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Multimodal neuroimaging-based
prediction of Parkinson’s disease with
mild cognitive impairment using machine
learning technique

Check for updates

Yongyun Zhu1,3, FangWang1,3, PingpingNing2, Yangfan Zhu1, LingfengZhang1, Kelu Li1, Bin Liu1, Hui Ren1,
Zhong Xu1, Ailan Pang1 & Xinglong Yang 1

This study aimed to identify potential markers that can predict Parkinson’s diseasewithmild cognitive
impairment (PDMCI). We retrospectively collected general demographic data, clinically relevant
scales, plasma samples, and neuroimaging data (T1-weighted magnetic resonance imaging (MRI)
data aswell as resting-state functionalMRI [Rs-fMRI] data) from 173 individuals. Subsequently, based
on the aforementionedmultimodal indices, a support vectormachinewas employed to investigate the
machine learning (ML) classification of PD patients with normal cognition (PDNC) and PDMCI. The
performance of 29 classifiers was assessed based on various combinations of indicators. Results
demonstrated that the optimal classifier in the validation set was composed by clinical + Rs-fMRI+
neurofilament light chain, exhibiting a mean Accuracy of 0.762, a mean area under curve of 0.840, a
mean sensitivity of 0.745, along with a mean specificity of 0.783. The ML algorithm based on
multimodal data demonstrated enhanced discriminative ability between PDNC and PDMCI patients.

Parkinson’s disease (PD) is characterized by the prevalent non-motor
symptom of cognitive impairment1. Specifically, PD with dementia (PDD)
significantly impacts patients’ quality of life and increases mortality rates,
adding additional burdens to caregivers2,3. PD with mild cognitive impair-
ment (PDMCI) poses a significantly increased risk of progressing to PDD4.
However, studies have also observed that individuals with PDMCI may
experience a reversal tonormal cognitive functionwithin the context of PD5.
Therefore, it is significant to conduct a comprehensive analysis of potential
predictors for PDMCI.

Many clinical characteristics are associated with an increased risk of
cognitive impairment in PD (PDCI), such as advanced age, low level of
education, andmale gender. Additionally, higherHoehn Yahr grade, Rapid
Eye Movement (REM) sleep behavior disorder, depression have also been
extensively investigated in numerous studies6. The clinical significance of
these observed features has been examined in several studies, indicating
their potential value in predicting PDCI7. The models established in these
studies, however, have not yet been validated in an independent cohort.
Several studies have reported associations between PDCI and plasma levels
of α-synuclein8, Amyloid-β 1-429, and tau protein10. However, these studies

have yielded inconsistent results.Neurofilament light chain protein (NfL) as
a potential biomarker for axonal injury and have been found to correlate
with cognitive, behavioral, and imaging features of AD as well as predict
short-termcognitive decline11.GFAP, recognized as a biomarker for reactive
astrocyte hyperplasia, shows promise in the screening of amyloid pathology
and predicting future cognitive decline12. Previous studies13 along with our
own research14 have also confirmed the strong link betweenNfL,GFAP, and
PDCI. Futhermore, The utilization of neuroimaging markers, such as cor-
tical thickness15. Resting state functional nuclear magnetism (Rs-fMRI)
related indicators16 have been identified in multiple studies as potentially
valuable for the diagnosis and prediction of PDCI17.

However, one of the major challenges in predicting PDMCI lies in its
high heterogeneity18. The application of machine learning (ML) techniques
involves using computer-based statistical methods to effectively analyze
datasets, allowing clinicians to accurately classify patients based onmultiple
variables19. Some ML models based solely on resting-state functional
magnetic resonance imaging (Rs-fMRI) data20, T1 structural data9,21, and
positron emission tomography imaging data22 have shown promising
results in differentiating patients with cognitive impairment. However,
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challenges related with acquiring imaging data seem to impose limitations
on sample size andmultimodal imaging studies. SomeML studies based on
the Parkinson’s Progression Markers Initiative (PPMI) databases also
integrate plasma and cerebrospinal fluid (CSF) markers, including alpha-
Synuclein, Aβ protein, tau protein, tau phosphate 181, and genetic
markers10,23.However, the higher level of education in thePPMIdatasetmay
affect the generalizability of findings to individuals with lower education
levels. Furthermore, the integration of plasmaNfL andGFAPmeasures into
ML models to assess their impact on model performance has not yet been
explored. Therefore, it is highly anticipated that ML can be employed to
evaluate the role of NfL and GFAP in identifying PDMCI.

The present study integrated clinical, plasma, and imaging indicators,
including T1 data and Rs-fMRI data, to construct PDMCI models with
different combinations of indicator usingMLand the effects of thesemodels
were effects of these models were compared. An overview of the framework
employed for multi-indicator machine learning classification, including
multi-indicator collecting, feature selection,model construction, andmodel
evaluation in Fig. 1. It was aimed to investigate which specific combination
of indicators plays a more significant role in recognizing PDMCI.

Results
Analysis of clinical data and plasma features
A total of 173 participants completed clinical data collection, plasma NfL,
and GFAP level measurements, as well as imaging assessments (including
T1 and Rs-fMRI). The Healthy control (HC) group consisted of 32 indi-
viduals, while the PD with normal cognition (PDNC) and PDMCI groups
included 69 and 72 participants, respectively. Table 1 presents the clinical
data and plasma analysis results for all three patient groups. Compared to
the HC and PDNC groups, PDMCI group was elder, and showed lower

levels of education and assessment utilizing the Montreal Cognitive
Assessment (MoCA) scores, as well as higher Hoehn Yahr scale, Unified
Parkinson’s Rating Scale Part III (UPDRSIII), rapid eye movement sleep
behavior disorder screening questionnaire (RBDSQ) scores, Hamilton
anxiety scale (HAMA) scores, Hamilton depression scale (HAMD) scores,
Pittsburgh Sleep Quality Index (PSQI) scores, and freezing of gait ques-
tionnaire (FOGQ) scores with statistical significance. Additionally, plasma
NfL and GFAP levels were significantly elevated. There were no significant
disparities observed in terms of gender distribution, levodopa equivalent
daily dose (LEDD), and disease duration among the groups.

Analysis of neuroimaging features
T1 features. Significant differences were observed in the cortical thick-
ness (Cth) values of 10 brain regions and the volume of 7 subcortical
structures between the PDNC and PDMCI groups. These differences
were determined through independent sample T-tests conducted on the
extracted data after Z-score transformation during pre-processing
(Table 2).

Rs-fMRI features. The normally distributed Rs-fMRI data underwent
Z-value conversion during data preprocessing. Independent sample
T-tests were employed to perform statistical analysis on Amplitude of
low-frequency fluctuation (ALFF), Fractional ALFF (fALFF), Regional
homogeneity (ReHo), Functional connectivity density (FCD) values
extracted from 116 brain regions, and 6670 FC values (The FC matrix is
non-directional, therefore it is advisable to consider only half of its
values). The results demonstrated the differences in theALFF values of 10
brain regions, fALFF values of 1 brain region, FCD values of 2 brain
regions, ReHo values of 9 brain regions, and Functional connectivity (FC)

Fig. 1 | Framework for multi-indicator machine learning classification of mild cognitive impairment in Parkinson’s disease based on multimodal neuroimaging, including
multi-indicator collecting, feature selection, model construction, and model evaluation.
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values of 7 brain regions between the PDNC and PDMCI groups with
statistical significance (Table 3).

Evaluation outcomesof theSVMclassifier. The result of the difference
analysis encompassed a total of 9 clinical features, 2 plasma features, 17
T1 structural features, and 29 Rs-fMRI features. Feature selection was
performed using RF based on their importance, resulting in the identi-
fication of the top 2 features for inclusion in model training. Figure 2

visually represents the significance of each indicator. The study identified
two clinical features (FOGQ and education), two plasma markers (NfL
and GFAP), two T1 structural features (Cth value of the left postcentral
gyrus and volume of the right nucleus accumbens), as well as two Rs-
fMRI features (FC of the right Orbitofrontal gyrus and Vermis_4,5;
together with FC value of the left inferiorfrontal_Oper and left lingual).

