAS ligand (FASL) 
and TNFSF10 (TRAIL). Upon ligand binding, TNFRSF 
induces intracellular signaling pathways of different TNF 
receptor-associated factor (TRAF) subtypes, which in turn 
regulates key cellular biologic processes. These interac-
tions play a crucial role in the orchestration of cell survival, 
inflammation, proliferation, differentiation, and apoptosis.

In this review, we provide a succinct overview of the 
TNF pathway, including TNFSF/TFNRSF members, their 
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Table 1  Examples of cancer-relevant members of TNFSF and TNFRSF and selected biologic activities

Abbreviations: APRIL a proliferation-inducing ligand, BAFF B-cell activating factor, BAFF-R BAFF receptor, BCMA B-cell maturation antigen, 
CD40L CD40 ligand, CD70 CD70 molecule, DcR1 decoy receptor 1, DcR2 decoy receptor 2, DcR3 decoy receptor 3, DR3 death receptor 3, 
DR4 death receptor 4, DR5 death receptor 5, FasL Fas ligand, Fn14 fibroblast growth factor-inducible 14, GITR glucocorticoid-induced TNFR-
related protein, GITRL glucocorticoid-induced TNFR-related protein ligand, HVEM herpesvirus entry mediator, LIGHT lymphotoxin-like, 
exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes, LTBR lymphotoxin 
beta receptor, OX40L OX40 ligand, TACI transmembrane activator and calcium modulator and cyclophilin ligand interactor, TL1A TNF-like 
ligand 1A, TNF-alpha tumor necrosis factor-alpha, TNFR1 tumor necrosis factor receptor 1, TNFR2 tumor necrosis factor receptor 2, TNFRSF 
tumor necrosis factor receptor superfamily, TNFSF tumor necrosis factor superfamily, TRAIL TNF-related apoptosis-inducing ligand

TNF super-
family gene 
name

Protein name TNF receptor superfamily 
gene name

TNF receptor superfamily 
protein name

Typical downstream action 
and comments

References

TNF TNF-alpha TNFRSF1A TNFR1, TNFR2 Induces apoptosis, inflam-
mation, and immune 
response. Plays an impor-
tant role in cachexia

[6]

TNFSF4 OX40L TNFRSF4 OX40 (CD134) Enhances T cell survival 
and proliferation

[7]

TNFSF5 CD40L TNFRSF5 CD40 Activates B cells, immu-
noglobulin production 
and enhances immune 
response

[8]

TNFSF6 FasL (CD95L/CD178) FAS FAS (CD95) Triggers apoptosis and 
immune system regulation

[9]

TNFSF7 CD70 TNFRSF7 CD27 Enhances T cell activation 
and survival

[10]

TNFSF8 CD30L TNFRSF8 CD30 Modulates cell survival and 
immune response

[11]

TNFSF9 4-1BB ligand (CD137L) TNFRSF9 4-1BB (CD137) Enhances T cell prolifera-
tion and survival

[12]

TNFSF10 TRAIL (CD253) TNFRSF10A, TNFRSF10B, 
TNFRSF10C, 
TNFRSF10D

DR4 (CD261), DR5 
(CD262), DcR1 (CD263), 
DcR2 (CD264)

Induces apoptosis and 
immune system regulation

[13]

TNFSF12 TWEAK TNFRSF12A Fn14 (CD266) Modulates cell survival, 
proliferation, and inflam-
mation

[14]

TNFSF13 APRIL (CD256) TNFRSF13B, TNFRSF17 TACI (CD267), BCMA 
(CD257)

Regulates B-cell survival 
and antibody production

[15]

TNFSF13B BAFF (CD257) TNFRSF13C, TNFRSF17 BAFF-R (CD268), BCMA 
(CD269)

Promotes B cell survival, 
and maturation prolifera-
tion

[15]

TNFSF14 LIGHT (CD258) TNFRSF3, TNFRSF14 LTBR (CD18), HVEM 
(CD270), DcR3

Regulates immune response 
and inflammation and 
lymphoid tissue develop-
ment. Uniquely, HVEM 
can also bind to two non-
TNFSF members of the Ig 
superfamily, BTLA and 
CD160

[16]

TNFSF15 TL1A TNFRSF25 DR3 Modulates T cell activa-
tion and inflammation in 
mucosal tissue. Stimulates 
natural killer cells

[17]

TNFSF18 GITRL TNFRSF18 GITR (CD357) Modulates T cell activation 
and immune response

[18]
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signaling cascades, current and ongoing clinical trials, and 
the role of anti-TNF in managing immune-related adverse 
events.

2  TNF pathways in cancer

In the cancer realm, TNF signaling reflects a two-faced fam-
ily of molecules. On one hand, TNF family members can 
function as tumor promoters, because they can stimulate 
malignant cell proliferation, invasion and metastasis, and 
tumor angiogenesis. On the other hand, TNF family mem-
bers can induce cancer cell apoptosis via death domains and 
other properties. TNFSF and TNFRSF play critical roles in 
controlling the balance of inflammation [20]. Figure 1 shows 
some of the interactions between TNFSF and TNFRSF in 
the tumor microenvironment (TME).

2.1  Death domain‑containing members

A number of TNFRSF molecules can induce programmed 
cell death—apoptosis—as they contain a death domain. 
These different proteins share similar downstream signaling 
after their activation. They often stimulate Fas-associated 
protein with death domain (FADD) and death-inducing sign-
aling complex (DISC) formation, and they recruit different 
caspases, mainly caspase 3, 8, and 10 [21].

2.1.1  TNFR1, TNFR2, and TNF

TNF-α has diverse roles in carcinogenesis. In 1975, Carswell 
et al. discovered a novel protein in the hemorrhagic necrosis 
of a mouse tumor model, leading to the name “tumor necro-
sis factor” [22]. TNF binds two receptors: TNFR1, which 
is expressed in most cells; and TNFR2 which is mainly 
expressed in hematopoietic and immune cells [23]. TNFR1 
is activated by binding to soluble TNF found in blood and 
extracellular space, while TNFR2 binds to both the trans-
membrane and soluble form of TNF [24]. The transforma-
tion of transmembrane TNF to a soluble TNF is mediated by 
the metalloprotease TNFα-converting enzyme (TACE) [25].

TNF binding can result in two distinct responses depend-
ent on the activated receptors. Only TNFR1 has a death 
domain, which enables it to activate the signaling that leads 
to apoptosis and promotes inflammation [26]. On the other 
hand, TNFR2 lacks a death domain and instead prompts 
TNFR-associated factor 2 (TRAF2) recruitment, which 
mainly promotes cell proliferation and survival, cell activa-
tion, and migration [6, 27]. In addition, TNFR2 is expressed 
by multiple tumor types such as renal cell carcinoma, breast 
cancer, lung cancer, ovarian cancer, multiple myeloma, and 

esophageal carcinoma [27–30]. The diverse and paradoxical 
actions of TNF may largely depend on the bound receptor. 
For instance, while mainly known as an anti-tumor factor (as 
indicated by its name—“tumor necrosis factor”), Kulbe et al. 
noticed that TNF secretion by ovarian cancer cells stimu-
lated cytokine release, neo-angiogenesis, and peritoneum 
invasion, indicating a pro-tumor effect [31]. These find-
ings led to different strategies for targeting TNF in cancer. 
Additionally, TNFR2 also has a role in carcinogenesis by 
promoting inflammation. CD8 + effector T cells use TNFR2 
for activation and cytotoxicity during the early immune 
response [32]. TNFR2 can also promote apoptosis signals 
to terminate the immune response [33]. Moreover, TNFR2 
can stimulate the suppressive effects of CD4 + Foxp3 + regu-
latory T cells (Tregs) and CD8 + Foxp3 + Tregs by induc-
ing their proliferation and activation [34, 35]. Thus, we sus-
pect that TNFR2 works at first to promote inflammation at 
early carcinogenesis and then it shifts toward a suppressed 
immune microenvironment to maintain cancer cell survival. 
He et al. demonstrated that the loss of the TNFR2 allele 
promotes the development of breast cancer in mice with a 
more aggressive phenotype and metastatic potential [36]. 
Such possible effects might be due to promoting autocrine 
production of TNFα and the preferential activation of the 
canonical NF-κB signaling pathway. In addition, TNFR2 
activation expressed on myeloid-derived suppressor cells 
was found to promote liver metastasis in murine colon and 
lung cancer models [37]. Moreover, losing the TNFR2 gene 
led to decreased lung metastases and Treg infiltration in a 
melanoma mouse model [38].

