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A B S T R A C T

Exposure to saline environments significantly hampers the growth and productivity of oil crops, harmfully
affecting their nutritional quality and suitability for biofuel production. This presents a critical challenge, as
understanding salt tolerance mechanisms in crops is key to improving their performance in coastal and high-
salinity regions. Our content might be read more properly: This review assembles current knowledge on
protein-level changes related to salinity resistance in oil crops. From an extensive analysis of proteomic research,
featured here are key genes and cellular pathways which react to salt stress. The literature evinces that cutting-
edge proteomic approaches − such as 2D-DIGE, IF-MS/MS, and iTRAQ − have been required to reveal protein
expression patterns in oil crops under salt conditions. These studies consistently uncover dramatic shifts in
protein abundance associated with important physiological activities including antioxidant defence, stress-
related signalling pathways, ion homeostasis, and osmotic regulation. Notably, proteins like ion channels
(SOS1, NHX), osmolytes (proline, glycine betaine), antioxidant enzymes (SOD, CAT), and stress-related proteins
(HSPs, LEA) play central roles in maintaining cellular balance and reducing oxidative stress. These findings
underline the complex regulatory networks that govern oil crop salt tolerance. The application of this proteomic
information can inform breeding and genetic engineering strategies to enhance salt resistance. Future research
should aim to integrate multiple omics data to gain a comprehensive view of salinity responses and identify
potential markers for crop improvement.

1. Introduction

Oil crops, such as soybeans, palm, and rapeseed, are invaluable not
only for biodiesel production but also for their nutritional contributions,
as they provide essential proteins and minerals crucial for both human
and animal diets. They are a cornerstone of the global biofuel and food
industries. The current global market value of these crops is estimated at

approximately USD 265 billion.1 This reflects their immense economic
significance, with oilseeds processed into vegetable oils and oil meals,
the latter being a critical protein source for livestock. Furthermore,
oilseeds’ role in biodiesel production highlights their importance in the
renewable energy sector, helping meet the rising global demand for
sustainable energy sources. Oil crops also contain vitamins that help
maintain good health, and they contain high amounts of dietary fibre
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beneficial to the digestive system. After cereals, they represent the sec-
ond most important component of the agricultural economy within the
field crop sector. However, these crops face threats from various biotic
and abiotic stresses that limit photosynthetic rates and overall produc-
tivity. Among the most harmful are Fusarium spp., fungi that cause a
range of diseases, leading to substantial economic losses globally.2

Abiotic stresses, particularly salinity are one the most significant
problems for plant production as global food demand increases. At the
whole plant level, these stressors result in slow early growth and
reduced total productivity of a plant. A significant reduction in growth,
oxidative damage and decreased photosynthesis at the plant level are
major phenotypes for yet unchartered mechanisms of silencing.3 As it is,
the diet of an ever-growing world population faces challenges made
worse by global effects such as salinization that are degrading arable
land.4 Traditional breeding methods have struggled to improve crop
yield under saline conditions because salinity tolerance is controlled by
multiple genes, each contributing to different physiological, biochem-
ical, and molecular responses. Salinity impacts various processes, such
as water uptake, ion homeostasis, and metabolic pathways, which
makes it difficult to isolate and breed for just one trait. This complexity
means that simply selecting crops based on one or two genes does not
significantly improve overall salt tolerance. As a result, researchers are
turning to more advanced techniques, such as molecular breeding, gene
editing (e.g., CRISPR), and biotechnological approaches, to target mul-
tiple genes and pathways simultaneously for better results.5 These three
salinity effects reduce water potential, cause ion imbalance or disrupt
ion homeostasis, and cause toxicity. Early growth is slowed and plant
productivity is limited as a result of the altered water status. The
negative effect manifests itself at the plant level as plant mortality or a
decrease in productivity. Salt stress disturbs all critical processes, such as
plant yield, oxidative damage, photosynthesis, growth, water balance,
and nutritional imbalance. Providing enough food for the expanding
population is directly hampered by the shortage of arable land caused by
salinization. Growing species that cannot just tolerate high salinity
levels but also sustain optimal production levels in the presence of salt is
thus necessary. However, attempts to raise crop yield under the impact
of salt have typically been unsuccessful due to the multigenic and
quantitative character of halotolerance. This has motivated researchers
to combine both conventional breeding techniques and cutting-edge
biotechnological strategies to increase crop adaptability to salt stress.
Conventional methods include selective breeding and cross-breeding,
where salt-tolerant varieties are developed by gradually selecting
plants with better traits. On the other hand, cutting-edge approaches
involve molecular breeding, genetic engineering (e.g., CRISPR/Cas9),
and the use of omics technologies (such as genomics and proteomics) to
identify and manipulate genes involved in stress tolerance. These com-
bined methods enable a more comprehensive approach to improving
crop resilience to saline conditions. The observable changes in plants
under stress are closely linked to shifts in protein accumulation. Salt-
tolerant canola breeds, for instance, do not experience significant re-
ductions in leaf weight and plant height, which are typically associated
with decreased chlorophyll concentrations under increasing salinity.
These cultivars accumulate proline in their roots, a response linked to
improved salt tolerance.6 We can learn a lot about the mechanisms
behind plant tolerance or resistance from studies of in what form plants
react to protein-level stress. Salt-tolerant canola breeds do not experi-
ence this loss in leaf weight and plant height, which is caused by the
decrease in chlorophyll concentration with increasing salinity. Canola
cultivars that are resistant to salt accumulate proline in their roots,
whereas salt-sensitive cultivars accumulate it in their shoots.7 Improving
salinity and temperature tolerance is one of the main targets for future
plant breeding. For example, organisms that can survive well under the
extreme environment of high temperatures have evolved a special
mechanism for protection and stress adaptation by producing heat shock
proteins (HSPs). Previous research on HSPs has also found that the
presence of specific proteins, such as sti1 in response to salinity was

associated with a tougher plant.8 Salt-stressed plants change their gene
expression drastically in order to be able to live under challenging
conditions. Plants experiencing salt stress have changes in gene
expression on a large scale (transcriptome, proteome, and/or metab-
olome) later on. Stress proteome research has shown that stress condi-
tions induced aggregation patterns of proteins differ drastically, which
provided new information on stress-responsive mechanisms in plants.9

Of all environmental threat variables, the most dangerous element
limiting agricultural output is salinity. Salinity tolerance is one of the
measurable traits among species, and this trait is controlled by a number
of genes in plants.10 Numerous genes involved in transcription control,
signal transduction, ion transport, and metabolic balance have been
found and characterized in the last ten years that affect salinity resis-
tance in plants, including rice.11 Importantly, salinity stress not only
induces the expression of certain genes but also represses others,
depending on the plant’s adaptive responses.

Studying molecular processes including plant development, the
framework of its genome, and interactions with its environment are the
goals of plant molecular biology.12 These in-depth multidimensional
studies call for extensive testing tying together the entire genetic,
functional, and structural elements. ’Omics’ techniques are frequently
employed in several fields of crop plant study, including rice. As tech-
nology developed over the past ten years, these methods quickly
improved. The next part explains how ’omics-focused’ methods have
aided in identifying and analysing the mechanism underlying rice’s
tolerance to salinity as well as in creating some salt-tolerant germ-
plasms.13 The most concise and straightforward method of explaining
the function of the gene related to a specific protein is through its study.
However, it should be noted that an organism’s proteome and genome
do not necessarily interact directly.14 Thus, the study of genomes is just
as important as research conducted at the proteome levels. The study of
proteins provides a framework for analysing complicated biological
processes that involve a large number of proteins along with a matrix of
interactions between those proteins. The principal method for revealing
the molecular mechanisms involved in interactions between plants and
various stressors, including salt stress, is proteomics.15 Stress from salt
causes the expression of certain genes, which is ultimately reflected in
the protein profile. Proteomic research in several rice tissue components
has expanded the role of salinity. It has been demonstrated that the focus
of the current rice proteome investigations has been on the identification
of polypeptides based on their availability when subjected to various
stressors.16 It was discovered that the complicated physiological reac-
tion data from the proteomics study changed depending on how severe
the stress was, which complicated the data evaluation and analysis
integration. Post-translational modification (PTM) may now be used as a
replacement to study the activities of stress signalling.17 It has been
possible to recognize PTM in plants using a variety of methods. Several
gel-free techniques for proteome differential analysis have also been
discovered. Examples include: Using a multidimensional protein iden-
tification method without band broadening for chromatographic
recognition, it is possible to successfully identify individual protein
components,18 and affinity tags with isotope-coded.19 These strategies
are seen as targeted tools for identifying changes in proteins caused by
mass difference means across various proteomes.