The performance of 29 classifiers was assessed to determine the opti-
mal combination of indicators that can effectively distinguish PDNC from

Table 1 | Clinical data and plasma analysis of patients in the groups of HC, PDNC, and PDMCI

Variable HC group n = 32 PDNC group n = 69 PDMCI group n = 72 P value

Age (year), mean ± SD 60 ± 11.1c 62.1 ± 11c 66 ± 10ab <0.01

Gender, n (%)

Male 11 (34.4) 33 (47.8) 36 (50) 0.33

Female 21 (65.6) 36 (52.2) 36 (50)

Education (year), median (IQR) 8.5 (8.5, 8.9)b, c 9 (6, 14.5)a, c 6 (5, 9)a, b <0.01

Disease duration (year), median (IQR) NA 2 (1, 5) 3.5 (1, 5) 0.12

LEDD (mg), median (IQR) NA 337.5 (175, 437) 337.5 (256, 500) 0.25

UPDRSIII (score), median (IQR) NA 19 (14, 32.5) 34 (20, 45.7) <0.01

Hoehn Yahr, median (IQR) NA 1 (1, 2.5) 2 (2, 3) <0.01

MoCA (score), median (IQR) 28 (26, 29)bc 26 (24, 28)ac 17 (13, 20)ab <0.01

RBDSQ (score), median (IQR) NA 1 (0, 5.5) 3.5 (1, 8) <0.01

HAMA (score), median (IQR) NA 4 (1, 12) 11 (2, 22) <0.01

HAMD (score), median (IQR) NA 5 (1.5, 10.5) 9.5 (4.3, 20) <0.01

PSQI (score), mean ± SD NA 8.6 ± 4.7 10.8 ± 4.5 <0.01

FOGQ (score), median (IQR) NA 3 (0, 5.5) 9 (2.3, 17) <0.01

NfL(pg/ml), median (IQR) 11.5 (9.8, 15.1)c 11.8 (8, 14.2)c 18.2 (11.5, 27.7)a, b <0.01

GFAP(pg/ml), median (IQR) 68.4 (50, 118.3)c 77.6 (56.5, 104.8)c 118.2 (91.4, 172.7)a, b <0.01

When comparing between the three groups, a p-value less than 0.05 indicated statistical significance compared to the HC group (denoted as “a”), PDNC group (“b”), or PDMCI group (“c”).
HAMAHamilton Anxiety Scale,HAMDHamilton Depression Scale, FOGQ Frozen gait questionnaire, LEDD levodopa equivalent daily dose,MoCAMontreal Cognitive Assessment Scale, PSQI Pittsburgh
SleepQuality Index,RBDSQRapidEyeMovementSleepBehaviorDisorderScale,UPDRSIIIUnifiedParkinson’sRatingScalePart III,PDMCIParkinson’sdiseasewithmild cognitive impairment,HChealthy
controls, PDNC Parkinson’s disease normal cognitive.

Table 2 | Statistical analysis of inter-group T1 features

variable HC group n = 32 PDNC group n = 69 PDMCI group n = 72 P value

lh inferiorparietal_Cth (mm) 2.37 ± 0.1 2.38 ± 0.1c 2.33 ± 0.1b 0.01

lh medialorbitofrontal_Cth (mm) 2.39 ± 0.1c 2.37 ± 0.2c 2.31 ± 0.2ab 0.03

lh middletemporal_Cth (mm) 2.66 ± 0.1 2.68 ± 0.1c 2.63 ± 0.1b 0.02

lh postcentral_Cth (mm) 2.06 ± 0.1c 2.06 ± 0.2c 2 ± 0.2ab <0.01

lh superiortemporal_Cth (mm) 2.66 ± 0.1 2.65 ± 0.1c 2.58 ± 0.1b <0.01

lh supramarginal_Cth (mm) 2.43 ± 0.1c 2.41 ± 0.1c 2.35 ± 0.1ab 0.02

lh MeanThickness (mm) 2.4 ± 0.1 2.4 ± 0.1c 2.36 ± 0.1b 0.04

rh parsorbitalis_Cth (mm) 2.53 ± 0.1c 2.5 ± 0.2c 2.43 ± 0.2ab 0.04

rh pericalcarine_Cth (mm) 1.59 ± 0.1b 1.66 ± 0.2ac 1.61 ± 0.1b 0.04

rh precentral_Cth (mm) 2.47 ± 0.2 2.5 ± 0.1c 2.44 ± 0.1b 0.03

lh Caudate_volume (mm3) 3244 ± 344 3240 ± 490c 3067 ± 498b 0.04

lh Hippocampus_volume (mm3) 3884 ± 368c 3877 ± 433c 3639 ± 443ab <0.01

lh Amygdala_volume (mm3) 1640 ± 206 1695 ± 214c 1579 ± 265b <0.01

lh Accumbens_volume (mm3) 521 ± 101 552 ± 111c 498 ± 102b <0.01

rh Hippocampus_volume (mm3) 4048 ± 352c 4065 ± 473c 3826 ± 436ab <0.01

rh Accumbens_volume (mm3) 1828 ± 176 1900 ± 246c 1759 ± 288b <0.01

rh Accumbens_volume (mm3) 493 ± 82 513 ± 876c 463 ± 81b <0.01

The data were presented as mean ± standard deviation. When comparing between the three groups, a p-value less than 0.05 indicated statistical significance compared to the HC group (denoted as “a”),
PDNC group (“b”), or PDMCI group (“c”).
Cth cortical thickness, HC healthy control, lh left hemisphere, PDMCI Parkinson’s disease with mild cognitive impairment, PDNC Parkinson’s disease normal cognitive, rh rihgt hemisphere.
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PDMCI (Table 4). The results demonstrated that the optimal classifier in the
validation set included clinical data combined with Rs-fMRI and NfL bio-
markers,mean accuracy (ACC) of 0.762, amean areaunder curve (AUC)of
0.840, a mean sensitivity of 0.745, as well as a mean specificity of 0.783 (Fig.
3a). Subsequently, clinical features combined with Rs-fMRI and GFAP
markers also achieved favorable performance (mean ACC: 0.759, mean
AUC: 0.834, mean sensitivity: 0.783, mean specificity: 0.736, Fig. 3b). Fur-
thermore, good performance was observed when integrating clinical vari-
ables with GFAP measurements (Fig. 3c).

Features impacting PDNC and PDMCI classification. The best-
performing classifier, incorporating clinical + Rs-fMRI + NfL markers,
was assessed for its contribution to classifier prediction by calculating the
average absolute SHapley Additive exPlanation (SHAP) value for each
feature. The global feature importance chart in Fig. 4 illustrates the
descending order of importance. The findings indicated that within the
classifiers established by clinical + Rs-fMRI + NfL indicators, plasma
NfL showed the highest global importance, followed by education, while
the FC value of the left inferiorfrontal_Oper and left lingual demon-
strated the lowest significance.

The SHAP value of each feature for every sample was visualized by
plotting a scatter on the SHAP summary graph. As depicted in Fig. 5, the

relationship between the magnitude of the feature value and the classifier’s
predicted impact could be observed through color, enabling visualization of
its feature value distribution. The findings revealed that elevated levels of
NfL, and FOGQ scores, as well as reduced education level, FC of the right
Orbitofrontal gyrus and Vermis_4,5; FC value of the left inferior-
frontal_Oper and left lingual were associated with an increased risk
of PDMCI.