Both TNF and anti-TNF molecules have been used in 
the clinic. For example, in part to attenuate systemic side 
effects, local infusion strategies utilizing TNF, such as iso-
lated limb perfusion, have been studied. Isolated limb per-
fusion of TNF with melphalan had activity in metastatic 
melanoma and unresectable sarcomas [39, 40]. Elia et al. 
demonstrated that the use of combined modified TNF, ICI, 
and adoptive cell therapy achieved substantial tumor shrink-
age and immune cell infiltration in melanoma and prostate 
cancer models [41]. On the other side of the camp, the TICI-
MEL (NTC03293784) trial assessed the benefit of adding 
an anti-TNF to the standard of care combinational immu-
notherapy in advanced melanoma. The authors found that 
the use of concurrent nivolumab, ipilimumab, and a TNF 
blocker, either infliximab or certolizumab, had a good safety 
profile and showed activity [42, 43]. However, only a small 
number of patients were treated; 13 patients received ipili-
mumab/nivolumab/infliximab and 20 patients ipilimumab/
nivolumab/certolizumab. The use of soluble TNF receptors 
also showed modest activity in cutaneous T-cell lymphomas 
[44]. Badran et al. reported that in patients with immune-
related enterocolitis due to ICI, the use of concurrent ICI 
and immunosuppressive therapy was associated with a 
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Fig. 1  The interaction of TNFSF and TNFRSF and their downstream 
effectors. Upper panel: the interactions of TNFSF and TNFRSF 
members in tumor, lymphocytes, and stromal cells. The expression 
of some of these members results in multiple different effects. Lower 
panel: the downstream impact of the activation of TNFSF/TNFRSF 
leads to FADD or TRAF signals. The activation of FADD leads to 
subsequent cell death while the activation of TRAFs can lead to 

either cell survival or apoptosis, partially explaining the variability of 
the biologic impact of some TNFSF/TNFRSF members. Figure cre-
ated with BioRender.com. Abbreviations: FADD, Fas-associated pro-
tein with death domain; TNFSF, tumor necrosis factor superfamily; 
TNFRSF, tumor necrosis factor receptor superfamily; TRAF, tumor 
necrosis factor (TNF) receptor-associated factor
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possible decreased risk of enterocolitis recurrence and no 
treatment effect [45]. Although these studies are limited by 
their size and design, they offer new strategies to mitigate 
adverse events without compromising survival. Future stud-
ies are needed to investigate the validity of the TNF inhibitor 
approach and the potential underlying mechanisms. Table 2 
summarizes examples of different TNF-α based therapies 
that reached the clinical trials stage [39, 40, 42, 46–49].

Targeting TNFR2 has also been explored. Several preclin-
ical models showed the anti-tumor activity of anti-TNFR2 
antibodies in acute myeloid leukemia, ovarian cancer, 
breast cancer, and colorectal cancer [50–53]. The mecha-
nism behind this activity seems to revolve around selective 
depletion of T regulatory (Treg) cells while sparing T effec-
tor (Teff) cells. Thus, anti-TNFR2 could be a future tumor 
microenvironment (TME)-specific cancer therapy [6]. Clini-
cal trials, such as NCT04752826 and NCT05238883, using 
anti-TNRF2 in solid tumors are ongoing.

2.1.2  FAS and FAS ligand (FASL)

FASL is another death domain-containing member of the 
TNFSF family that plays a critical role in immune surveil-
lance and elimination of damaged or infected cells [9]. 
FASL binds to the FAS receptor, leading to the forma-
tion of a death-inducing signaling complex (DISC) and 
subsequent activation of apoptotic pathways [54]. Dys-
regulation of the FAS-FASL pathway has been observed 
in various cancers, contributing to tumor immune escape 
and resistance to apoptosis [55]. A high FASL expression 
level was also closely associated with the development 
of gastric cancer, especially poorly differentiated gastric 

carcinoma [56]. In some cases, cancer cells can down-
regulate FAS expression or release soluble FASL, which 
can act as a decoy receptor and inhibit FAS-mediated 
apoptosis [57–59]. This evasion of cell death can promote 
tumor survival and progression. Interestingly, some stud-
ies suggested a “tumor counterattack” phenomenon where 
tumor cells expressing FASL can induce apoptosis of 
FAS-expressing tumor-infiltrating lymphocytes [60–62]. 
Although there is considerable evidence that this counter-
attack took place, its existence is still debatable [63]. In 
addition, FASL expressed on the tumor endothelium was 
found to reduce CD8 T-cell infiltration into the tumor [64]. 
Moreover, FAS is capable of the maintenance and survival 
of cancer stem cells (CSCs) and inducing the epithelial-
to-mesenchymal transition (EMT) [65–68]. Thus, once 
cancer cells are unresponsive to FAS apoptotic signaling, 
they can exploit the FAS-mediated non-apoptotic onco-
genic functions [9].

Several attempts have been made to develop FAS-agnostic 
molecules. The use of FAS agonist antibodies systemically 
administered led to severe hepatotoxicity in treated mice 
[69]. Another strategy was the use of FASL fusion proteins. 
ACRP30:FasL, also known as MegaFasL, is a fusion protein 
of the stalk region of adipocyte complement-related protein 
(ACRP30) and FasL [70]. CRP30:FasL was found to have 
an anti-tumor synergistic effect with imatinib in gastrointes-
tinal stromal tumors [71]. NCT00437736 is the only phase I 
trial investigating MegaFasL in solid tumors. Although the 
study started in 2007, we could not find any online published 
report of the trial. CTLA4:FasL and CD40:FasL are other 
examples of fusion proteins. Orbach et al. showed that both 
CD40:FasL and CTLA4:FasL can induce cell pro-apoptotic 

Table 2  Examples of treatment strategies targeting TNF-α in cancer clinical trials

Abbreviations: IFN interferon, ORR objective response rate, TNF tumor necrosis factor

Strategies Major results Tumor types References

Systemic recombinant TNF Systemic single-agent recombinant TNF had low objective response 
rates

Advanced tumors [46, 49]

TNF combined with IFNγ Low objective response rate and significant toxicity Multiple cancer types [47]
Isolated limb infusion/perfusion Objective response rates range between 49 to 90%. This approach is lim-

ited by the site of the tumor, the presence of metastases, local toxicity, 
and the need for specialized centers

Melanoma
Sarcoma

[39, 40]

TNFerade TNFerade is an adenovector-based gene therapy activated by radiation 
to induce translation of the human TNF-α gene specifically in cancer 
cells

In a randomized phase III of locally advanced pancreatic cancer, 
TNFerade with the standard of care did not show a significant survival 
benefit compared to the standard of care alone

Advanced solid tumors
Pancreatic cancer

[48]

Anti-TNF drugs TICIMEL explored adding anti-TNF agents’ infliximab or certolizumab 
to nivolumab and ipilimumab in advanced melanoma. The ORR of the 
certolizumab and infliximab cohorts were 63% and 46%, respectively. 
Both combinations were safe with the certolizumab cohort having 
higher rates of adverse events compared to infliximab

Melanoma [42, 43]
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signal of malignant cells of lymphatic origin and inhibit anti-
apoptotic proteins: cFLIP, caspase 8, caspase 9, and caspase 
3 [72]. We are not aware of any current clinical trials of such 
strategies.