Proteome analysis is among the methods most frequently employed
for investigating how plants react to environmental stresses is important
because it allows for easy protein extraction, generates highly repro-
ducible two-dimensional electrophoresis gels, and provides high sensi-
tivity in protein sequencing using mass spectrometry (MS).20 Proteomic
studies on the expression of proteins under salt stress have been per-
formed in crops such as rice,21 potato,22 soybean,23 and Chinese foxtail
millet,24 this may give a more accurate assessment of cellular activities
when salt stress is present. Early studies have shown that these pro-
teins,25 oxidative stress-scavenging enzymes [for example, reactive ox-
ygen species (ROS) up-feathered enzyme,26 and defence proteins27; may
be essential molecular markers of increased salt tolerance. By employing
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the keywords “proteomics,” “salinity stress,” “oil crops,” and “tolerance”
in databases such as PUBMED, Scopus, and Web of Science (WoS), and
publishers like Taylor and Francis Online, Wiley, and Elsevier recent
literature from the past decade was reviewed to advance the develop-
ment of strategies for enhancing salinity tolerance in oil crops.

1.1. Salinity stress: Effects and mechanisms

Alterations-related salinity is induced in signalling pathways; sig-
nalling of growth hormone, biosensors and ion channels, besides the
expression of ion transporter genes in crop plants.28–31 Photosynthesis
plays a crucial function in producing adenosine triphosphate (ATP),
essential for CO2 fixation into sugars. However, various abiotic stresses
disrupt photosynthetic processes.32–33 For example, the stresses can
induce lumen membrane damage and interfere with electron transport
chain (ETC) / respiratory complexes; they disrupt enzymatic activity
and protein synthesis pathways as well as breakdown of the Calvin cycle.
Such perturbations are considered to lead to a disruption in ATP syn-
thesis34 and then shift towards hydrolysis, a response that might even-
tually lead to ion deficiency because of both suppression and
synthesis.35

Recent studies have observed a decrease in cucumber leaf water
content following exposure to saline solutions. This decline was attrib-
uted to elevated Na levels and reduced K, which hinder photosynthesis
due to Na’s competitive uptake for ions. Gas exchange decreases with
the increase in the concentration of Na and Chloride ions, including
transpiration, light-dependent sugar photosynthesis output, and sto-
matal conductivity due to highly saturated conditions.36 Similarly,
pepper plants exhibit reduced photosynthesis when subjected to a
complete root system to partial exposure.37 Stomatal conductance,
crucial for photosynthetic efficiency and biomass production, is nega-
tively affected by the salt challenge.38 Salinity-induced reductions in the
maximum quantum efficiency of photosystem II (PSII) have been
documented.39 Besides, the high salt concentration also disrupts
photosynthesis by non-stomatal restrictions involving inhibition of
various enzymes present in the photosynthetic pathway and decreased
chlorophyll a, b, or total carotenoids.40 Chlorophyll degradation under
salt stress is linked to chlorophyllase activity and the absolute concen-
trations of chloride and Na.41 Additionally, carotenoid content decreases
under salinity, while anthocyanin levels typically rise. Plant-derived
antioxidants, including secondary metabolites like phenolic com-
pounds, play crucial roles in stress adaptation. Tocopherol stabilizes
membrane integrity and acts as a signalling molecule,42 while ascorbic
acid scavenges ROS.43 It was shown that the abundance of carotenoids is
decreased by ROS, and this carotenoid-rich bee pollen can be used as a
shield against them.44 Supplementation of Putrescine improves salt
tolerance in Indian mustard by enhancing carotenoid and glutathione
contents while maintaining higher membrane stability.45 Paramount
physiological responses indirectly associated with salinity stress include
evaporation and plant transportation, which can be ameliorated by
beneficial bacteria.46 In addition, the increased salinity induced by NaCl
treatment promotes spermine and spermidine accumulation to favour
salt tolerance induction but also enables better fruit quality.47–48

1.2. Ionic toxicity: The salt-specific effect on plant cells

Under saline conditions, salinity stress induces ionic imbalances
leading to disruptions in cellular respiration, carbon assimilation, and
root system organization due to the inhibition of the uptake of essential
minerals by plants. Salinity strain produces an imbalance of electrolytes
fundamentally affecting different plant aspects due to disruption in
various cellular metabolic pathways, light-dependent reactions, and
root architecture by reducing the uptake of essential mineral elements
under saline conditions.49 To cope with salinity stress, plants have
developed elaborate strategies to regulate cellular ion distribution,
which involves controlling the uptake and compartmentalization of

ions, but these efforts are thwarted by a variety of factors. Plants have
evolved mechanisms for maintaining cytoplasmic ion homeostasis by
controlling both ionic uptake and compartmentalization to survive
salinity stress.50 For this purpose, ion homeostasis is an important and
very dynamic process, which has to establish a gradient between the
milieu of the organism in order to allow the uptake of essential ions
while enabling detoxification by excreting toxic ones. Maintaining ho-
meostasis is a basic and active process in plants where they absorb
needed ions but excrete toxic ones at a high energetic cost.51–54 In roots,
Na movement from soil to shoots occurs first following an apoplastic
(space between cells) pathway, later using the symplastic mechanism
throughout an epidermal layer, and is loaded into xylem tracheids.
Transport of sodium from the plant base to the apex follows an extra-
cellular route, changing to the symplast in the root epidermis, and
finally xylem tracheids before reaching shoots and leaves where symp-
toms are most visible.55 In the cytoplasm, plants must deal with sodium
and its toxic effects by keeping Na+ out of their living tissues, as well as
exporting Na+ or storing it in vacuoles. Plants have developed strategies
to protect the cytoplasm from the toxic effects of Na+ by (i) decreasing
net influx and increasing efflux out of cells; or (ii) compartmentalization
in vacuoles.56

1.3. Strategies plants employ to combat salinity stress

Achieving salt tolerance involves controlling cytoplasmic ion con-
centrations, osmotic adjustment, and enhanced antioxidant metabolism,
such as increased ROS scavenging capability Plants have developed
adaptable mechanisms to address salinity stress through alterations at
the molecular physiological, biochemical and morphological levels.9,57

Moreover, many genes and transcription factors (TFs) specific to salinity
stress are upregulated upon exposure, facilitating plant adaptation to
saline environments (Fig. 1). Many genes and TFs specific to salinity
stress are upregulated upon exposure, facilitating plant adaptation to
saline environments.