The SHAPdependency graphs in Fig. 6 illustrate the crucial predictors,
enabling the identification of both the direction and threshold at which risk
escalates. For example, the levels of NfL reached a threshold of ≥13 pg/mL
(depicted on the X-axis in Fig. 6a). As these levels increased, SHAP values
(represented on the Y-axis in Fig. 6a) exhibited a progressively positive
trend, indicating a significant predictive capability for later diagnosis of
PDMCI in PD patients. The thresholds for the five main predictors were
indicated by red dashed lines in the figure : NfL ≥ 13 pg/mL; FOGQ ≥ 9
points; Education ≤6 years; FC of the right Orbitofrontal gyrus and
Vermis_4,5 ≤ 0.255; and volume of right nucleus accumbens ≤0.19.

Discussion
In this study, we collected a comprehensive and multimodal dataset
including general demographic information, clinical neuropsychological
assessments, plasma indicators (NfL andGFAP), T1 structural data, andRs-

Table 3 | Statistical analysis of inter-group RStatistical analysis of inter-group Rs-fMRI features

Variable Brain area HC group n = 32 PDNC group n = 69 PDMCI group n = 72 P value

ALFF rh Rolandic operculum −0.28 ± 0.2 −0.29 ± 0.2c −0.2 ± 0.2b 0.04

lh Supp_Motor_Area 0.11 ± 0.3 0.16 ± 0.3c 0.06 ± 0.3b 0.04

rh Supp_Motor_Area 0.02 ± 0.3 0.06 ± 0.3c −0.04 ± 0.3b 0.02

rh Cingulum_Mid 0.09 ± 0.2c 0.05 ± 0.2c −0.04 ± 0.2ab 0.02

rh Fusiform −0.4 ± 0.2 −0.43 ± 0.2c −0.34 ± 0.2b <0.01

rh Precuneus 0.84 ± 0.3c 0.77 ± 0.4c 0.61 ± 0.4ab 0.02

rh Superiortemporal 0.24 ± 0.3 0.18 ± 0.2c 0.27 ± 0.3b 0.03

rh Middletemporal −0.03 ± 0.2c −0.01 ± 0.2c 0.08 ± 0.2ab 0.03

rh Inferiortemporal −0.4 ± 0.2c −0.33 ± 0.2c −0.24 ± 0.3ab 0.01

Vermis_3 −0.4 ± 00.2bc 0.78 ± 0.5ac 0.53 ± 0.4ab <0.01

fALFF rh Precuneus 1.03 ± 0.3 1.03 ± 0.3c 0.9 ± 0.33b 0.02

FCD rh Hippocampus −0.39 ± 0.2 −0.41 ± 0.2c −0.33 ± 0.3b 0.03

lh Calcarine 0.76 ± 0.4c 0.64 ± 0.4c 0.4 ± 0.4ab 0.04

ReHo rh Rolandic operculum −0.28 ± 0.2 −0.26 ± 0.1c −0.18 ± 0.1b 0.03

rh Hippocampus −0.68 ± 0.2 −0.7 ± 0.1c −0.63 ± 0.2b 0.03

rh Fusiform −0.35 ± 0.2 −0.39 ± 0.2c −0.29 ± 0.2b 0.03

lh Inferiortemporal 0.61 ± 0.3 0.64 ± 0.2c 0.56 ± 0.26b 0.03

lh SupraMarginal 0.32 ± 0.2 0.36 ± 0.2c 0.28 ± 0.3b 0.02

rh Precuneus 0.88 ± 0.24 0.87 ± 0.2c 0.77 ± 0.3b 0.03

rh Superiortemporal 0.1 ± 0.2 0.09 ± 0.2c 0.17 ± 0.3b 0.04

rh Middletemporal 0.15 ± 0.2c 0.21 ± 0.2c 0.29 ± 0.3ab 0.03

Vermis_7 −0.13 ± 0.3 0.04 ± 0.4c −0.1 ± 0.4b 0.04

FC lh Inferiorfrontal_Oper - lh Lingual 0.28 ± 0.2c 0.31 ± 0.18c 0.2 ± 0.2ab <0.01

lh Inferiorfrontal_Tri - rh Medialorbitofrontal 0.55 ± 0.1c 0.54 ± 0.2c 0.43 ± 0.2ab <0.01

rh Inferiorfrontal_Tri - lh Fusiform 0.42 ± 0.2c 0.43 ± 0.2c 0.31 ± 0.2ab <0.01

rh Orbitofrontal - lh Cuneus 0.65 ± 0.2c 0.65 ± 0.2c 0.53 ± 0.2ab <0.01

rh Orbitofrontal - Vermis_3 0.36 ± 0.2c 0.34 ± 0.2c 0.21 ± 0.2ab <0.01

rh Orbitofrontal - Vermis_4,5 0.38 ± 0.2c 0.35 ± 0.2c 0.23 ± 0.2ab <0.01

rh Amygdala - rh Middletemporal 0.56 ± 0.2c 0.53 ± 0.2c 0.41 ± 0.2ab <0.01

The data were presented as mean ± standard deviation. When comparing between the three groups, a p-value less than 0.05 indicated statistical significance compared to the HC group (denoted as “a”),
PDNC group (“b”), or PDMCI group (“c”).
ALFF low-frequency amplitude, Cth cortical thickness, fALFF fractional low frequency amplitude, FC Functional connection, FCD functional connection density, HC healthy control, lh left hemisphere,
PDMCI Parkinson’s disease with mild cognitive impairment, PDNC Parkinson’s disease normal cognitive, ReHo local consistency, rh right hemisphere.
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fMRI data. Our analysis, using ML algorithms, revealed that among the 29
classifiers tested, the one integrating multi-modal indicators—comprising
clinical assessment, Rs-fMRI indicator, and NfL—demonstrated superior
performance.

The incorporation of clinical indicators obviously enhanced the
accuracy and efficacy of the 29 established classifiers. Our findings based on
feature importance indicated that FOGQ and education provided the most
valuable insights for distinguishing PDNC from PDMCI, surpassing other
clinical metrics. When analyzing the top-performing classifier 1 using
SHAP, FOGQ turned out to be significant important (ranking second). This
underscored a robust link of FOGQ to cognitive impairment within PD.
Cholinergic dysfunction may serve as a shared underlying factor con-
tributing to both cognitive impairment in PD and the occurrence of
FOG24,25. Moreover, structural and functional imaging studies have impli-
cated the frontal lobe—an executive brain region—inPD-related FOG26 and
cognitive dysfunction17. Additionally, research byMonaghan et al. revealed
that patientswith FOGexhibitedmore severe disease progression compared
to those without FOG, along with more pronounced cognitive
impairment27, indicating that FOG may exacerbate motor symptoms and
contribute to cognitive decline. The relationship between education and
cognitive function has been well-established. Numerous studies have
demonstrated a positive correlation between the duration of formal edu-
cation and cognitive function during adulthood, as well as a reduced risk of
dementia later in life28. Our findings further validated that a higher level of
education might serve as an indicator of cognitive reserve, providing pro-
tection against cognitive decline in patients with PD.