2.1.3  TRAIL and its receptors

TRAIL, also known as Apo2L, is a member of the TNFSF 
that selectively induces apoptosis in cancer cells while 
sparing normal cells [73]. TRAIL binds to two groups 
of receptors: decoy receptors and death receptors. There 
are three decoy receptors, DcR1, DcR2, and OPG. DcR1 
and DcR2 are surface proteins that block the transmission 
of the apoptotic signal, while OPG is a soluble secreted 
receptor that can also mitigate the apoptotic signals [13, 
74, 75]. The death receptors DR4 (TRAIL-R1) and DR5 
(TRAIL-R2) contain a death domain that leads to the 
activation of apoptotic signaling cascades upon binding 
[76]. Thus, TRAIL-mediated apoptosis is regulated by 
the balance between pro-apoptotic and anti-apoptotic 
proteins. Critically, naïve T cells are resistant to TRAIL-
induced apoptosis [77]. However, T cells may become 
susceptible to TRAIL-induced apoptosis after repeated 
or prolonged activation [78]. In TRAIL knockout mice, 
there is an increased susceptibility to the development of 
different tumors such as lymphoma, fibrosarcoma breast 
cancer, and fibrosarcoma [79, 80]. In addition, the use of 
anti-TRAIL agents led to increased liver metastases in 
different TRAIL-sensitive cell lines, but this effect was 
not observed in NK-depleted and IFN-γ models, suggest-
ing the need for both immune competency and TRAIL 
expression to prevent metastases [81].

Utilizing the TRAIL pathway for therapeutics started 
with developing TRAIL-receptor agonists (TRAs) as either 
recombinant TRAIL (rTRAIL) or death receptor agonis-
tic antibodies [82]. Ashkenazi et al. were one of the first 
to describe the anti-tumor activity of recombinant TRAIL 
without evoking systematic toxicity in vitro and in vivo [83]. 
Moreover, other reports showed the efficacy of recombinant 
TRAIL [84, 85]. Herbst et al. conducted the first phase I, an 
open-label, dose-escalation, clinical trial of dulanermin, a 
rTRAIL, in patients with advanced cancer [86]. Although 
dulanermin was well tolerated, its anticancer activity was 
limited. Interestingly, two of five patients with chondrosar-
coma achieved partial responses. One of the two patients was 
found to have high BCL-2, protein levels in resistance tissue 
(limited necrosis) compared to tumor necrotic tissue [87]. 
Also, dulanermin can bind to both decoy and death recep-
tors, which may lead to diverging activity. In addition, resist-
ance to dulanermin might be driven by alterations to TRAIL 
receptor 1 (DR4). Horak et al. found low DR4 expression 
driven by hypermethylation of the DR4 gene [88]. The 
authors also noted a short mean terminal phase half-life of 

dulanermin (0.56–1.02 h). Thus, combining dulanermin 
with other agents such as anti-BCL2 (e.g., venetoclax) and/
or hypomethylating agents (such as decitabine and azac-
itidine) may alleviate resistance to rTRAIL and improve 
anti-tumor activity. Subsequently, DR5-targeted antibod-
ies (TRAIL-R2 antibodies) were also under development. 
Lexatumumab (HGS-ETR2), a DR5-targeted antibody, was 
found to promote DR5 expression and induce apoptosis in 
renal cell carcinoma in a mice model [89]. In a phase I trial 
of lexatumumab in patients with advanced cancers, lexatu-
mumab was safe and had a mean plasma half-life of more 
than 2 weeks at the recommended dose [90]. Overall, no 
patient achieved an objective response. Mapatumumab, a 
DR4-targeted antibody, was well tolerated, but no objective 
responses were observed in a phase I trial in patients with 
advanced solid tumors [91]. The results of three phase I tri-
als of different DR5-targeted antibodies were reported in 
2010: conatumumab, drozitumab, and tigatuzumab [92–94]. 
These trials shared similar safety profiles; however, none of 
these patients achieved an objective response. These results 
showed that although first-generation TRAIL receptor anti-
bodies (TRAs) were safe, their clinical value was limited.

Many groups have tried to overcome the limitations of 
the first-generation TRA molecules, such as limited half-life, 
and weak agonistic activity for TRAIL-R1 and TRAIL-R2 
[82]. A number of protein modifications of rTRAIL are being 
explored. Such modifications include adding amino acids to 
the N-terminal such as to the leucine zipper (LZ-TRAIL), 
isoleucine zipper (IZ-TRAIL), poly-histidine (His-TRAIL), 
or tenascin-C (TNC) oligomerization domain (TNC-TRAIL) 
[82]. SCB-313 is a human TRAIL-trimer fusion protein 
designed by in-frame fusion of the C-terminus of TRAIL 
and C-propeptide of α1collagen (Trimer-Tag) [95]. Liu et al. 
showed that TRAIL-trimer is 4–5 times superior compared 
to native TRAIL with pharmacokinetic and anti-tumor 
activity [96]. Currently, we are awaiting the results of three 
Chinese (NCT04051112, NCT04047771, NCT04123886) 
and two Australian (NCT03443674, NCT03869697) clini-
cal trials assessing SCB-313 in malignant ascites, peritoneal 
carcinomatosis, malignant pleural effusions, and peritoneal 
malignancies. Mesenchymal stromal cells (MSCs) express-
ing TRIAL by a lentiviral (MSCTRAIL) is a new TRAIL-
based approach for modulating TME. TACTICAL is an 
ongoing phase I/II trial to assess the safety and efficacy of 
MSCTRAIL in combination with first-line standard of care 
in patients with metastatic lung adenocarcinoma. For more 
potent signaling, TRAIL-R1/2 needs to trimerize after bind-
ing to TRAIL. Eftozanermin alfa (ABBV-621), a hexavalent 
agonistic fusion protein, is designed to increase receptor 
clustering independent of FcγR cross-linking [97]. It showed 
promising anti-tumor activity even in ABBV-621-resistant 
cells when combined with chemotherapeutics or BCL-XL 
inhibitors. In a phase I trial, de Jonge et al. showed that 
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Eftozanermin alfa in combination with venetoclax is safe but 
with potentially limited anti-tumor activity in acute myeloid 
leukemia and diffuse large B-cell lymphoma [98]. The same 
group found similar safety, and anti-tumor activity in solid 
tumors [99]. The baseline frequency of myeloblasts was 
higher in acute myeloid leukemia patients with progressive 
disease compared with the only patient who achieved a com-
plete response. On the other hand, myelomonocytes were 
higher in the patient with complete response. This might be 
due to the high DR4 and DR5 expression on both myelo-
blasts and myelomonocytes. At baseline testing, DR4 and 
DR5 expression was found to be highest in the patient with 
complete response. Thus, future studies need to also evalu-
ate the expression of TNFSF/TNFRSF genes in the tumor 
microenvironment in addition to tumor cells to better cap-
ture the prognostic ability of these proteins. TAS266 is an 
agonistic multivalent nanobody based on four high-affinity 
single variable domains (VHH) that target DR5 [100]. How-
ever, its phase I trial was terminated quickly due to severe 
unexpected hepatotoxicity [100]. The authors noted the pres-
ence of pre-existing anti-TAS266 antibodies in patients who 
developed hepatotoxicity. INBRX-109 is a next-generation 
agonistic multivalent nanobody that does not bind to anti-
TAS266 antibodies found in the previous trial; the response 
rate was 40.7. None of the patients in the chondrosarcoma 
had severe transaminitis. These results led to the initiation of 
ChonDRAgon (NCT04950075) a phase II randomized trial 
for using INBRX-109 in conventional chondrosarcoma. Such 
recent advances highlight the potential of TRAIL-based 
drugs in cancer treatment.