Plants have developed adaptable strategies to address salinity
distress through molecular, biochemical, structural, and physiological
alterations. When exposed to salt stress, they can mitigate damage either
by reducing the concentration of salt ions to a tolerable level or by
enhancing their resistance to salt stress.58 Plants employ four primary
strategies to avoid salt-induced injury: excess salinity, plants use tech-
niques including sodium expulsion, saline diffusion, ion accumulation,
and salt blocking. Salt secretion, typically seen in halophytes, involves
maintaining ion balance by excreting excess salt through specialized salt
glands. Plants dilute internal salt levels with abundant water uptake or
cell expansion. Salt accumulation is characterized by the sequestration
of excess salt into the vacuoles to protect other cellular components. Salt
exclusion involves plants using specialized structures to keep salt out of
tissues. To avoid salt-induced injury, plants developed four major stra-
tegies: 1) salt excretion, 2) salt reduction, 3) salt accumulation, and 4)
salt exclusion. For example, the excretion of salt in halophytes is a case
where osmoregulatory requirements are met by maintaining ionic ho-
meostasis through secreting excess salts via specialized glands for Na+.
Salt dilution: plants absorb a large quantity of water, or cell size expands
to dilute the internal salt levels. Salt accumulation defends the other
cellular structures from damage by archiving extra salt in vacuoles. Salt
exclusion is where plants use special structures that help stop the salt
from entering their tissues.59 The genetic makeup of an organism re-
mains largely consistent over time, with transcription being subject to
various regulatory mechanisms. However, information regarding regu-
latory processes or alterations occurring after translation cannot be
directly inferred from transcript expression alone. To address this, pro-
teomic analysis, which involves the identification quantification reveals
the molecular processes that drive plant answers to environmental
constraints and elucidates the molecular mechanisms to recognize,
respond, and adapt to these stresses.58,60 Following translation, proteins
undergo diverse modifications that influence their functionality, and
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some proteins are enzymatically degraded upon completing their tasks.
Consequently, comprehensive insights into functional gene expression
patterns can only be obtained through proteomic investigations.61

Quantitative assessment of protein levels is crucial for understanding
how plants react to specific environmental challenges, including salt
stress stressors such as salt stress.62

1.4. Introduction to proteomics and its significance in stress research

Technological advancements in conventional plant-breeding
methods have revolutionized approaches to crop improvement.
Abiotic and biotic stresses restrict plant growth, leading to reduced crop
yields.63 Genomically-encoded proteins are crucial for plant endurance
and adaptation to varying environmental conditions.64 Biotechnological
applications in plant breeding depend significantly on insights from
proteomic research. Proteomics offers unique advantages in assessing
PTMs, revealing their functional impact on plant production. Cyto-
plasmic proteomic findings help elucidate precise cellular responses and
interconnections among organelles throughout the plant life cycle and
responses to biotic/abiotic stresses. Significant advancements in MS,
sample extraction techniques, systematic software, and genome avail-
ability for various plant species have enabled large-scale plant proteo-
mic studies, providing an inclusive understanding.65

Examining drought and its implications for global food security is
crucial.66 Drought induces oxidative stress by generating excessive ROS,
which causes plasma membrane damage and activates multiple stress-
signalling pathways, including those mediated by ROS, Ca2

+, and

hormones. Mian plant action against drought stress involves root
growth, turgor loss, and photosynthesis.67 Viable genetic improvement
can be accomplished via effective genomic methods and gene-editing
techniques like TALENs facilitating the characterisation of stress-
related genes identified from potential gene candidates.68 This sophis-
ticated data integration has the potential to reveal regulatory networks
and pinpoint key master regulators.

Integrative data analysis is being robotically reinvented alongside
advances in technology, even if slowly advancing the biological mind-
scape of all plant species. In recent years, proteomics has been widely
applied in crop plants to better understand their responses and perfor-
mances in an ever-changing global environment.69 The proteome is
highly dynamic in any given cell, tissue, or organ with respect to tem-
poral and spatial changes. In summary, plant protein modifications and
interactions/network topology alterations are dramatically different
among developmental stages or physiological conditions.70 Proteome
analysis has developed substantially, and according to tools, techniques
protocols, instrumentations as well bioinformatics applications have
been modified in case of continuously emerging new trends.71

The complexity of plant cell proteins, which number in the thousands
with vastly differing abundances, poses challenges for comprehensive
coverage.72 Detailing the configurational organization73 of a variety of
subcellular compartments with proteomics, circumventing traditional
organelle purification. This event of subcellular proteomics has the
ability to identify compartment-specific responses and cross-
compartmental crosstalk observed in plant development, and abiotic
stress pathways.74,75 A comprehensive understanding of molecular-level

Fig. 1. Illustrates plant reaction to salt-related stress, covering physiological, biochemical, molecular, and morphological aspects, along with effects on germination
and crop productivity. Physiological responses include reduced photosynthesis, water content, growth, and leaf senescence. Biochemical responses involve increased
antioxidants, Na+ transport, phytohormone induction, and oxidative stress. Molecular responses include stress-responsive genes, salt uptake, ion transport, and cell/
tissue growth. Germination is affected by reduced alpha-amylase, protease, and water uptake. Morphological responses include stunted growth, leaf chlorosis, and
low tillering. Crop productivity suffers from yield reduction, lower growth rate, grain quality, biomass, and root/shoot length. These complex adaptations affect
agricultural productivity.
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mechanisms is crucial to grasping stress-related protein regulation in
crops holistically. PTMs play central roles in cellular signalling events.
PTM crosstalk finely tunes cellular responses to environmental
changes,76 regulating protein activity, localization, and interactions
across various cellular processes, intricately modulating plant responses
to external stimuli.77 PTMs like dephosphorylation, phosphorylation,
glycosylation, and ubiquitination regulate abscisic acid (ABA) signal-
ling, aiding crop adaptation to stressful environments.78

1.5. Key proteins and pathways related to salinity tolerance

In response to salinity stress, plants accumulate various proteins.
Typically, plant tissues react to salt stress by breaking down proteins
related to salt stress.79 It was also found that salt-tolerant cultivars of
many plants, including sunflowers express a larger number of proteins
than salt-sensitive ones. This indicates that even a small amount of salt
removes more proteins from the soluble fraction in cholera seedlings
with regard to sunflower plants. Comparing plant species like sunflower
and coriander further supports this fact; the level and type, not quantity,
are fully responsible for the overall solubility of protein against NaCl
stress.80 In the modern days, different types of cutting-edge proteomic
techniques such as Tandem Mass Tagging (TMT) and Isobaric Tags for
Relative and Absolute Quantitation (iTRAQ), Data-Independent Acqui-
sition (DIA) for total proteome coverage have been adopted in plant
research alongside specialized branches within proteomics including
phosphoproteomics and glycoproteomics. For instance, single-cell pro-
teomics, spatial proteomics as well degradome profiling. Interactome
analysis is useful for mapping out protein–protein interactions, while
targeted proteomics methods like selected reaction monitoring (SRM)

and parallel reaction monitoring focus specifically on certain proteins.
Meanwhile, Stable Isotope Labeling (SILAC) is finding its way into the
field allowing for accurate quantification in plants. These strategies are
useful for studying plant biology in combination with responses to
different environmental stimuli. These methods, combined with bioin-
formatics tools, assist in identifying proteins specifically associated with
salt stress. Proteins that react to salt stress are vital for various functions,
including salt-responsive proteins which play crucial roles in various
biological processes, including stress signal transduction, transcription
regulation, protein metabolism, osmotic balance, ion regulation, ROS
management, photosynthesis, carbohydrate and energy metabolism,
and the maintenance of the cytoskeleton and cell wall.25 These proteins
are found in various plant tissues such as roots, shoots, seedlings and
mature leaves (vegetative parts), flowers and seeds (reproductive or-
gans) or other detectable metabolites from plant callus tissue suspension
cultures. It also covers the analysis of other subcellular organelles and
membrane systems, which will be a future topic to cover in another
article as this is outside the scope of current reviews focused on plasma
membranes (Fig. 2)..81 The differential expression of salt stress-
responsive proteins includes multiple biological functions with
different post-transcriptional and post-translational regulation.82 These
proteins also act directly to reshape new phenotypic traits that are better
able to acclimate against future salt-exposed conditions via their
involvement in major metabolic pathways. Therefore, the importance of
individual proteins in salt tolerance mechanisms is more than protein
abundance alone. Therefore, the importance of particular proteins in salt
tolerance mechanisms is more than just protein concentration. Func-
tionally, these proteins can be separated into salt-stress proteins that
specifically accumulate under high salinity but not other stress