While clinical indicators can improve the classifier’s performance to
somedegree, relying solely on themcannot yield optimal results.Among the
29 classifiers we established, the top ten performers all integrated plasma
indicators. NfL demonstrated the highest global feature importance in our
analysis, emphasizing the significant role of plasma in distinguishing PDNC
from PDMCI. Our study incorporated novel plasma markers of cognitive
impairment, namely NfL and GFAP, which have garnered attention in
recent years. Our findings were in accordance with other studies conducted
in various countries and regions, indicating a significant elevation of plasma

NfL levels among patients with PDMCI14,29,30. Existing evidence suggests
that elevated NfL levels among PD patients with cognitive impairmentmay
be attributed to augmentedwhitematter lesions or alterations in graymatter
structure31–33.While few studies have explored the role ofGFAP in cognitive
dysfunction associated with PD, most research has focused on Alzheimer’s
disease (AD).Utilizing the ultrasensitive Simoaplatform, our study revealed
obviously higher levels of plasma GFAP in the PDMCI group in contrast
with both the HC and PDNC groups. These findings were consistent with
other studies supporting the link between GFAP and cognitive dysfunction
within PD13,34. However, Oeckl et al. found that GFAP concentration in the
PDNC group was similar to that in the PDD group35. Under pathological
conditions, an abnormal increase in GFAP expression might indicate the
activation of astrocytes36, which plays a crucial role in the development of
cognitive impairment in PD37,38. In conclusion, NfL together with GFAP
might hold promise as potential peripheral biomarkers for assessing cog-
nitive function in individuals with PD.

Another crucial aspect for identifying PDMCI is neuroimaging indi-
cators. Previous studies, including our own research, have shown extensive
cortical atrophy and alterations in functional connectivity among PD
individuals with cognitive impairment17. However, to date, no studies have
investigated the ability to identify PDMCIusingMLalgorithms that directly
compare or combine T1 and Rs-fMRI data. Our feature selection results,
based on the importance of features using RF (Fig. 2b), reveal that the top
two Rs-fMRI indicators are the FC of the right Orbitofrontal gyrus and
Vermis_4,5; together with FC value of the left inferiorfrontal_Oper and left
lingual. The prefrontal cortex is pivotal in executive function39, while
damage to the cerebellum can lead to executive and visuospatial
disturbances40. Certain studies propose that increased cerebellar
metabolism41 and enhanced functional connectivity linked to the
cerebellum42may represent compensatorymechanisms aimed at preserving
cognitive function in individualswithPDCI.Weobserved reducedFC in the
rightOrbitofrontal gyrus and vermis, aswell as between other brain regions,
in patients with PDMCI, compared to controls and PDNC individuals, and
plays a prominent role in distinguishing PDNC from PDMCI. Therefore,
we speculate that the “prefrontal cortex-cerebellar circuit” might play a

Fig. 2 | The assessment of the importance of features using the Random Forest
algorithm. a denotes the ranking of clinical features in terms of their importance, b
represents the ranking of T1 structural features based on their significance, and c
signifies the importance ranking of Rs-fMRI features. ALFF low-frequency ampli-
tude, fALFF fractional low-frequency amplitude, FC Functional connection, FCD

Functional connection density, FOGQ Freezing of Gait questionnaire, HAMA
Hamilton Anxiety Scale, HAMD Hamilton Depression Scale, HY Hoehn Yahr, lh
left hemisphere, PSQI Pittsburgh SleepQuality Index, RBDSQRapid EyeMovement
Sleep Behavior Disorder Scale, ReHo local consistency, rh right hemisphere,
UPDRSIII Unified Parkinson’s Rating Scale Part III.
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compensatory role to some extent in the decline of cognitive function in PD,
and when degeneration occurs within this circuit’s functional connectivity,
it could be an important mechanism for the progression of cognitive dys-
function. The SHAP summary and dependencymaps suggest that lower FC
value of the left inferiorfrontal_Oper and left lingualmay increase the risk of
PDMCI. The lingual gyrus is associated with visuospatial dysfunction43,44.
The presence of visuospatial dysfunction is a prominent cognitive

manifestation observed in PD45. Some studies have suggested that the
visuospatial ability of individuals with PD is associated with the dorsolateral
prefrontal circuit and the lateral orbitofrontal circuit45. However, frontal
executive dysfunction alone does not fully account for the observed
visuospatial deficits in PD. Additional research has indicated that visuos-
patial impairments in PD often involve posterior brain regions, whichmay
play a dominant role in visuospatial abilities46. The above results further

Table 4 | Comparison of the performance of classifiers using different combinations of indicators

Classifiers Features ACC AUC Sensitivity Specificity

clinical T1 Rs-fMRI NfL GFAP

1 √ × √ √ × 0.762 0.840 0.745 0.783

2 √ × √ × √ 0.759 0.834 0.783 0.736

3 √ × × × √ 0.758 0.832 0.781 0.739

4 √ √ √ × √ 0.756 0.830 0.706 0.813

5 √ √ √ √ × 0.749 0.830 0.705 0.798

6 √ × √ √ √ 0.748 0.830 0.780 0.719

7 √ √ × √ × 0.749 0.828 0.769 0.809

8 √ √ × × √ 0.746 0.825 0.681 0.784

9 √ √ √ √ √ 0.741 0.824 0.697 0.775

10 √ × × √ × 0.753 0.822 0.735 0.771

11 √ √ × √ √ 0.739 0.821 0.678 0.784

12 √ √ √ × × 0.755 0.819 0.667 0.842

13 √ × × √ √ 0.746 0.818 0.765 0.707

14 √ √ × × × 0.716 0.790 0.648 0.794

15 × √ × √ √ 0.716 0.790 0.648 0.794

16 √ × × × × 0.651 0.790 0.651 0.831

17 √ × √ × × 0.748 0.773 0.647 0.833

18 × √ √ × √ 0.665 0.739 0.610 0.736

19 × × √ √ √ 0.644 0.739 0.691 0.614

20 × √ × × √ 0.671 0.737 0.605 0.750

21 × √ √ √ √ 0.655 0.735 0.590 0.735

22 × √ × √ × 0.700 0.731 0.589 0.824

23 × √ √ √ × 0.668 0.729 0.606 0.743

24 × × √ √ × 0.657 0.724 0.669 0.656

25 × × √ × √ 0.650 0.710 0.691 0.623

26 × √ √ × × 0.613 0.670 0.621 0.623

27 × × √ × × 0.641 0.651 0.512 0.784

28 × √ × × × 0.513 0.499 0.621 0.449

29 × × × √ √ 0.457 0.494 0.545 0.422

ACC accuracy, AUC area under curve, Rs-fMRI resting-state functional magnetic resonance imaging, NfL neurofilament light chain, GFAP glial fibrillary acidic protein.

Fig. 3 | The ROC curve of themodel.The symbols (a), b, and c respectively denotemodel 1, model 2, andmodel 3. The dotted line represents themean ROC curve, while the
shaded area depicts the range of AUC values across 100 model cycles.
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validated the linkbetween cognitive impairment amongPDpatients and the
involvement of both the central executive and visual networks47.

While ourfindings suggest that theRs-fMRI indicator outperforms the
T1 structural indicator in identifying PDMCI, the results fromT1 structural
indicator provide significant insights as well. The primary contributors to
the performance of our model are predominantly the Cth of the left post-
central gyrus and the volume of the right nucleus accumbens in
T1 structural features. The postcentral gyrus serves as a cortical hub for
somatosensory processing, integrating both the dorsal attention network
and the default network48. These interconnected networks are closely
associated with cognitive functioning47. Notably, we found that the volume
of the nucleus accumbens is more significant than other subcortical volume
features. Previous studies have also reported progressive atrophy of the
nucleus accumbens in PDMCIpatients49. As a prominent component of the
ventral striatum50, the nucleus accumbens primarily projects into the frontal
cortex and limbic pathways, serving as an indicative marker for overall
dysfunction within the mesocorticolimbic network51. Moreover, there is
evidence suggesting that atrophy of the nucleus accumbens in PD patients
may lead to acetylcholinesterasedeficiency, subsequently contributing to the
development of PDD52.