2.2  Immune co‑stimulation

During the generation of a successful adaptive immune 
response, many molecular signals are necessary. A primary 
signal is the binding of cognate antigens to T and B lym-
phocyte antigen receptors. Secondary signals include the 
engagement of co-stimulatory molecules expressed by T 
and B lymphocytes with their respective ligands. As out-
lined herein, several members of the TNF receptor family 
act and interact, after initial T cell activation, to sustain T 
cell responses.

2.2.1  CD‑40 and CD‑40L

CD40 (TNFRSF5) is a member of the TNFR superfam-
ily that is expressed on a variety of immune cells such 
as dendritic cells (DC), B cells, and macrophages [8]. In 
addition, it is found in tumor cells, such as in multiple 
myeloma, Hodgkin lymphoma, non-Hodgkin lymphoma, 
renal cell carcinoma, urothelial carcinomas, and ovar-
ian tumors [101, 102]. Its ligand, CD40L (TNFSF5), is 
expressed on the surface of T cells and natural killer 

(NK) cells [8]. This interaction induces a variety of 
immune responses, including the activation of APCs, 
the proliferation and differentiation of T cells, and the 
production of cytokines such as IL-12 and IFN-γ and 
chemokines [102]. This led to the development of ago-
nistic anti-CD40 antibodies to mimic multimeric CD40L 
on CD40, promoting the recruitment of DCs, B-cell anti-
body production and T-cell differentiation, and cytotoxic 
activity [103–105].

As mentioned, CD40 expression is found on multiple 
tumors including bladder cancer, lung cancer, breast can-
cer, melanoma, colon cancer, acute lymphoblastic leukemia, 
and non-Hodgkin lymphoma [106]. The anti-tumor effect 
of CD40 agonism has been shown in many preclinical stud-
ies [107–109]. For a potent and effective activation of the 
CD40 pathway, two methods have been developed. Higher 
order crosslinking of the CD40 monoclonal antibody Fc 
region leads to the clustering of Fc-gamma receptors IIB 
(FcγRIIB) [107, 110]. ADC-1013, a fully human agonistic 
CD40 antibody, was the first to be tested as intra-tumoral 
therapy in advanced solid malignancies [111]. The trial 
showed ADC-1013 was safe with some good tumor response 
of superficial lesions. The second method is based on editing 
the IgG2 hinge region to provide activation with the need 
for FcγRIIB crosslinking [112]. Selicrelumab and CDX-
1140 are examples of such antibodies [113]. Vonderheide 
et al. found that selicrelumab, a CD40 agonist monoclonal 
antibody, was safe but showed limited anti-tumor activity 
in advanced solid tumors [114]. The authors also noticed 
a transient yet significant drop in CD19 + B cells in all 
patients. CD40 and CD40L expression were not evaluated. 
The authors also did not report if selicrelumab was associ-
ated with higher CD8 + T cell infiltration. Increased CD8 + T 
cell infiltration and activation are expected after receiving 
CD40-based treatments [113]. In a phase I trial, the use of 
CDX-1140 with pembrolizumab for patients with PD-1/PD-
L1-resistant solid tumors showed one patient with complete 
response [115]. Sotigalimab is a CD40 monoclonal antibody 
with an Fc-engineered segment to increase the interaction 
with FcγRIIB [116]. PRINCE is a randomized phase II trial 
evaluating the efficacy of sotigalimab and chemotherapy 
with and without nivolumab in first-line metastatic pancre-
atic cancer [117]. Surprisingly, the use of triple therapy was 
inferior in terms of survival compared to nivolumab and 
chemotherapy and sotigalimab with chemotherapy (1-year 
overall survival was 41.3%, 48.1%, and 57.7%, respectively). 
Recently, bi-specific antibodies targeting both CD40 and 
other tumor antigens have been under investigation. ABBV-
428 is a mesothelin-CD40 bi-specific antibody that showed 
promising results in a preclinical mouse model [118]. Its 
anti-tumor effect was present in both  mesothelin+ and 
 mesothelin− tumor cells. Luke et al. reported the safety and 
efficacy of ABBV-428 in advanced solid cancer patients. 
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Although safe, there were no objective responses [119]. In 
patients who had more than 90% CD40 receptor occupancy, 
no patients achieved objective responses. In addition, the 
baseline tumor expression of mesothelin did not correlate 
with progression-free survival. There was no clear pattern 
of CD8 + T cells, and PD-L1 expressing cell changes from 
baseline to after treatment. Importantly, no patient devel-
oped cytokine release syndrome with minimal changes in 
cytokines levels (IFN-γ, TNF-α, IL-6, IL-1β, IL-2, IL-8, 
IL-10, and IL-12p70) after ABBV-428 treatment. It should 
be noted that most patients in these trials have very advanced 
disease and/or are heavily pre-treated, which might drive the 
failure to anti-CD40. While the use of CD40-based immu-
notherapy has not achieved a clinical effect yet, we are still 
learning from previous pitfalls, improving on current strate-
gies, and awaiting the results of ongoing trials.

2.2.2  OX‑40 and OX‑40L

OX40, also known as TNFRSF4 (CD134), is transmembrane 
protein type I expressed on different T cells [120]. It is the 
sole receptor for OX40 ligand (OX40L). OX40L (TNFSF4) 
binding to OX40 leads to activating signals of T cells 
enhancing T-cell survival and pro-inflammatory cytokine 
production [121]. Similar to agonistic anti-CD40 antibodies, 
the use of agonistic OX40 antibodies can be theoretically 
of potential benefit in cancer treatment. Zhang et al. dem-
onstrated that OX40 co-stimulation inhibits FOXP3 gene 
expression, a marker of Tregs, by increasing the expression 
of the transcription factors BATF and BATF3 and activating 
the mTOR pathway [122]. Agonistic OX40 antibodies have 
shown good anti-tumor responses either as monotherapy 
or as part of an immunotherapy combination in preclinical 
tumor models of immunologically active tumors [123–126]. 
It is worth noting that agonistic OX40 antibodies did not 
show similar results in tumors with poor immunogenicity 
[127].