Fig. 2. Salt Stress-responsive Gene/protein Regulatory Network in Plants. The figure illustrates various molecular components and pathways activated under salt
stress conditions. Key elements include HKT, non-selective cation channels (NSCC), and Na+/H+ Exchanger (NHX1). The SOS pathway is highlighted with com-
ponents such as SOS1, SOS2, and SOS3, along with SOS3-like calcium-binding protein (SCaBP). Calcium-dependent protein kinases (CDPK) and calcium-binding
proteins modulate cellular responses. The role of ROS is mediated by enzymes like peroxidase (POD) and CAT. ABA and phosphatidic acid (PA) are also shown
as important signalling molecules. Calcium transport and signalling are facilitated by autoinhibited Ca2+-ATPase (ACA) and cation/H+ exchanger 1 (CAX1).
Additionally, TFs such as WRKY, MYB, AP2/ERF, bHLH, NAC, and bZIP are involved in stress response regulation. Other important components include potassium
uptake permease (KUP1), transporter protein (TRH1), mitogen-activated protein kinase (MPK6), abscisic acid insensitive (ABI2), vacuolar H+-pyrophosphatase (V-
PPase), ATP, adenosine diphosphate (ADP), and inorganic phosphate/inorganic pyrophosphate (Pi/PPi).
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conditions, and stress-associated proteins induced by oxidative or
nitrosative stresses. Proteins like osmotin in soybean,83 and osmotic-like
proteins in sesame,84 contribute to salt stress osmoregulation. In addi-
tion, several other enzyme complexes are involved in osmoregulation,
such as those that regulate the biosynthesis of soluble sugars.85 Addi-
tionally, proteins like HSPs and late embryogenesis abundant (LEA)
proteins protect cell membranes along with structural and enzymatic
proteins from sodium toxicity related to dehydration due to salinity-
induced osmotic stress.86 In this sense, new works have pointed out
that PTMs are important for salt tolerance due to changes in phos-
phorylation and lysine acetylation states of many proteins acting on
some metabolic pathways related to osmoregulation.87 Furthermore,
ionic homeostasis is maintained as a crucial branch of salt tolerance
through proteins located within the membrane playing key roles in ion
transport and at the cytosolic level participating in intra-cellular
communication.88 These proteins, including receptor-like protein ki-
nases (RLKs) and primary cell wall sensors, regulate salt tolerance
dynamically. Moreover, the involvement of specific proteins in different
metabolic routes is also suggested by organelles as cellular compart-
ments.89 Nevertheless, a protein encoded and isolated from one species
may interact differently in other plant systems because of genetic di-
versity.90 Therefore, a broader physiological and biochemical approach

to the identification of candidate proteins responsible for contributing
towards salt tolerance is very desirable because each protein may have
its individual function required under certain conditions of stress.

1.6. Proteomic findings in canola, soybean, and other oil crops

With the help of proteomics techniques, researchers have discovered
the molecular mechanisms related to stress responses, lipid biosynthesis,
and physiological responses in oil crops. One of the most commonly
employed methods is Isobaric Tags for Relative and Absolute Quanti-
tation (iTRAQ), which allows the quantification of multiple samples at
the same time, making it perfect for stress response comparisons under
different conditions. Two-Dimensional Gel Electrophoresis (2-DE) is
another widely used approach to separate complex protein mixtures and
has been frequently employed to identify stress-induced proteins that
are differentially expressed. Another important technique is Liquid
Chromatography coupled with Mass Spectrometry (LC-MS/MS), offer-
ing high sensitivity in the identification and quantification of proteins
and their modifications. MALDI-TOF/TOF Mass Spectrometry (Matrix-
Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry)
has emerged as the most powerful tool for precise protein identification
and characterization, particularly in extreme environmental conditions.

Table 1
Summary of Plant Proteomic Studies on Salt Stress Responses.

No Plant Proteomic technique Major findings References

1 Sesamum
indicum L.

• iTRAQ
LC–MS/MS

The iTRAQ-based proteomics strategy yielded excellent data quality, demonstrated by
uniform peptide length distribution and precise precursor ion tolerance factors. It also
showed consistent protein quantitation across multiple experiments and repeats.

97

2 Salicornia
europaea

• 2D-DIGE
MALDITOF/TOF-MS
MS/MS

The finding outlines the key steps in calcium signalling that regulate nitrate uptake in
S. europaea responding to salt stress

98

3 Brassica napus • iTRAQ
strong cation exchange (SCX)

fractionation
MS/MS

At the proteomic level, there are some specific proteins and essential signalling pathways that
act as key players in recognizing as well as crosstalk between salt and drought stress response
of plants.

99

4 Sesamum
indicum L.

• iTRAQ
LC–MS/MS
Protein functional classification

The dynamic molecular responses of sesame impose feasibility and underscore the activation
of fundamental pathways for adaptation and viability in saline environments.

100

5 Brassica napus • Two-dimensional gel electrophoresis
MALDI-TOF/TOF

Proteins were encoded by various genes involved in glycolysis, stress response, redox
regulation, energy metabolism, and transport that contrasted in tolerant versus susceptible
genotypes under salt stress conditions indicating several aspects of molecular mechanisms
receiving a salt tolerance.

101

6 Carthamus
tinctorius L.

• Two-dimensional gel electrophoresis
IPG Phor and then analyzed with the

PD Quest™ software package

Salt-responsive proteins in safflower are primarily associated with key physiological
processes essential for adaptation to salinity stress.

102

7 Ricinus
communis

• Phenol method
Two-dimensional gel electrophoresis
In-gel digestion
MALDI-TOF/TOF analysis

This research provided insights into the specialized functions of cotyledons and true leaves
responding to salt stress, emphasizing their unique roles in the overall salt tolerance
mechanism that was activated during the seedling stage of Ricinus communis growth.

103

8 Elaeis guineensis
Jacq.

• SDS-PAGE
LC-MS/MS analysis

Salinity stress can induce complex regulatory mechanisms that affect biological networks at
the levels of transcriptomic, proteomic and metabolomic responses.

104

9 Olea europaea L. • TCA/Acetone-Methanol-Phenol/SDS
SDS–PAGE
nanoLCESI-LIT-MS/MS

The vulnerability of aboveground plant structures to both salinity and drought stressors
highlights the critical role of photosynthesis and associated metabolic pathways in
responding to these environmental challenges.

105

10 Brassica napus • Two-dimensional gel electrophoresis
LC-MS/MS analysis

Under stress, the enzyme activity in the production of energy decreases while it increases the
abundance of Phosphoribulokinase (PRK)

7

11 Brassica napus • nanoLC-MS/MS analysis The bacterial infection of canola roots enhanced salt stress tolerance by upregulating proteins
involved in energy metabolism and cell division.

106

12 Brassica napus • PEG fractionation
SDS-polyacrylamide gel

electrophoresis

The differential responses of antioxidant enzymes, osmoprotectant synthesis, and
mitochondrial function in Hyola308 under varying levels of salt stress, were influenced by
inoculation status.

107

13 Brassica napus • One-dimensional SDS-PAGE
LC-MS/MS of trypsin-digested

proteins

The antioxidative defence system and photosynthesis are vital components contributing to
salt tolerance in canola.

108

14 Carthamus
tinctorius L.

• Two-dimensional gel electrophoresis Salinity stress decreased fresh and dry weights and plant height, whereas proline content was
increased.

109

15 Brassica napus • 2-DE and image analysis
MALDI-TOF/TOF

Both SSA analysis and IPA suggest that the down-regulated brake proteins and JRTPDE3-
metabolism of protein would inhibit protein synthesis and nitrogen transport to sink organs
under salt stress, which agree with conceptions of molecular regulation of post-
transcriptional process in soybean response to high salinity environment.