The SVM algorithm employed in this study is a widely utilized ML
modeling technique within the realm of neuroimaging. By identifying a

hyperplane in a high-dimensional space based on two types of data, it
effectively segregates the remaining data into two distinct categories. Due to
its unique principles and algorithms53, SVM exhibits certain advantages
when analyzing small sample sizes. By employingML techniques, our study
demonstrated that using a single modality (clinical/T1 structure/Rs-fMRI/
plasma) might be insufficient for distinguishing PDNC from PDMCI
patients. The integration of all indicators, however, does not represent an
optimal model. The classifier combining clinical, Rs-fMRI, and NfL indi-
cators demonstrated superior accuracy, classification efficacy, specificity,
and sensitivity in discriminating PDNC from PDMCI patients. These
findings provided robust evidence for further exploration of potential pre-
dictors for PDD.

Nevertheless, some flaws also exist in the present study. Firstly, we
refrained from exploring the potential of deep learning algorithms and
unsupervised machine learning to enhance predictive performance due to
the absence of clear clinical guidance information and the intricacy in
interpreting and comprehending the models. Secondly, the sample size was
relatively small for neuropsychological evaluation, blood testing, and mul-
timodal MRI data collection. Lastly, our findings were not validated by
external or longitudinal data. Thus, longitudinal studies using larger mul-
ticenter cohorts are essential for identifying potential markers of PDMCI in
the future.

In conclusion, themulti-modalMLalgorithmdemonstrated improved
discriminative ability between PDNC and PDMCI patients. The incor-
poration of clinical, Rs-fMRI, and NfL indicators resulted in superior
accuracy, classification efficacy, specificity, and sensitivity in distinguishing
PDNC from PDMCI.

Methods
Participants
This retrospective study was carried out at the Department of Neurology,
the First AffiliatedHospital of KunmingMedical University, fromFebruary
2022 to December 2023, including both inpatients and outpatients. Parti-
cipants were categorized into three groups: HC, PDNC, and PDMCI. The
diagnosis of PD patients followed the diagnostic criteria established by the
International Parkinson’s Disease andMovement Disorders Society (MDS)
in 201554. The assessment of PDMCIwas conducted in accordance with the
Type I diagnostic criteria for PDMCI published by MDS in 201255. The
PDNC group comprised PD patients notmeeting the diagnostic criteria for
PDMCI55 and PDD56. Family members of both inpatient and outpatient
patients, as well as individuals examined as HC group, exhibited no cog-
nitive decline based on assessment utilizing the MoCA.

Exclusion criteria were as follows: (1) Patients with atypical/secondary
symptoms linked to PD, such as progressive supranuclear palsy, multiple
system atrophy, corticobasal ganglion degeneration, vascular PD, as well as
antipsychotic drug-induced Parkinsonism; (2) Patients with cognitive
decline attributed to other underlying conditions; (3) Patients with a history
ofmental illnesses such as depression or anxiety disorders; (4) Patients with
coexisting medical conditions significantly impacting cognitive or other
scales assessments, such as aphasia, delirium, epilepsy, or severe diseases; (5)
Patients with prior intracranial surgery for PD management; (6) Patients
who were left-handed; (7) Patients who were unable to cooperate in com-
pleting scale assessments.

The study was approved by the ethics committee of the First Affiliated
Hospital of Kunming Medical University (2022-L-46). All participants
provided informedconsent, and the study adhered to theprinciples outlined
in the World Medical Association Declaration of Helsinki and the
Department of Health and Human Services Belmont Report.

Clinical scale evaluation
Demographic information, including age, gender, and educational back-
ground (with years of formal education measured), was collected for all
eligible participants. For PD patients, data on disease duration, medication
regimen (with daily levodopa dosage calculated), and motor function were
assessed using the UPDRSIII as well as the Hoehn and Yahr scale. Mood

Fig. 4 | SHAP graph of global feature importance. The ordinate of the graph is
determined by arranging features in descending order of importance, while the
horizontal coordinate represents the average absolute SHAP value of the feature. Cth
cortical thickness, FOGQFreezing of Gait questionnaire, GFAP glial fibrillary acidic
protein, lh left hemisphere, NfL plasma neurofilament light chain, PDNC Parkin-
son’s diseasewith normal cognition, PDMCIParkinson’s diseasewithmild cognitive
impairment, rh right hemisphere.

Fig. 5 | SHAP summary graph. The ordinate is based on the features arranged in
descending order of importance, while the horizontal coordinate represents the
SHAP value of the feature. Positive values indicate membership in the PDMCI
group, while negative values indicate membership in the PDNC group. The scatter
plots in the figure depict SHAP values for each feature of every sample. The color of
the scatter and the red-blue color bar on the right indicate the magnitude of
eigenvalues for each sample, with red denoting higher eigenvalues and blue denoting
lower eigenvalues. For instance, the risk indicator for major PDMCI, NfL, exhibits a
pronounced right-skewed distribution with a cluster of high values, indicating an
increased risk of PDMCI associated with elevated NfL levels. Cth Cortical thickness,
FOGQ Frozen gait questionnaire, GFAP glial fibrillary acidic protein, NfL Plasma
neurofilament light chain, PDNC Parkinson’s disease with normal cognitive,
PDMCI Parkinson’s disease with mild cognitive impairment.
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assessment for PD patients consisted of the HAMA and HAMD, while
cognitive status was assessed using the MoCA. The RBDSQ was utilized to
assess symptomsofREMsleepbehaviordisorder57. ThePSQIwas employed
to evaluate sleep quality in PD patients, and freezing of gait (FOG) was
evaluated using the FOGQ58.

Regarding cognitive status assessment, each patient underwent eva-
luation independently by two associate chief physicians or above to ensure
diagnostic reliability and minimize potential selection bias in the study.
Furthermore, all scale assessments were carefully reviewed by two attending
physicians who received standardized training to ensure accurate
measurements.

Collection and analysis of blood samples
Venous blood samples (5mL) were collected from each subject, and within
1 hof collection, the samplewas centrifuged at a force of 2500 g for a duration
of 10min. Subsequently, the plasma was separated and stored in a poly-
propylene tube at−80 °C for future use. Analysis was performed through the
Simoa HD-1 analyzer (Quanterix, MA, USA) following the instruction
provided by the manufacture. The samples underwent a single thawing
process forNfL andGFAPmeasurements.Manual dilutionof the samplewas
not performed; instead, it was automatically diluted fourfold by the detector
following the recommended protocol provided by the manufacturer. The
coefficient of variation for multiple measurements was determined to be
4.2%. In each test, two quality control sampleswere incorporated, featured by
pre-provided concentrations of high and low NfL and GFAP that fell within
the anticipated range. The above experiments were conducted by research
assistants who remained blind to the patients’ diagnoses.

Acquisition of neuroimaging data
The MRI data were acquired using a 3T full-body scanner located in the
radiology department of a hospital (Discovery 750w, GE Healthcare, Fair-
field, USA). Standard head coils were used for both transmit and receive
functions. Prior to the scan, participants were informed about the
requirements for the scanning. They reclined in a relaxed state without
engaging in sleepor cognitive activities. Earplugswerewornbyall subjects to
attenuate external auditory stimuli,while their heads remained immobilized
to minimize potential motion artifacts.

The following parameters were used to acquire a three-dimensional
T1-weighted fast gradient echo sagittal image with magnetization pre-
paration: 156th floor, layer thickness: 1mm, no spacer layer, voxel size:
1 × 1 × 1mm, repetition time 1.900ms, echo time: 2.0 ms, inversion time:
450ms, flip angle: 12°, field of view: 256mm, matrix: 256 × 256. Rs-fMRI
images were obtained via ultrasonic planar imaging: 36 layers, layer thick-
ness: 3 mm, no spacer layers, voxel size: 3.5 × 3.5 × 4mm, volume: 240,
repetition time: 2000ms, echo time: 30ms, flip angle: 90°, field of view:
224mm, matrix: 64 × 64.

Preprocessing of neuroimaging data
MRI scans were carefully performed to exclude any significant medical
irregularities and to ensure that the images were of high quality. For the
analysis of Cth, we used FreeSurfer 6.0.0, (https://surfer.nmr.mgh.harvard.
edu/, Ubuntu Linux) along with the Surface-based morphometry (SBM)
method for processing T1-weighted images.