Curti et al. conducted the first phase I clinical trial of ago-
nistic OX40 antibodies. They treated 30 patients with meta-
static tumors. They found that agonistic OX40 antibodies 
had an acceptable toxicity with lymphopenia being the most 
common adverse event and evidence of some nodular regres-
sion in 12 patients [128]. OX40 agonist antibodies also led 
to increased CD4 + FoxP3 − and CD8 + T cell proliferation 
with no changes to CD4 + FoxP3 − T cells. Davis et al. eval-
uated the safety and efficacy of INCAGN01949, an OX40 
agonist [129]. INCAGN01949 had an acceptable safety pro-
file but with a low disease control rate of 27.6%. In their 
trial, no predictors of progression were described although 
the authors noted higher OX40 receptor levels in the blood 
after receiving INCAGN01949. ENGAGE-1 is a phase I 
evaluation of the use of the OX40 agonist GSK3174998 with 
or without pembrolizumab in patients with advanced solid 

malignancies [130]. The authors found that GSK3174998 
is well-tolerated with and without pembrolizumab but 
with unsatisfactory clinical activity. Notably, the greatest 
changes were observed for CD134 + cells, NK/NKT cells, 
and FOXP3 + Tregs. In addition, 39% of patients developed 
anti-GSK3174998 antibodies. This might partially explain 
the poor anti-tumor responses in these patients. However, 
GSK3174998’s ability to modify the tumor microenviron-
ment makes it a feasible candidate to be partnered with other 
immune checkpoint inhibitors in future studies. Although the 
aforementioned results did not show promising efficacy, we 
are still awaiting readouts from a number of trials.

2.2.3  CD70 and CD27

CD27 (TNFRSF7) is constitutively expressed mostly in 
naive T cells. CD27 binds to CD70 (TNFSF7), which is 
transiently expressed on activated T cells, DC, and NK cells 
[10]. CD27 and CD70 binding results in immune cell sur-
vival, the expansion of T and B cells, and enhances cel-
lular immunity [131]. CD70 is expressed in primary and 
metastatic tumor samples [132]. In addition, co-expression 
of CD27 and CD70 has been detected in different hemato-
logical malignancies such as acute myeloid leukemia, acute 
lymphoblastic leukemia, non-Hodgkin lymphoma, and 
multiple myeloma [133–136]. Subsequently, the role of this 
duo differs between solid and hematological malignancy. In 
hematological malignancies, the interaction promotes pro-
liferation and stemness while leading to immune evasion in 
solid tumors [132]. In addition, the presence of CD27 on 
solid tumor cells and microenvironment is not essential in 
promoting the generation and maintenance of CSCs, metas-
tasis, and heterogeneity [137, 138]. The CD27-CD70 inter-
action also increases the proliferation and reduces apoptosis 
of Tregs, via inducing CD4 + T cells to produce IL-2 [139]. 
Moreover, Liu et al. found that CD70 + breast cancer cells 
have self-renewal and differentiation ability and can metasta-
size to the lung [140]. Conversely, the loss of CD70 expres-
sion promoted cancer lung metastases in melanoma in vivo 
models [141]. Current treatment strategies revolve around 
either activating the CD70-CD27 axis of tumor-infiltrating 
lymphocytes or killing CD70-harboring cells [142].

Antibody–drug conjugates (ADCs) targeting CD70 have 
been studied in clinical settings. However, the first three 
ADCs investigated (MDX-1203, AMG 172, and SGN-75) 
were not well tolerated and no objective responses were seen 
[132, 143]. NCT04227847 is a phase I trial investigating the 
safety of SGN-CD70A in myeloid malignancies, a CD70 
ADC. Cusatuzumab (ARGX-110) is an afucosylated gly-
coengineered CD70 antibody that activates both NK cells 
and complement systems to kill CD70-expressing cells via 
antibody-dependent cellular cytotoxicity and complement-
dependent cytotoxicity, respectively [144]. In a phase I trial, 
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cusatuzumab had a good safety profile but showed limited 
ant-tumor activity in advanced solid and hematological can-
cers [145]. There were no overall trends in blood and bio-
chemical biomarkers data over time including CD70 RNA 
levels and soluble CD27 (sCD27) protein levels. Interest-
ingly, patients with relapsed/refractory cutaneous T-cell 
lymphoma had a 23% objective response rate [146]. There 
was a drop in sCD27 levels in about 62% of partial respond-
ers in Sezary syndrome patients. Thus, sCD27 level changes 
might serve as biological biomarkers of response for CD70-
based agents in some tumors.

Perhaps, the most exciting CD70-based therapy in early-
phase clinical trials is CD70-based CAR-T cell therapy 
[147]. Other strategies targeting CD27 are also under inves-
tigation. In theory, CD27 is less promising due to its expres-
sion on non-tumor cells and lower expression on tumor cells 
compared to CD70 [148]. Varlilumab was the first CD27 
agnostic monoclonal antibody to enter clinical trials. In the 
phase I trial conducted by Burris et al., varlilumab to 10 mg/
kg was well tolerated without identification of a maximum 
tolerated dose. Varlilumab therapy resulted in one partial 
response in advanced solid tumors [149]. A follow-up phase 
I/II trial studied the use of varlilumab with nivolumab for 
advanced solid tumors [150]. The combination was well-tol-
erated, but the objective response rate for the whole cohort 
was 10%. A randomized phase II trial evaluating varlilumab 
combined with nivolumab versus nivolumab alone in B-cell 
non-Hodgkin lymphoma did not show additional response 
benefits compared to single-agent nivolumab [151].

2.2.4  4‑1BB and 4‑1BBL

4-1BB (TNFRSF9; CD137) is expressed on activated T 
lymphocytes, monocytes, dendritic cells, and natural killer 
cells. It binds to 4-1BBL (TNFSF9) expressed on antigen-
presenting cells (APCs) [12]. Binding can induce CD8 + T 
cell survival by increasing anti-apoptotic signals of Bcl-XL 
and Bfl-1 and decreasing the pro-apoptotic singles of Bim 
[152–154]. 4-1BB plays an important role in the anti-tumor 
activity of the tumor microenvironment [155]. Wilcox et al. 
found that IL-2 and IL-15 can induce 4-1BB-expressing NK 
cells which in turn can promote CD8 + T cells responsive-
ness to IL-2 and IFN-Y secretion [156]. Interestingly, 4-1BB 
can also lead to Treg proliferation and their differentiation 
to CD8 + or CD4 + T cells [157, 158]. Thus, 4-1BB agnos-
tics have been an attractive idea for modulating the tumor 
microenvironment. Melero et al. were the first group to show 
the feasibility of using 4-1BB antibodies in mice sarcoma 
models [159]. Curran et al. found that the combination 
of anti-CTLA-4 and 4-1BB agonists led to an increase in 
CD8 + and CD4 + T cells in the B16 melanoma model [160]. 
Similarly, Chen et al. found that anti-PD1 and 4-1BB agonist 
combination led to tumor regression, IFN-Y and CD8 + T 

cells in the B16F10 melanoma model [161]. Interestingly, 
the authors compared that combination with an anti-PD-1 
and anti-LAG-3 combination and found that the first had 
a more profound tumor regression effect compared to the 
latter. B16 melanoma is considered a poorly immunogenic 
model, which may suggest that an anti-PD1 and 4-1BB com-
bination may enhance a tumor’s “hotness.”

Urelumab was the first anti-4-1BB agonist to start clinical 
trials. In the phase I trial reported by Sznol and colleagues, 
urelumab demonstrated dose-dependent neutropenia and 
11% of the patients had grade 3/4 transaminitis [162]. 
Based on the phase I results, a phase II randomized trial was 
designed in patients with metastatic melanoma. However, 
the study was terminated due to grade 5 hepatotoxicity [163]. 
New clinical trials to combine a lower dose of urelumab with 
nivolumab, cetuximab, rituximab, and elotuzumab have been 
announced. However, hepatotoxicity was still present and 
the trials were halted for now. Utomilumab is another anti-
4-1BB agonist with a presumably better safety profile. In 
the first phase I trial, there was no dose-limiting toxicity or 
transaminitis [164]. In another phase Ib trial, utomilumab 
was used in combination with pembrolizumab and showed 
a good safety profile and a 26.1% response rate [165]. Cohen 
et al. reported the results of utomilumab in combination with 
mogamulizumab. The combination was tolerable but with a 
low response rate of 4.2% [166]. In addition, 4-1BB is a part 
of the co-stimulatory endodomain in FDA-approved CAR-T 
cell therapies tisagenlecleucel and isocabtagene maraleucel 
for patients with B-cell acute lymphoblastic leukemia and 
large B-cell lymphoma [167]. Thus, 4-1BB has shown previ-
ous clinical significance and is potentially will be part of the 
next generation of immunotherapies.