110

16 Glycinemax (L.) • Orbitrap-Based LC-MS/MS Analysis Verified against published C08 RNA-seq data, the findings highlight the crucial role of solute
transport and detection in regulating salt stress

23
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The proteomic techniques have provided useful insights into stress-
responsive proteins in oil crops such as canola, soybean, and sesame,
enhancing drought or salinity resistance and increasing crop production.
Table 1 shows the applications of these proteomic tools in various
studies to unravel genes implicated in stress tolerance, oil biosynthesis,
and crop enhancement.

Proteomics studies of canola (Brassica napus), soybean (Glycinemax),
and other oil crops have provided essential information regarding the
molecular basis underlying numerous physiological processes, stress
responses, and lipid biosynthesis in these agriculturally important spe-
cies. The use of proteomics techniques has provided insight into the
extensive behaviour of proteins that act during growth, development,
and stress tolerance, hence benefiting efforts to improve crop produc-
tivity.91 One important research area in canola, soybean, and other oil
crops is the regulation of oil biosynthesis and the potential for more lipid
accumulation. Nearly 500 differentially regulated proteins have been
linked to lipid metabolism pathways, including fatty acid biosynthesis,
lipid droplet formation, and oil body biogenesis. Insights into the
functional roles of these proteins have been used to develop genetic
manipulations or breeding strategies for increased oil content and
improved quality in their respective crops.92 Proteomic analysis of
canola, soybean, and other oil crops under abiotic and biotic stress has
been discussed. These crops are usually exposed to stresses like drought,
salinity, heat, or pathogen attacks that can reduce yield and oil pro-
duction. Stress-responsive proteins belonging to signalling pathways,
stress perception, and tolerance mechanisms have been identified in
proteomic studies. One of the key steps is to develop stress-tolerant
varieties that show enhanced resistance to biotic and abiotic environ-
mental adversities.93–94 Proteomic tools were used to survey agronomic
and physiological traits in canola, soybean, and other oil crops. Protein
comparisons in studies between cultivars within the same growth con-
ditions have revealed proteins that are potentially involved with desired
traits such as yield, seed quality, and nutritional properties.95 Proteomic
research has also helped identify potential biomarkers for crop
improvement and quality assessment.96 Proteomic findings have indi-
cated that understanding specific proteins involved in various physio-
logical processes has paved the way for improving stress-tolerance
breeding, enhancing oil content and quality, and achieving higher
agronomic recovery in biofuel crop productivity. Since oil crops provide
essential food and energy resources, further research in this area is
crucial for better understanding crop biology and achieving sustainable
oil crop production.

1.7. Stress-induced proteins and their roles in salinity tolerance

Stress-induced proteins play pivotal activities in aiding plant growth
roles in allowing plants to cope with environmental challenges, partic-
ularly salinity. On the other hand, plants have evolved different strate-
gies to cope with this deleterious condition, involving stress-induced
proteins as key factors in plant adaptive responses against abiotic
stresses, including soil salinity, one of the major threats to global agri-
cultural productivity. Nonetheless, plants have evolved several mecha-
nisms to counteract the deleterious effects of salinity stress, and salt-
responsive proteins play important roles in these adaptive re-
sponses.111 Osmotic adjustment is one of the main tasks of stress-
induced proteins, providing a foundation that permits optimal expan-
sion in saline conditions.112 In reaction to saline conditions under salt
stress conditions undergo osmotic stress because of the elevated level of
salt ions in the soil solution plants experience osmotic stress due to the
high concentration of salt ions in the soil solution, which reduces water
availability to the roots. Stress-induced proteins involved in osmoregu-
lation help plants maintain cellular water balance by regulating the
osmotic potential. Examples of such proteins include osmotin, salt shock
proteins, and osmotin-like proteins, which accumulate in plant tissues
under salinity stress pressure.113 Stress-induced proteins such as ion
transporters, including K+ and Na+ channels and pumps, help regulate

ion fluxes across cellular membranes, thereby maintaining optimal ion
concentrations within the cell. This prevents the toxic buildup of sodium
ions and helps the detrimental on plant physiology.114 Stress-induced
proteins are essential in shielding cellular components from the nega-
tive effects of high salt levels. Elevated salt concentrations lead to
oxidative stress, generating ROS that can harm proteins, lipids, and
nucleic acids. Proteins with antioxidant functions, such as HSPs and LEA
proteins, help neutralise ROS and protect cellular structures, thereby
improving plant resilience to salinity stress Furthermore, stress-induced
proteins play essential roles in protecting cellular components from salt-
induced damage. High salt concentrations can induce oxidative stress in
plant cells, leading to the production of ROS and subsequent oxidative
damage to proteins, lipids, and nucleic acids. Stress-induced proteins
with antioxidant properties, such as HSPs and LEA proteins, help scav-
enge ROS and protect cellular structures from oxidative damage, thus
improving phyto-tolerance to salt-related stress.115–116

1.8. Genes and transcription factors associated with salinity tolerance

Plants have evolved elaborate mechanisms to sense and counter
salinity stress, which include myriad genetic and molecular entities.117

Within these, genes and TFs are key players in the fine regulation of
molecular responses to salt stress, mediating plant tolerance and
adaptability towards salinity conditions. Identification of the individual
gene and TF responsible for salinity tolerance is essential to resolve the
molecular complexity behind this trait, which ultimately leads to the
breeding of salt-tolerant varieties.118 Many gene families have been
recognized to play a vital role in the salinity adaptation process of
plants. These proteins relate to ion channels, transporters, homeostasis,
osmoticum balance, antioxidant defence as well as regulation pathways.

When salinity stress targets plants, the adaptive mechanisms become
complex and consist of various molecular, biochemical, and physiolog-
ical responses. For instance, osmotic stress triggers the trafficking of H
(+)-ATPases to the plasma membrane, leading to the extrusion of toxic
Na(+) through transporters such as SOS1 or sequestration into vacuoles
by NHX transporters.119 Additionally, potassium transporters (HKT)
play important roles in maintaining the balance of K+ absorption and
Na+ exclusion120. Plants maintain osmotic balance by synthesizing
osmoprotectants like proline,121 glycine betaine, and trehalose along
with ion regulation. Antioxidant enzymes such as superoxide dismutase
(SOD), catalase (CAT), and peroxidase (POD) are activated to clear
reactive oxygen species (ROS) and alleviate oxidative stress.122 Stress-
responsive genes, including LEA proteins and HSPs, stabilize cellular
structures under stress conditions.

Transcription factors (TFs) act as master regulators in these pro-
cesses. DREB, AP2/ERF123, bZIP124, NAC125, and MYB126 families adjust
the expression of stress-tolerant genes by regulating osmotic balance,
ROS detoxification, and ion transport. For example, WRKY8 regulates
ion homeostasis by managing antiporters like NHX and interacting with
jasmonic and salicylic acid pathways. Finally, aquaporins such as PIP1
and PIP2 are critical for water transport and maintaining osmotic bal-
ance under salinity stress, though chronic salt exposure reduces their
activity.127 Ultimately, these interconnected pathways help plants
become more resistant to salinity and other environmental stresses.