The analysis involved severalmain steps: Firstly, the three-dimensional
T1 image was converted into a four-dimensional format using MRIcron
software for subsequent processing and analysis. The data were then
imported into FreeSurfer 6.0.0 on Linux Ubuntu for automated processing,
which included head motion correction, removal of extraneous brain
structures (such as skulls), automatic conversion to Talairach space, seg-
mentation of subcortical structures, gray normalization, stitching of gray
matter boundaries, automatic topological correction, deformation of brain
tissue surfaces, expansion of surfaces after cortical image generation, as well
as conversion to spherical distribution templates.

Cth of each brain region was calculated followingGaussian smoothing
with a kernel (halfmaximumwidth 10mm).Cthwas defined as thedistance
between the boundary of gray matter/white matter and the corresponding
top surface of the brain. The reconstructed datasets underwent thorough
examination to ensure the accuracy of registration, cranial anatomy, seg-
mentation, as well as cortical surface reconstruction.

The analysis of Rs-fMRI images was conducted using the
MATLAB2013b platform (https://www.mathworks.com/products/matlab.
html). Preprocessing was carried out with the help of the Brain Imaging
Data Processing and Analysis (DPABI) toolbox (version 4.5, http://www.
rfmri.org/dpabi).

a

d

b

e

c

Fig. 6 | Free SHAP dependence graph for the 5 main predictors of PDMCI. The
graphs illustrate the threshold at which an elevated risk occurs for each predicted
value. The X-axis represents the value of the predictor, while the Y-axis represents
the SHAP value of the predictor. The predicted value on the X-axis directly influ-
ences the corresponding SHAP value on the Y-axis. Points on the X-axis that cor-
respond to SHAP values above 0 indicate thresholds associated with increased risk.

Each dot in the diagram represents each subject. Values located to the right of the red
dashed lines indicate an elevated risk of PDMCI (b, c). Conversely, values situated to
the left of the red dotted line also suggest an increased risk of PDMCI (a, d and e).
FOGQ Frozen gait questionnaire, GFAP glial fibrillary acidic protein, NfL Plasma
neurofilament light chain, PDMCI Parkinson’s disease with mild cognitive
impairment.
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Initially, the first ten time points were excluded to minimize potential
artifacts arising from the scanner’s initial setup and the subjects’ acclima-
tization to the scanning surroundings. The remaining images underwent
slice time correction, utilizing the middle layer as a reference, followed by
realignment to eliminate head movements. Images with head displacement
more than 2mm or angular rotation exceeding 2° along the x, y, and z axes
were excluded to enhance the robustness of functional connection analysis
against head motion artifacts. Subsequently, T1-weighted anatomical ima-
ges were aligned with the average functional images, and the structural
images were segmented into gray matter, white matter, and CSF using the
diffeomorphic anatomical registration through exponentiated lie algebra
(DARTEL) template.The datawere normalized to theDARTEL template in
Montreal Neurological Institute (MNI) space to enhance anatomical pre-
cision across participants. The normalized Rs-fMRI data were resampled
into 3 × 3 × 3mm3 voxels based on spatial smoothing with a Gaussian
kernel of halfmaximumwidth of 6mm.The low-frequency componentwas
removed through de-linear drift correction, and physiological high-
frequency noise was filtered out using a 0.01–0.08Hz bandpass filter.
Interference covariates, such as signals from white matter and CSF, were
regressed along with Friston-24 head motion parameters, including 6
parametersmeasuring headmotion alongside their historical effects, as well
as 12 corresponding square terms.

Compute the indicator of the Rs-fMRI
(1) ALFF: ALFF reflected the magnitude of spontaneous oscillatory
functional activity in the brain, specifically referring to the intensity of
neural activity. During the preprocessing of Rs-fMRI data, no filtering
processing was applied to calculate ALFF. Following fast Fourier pro-
cessing, the time domain signal in each voxel’s time series was trans-
formed into the frequency domain. Subsequently, the power spectrum
and its square root were computed, with the average calculated within
the range of 0.01 to 0.08 Hz. The zALFF map of the entire brain was
derived throughFisher z transformation and alignedwith the anatomical
automatic labeling (AAL) brain atlas. TheAAL atlas segmented the brain
into 116 distinct regions, enabling the acquisition of zALFF values for
each of these regions.

(2) fALFF: Similar to ALFF, fALFF also reflected the magnitude of
spontaneous neural activity in the brain. The procedure for calculating
fALFF was identical to that of ALFF, except that whole-brain fALFF was
obtained by computing the ratio between the average power spectrum and
the sum of amplitudes across the entire frequency domain.

(3) FCD: FCD primarily reflected the network connectivity char-
acteristics of a specific voxel across various scales, evaluating the significance
of a brain regionbyquantifying its connectionswith otherbrain regions. For
FCD calculation, the frequency domain of the filter was set between
0.01–0.1 Hz during data preprocessing. Once the FCD valuewas calculated,
it wouldundergo a smoothingprocesswith ahalfmaximumwidth of 8mm.
The FCD values of 116 brain regions were initially computed on the basis of
the AAL brain Atlas.

(4) ReHo: ReHo measured the extent to which the intrinsic neuronal
activity of a specific brain region alignedwith that of its neighboring regions,
focusing on local brain connections. It indicated the consistency between a
voxel and its adjacent voxels during the scanning period. The ReHo value
was calculated before the smoothingprocess (with a halfmaximumwidth of
6mm). The ReHo value was obtained by computing the temporal corre-
lation between a voxel and its 26 neighboring voxels. Subsequently, seg-
mentation based on the AAL brainmap allowed for obtaining ReHo values
for 116 brain regions. Finally, Fisher z transformation was applied to obtain
zReHo values for these 116 brain regions.

(5) FC: FC captured spatial-temporal correlations among neural
activities across distinct brain regions. Pearson correlation coefficients were
computed between the average time series across 116 brain regions, based
on the AAL brain map, using pre-processed data. Subsequently, the
resulting connectivity map was transformed into a z map through Fisher z
transform for subsequent statistical analysis.

ML
The ML algorithm was implemented using Python 3.9, a platform that has
shown successful application in various biomedical research endeavors. The
key steps included feature extraction, feature selection,model establishment,
and evaluation, as well as model interpretation.

Extraction of neuroimaging features
As mentioned above, the preprocessing of T1 involved SBMmeasurement
analysis, which was conducted using the FreeSurfer software. FreeSurfer
offered a precise method for measuring the thickness of the entire cerebral
cortex and provided detailed segmentation of brain regions based on its
Desikan-Killiany-Tourville partitioning approach. This partitioning tech-
nique divided the bilateral cerebral cortex into 68 brain regions and
12 subcortical structures, including the bilateral pallidum, caudate nucleus,
putamen, hippocampus, nucleus accumbens, and amygdala. We extracted
the Cth of 68 brain regions and the volume of 12 subcortical structures as
characteristic indicators for T1. On the MATLAB2013b platform, we
extracted the ALFF, fALFF, FCD, and ReHo values of 116 brain regions
obtained after preprocessing. Additionally, we calculated the FC values
between each pair of these 116 brain regions, resulting in a total of 6670 FC
indicators.