2.2.5  GITR and GITRL

GITR (TNFRSF18; CD357) is expressed on Tregs at a 
higher level while it can be found at lower levels on NK 
cells, B cells, and naïve and memory T cells [18, 168]. In 
addition, GITR expression rises 24–72 h after first activation 
on both Tregs and effector T cells [169, 170]. GITR binds 
to GITRL (TNFSF18) expressed on antigen-presenting cells 
[171]. As a result, GITR acts as a co-activating receptor and 
subsequent inflammatory response [172]. Coe et al. showed 
that the anti-tumor function of DTA-1, an agonistic GITR 
monoclonal antibody, is strongly associated with Treg deple-
tion but not with their dysfunction [173]. Kim et al. found 
that tumor regression is mainly dependent on Treg depletion 
rather than on CD8 + activation [174]. Mitsui et al. studied 
combining anti-CTLA-4 with anti-GITR and showed further 
depletion of Treg and higher CD8 + in tumor sites in CMS5a 
(a murine fibrosarcoma cell line) and CT26 (a murine colon 
carcinoma cell line) [175]. Villarreal et al. reported the use 
of anti-PD-1, GITR monoclonal agonistic antibodies and a 
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peptide vaccine led to a significant regression of tumors in 
about half of the mice [176]. Leyland et al. concluded the 
GITRL fusion protein had a good anti-tumor effect which 
was enhanced by anti-OX40 and also when combined with 
PD-L1, PD-1, or CTLA-4 [177]. AMG228 was the first 
GITR monoclonal agonistic antibody to enter clinical trials. 
In the phase I trial, AMG228 was safe and well-tolerated but 
no biological nor anti-tumor activity was found [178]. Inter-
estingly, in patients with available matched paired tumor 
biopsies, GITR expression was no longer detectable after 
AMG228 treatment compared to its presence in pretreatment 
samples. In addition, there was a decrease in Treg infiltration 
and GITR expression and increased CD8 + T cells in colo-
rectal tumor samples after AMG228 treatment. No objective 
responses were seen in other GITR agonistic antibody trials 
such as those with BMS-986156, GWN323, and MK-4166 
[165, 179–181]. MEDI1873, a GITRL agonistic antibody 
was safe but without objective responses in phase I trials of 
advanced solid tumors [182]. Although GITR-based strate-
gies still did not show sufficient anti-tumor activity, they 
still demonstrated a level of tumor microenvironment modu-
lation, indicating possible interactions with other immune 
checkpoint inhibitors.

2.2.6  HVEM and LIGHT

HVEM, also known as TNFR superfamily 14 (TNFRSF14), 
was discovered for its role in the entry of Herpes Simplex 
Virus into cells and viral manipulation [183]. HVEM is 
expressed by many human tissue elements, including naïve 
T cells, APCs, endothelium, lung, kidney, and liver [16]. 
HVEM is a receptor for multiple ligands expressed in the 
immune system including the TNFSF members LIGHT 
(TNFSF14) and LTα and immunoglobulin superfamily 
members BTLA and CD160 [184]. Both LIGHT and LTα 
play a co-stimulatory role by binding to the cysteine-rich 
domain-2 (CRD2) and CRD3 of HVEM-activating NF-κB 
signals and subsequent activating lymphocytes. On the other 
hand, the binding of BTLA and CD160 to CRD1 of HVEM 
results in inhibiting antigen receptor stimulation in T cells 
and B cells. Furthermore, BTLA + dendritic cells promote 
Treg cell differentiation and the induction of peripheral Treg 
cell tolerance [185].

The expression of HVEM has been found to be upregu-
lated in many tumors including melanoma, gastric can-
cer, colorectal carcinoma, chronic lymphocytic leukemia 
(CLL), acute lymphoblastic leukemia (ALL), and multiple 
myeloma [186, 187]. However, the expression of HVEM 
and BTLA were downregulated in follicular lymphoma. In 
251 follicular lymphoma patients’ samples, Cheung et al. 
found HVEM to be mutated in 18.3% [188]. The presence 
of HVEM mutation was associated with worse survival. On 
the other hand, activation of LTα promotes the formation of 

tertiary lymphoid structures and protects against lung cancer 
and melanoma development in mouse models [189]. Due to 
the dual action of HVEM in regulating the immune system, 
current therapeutic strategies are directed toward its ligands; 
LIGHT, BTLA, and CD160.

The expression of LIGHT mediates the remodeling of 
the TME by provoking IFNγ-mediated apoptosis and vas-
culature normalization and encouraging the generation of 
tertiary lymphoid structures [190]. LIGHT is expressed on 
activated T cells, tumor-sensing NK cells, and immature DC 
[191, 192]. Different therapeutic strategies are being studied 
to deliver or induce LIGHT in preclinical models. Yu et al. 
developed an adenovirus-expressing LIGHT (Ad-LIGHT) 
and showed its intra-tumoral administration to 4T1 tumor 
and  Ag104Ld fibrosarcoma model mouse model leads to 
CD8 + T cells tumor infiltration and killing of tumor cells 
in both the injection and metastatic sites [193]. A similar 
approach using Myxoma Virus Expressing LIGHT was 
found to be effective in pancreatic ductal adenocarcinoma 
and lung metastatic osteosarcoma models [194, 195]. Tang 
et al. developed a unique fusion protein by modifying fusing 
multiple monomers of LIGHT to an anti-EGFR monoclo-
nal antibody (anti-EGFR-hmLIGHT) [196]. Anti-EGFR-
hmLIGHT was effective in enhancing lymphocyte infiltra-
tion and tumor cell killing in Ag104Ld fibrosarcoma and 
MC38 colon adenocarcinoma mice models. In addition, the 
combination of anti-PD-L1 and anti-EGFR-hmLIGHT was 
associated with robust and deep anti-tumor activity in PD-
L1-resistant models. However, the anti-tumor effect was less 
substantial in non-overexpressing EGFR cells. Although we 
are unaware of any early-phase clinical trials, we are predict-
ing there will be some trials to be initiated soon due to the 
success of LIGHT-based therapy in preclinical models.

Other strategies include targeting either BTLA or CD160. 
Lasaro et al. showed that the BTLA/CD160-HVEM pathway 
blockade induces an anti-tumor effect on large tumors in 
a genetically modified mouse thyroid cancer model [197]. 
Sordo-Bahamonde et al. showed that the BTLA blockade 
increased NK cell-mediated cytotoxicity and depleted leu-
kemic cell numbers in cocultured peripheral blood mono-
nuclear cells from CLL patients [198]. Tifcemalimab, also 
known as icatolimab, is a first-in-class anti-BTLA mono-
clonal antibody. In a phase Ia dose escalation study by 
Schilder et al. (NCT04137900), 25 patients with advanced 
solid tumors were safely treated with no observed dose-
limiting toxicity and with an ORR of 36.8% [199]. Impor-
tantly, the co-expression of CD8 and HVEM was associated 
with better response. Preliminary results of phase I/II trial 
(NCT05000684) (reported at the ASCO annual meeting 
in 2023) of tifcemalimab and toripalimab in patients with 
refractory extensive-stage small-cell lung cancer showed 
that a combination was well tolerated with an ORR of 26.3% 
[200]. The ORR was 40.0% in immunotherapy-naïve patients 
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and 8.3% in immunotherapy-treated patients. Preliminary 
results of a phase I trial of tifcemalimab with or without 
toripalimab (anti-PD1) in relapsed/refractory lymphomas 
(NCT04477772) reported a response rate of 42%. Notably, 
these patients were heavily pre-treated with 66.7% of the 
patients progressing upon prior anti-PD-1/L1 therapy [201]. 
Regarding CD160-based therapies, we are only aware of one 
phase I trial of an anti-CD160 in melanoma (NCT04477876) 
with no results published so far.