2. Breeding and genetic engineering approaches for enhanced
tolerance

Methods of improvement breeding and gene manipulative tech-
niques. The biosynthesis of plants modified in terms of gene TFs, using
transformation with vectors carrying genes encoding respective TFs, has
already been reported to become tolerant to salt. This is important for
integrating salt-sensory pathways with the large repertoire of genes
involved in plant adaptation to salinity.128–129 These genes play a car-
dinal role in plant abiotic stress tolerance, involving diverse challenging
elements like salinity! Several studies were reported for drug-resistant
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plants with modified TF gene regulation that resulted in increased salt
tolerance supremacy in them. These may be expressed and responsible
for plant stress responses.130 Earlier studies in different plant species
have demonstrated the synergistic role played by TFs and promoter
regions on gene expression which is imperative for salt stress tolerance.
For instance, transgenic Oryza sativa lines with heightened expression of
OsDREB2A exhibited enhanced tolerance to salinity to their wildtype
counterparts.131 Furthermore, transgenic Arabidopsis plants expressing
TF genes displayed improved growth under salt, drought, and temper-
ature.132 In another study, overexpression of the HhBREB2 gene, a
member of the AP2/EREBP TF family isolated from Halimodendron
halodendron, bolstered salt and drought tolerance in Arabidopsis,
underscoring its significance in salinity-associated signalling.76 MYB-
type TFs, exemplified by OsMYB2 in rice, have also demonstrated effi-
cacy in enhancing resistance to various stresses such as salinity, low
temperature and dehydration.133 Moreover, abiotic stress responses,
such as salinity and drought, are mediated by the action of No Apical
Meristem (NAC) proteins, initially characterized for their roles in plant
development. In oil crops, such as soybean and rapeseed, the over-
expression of NAC genes has shown promise in enhancing tolerance to
both salt and drought stresses. For instance, the transformation of soy-
beans with stress-responsive NAC genes, like GmNAC20, has demon-
strated improved growth under saline conditions.134 Similarly,
overexpression of NAC genes in oilseed rape has led to increased toler-
ance to salt stress, higher crop yield, and improved water-use effi-
ciency.135 These responses include maintaining plant growth, reducing
water potential, and regulating ion transport, particularly Na+ and Cl− ,
which play a significant role in plant stress tolerance. While Cl− is
necessary at low concentrations, its toxicity at higher levels can intensify
stress, further underlining the importance of ion transporters and
aquaporin channels as key targets for enhancing oil crop resilience.

Upon uptake by outer root cells, Na+ and Cl− ions traverse to the root
xylem before reaching the stem, where they can be kept in between
apoplastic spaces. Some salt-tolerant species excrete these ions through
specialized structures like glands or bladders. Salt tolerance mechanisms
encompass various strategies, including the synthesis of osmopro-
tectants, compatible solutes, and antioxidants to mitigate ion-induced
stress. However, their production incurs high energy costs, potentially
impacting crop yields.136 Under salt stress, mainly restricts Na+ and Cl−

uptake/transport while keeping homeostasis of beneficial ions like K+,
required for normal growth.137 The plasma membrane’s transportation
process of Na+/H+ antiporters and intracellular compartmentalization
take place to exclude ions from cells.138 Moreover, other regulatory
networks like the SOS system and PM H+-ATPases H+/pyrophospha-
tases for ion regulation/exclusion contribute to this process. Moving
forward, clever genetic editing approaches toward ion transport com-
ponents with less negative fold-effects on development might be pros-
pects for improved salt tolerance in crops. Because of such complexity in
the determination of plant micronutrient requirements and speciation
during uptake, it is essential to match these data with specific ion uptake
systems through understanding tissue- or developmental stage-specific
expression patterns and by careful genetic engineering. Continued
investigation in this field is highly important to clarify the individual
functions of transporters and develop strategies for enhanced salt-stress
resistance.139

2.1. Ion transport and salt stress tolerance

Salt stress may cause changes in intracellular levels of Na+ concen-
tration mediated by various proteins or pathways; for example, the
plasma membrane proton pumps (H+-ATPases) contribute to main-
taining plant salt tolerance by transporting ions from cells. The principal
H+ ATPase pumps aid in creating electrochemical potential gradients
that are crucial for multiple physiological functions. These processes,
such as regulating stomatal pores, phloem loading, and cell enlarge-
ment, are mediated by different signalling cascades of ABA to facilitate

nutrient uptake through roots. Transgenic strategies targeting H+ pump
genes indicate significant applications in improving the salt stress
tolerance of various plant species. Researchers try to adjust the expres-
sion levels or activities of these pumps, hoping that they will facilitate
ion transport and prevent cellular ionic imbalances, thereby increasing
biomass under salinity. This mechanism, awaiting deeper molecular
clarification (the H+ pump-related salt stress tolerance), could easily be
utilized to produce alkali-resilient crops.

2.2. Na+ transport in chloroplasts and salt stress adaptation

The transport of Na + in chloroplasts is essential for photosynthesis
and tolerance to salinity stress. Import of Na(+) into chloroplasts pro-
vides the driving force for the production of phosphoenolpyruvate
(PEP), an essential substrate in photosynthetic carbon dioxide fixation.
This process is performed by a Na+/pyruvate symporter, BASS2, which
co-transports Na+ and pyruvate into the chloroplasts. Meanwhile, so-
dium leaves the chloroplasts by a sodium transporter, NHD1. Chloro-
plast Na + transport and its relation to photosynthesis in higher plants
play a crucial role.140Na+ is also moved into chloroplasts to support the
synthesis of PEP required for the fixation of CO2 in plants during
photosynthesis. Knockout mutants of vacuolar Na+/H+ antiporter NHD1
in Arabidopsis thaliana that were impaired for Na+ export also showed
down-regulation of photosynthesis, resulting in reduced tolerance under
salt stress.141 his further underscores the significance of Na + homeo-
stasis inside chloroplasts for plant performance. Halophytes (salt-
tolerant plants) overcome stomatal limitations by employing CO2-
concentrating mechanisms in saline environments. In addition, it has
been shown that the influx of Na+ in the chloroplast stroma might be
needed for grana formation, which could explain why halophytes simply
increase the number of chloroplasts per cell.142 Additionally, tonoplast-
localized K+ channels such as TPK1 and TPK3 are involved in mediating
the intracellular pools of K+/Na+ ratios.143 Deciphering the fine mo-
lecular machinery on how transporters mediate cations and anions
movement across chloroplast envelope membranes as well as thyla-
koids, keeping a balance toward PSII activities under salt stress condi-
tions would be vital for unveiling plant response to salinity stress at the
molecular level and breeding salt-tolerant crops.144 Potassium (K+)
transporters are essential for plant metabolism since their function is
linked with intracellular K + balance and salinity-related stress. PM-
localized H + pumps (proton ATPase) maintain the membrane poten-
tial that allows influx transport of K through voltage-gated channels and
exclusion Na via cytoplasmic-membrane localized Na+/H-exchangers
like SOS1 which also aide in nutrient uptake as seen with sulfate
transporter SULTR4;2 loss-of-function mutant roots enhance sodium
deposits but are impaired in sulfur absorption1.145

Calcium channels with increased K+/Na+ selectivity, found in salt-
tolerant plants like Thellungiella salsuginea, contribute to improved salt
tolerance by reducing Na + uptake.146 Targeting these channels to
restrict Na+ uptake can benefit K+/Na+ homeostasis without affecting
the negative membrane potential, allowing selective K+ uptake via
inward-rectifying K+ channels.147 Other membrane proteins from the
high-affinity K+ transporter (HKT) family may be able to facilitate the
the influx of Na+ ions into root cells.148 Genetic modification of HKT1
(now HKT2;1) can enhance K+/Na+ selectivity and salt tolerance.149

Halophytes can tolerate salt by maintaining high K+ uptake while
restricting Na+ influx into root cells.150 Despite genetic modifications of
multiple ion transport components to enhance salinity resistance.151

Targeting these systems alone or in combination to improve salt toler-
ance remains a significant challenge in plant biotechnology.