Feature selection
Feature screeningwas a crucial process inML aimed at identifying variables
with predictive value. In this study, we adopted a combination of differential
analysis and feature importance analysis for effective feature screening.
Clinical and plasma features were analyzed using SPSS 25.0 (IBM, Chicago,
IL, USA). The Kolmogorov-Smirnov method was employed to assess the
normality of continuous variables, and the independent sample T-test was
adopted for data with normal distribution; otherwise, the Mann-Whitney
test was applied. Chi-square tests were conducted for counting variables. In
Python 3.9, independent sample T-tests were performed to analyze
T1 structural features and Rs-fMRI features. Features with significant dif-
ferences between groups (P < 0.05) were selected, and to prevent overfitting,
FC values below P < 0.001 were considered. The scikit-learn library (http://
scikit-learn.org)59 in Python was then utilized for classification based on
information gain (IG), where random forest (RF)was used to determine the
significance of features and identify the most relevant ones22. IG was a
feature evaluationmethodbasedonentropy,whichmeasured the amountof
information provided by a feature during the classification process,
reflecting its usefulness. RFwas used to assess importance by calculating the
increase in prediction error caused by each feature.

Model establishment and evaluation
The “train_test_split” function was employed to randomly partition 70% of
the PD patients as the training set and allocate 30% as the validation set.
Prior to model training, min-max normalization and mean regularization
were applied to enhance the data structure for training. This stepwas aimed
to mitigate the impact of variations in data distribution regions on con-
vergence speed and prediction accuracy.

We employed a linear kernel SVM formodel training, awidely adopted
ML technique. Its fundamental principle involved identifying an optimal
hyperplane or decision boundary that maximized the margin between data
points of different categories, byminimizingmisclassification and achieving
highprediction accuracy in classificationproblems53. The SVMclassifierwas
validated, and the best hyperparameters were selected using fivefold cross-
validation, considering the sample size and preventing overfitting. The sta-
bility of the results was assessed by repeating the entire process, including
data set partitioning, featurenormalization, regularization, SVMs, and5-fold
cross-validation, for a total of 100 times. Subsequently, the model’s mean
ACC, mean AUC, mean sensitivity, and mean specificity were evaluated.

Model interpretation
SHAP values were used to assess the significance of the features incorpo-
rated in themodel. Originating fromcooperative game theory, SHAPvalues
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were interpreted within ML as a means to figure out the variables’ con-
tributions to predictions60. These values served as a valuable tool for com-
prehending the decision-making process of ML models. By analyzing the
individual impact of each feature on prediction outcomes, SHAP values
provided deeper insights into the underlying reasoning of the model. The
SHAP library in Python 3.9 was utilized to generate three distinct SHAP
plots: the global feature importance plot, the SHAP summary plot, and the
SHAP dependency plot, offering complementary interpretations of the
acquired prediction model.

Data availability
The data supporting the conclusions of this article are included within the
article and its additional files. Additional data are available from the cor-
responding author upon request.

Received: 30 May 2024; Accepted: 23 October 2024;

References
1. Aarsland, D. et al. Risk of dementia in Parkinson’s disease: a

community-based, prospective study.Neurology 56, 730–736 (2001).
2. McMahon, L., Blake, C. & Lennon, O. A systematic review and meta-

analysis of respiratory dysfunction in Parkinson’s disease. Eur. J.
Neurol. 30, 1481–1504 (2023).

3. Leroi, I., McDonald, K., Pantula, H. & Harbishettar, V. Cognitive
impairment in Parkinson’s disease: impact on quality of life, disability,
and caregiver burden. J. Geriatr. psychiatry Neurol. 25, 208–214
(2012).

4. Cosgrove, J., Alty, J. E. & Jamieson, S. Cognitive impairment in
Parkinson’s disease. Postgrad. Med. J. 91, 212–220 (2015).

5. Pedersen, K. F., Larsen, J. P., Tysnes,O. B. &Alves, G. Natural course
of mild cognitive impairment in Parkinson disease: a 5-year
population-based study. Neurology 88, 767–774 (2017).

6. Hogue, O., Fernandez, H. H. & Floden, D. P. Predicting early cognitive
decline in newly-diagnosed Parkinson’s patients: a practical model.
Parkinsonism Relat. Disord. 56, 70–75 (2018).

7. Chung, S. J. et al. Factor analysis-derived cognitive profile predicting
early dementia conversion in PD. Neurology 95, e1650–e1659
(2020).

8. McFall, G. P. et al. Identifying keymulti-modal predictors of incipient
dementia in Parkinson’s disease: a machine learning analysis and
Tree SHAP interpretation. Front. Aging Neurosci. 15, 1124232
(2023).

9. Shin, N.-Y. et al. Cortical thickness from MRI to predict conversion
from mild cognitive impairment to dementia in Parkinson disease: a
machine learning–based model. Radiology 300, 390–399 (2021).

10. Almgren, H. et al. Machine learning-based prediction of longitudinal
cognitive decline in early Parkinson’s disease using multimodal
features. Sci. Rep. 13, 13193 (2023).

11. Kern, D. et al. Serum NfL in Alzheimer dementia: results of the
Prospective Dementia Registry Austria.Medicina 58, 433 (2022).

12. Yang, Z. et al. Clinical and biological relevance of glial fibrillary acidic
protein in Alzheimer’s disease. Alzheimers Res Ther. 15, 190 (2023).

13. Tang, Y. et al. Plasma GFAP in Parkinson’s disease with cognitive
impairment and its potential to predict conversion to dementia. NPJ
Parkinsons Dis. 9, 23 (2023).

14. Zhu, Y. et al. Association between plasma neurofilament light chain
levels and cognitive function in patients with Parkinson’s disease. J.
Neuroimmunol. 358, 577662 (2021).

15. Pagonabarraga, J. et al. Pattern of regional cortical thinning
associated with cognitive deterioration in Parkinson’s disease. PLoS
One 8, e54980 (2013).

16. van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain
network: a review on resting-state fMRI functional connectivity. Eur.
Neuropsychopharmacol. 20, 519–534 (2010).

17. Zhu, Y. et al. Cortical atrophy is associated with cognitive impairment
in Parkinson’s disease: a combined analysis of cortical thickness and
functional connectivity. Brain Imaging Behav. 16, 2586–2600 (2022).

18. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G.
The Sydneymulticenter study of Parkinson’s disease: the inevitability
of dementia at 20 years.Mov. Disord. 23, 837–844 (2008).

19. Landolfi, A. et al. Machine learning approaches in Parkinson’s
disease. Curr. Med. Chem. 28, 6548–6568 (2021).

20. Abós, A. et al. Discriminating cognitive status in Parkinson’s disease
through functional connectomics and machine learning. Sci. Rep. 7,
45347 (2017).

21. Zhang, J. et al. An SBM-basedmachine learningmodel for identifying
mild cognitive impairment in patients with Parkinson’s disease. J.
Neurol. Sci. 418, 117077 (2020).

22. Amboni, M. et al. Machine learning can predict mild cognitive
impairment in Parkinson’s disease.Front. Neurol. 13, 1010147 (2022).

23. Harvey, J. et al. Machine learning-based prediction of cognitive
outcomes in de novo Parkinson’s disease. npj Parkinson’s Dis. 8, 150
(2022).

24. Morris, R. et al. Overview of the cholinergic contribution to gait,
balance and falls in Parkinson’s disease.Parkinson. Relat. Disord. 63,
20–30 (2019).

25. Bohnen, N. I. et al. Cholinergic system changes of falls and freezing of
gait in Parkinson’s disease. Ann. Neurol. 85, 538–549 (2019).

26. Bosch, T. J., Barsainya, R., Ridder, A., Santosh, K. C. & Singh, A.
Interval timing and midfrontal delta oscillations are impaired in
Parkinson’s disease patients with freezing of gait. J. Neurol. 269,
2599–2609 (2022).

27. Monaghan, A. S. et al. Cognition and freezing of gait in Parkinson’s
disease: a systematic review andmeta-analysis.Neurosci. Biobehav.
Rev. 147, 105068 (2023).

28. Lövdén,M., Fratiglioni, L., Glymour,M.M., Lindenberger, U. &Tucker-
Drob, E. M. Education and Cognitive Functioning Across the Life
Span. Psychol. Sci. Public Interest 21, 6–41 (2020).