2.3  APRIL and BAFF systems

The B-cell activating factor (BAFF) (TNFSF13B; CD257) 
and a proliferation-inducing ligand (APRIL (TNFSF13)) 
are unique members of the TNFSF. Both proteins are type 
II transmembrane proteins with the latter being cleaved 
by proteases to be secreted in their soluble forms. Both 
signaling pathways are involved in B-cell survival, matura-
tion, and differentiation [202]. BAFF can bind to BAFF-
R, TACI, and weakly to BCMA. APRIL binds strongly 
to BCMA and moderately to TACI, whereas BAFF binds 
weakly to BCMA and strongly to TACI. The activation 
of these receptors on B and T cells enhances survival, 
co-stimulation of the adaptive immune system of cells, 
differentiation and maintenance of plasma cells, and pro-
liferation linking it pathogenesis of different malignancies 
[15]. BAFF-BAFF-R interaction can also drive CD4 + T 
cells and Treg survival and proliferation via PI3K-Akt 
pathways [203].

BAFF, APRIL, and their receptors are overexpressed 
in different hematological malignancies [204]. The role 
of APRIL differs in solid malignancies as its presence in 
tumor microenvironment inhibits tumor cell apoptosis, and 
promotes metastasis [205]. APRIL was overexpressed in 
different solid tumors including breast cancer, glioma, 
cervical cancer, bladder cancer, and ovarian cancer [204, 
206]. Moreover, the overexpression of APRIL, BCMA, 
and TACI participates in carcinogenesis in human non-
small cell lung cancer and breast cancer by promoting 
survival signals of p38, ERK1/2, and JNK1/2 [205]. Tar-
geting the BAFF and APRIL pathways and their receptors 
have been employed in different hematological malignan-
cies. Different treatment strategies have been investigated 
such as anti-BAFF, anti-APRIL, anti-BAFF-R, and anti-
BCMA antibodies, BAFF, APRIL, and BCMA CAR-T 
cell therapy, and bi-specific antibodies (reviewed in Ref. 
[207]). Belantamab mafodotin (anti-BCMA) is an anti-
body–drug conjugate that showed responses in about a 
third of multiple myeloma patients in phase II randomized, 
open-label trial, which led to its FDA approval [208]. In 
2021, the FDA approved idecabtagene vicleucel, BCMA-
based CAR-T therapy for relapsed/refractory multiple 

myeloma based on the results of the KarMMa trial [209]. 
In 2022, the FDA approved ciltacabtagene autoleucel, 
another BCMA-based CAR-T therapy based on the CAR-
TITUDE-1 trial [202]. Ongoing trials of high interest of 
TNFSF/TNFRSF-based agents are summarized in Table 3.

3  Immunotherapy and treatment of side 
effects using TNF inhibitors

The frequency of immune-related adverse events (irAEs) 
varies, depending on the agents used, the number of cycles, 
and patients’ genetic makeup [210]. Several guidelines were 
published to guide physicians on irAE management, includ-
ing those provided by the American Society of Clinical 
Oncology (ASCO) [211], the European Society for Medical 
Oncology (ESMO) [212], the National Comprehensive Can-
cer Network (NCCN) [213], and the Society for Immuno-
therapy of Cancer (SITC) [214]. Corticosteroids are the first-
line therapy against most irAEs. However, prolonged use of 
corticosteroids can result in a number of adverse effects such 
as hypertension, hyperglycemia, osteoporosis, and infections 
[215]. In addition, some patients may not respond to steroid 
treatment. Notably, the usual second-line option involves 
TNF inhibitors. Drugs such as infliximab, adalimumab, 
golimumab, etanercept, and certolizumab are all considered 
good options in cases of colitis, myocarditis, arthritis, and 
pneumonitis [216–218]. It is still largely unknown if using 
other TNFSF/TNFRSF inhibitors would result in clinically 
successful management of irAEs.

Verheijden et al. explored the outcome of patients with 
severe irAEs and found that the overall survival was lower 
in patients treated with TNF inhibitors compared to the cor-
ticosteroid-only group [219]. However, since this was not 
a prospective, randomized trial, it is unclear if the worse 
survival is due to the treatment with TNF inhibitors or due to 
patients with worse problems receiving the treatment. Wang 
et al. retrospectively compared the use of corticosteroids 
alone and corticosteroids with TNF inhibitors in patients 
with immune-related colitis and found no difference in out-
come [220]. The difference between the two studies may 
be attributed to different follow-up times between patients 
who required a TNF inhibitor and those who did not as well 
as the fact that different cancer types were included and 
neither study was a randomized control trial [221]. Ogusu 
et al. showed that second-line immunosuppressants includ-
ing infliximab for steroid-refractory irAEs in patients with 
lung cancer are effective in 72.2% of the cases [222]. Badran 
et al. reported patients who had immune-related enterocol-
itis, re-initiation of immunotherapy with concurrent selec-
tive immune inhibitors including anti-TNF agents is safe, 
reduces severe immune-related even recurrence, and has no 
negative impact on survival outcomes. [45]. Overall, these 
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results suggest that TNF inhibitors are effective in manag-
ing irAEs and unlikely to affect overall survival, though the 
latter still remains incompletely adjudicated.

4  TNF‑related molecules and their clinical 
impact beyond cancer

The TNFRSF and TNFSF play important roles in immune 
function and hence in autoimmune diseases, as well as in 
the body’s response to a variety of infectious agents.

4.1  Autoimmune disease

The role of the TNFSF and TNFRSF molecules has been 
explored in autoimmune conditions [223]. The TNF-TNFR2 
interaction induces T cell activation, expression of adhe-
sion molecules on endothelial cells, and secretion of inflam-
matory cytokines such as IFNγ and IL-6 in inflammatory 
bowel disease [224]. TNF also plays a role in rheumatoid 
arthritis, psoriatic arthritis, and autoimmune uveitis [225]. 
Interestingly and similar to its double-edge role in cancer, 
TNF family members may also act to stabilize the disease 
[226]. However, anti-TNF drugs are still the mainstay of 
treatment of many autoimmune conditions due to their high 
efficacy and better safety profile compared to corticosteroids 
[227]. For example, infliximab is approved for the treatment 
of inflammatory bowel disease, rheumatoid arthritis, anky-
losing spondylitis, psoriasis, and psoriatic arthritis. Several 
TNF inhibitors are also authorized for skin autoimmune dis-
orders such as psoriasis (infliximab, etanercept, and adali-
mumab) and for hidradenitis suppurativa (adalimumab), a 
severe long-term skin condition that produces skin abscesses 
and scarring [228]. Lastly, the FDA has authorized adali-
mumab, a TNFα inhibitor, as the sole systemic non-cor-
ticosteroid medication for the treatment of non-infectious 
uveitis [229]. These agents’ FDA-approved indications in 

autoimmune diseases and their mechanisms of action are 
summarized in Table 4 [230].