2.3. RNA interference approaches to produce salt-tolerant plants

RNA interference (RNAi) is a powerful tool for targeted silencing or
modifying gene expression in plants, including for improving salt
tolerance. This process involves small RNA molecules, such as

S. Alrajeh et al. Journal of Genetic Engineering and Biotechnology 22 (2024) 100432 

8 



microRNAs (miRNAs), which can precisely silence targeted genes
without affecting the expression of other genes. miRNAs are produced
from double-stranded RNAs cleaved by enzymes like DICER or DCL,
leading to RNAi.152 They are key players in epigenetic regulation of gene
expression and imprinting, genome stability and heritable maintenance
within plants, or can act as a defence against biotic or abiotic stresses.
Modifying specific microRNAs (miRNAs) or their targets presents a
novel method for engineering salinity tolerance in crops.153

2.4. Qtlomics of salt tolerance

Quantitative Trait Loci (QTL) have significantly advanced marker
development and crop breeding efforts, particularly for traits related to
salt tolerance. This progress has been facilitated by extensive physio-
logical and molecular studies on stress tolerance mechanisms, as well as
the availability of information on stress-specific and shared adaptation
mechanisms. Several important QTLs associated with salt tolerance have
been identified in various crops such as rice, cotton, soybean, and
maize.154 One of the most significant QTLs is Saltol, which is linked to
Na+/K+ homeostasis under salt stress. Saltol has been introduced into
elite rice cultivars, resulting in improved seedling-stage salt stress
tolerance and superior agronomic performance.155 In addition to Saltol,
other QTLs have also been identified and used in breeding programs
aimed at developing salt-tolerant crop varieties. For example, SSR
markers have been utilized to find biomarkers associated with salt
tolerance in cotton and cucumber.156 In maize, QTLs for salt tolerance
have been mapped using high-density SNP markers, leading to the
identification of candidate genes involved in ion homeostasis.157 In
soybeans, the salt tolerance-associated gene GmSALT3 was isolated
using fine mapping methods. This gene, encoding a cation/H+

exchanger family transporter, was shown to play a role in salt tolerance
and is localized to the endoplasmic reticulum.158 Advances in genome
sequencing and accessibility to genome datasets have further acceler-
ated progress in molecular breeding for salt tolerance.

2.5. Alternative splicing and salt stress tolerance

Alternative splicing, a process where multiple mature mRNA vari-
ants are produced from a single gene, has emerged as a significant
regulatory mechanism in plants, particularly during stress responses
such as salt stress. This phenomenon generates diverse transcriptomic
and proteomic profiles, as different splice variants can yield proteins
with altered structures, functions, and cellular localizations.159 Several
splicing factors have been identified in plants, and their roles in stress
responses are increasingly being recognized. For instance, splicing fac-
tors like Sm-like conserved protein 5 (LSm5) and PRP31 have been
linked to stress response and pre-mRNA splicing regulation in Arabi-
dopsis thaliana. Under cold stress, PRP31 plays a critical role in modu-
lating the expression of cold-responsive genes by regulating pre-mRNA
splicing.160 Alternative splicing can also produce premature termina-
tion codons (PTCs) in transcripts, leading to their degradation or the
production of truncated proteins. Examples include the dehydration-
responsive element-binding (DREB) protein 2B in rice, where alterna-
tive splicing generates isoforms that promote stress tolerance under
drought and high-temperature conditions.161 Heat stress has also been
shown to induce alternative splicing in plants, with studies demon-
strating that splice isoforms of heat-shock transcription factor A2
(HSFA2) in Arabidopsis and rice play distinct roles in stress response.162

In grapevines, high-temperature stress leads to intron retention events,
indicating a key post-transcriptional regulatory mechanism.163

Furthermore, spliceosomal proteins like multiprotein bridging factor 1c
and U1A have been implicated in alternative RNA splicing regulation
and stress response in plants.164 Exploring the halobiome, which en-
compasses halophilic and halotolerant organisms such as bacteria,
algae, fungi, and halophytes, holds promise for identifying genes asso-
ciated with salt tolerance. Halophytes, in particular, have evolved

various structural and developmental adaptations to thrive in hypersa-
line environments, including succulence, leaf abscission, and the pres-
ence of salt-secreting structures such as salt glands or salt hairs. These
plants employ cellular mechanisms to manage salt stress, such as
reducing Na+ influx, compartmentalizing Na+ ions in vacuoles, or
eliminating Na+ ions through plasma membrane anti-porters.165 Genes
isolated from halophytes or their homologs have been successfully used
to enhance salt tolerance in crop plants. Cis-regulatory elements and
promoter sequences of stress-inducible genes in halophytic plants have
shown strong expression under saline conditions, providing effective
tools for transgene expression. Genes encoding TFs, enzymatic and non-
enzymatic antioxidants, and ion transporters from halophytes have been
utilized to improve salt tolerance in non-halophytic plants.166 Moreover,
genes from non-plant halobionts, such as osmoprotectant synthesis en-
zymes and antioxidative enzymes, have been transferred into plants,
resulting in enhanced salt tolerance.167–168 For instance, genes involved
in ectoine synthesis from the halophilic bacterium Halomonas elongata
and glycine betaine synthesis from the halotolerant cyanobacterium
Aphanothece halophytica have been expressed in transgenic plants,
leading to improved growth under saline conditions.169 In addition to
transgenic approaches, whole-genome and transcriptome analyses of
halotolerant organisms have provided valuable insights into candidate
genes for crop improvement. Sequencing efforts have elucidated the
genomes of various halotolerant organisms, offering potential targets for
transformation studies.

3. Genome editing in plants to reduce soil salinity stress

Genome editing (GE) technologies, including CRISPR-Cas9, have
revolutionized plant breeding by enabling precise modifications in crop
genomes. While GE has been extensively applied in various crop plants,
its use in developing salt-tolerant plants has been relatively limited.170

Nonetheless, recent studies have demonstrated the potential of GE to
enhance salt tolerance by targeting specific genes associated with salt
stress response pathways. One successful application of GE involved
editing the ARGOS8 maize genomic sequence in maize using CRISPR-
Cas9, resulting in maize lines with higher and ubiquitous expression
levels of gene 4.171 Given the complexity of salt tolerance, which in-
volves multiple genes and pathways, multiplex GE techniques have been
proposed to target multiple genes simultaneously. This approach allows
for the induction of specific changes in salt-responsive pathways,
potentially leading to more effective enhancement of salt tolerance. Base
editors, such as cytidine deaminases, offer advantages for inducing
transition mutations in plants, including the introduction of nonsense
mutations to disrupt gene function.172–173 The CRISPR/Cpf1 system has
also shown promise for gene editing, particularly in AT-rich regions of
the genome. Cpf1 nucleases have demonstrated the ability to introduce
accurate gene insertions and indel mutations in the rice genome, offer-
ing another tool for precise GE in plants174. As research in this area
continues to advance, GE approaches are likely to play an increasingly
important role in crop improvement efforts aimed at enhancing salt
tolerance and ensuring food security in saline environments.175 Progress
in genomic techniques, like next-gen sequencing genome-wide associa-
tion studies (GWAS), and functional genomics, have provided valuable
insights into the complex regulatory networks underlying salinity stress
responses in plants.176 Integration of genetic, genomic, and molecular
approaches offers significant potential for accelerating the breeding of
salt-tolerant crops to mitigate the impact of salinity stress on agricultural
productivity and food security. Understanding the molecular basis and
pathways related to salinity tolerance is essential for the development of
salt-tolerant crop varieties capable of sustaining productivity under sa-
line conditions. For instance, there are also mechanisms of adapting to
salinity stress that are known as ABA-dependent and ABA-independent
pathways.
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4. Aba-dependent vs ABA-Independent pathways

ABA-dependent pathways involve the direct action of ABA in sig-
nalling processes when adapting to stress. In these pathways, ABA binds
to its receptors (PYR/PYL/RCAR), which then inhibit protein phospha-
tase 2Cs (PP2Cs). This inhibition activates kinase 2 protein (SnRK2),
which phosphorylates subsequent targets involved in stress responses,
such as TFs (e.g., ABI5) and ion channels (eg: SLAC1). ABA-dependent
pathways are crucial for processes like stomatal closure, seed
dormancy and germination inhibition during stress conditions.177 On
the other hand, ABA-independent pathways do not rely directly on the
presence of ABA. These pathways involve other signalling molecules and
mechanisms, such as osmotic stress sensors, that can activate similar
downstream components, including SnRK2 kinases, but through
different initial triggers. This pathway helps plants respond to stress
independently of ABA, ensuring a more robust and versatile stress
response system.178 Both pathways are illustrated in Fig. 2 below. Un-
derstanding both pathways provides insight into how plants integrate
multiple signals to survive and adapt to challenging environments,
which is crucial for developing stress-tolerant crop varieties (Fig. 3).