29. Lin, C.-H. et al. Blood NfL. Neurology 93, e1104–e1111 (2019).
30. Arai, H. et al. Epitope analysis of senile plaque components in the

hippocampus of patients with Parkinson’s disease. Neurology 42,
1315–1322 (1992).

31. Mattsson, N. CSF biomarkers in neurodegenerative diseases. Clin.
Chem. Lab. Med. 49, 345–352 (2011).

32. Bohnen, N. I. & Albin, R. L. White matter lesions in Parkinson disease.
Nat. Rev. Neurol. 7, 229–236 (2011).

33. Xu, Y., Yang, J., Hu, X. &Shang, H. Voxel-basedmeta-analysis of gray
matter volume reductions associated with cognitive impairment in
Parkinson’s disease. J. Neurol. 263, 1178–1187 (2016).

34. Liu, T. et al. Cerebrospinal fluid GFAP is a predictive biomarker for
conversion to dementia and Alzheimer’s disease-associated
biomarkers alterations among de novo Parkinson’s disease patients:
a prospective cohort study. J. Neuroinflamm. 20, 167 (2023).

35. Oeckl, P. et al. Glial fibrillary acidic protein in serum is increased in
Alzheimer’s disease and correlates with cognitive impairment. J.
Alzheimer’s Dis. 67, 481–488 (2019).

36. Yang, Z. &Wang, K. K. Glial fibrillary acidic protein: from intermediate
filament assembly and gliosis to neurobiomarker. Trends Neurosci.
38, 364–374 (2015).

37. Wilson, H. et al. Imidazoline 2 binding sites reflecting astroglia
pathology in Parkinson’s disease: an in vivo11C-BU99008PET study.
Brain 142, 3116–3128 (2019).

38. Herrera, M. L. et al. Early cognitive impairment behind nigrostriatal
circuit neurotoxicity: are astrocytes involved? ASN Neuro 12,
1759091420925977 (2020).

39. Funahashi, S. & Andreau, J. M. Prefrontal cortex and neural
mechanisms of executive function. J. Physiol. 107, 471–482 (2013).

40. Hallett, M. &Wu, T. The cerebellum in Parkinson’s disease.Brain 136,
696–709 (2013).

https://doi.org/10.1038/s41531-024-00828-6 Article

npj Parkinson’s Disease |          (2024) 10:218 10

www.nature.com/npjparkd


41. Huang, C. et al. Metabolic brain networks associated with cognitive
function in Parkinson’s disease. NeuroImage 34, 714–723 (2007).

42. Zhan, Z. W. et al. Abnormal resting‐state functional connectivity in
posterior cingulate cortex of Parkinson’s disease with mild cognitive
impairment and dementia. CNS Neurosci. Ther. 24, 897–905 (2018).

43. Goldman, J. G., Williams-Gray, C., Barker, R. A., Duda, J. E. & Galvin,
J. E. The spectrum of cognitive impairment in Lewy body diseases.
Mov. Disord. 29, 608–621 (2014).

44. González-Redondo, R. et al. Grey matter hypometabolism and
atrophy in Parkinson’s disease with cognitive impairment: a two-step
process. Brain 137, 2356–2367 (2014).

45. Crucian, G. P. & Okun, M. S. Visual-spatial ability in Parkinson's
disease. Front Biosci. 8, s992–s997 (2003).

46. Silbert, L. C. & Kaye, J. Neuroimaging and cognition in Parkinson’s
disease dementia. Brain Pathol. 20, 646–653 (2010).

47. Pievani, M., de Haan, W., Wu, T., Seeley, W. W. & Frisoni, G. B.
Functional network disruption in the degenerative dementias. Lancet
Neurol. 10, 829–843 (2011).

48. Nelson, A. J. & Chen, R. Digit somatotopy within cortical areas of the
postcentral gyrus in humans. Cereb. Cortex 18, 2341–2351 (2008).

49. Foo, H. et al. Progression of subcortical atrophy in mild Parkinson’s
disease and its impact on cognition. Eur. J. Neurol. 24, 341–348
(2017).

50. Mavridis, I. N. & Pyrgelis, E. S. Nucleus accumbens atrophy in
Parkinson’s disease (Mavridis’ atrophy): 10 years later. Am. J.
Neurodegener. Dis. 11, 17–21 (2022).

51. Planche, V. et al. Anatomical predictors of cognitive decline after
subthalamic stimulation in Parkinson’s disease. Brain Struct. Funct.
223, 3063–3072 (2018).

52. Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a
neuromodulator: cholinergic signaling shapes nervous system
function and behavior. Neuron 76, 116–129 (2012).

53. Valkenborg, D., Rousseau, A. J., Geubbelmans, M. & Burzykowski, T.
Support vector machines. Am. J. Orthod. Dentofac. Orthoped. 164,
754–757 (2023).

54. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s
disease.Mov. Disord. 30, 1591–1601 (2015).

55. Litvan, I. et al. Diagnostic criteria for mild cognitive impairment in
Parkinson’s disease: Movement Disorder Society Task Force
guidelines. Mov. Disord. 27, 349–356 (2012).

56. Emre,M. et al. Clinical diagnostic criteria for dementia associatedwith
Parkinson’s disease.Mov. Disord. 22, 1689–1707 (2007).

57. Bušková, J. et al. Validation of the REM sleep behavior disorder
screening questionnaire in the Czech population. BMC Neurol. 19,
110 (2019).

58. Giladi,N. etal.Constructionof freezingofgaitquestionnaire forpatients
with Parkinsonism. Parkinsonism Relat. Disord. 6, 165–170 (2000).

59. Tanaka, T. [[Fundamentals] 5. Python+scikit-learn for Machine
Learning in Medical Imaging]. Nihon Hoshasen Gijutsu Gakkai Zasshi
79, 1189–1193 (2023).

60. Lundberg, S.M. et al. From local explanations toglobal understanding
with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

Acknowledgements
This studywas fundedby theAppliedBasicResearchFoundationofYunnan
Province [Grant numbers 202301AS070045, 202101AY070001-115];
National Natural Science Foundation of China [Grant number 81960242];
The Major Science and Technology Special Project of Yunnan Province
[Grant number202102AA100069]; The Innovative TeamofYunnanProvince
[202305AS350019]; Shaanxi Provincial Natural Science Basic Research
Program [Grant number 2024JC-YBQN-0822].

Author contributions
Conceptualization: Z.Y.Y., W.F., P.A.L., and Y.X.L. Supervision: P.A.L. and
Y.X.L. Data curation: N.P.P., L.K.L., Z.Y.F. and Z.L.F.Writing—original draft:
Z.Y.Y. and W.F. Review and editing: L.B., R.H., X.Z., P.A.L., and Y.X.L.
Investigation: Z.Y.Y., W.F., N.P.P., L.K.L., L.B. and R.H. All co-authors read
and approved the document.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Ailan Pang or Xinglong Yang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41531-024-00828-6 Article

npj Parkinson’s Disease |          (2024) 10:218 11

http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjparkd

	Multimodal neuroimaging-based prediction of Parkinson&#x02019;s disease with mild cognitive impairment using machine learning technique
	Results
	Analysis of clinical data and plasma features
	Analysis of neuroimaging features
	T1 features
	Rs-fMRI features
	Evaluation outcomes of the SVM classifier
	Features impacting PDNC and PDMCI classification


	Discussion
	Methods
	Participants
	Clinical scale evaluation
	Collection and analysis of blood samples
	Acquisition of neuroimaging data
	Preprocessing of neuroimaging data
	Compute the indicator of the Rs-fMRI
	ML
	Extraction of neuroimaging features
	Feature selection
	Model establishment and evaluation
	Model interpretation

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