In addition to TNF, OX40, 4-1BB, HVEM, LTβR, DcR3, 
BAFF, and GITR have been implicated in several autoim-
mune diseases (further reviewed in [231]). Activation of 
these co-stimulatory molecules can further recruit and acti-
vate lymphocytes and propagate the inflammatory effect of 
local tissues. Several preclinical and clinical studies have 
investigated targeting TNFSF/TNFRSF in autoimmune dis-
eases [232]. Belimumab, a BAFF antagonist, was approved 
for the treatment of systemic lupus erythematosus in 2011 
ending a 50-year drought of no new medications in that field 
[233]. The use of CD40L antagonists has been halted due to 
the increased risk of thromboembolic events [234]. Blocking 
GITR has been shown to be an effective strategy in a pre-
clinical arthritis model, but we are not aware of any clinical 
trials of such agents [235]. Targeting 4-1BB in autoimmune 
diseases represents a unique situation as an unexpected find-
ing is that 4-1BB agonism can shut off or limit autoimmune 
and other inflammatory reactions. [236]. This was partially 
attributed to its up-regulatory effect on Treg cells and subse-
quently less inflammation [237]. Still, no clinical trial results 
are currently available. Overall, the success of TNF inhibi-
tors has not been replicated yet with other TNFSF/TNFRSF 
family members in autoimmune diseases, but ongoing inves-
tigations are being carried out to find the silver bullet.

4.2  Infectious diseases

There may be an increased risk of opportunistic infections 
such as tuberculosis and fungal infection in patients treated 
with TNF blockers, which may in turn be related to the role 
of TNF in both host defense and immune response [238]. 
Moreover, there may be an increased risk of herpes zos-
ter in patients receiving TNF blockers for the treatment 
of rheumatological diseases [238]. HIV, varicella-zoster 
virus, Epstein–Barr virus, cytomegalovirus, and human 

Table 4  Examples of FDA-approved indications for commonly used anti-TNF drugs in managing immune-related conditions [230]

Drug Indications Structure and target

Infliximab Ankylosing spondylitis, Crohn’s disease, psoriasis, psoriatic 
arthritis, rheumatoid arthritis, ulcerative colitis

Chimeric monoclonal antibody against TNF-α

Etanercept Ankylosing spondylitis, psoriasis, polyarticular juvenile idi-
opathic arthritis, psoriatic arthritis, rheumatoid arthritis

A dimeric fusion protein of TNFR2 and a human IgG1 Fc 
domain

Adalimumab Ankylosing spondylitis, Crohn’s disease, hidradenitis sup-
purativa, juvenile idiopathic arthritis, psoriasis, psoriatic 
arthritis, rheumatoid arthritis, ulcerative colitis, and uveitis

Fully humanized monoclonal antibody against TNF-α

Golimumab Ankylosing spondylitis, psoriatic arthritis, rheumatoid arthri-
tis, ulcerative colitis

Fully humanized monoclonal antibody against TNF-α

Certolizumab pegol Ankylosing spondylitis, Crohn’s disease, psoriatic arthritis, 
rheumatoid arthritis

Fully humanized PEGylated anti-TNF-α monoclonal 
antibody
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papillomavirus may also occur in patients receiving TNF-
blocking therapy for chronic inflammatory conditions [239].

Concerning COVID-19, TNF-α is among the early 
cytokines produced to mediate pro-inflammatory responses 
and enhance immune cell infiltration after SARS-CoV-2 
infections. Yet, TNF-α-mediated inflammation can also 
cause detrimental tissue damage and promote lung fibrosis, 
which later results in pneumonia, pulmonary edema, and 
acute respiratory distress syndrome [240].

5  Conclusions and future directions

TNF-related molecules have a variety of paradoxical (inhibi-
tory and stimulatory) effects on cancer cells [241]. The TNF 
proteins form a vast superfamily of receptors and ligands, 
which act as a communication module for cancer and immu-
nity. These molecules exert a complex array of actions that 
affect oncogenesis as well as autoimmune diseases and 
infectious immunity. As a pro-inflammatory cytokine, TNF 
is secreted by inflammatory cells, which may be involved 
in inflammation-associated carcinogenesis. TNF exerts its 
biological functions through activating distinct signaling 
pathways such as NF-κB and JNK. NF-κB is a major cell 
survival signal that is anti-apoptotic, while sustained JNK 
activation contributes to cell death.

Regarding cancer, TNF is therefore two-faced. TNF 
can act as a tumor promoter because TNF stimulates can-
cer cells’ growth, proliferation, invasion and metastasis, 
and tumor angiogenesis. TNF can also induce cancer cell 
death. The actions of the multiple TNFRSF and TNFSF 
molecules are similarly complex. This paradoxical effect 
might be driven by multiple mechanisms. First, the type of 
tumor may be important with a possible dichotomy between 
solid and hematological malignancies. The proliferation and 
activation of immune cells typically drive more anti-tumor 
activity in the first while, in hematological malignancies, 
there is exploitation of these mechanisms for the benefit of 
the malignant cells. Additionally, some TNFRSF members 
promote different activities. For example, HVEM promotes 
co-stimulatory signals when bound to LIGHT and LTα, 
while it promotes inhibitory signals when bound to CD160 
and BTLA. Finally, whether the pro- or anti-tumor effect 
predominates also depends on the cell type involved, includ-
ing tumor cells, CD8 + cells, CD4 + cells, Treg cells, and 
other tumor microenvironment cells.

Targeting immune checkpoints CTLA-4, PD-1, PD-L1, 
or LAG-3 has transformed cancer treatment. However, many 
tumors do not respond to targeting these checkpoints and 
patients may suffer from severe immune-related adverse 
events. In addition to exploring novel co-inhibitory targets, 

agonistic antibodies to stimulatory molecules such as TNF/
TNF receptor family members may offer new treatment strat-
egies for cancer patients. Most trials test next-generation 
immunotherapy in patients with very aggressive diseases 
and expected poor prognosis. Testing these drugs in earlier 
lines, fitter patients, and with ICI combination might be a 
feasible approach in future studies. Although many of the 
discussed approaches failed to demonstrate anti-tumor activ-
ity, they still showed a favorable TME modulation effect. 
Thus, it might be reasonable to use some of these drugs to 
mold the TME into a “hot” microenvironment followed by 
using ICI.

There is also a need to explore biomarkers for such novel 
treatments. We found that most trials failed to elucidate 
biomarker associations with response. As described previ-
ously, co-expression of CD8 and HVEM might predict anti-
BTLA monoclonal antibody response and drop in sCD27 
levels in Sezary syndrome [146], 199. Moreover, beyond the 
classically FDA-approved biomarkers (PD-L1 level, tumor 
mutational burden, and microsatellite stability), TNFSF and 
TNFRSF might be usable as predictive biomarkers for ICI 
response and survival[242]. Finally, combination approaches 
may theoretically have synergistic effects, improving the 
overall anti-tumor impact.

Targeting TNFSF/TNFRSF family members using both 
agonist and antagonist drugs is being explored in the clinic 
for patients with cancer. To date, anti-TNF agents have 
proven effective for treating multiple autoimmune disorders 
as well as for immune-related toxicities after checkpoint 
blockade for cancer. The use of specific TNF family mem-
ber agonists and antagonists for cancer therapy has been less 
successful to date and may require biomarker selection of 
patients [243] as has been successfully applied in the preci-
sion genomics oncology field [244–248].
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