4.1. Omics approaches to salinity stress tolerance

Panomic strategies are those approaches that can combine multi-
omics data (genomics, transcriptome, proteome, and metabolome) as a
hope for the future of agriculture improvement.179 Such an integrative
way of information can provide a holistic comprehension of biological

systems and help identify essential molecular agents involved with
plants under abiotic stresses.180 A number of existing tools and tech-
niques have been further combined with ontologies to cater to the multi-
omics data. Generated multi-omics data must be deposited in omics
repositories and supported by visualization platforms nowadays, in
addition to the tremendous results from diverse high-throughput
screening methods.181 In this review, the promise of panomics is
exemplified by integrated systems analysis using multi-omic data and
functional annotation together with knowledge-guided pathway ana-
lyses.182 This strategy allows even more accurate phenotyping through
careful pattern identification in a complex by using machine learning, to
identify uncharacterized mechanisms that contribute positively to
abiotic stress tolerance. These data also contribute to facilitating the
building of less-random networks (related candidate genes, proteins),
molecules (metabolites), and biomarkers associated with relevant traits
for crop improvement based on multi-omics approaches. This can
further be utilized to improve tolerance and susceptibility in practical
plant species under targeted breeding or genetic engineering
programs.183

5. Insights from genomics, transcriptomics, and metabolomics
studies

Salinity stress poses a significant threat to global agricultural pro-
ductivity, affecting numerous crop species worldwide. Understanding
the molecular mechanisms underlying salinity stress tolerance is
essential for developing resilient crop varieties capable of thriving in

Fig. 3. Transduction of osmotic signal of salinity stress through ABA-dependent and ABA-independent pathways.
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saline environments. In recent years, the integration of genomics,
transcriptomics, and metabolomics approaches has provided valuable
insights into the complex regulatory networks and biochemical path-
ways involved in plant responses to salinity stress.184 Salinity stress,
resulting from the accumulation of soluble salts in soil or irrigation
water, represents a major environmental constraint to agricultural
productivity worldwide. High soil salinity levels can adversely affect
plant growth, development, and productivity, leading to significant
economic losses in crop production. The complex nature of salinity stress
tolerance involves intricate interactions among various physiological,
biochemical, and molecular processes within plants. Understanding
these mechanisms is crucial for devising effective strategies to enhance
crop resilience to salinity stress. Multi-omics approaches, including ge-
nomics, transcriptomics, and metabolomics, offer valuable tools for
dissecting the molecular mechanisms of salinity stress tolerance in
plants. Integration of omics data enables a systems-level understanding
of stress response networks and facilitates the identification of potential
targets for crop improvement.185

5.1. Genomics insights into salinity stress tolerance

Advancements in genomic technologies have enabled the identifi-
cation of genetic determinants associated with salinity stress tolerance
in plants.186 Genome-wide association studies (GWAS), quantitative
trait loci (QTL) mapping, and comparative genomics analyses have
revealed genetic variations underlying salinity tolerance traits across
diverse plant species. Candidate genes involved in ion homeostasis, os-
motic regulation, and stress signalling pathways have been identified
through genomic approaches, providing valuable targets for genetic
engineering and breeding programs aimed at improving salinity stress
tolerance in crops.187–188

5.2. Transcriptomics profiling of salinity stress response

Transcriptomic studies have provided comprehensive insights into
the dynamic changes in gene expression patterns during plant responses
to salinity stress. Differential gene expression analyses have uncovered
key transcriptional regulators, stress-responsive genes, and signalling
pathways implicated in salinity stress adaptation.189 Moreover, tran-
scriptomic profiling has elucidated the crosstalk between different stress
response pathways and the regulatory networks governing plant accli-
mation to salinity stress.190 Integration of transcriptomic data with other
omics layers has facilitated the identification of candidate genes and
regulatory elements modulating salinity stress tolerance in plants.191

6. Metabolomics approaches for understanding salinity stress
adaptation

Metabolomics analyses offer a holistic view of plant metabolism
under salinity stress conditions, providing insights into the metabolic
pathways and biochemical processes involved in stress tolerance
mechanisms. Metabolite profiling studies have revealed changes in
primary and secondary metabolite levels in response to salinity stress,
highlighting metabolic adjustments crucial for osmotic regulation,
antioxidant defence, and energy metabolism.192 Integration of metab-
olomics data with genomics and transcriptomics datasets has enabled
the identification of metabolic signatures associated with salinity stress
tolerance, offering potential biomarkers for crop breeding programs.193

6.1. Integrative multi-omics approaches for unraveling plant tolerance

Integration of genomics, transcriptomics, and metabolomics data
holds promise for elucidating the complex interplay between genetic,
transcriptional, and metabolic networks underlying salinity stress
tolerance in plants.194 Multi-omics approaches enable the identification
of key molecular players, regulatory pathways, and metabolic signatures

associated with stress adaptation, providing a comprehensive under-
standing of plant responses to salinity stress.195 Challenges in data
integration, computational analysis, and validation of omics-derived
findings necessitate collaborative efforts among researchers and the
development of robust analytical frameworks for effective multi-omics
studies in plant stress biology.

7. Future directions and prospects

7.1. Challenges in applying research to field conditions

The complex biology of plant tolerance to salt poses a massive
challenge to the practical implementation of research discoveries in the
field. Because several interacting genes and regulatory systems rule this
feature, it is challenging to anticipate the behaviour of selectively grown
or genetically engineered plants outside of laboratory settings. Field
circumstances are very different from controlled laboratory surround-
ings because of the variations in soil composition, temperature, and
biotic variables. The effective implementation of study findings is
difficult due to this disparity. The application of salinity tolerance
techniques might also be hampered by socioeconomic factors and leg-
islative barriers, such as the approval of genetically modified organisms
(GMOs). Novel technologies provide encouraging opportunities to
enhance the development of crops that can withstand salt. GE tech-
niques like CRISPR-Cas9 allow for precise alterations in genes associated
with salinity tolerance, enabling the swift development of adaptable
crop varieties. These technologies can target multiple genes simulta-
neously, bypassing the lengthy traditional breeding cycles. Moreover,
multi-omics approaches—encompassing genomics, transcriptomics,
proteomics, and metabolomics—provide a holistic understanding of the
molecular mechanisms underlying salinity tolerance. Advances in high-
throughput phenotyping and AI-driven data analysis further enhance
the ability to identify key traits and predict the performance of new
varieties under saline conditions. Advancing research in salinity toler-
ance hinges on global collaboration and effective data sharing. Part-
nerships among researchers, institutions, and countries enable the
pooling of knowledge, resources, and technologies, accelerating scien-
tific advancements. International consortia can standardize research
methodologies, share extensive datasets, and conduct multi-location
trials to evaluate the performance of salinity-tolerant crops in diverse
environments. Open-access databases and repositories for omics data,
supported by sophisticated bioinformatics tools, enhance the accessi-
bility and utility of research findings, fostering transparency and
reproducibility in scientific research.

8. Conclusion

In conclusion, tackling the challenges of salinity stress in agriculture
requires an integrated approach that combines cutting-edge technolo-
gies, collaborative efforts, and practical field applications. Continued
innovation and research in this field are vital for ensuring global food
security and developing sustainable agricultural practices capable of
mitigating the adverse effects of soil salinization.
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