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To verify an effective approach for alleviating problems associated with the consecutive monoculture 
of sweet potato, five fertilizer treatments were designed under plastic film-mulched, drip-fertigated 
conditions in fields continuously planted with sweet potato over five years. These treatments included: 
(1) no fertilizer application, (2) basic application of water-soluble (WS) fertilizer, (3) basic application 
of biofertilizer (BF) and WS fertilizer, (4) split application of WS fertilizer, and (5) combined basic 
application of BF and split application of WS fertilizer. The effects of BF and WS fertilizer applications 
on yield, quality, and soil properties were evaluated. Fertilizer applications had positive effects on 
increasing soil activities and nutrients compared with no fertilizer application. Split fertigation with WS 
fertilizer increased the activities of soil dehydrogenase (DHA) by 10.94 ~ 14.74%, alkaline phosphatase 
(ALP) by 4.97 ~ 5.13%, and soil organic matter (SOM) by 10.43 ~ 12.47% in the second year compared 
with a single application. In both years, split fertigation exerted positive effects on increasing dry 
matter (DM) accumulation in tuberous roots and increased the productive efficiency in nitrogen (N), 
phosphorus (P), and potassium (K) fertilizers. BF application for two consecutive years increased the 
activities of soil sucrase by 7.05 ~ 17.83%, DHA by 18.65 ~ 21.34%, ALP by 6.87 ~ 7.03%, soil available P 
by 18.34 ~ 28.10%, and SOM by 8.18 ~ 10.17% compared with the no BF application. BF also increased 
the root yield by 8.88 ~ 14.14%, the carotenoid content in tuberous roots by 20.38 ~ 30.64%, and 
the K utilization efficiency by 11.09 ~ 14.97%. The combination of BF and split fertigation for two 
consecutive years was most conducive to the activation of soil nutrients, maintenance of soil fertility, 
and improvement in yield and quality, which could mitigate problems associated with the consecutive 
monoculture of sweet potato.
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Continuous cropping is a modern commercial production method and has become one of the major issues 
of sustainable agricultural development1. Many kinds of crops, such as wheat, soybean, cotton, and peanut, 
can cause continuous cropping obstacles2–5. The yield and quality decrease, and poor soil fertility occurs in 
continuous cropping systems, resulting in economic losses and reducing agricultural product safety. Sweet 
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potato has strong adaptability and is widely planted in China. The area used for the continuous cropping of 
sweet potato is increasing due to the limited arable land. Thus, continuous cropping obstacles can become a 
bottleneck problem, restricting the sustainable development of the sweet potato industry6. The continuous 
cropping of sweet potato seriously affects the yield and quality, reduces beneficial soil microorganisms, and 
causes the deterioration of soil physical properties6,7. Alleviating continuous cropping obstacles is important for 
the sustainable ecological planting of sweet potato.

Drip irrigation can deliver water and nutrients to the desirable root zone; reduce water loss; soil evaporation 
and degradation; and save water and fertilizers8,9. Önder et al.10 have shown that drip irrigation significantly 
increases the tuber yield of sweet potato and provides high crop water use efficiency. Fertigation is an agronomic 
operation in which fertilizer is dissolved in irrigation water and delivered to the root zone by an irrigation 
system. It has been documented that soil mulching keep soil moisture, adjust nutrient balance and suppress 
weeds, hence crop yield improved11,12. In recent years, plastic film mulching has been increasingly used in 
sweet potato cultivation in northern China because of the increase in yield through the improvement of the 
soil environment13,14. Plastic film mulching with drip fertigation can play a positive role in increasing yield and 
saving water and fertilizer; thus, this technique is widely used in the cultivation of crops, such as maize, cotton 
and tomato15–17. Although this technology has been used in sweet potato cultivation in northern China, the 
optimal scheme for high yield and good quality is lacking in systematic research, especially in the hilly land 
planting of sweet potato with serious continuous cropping obstacles.

Biofertilizer (BF) refers to a kind of fertilizer that has the effects of both microorganisms and organic fertilizer 
and is composing of microorganisms with specific functions and organic materials18. The reasonable application 
of BF can improve soil quality, promote plant growth, and suppress soil-borne diseases and weeds19–21, which 
can effectively alleviate continuous cropping obstacles and be significantly beneficial for sustainable agricultural 
development22,23. Potential benefits of using Trichoderma or Bacillus species to increase plant growth and/or to 
control plant diseases have widely been reported5,24. Several possible growth-promoting mechanisms, such as 
an increase in nutrient uptake25,26, control of plant fungal pathogens27, and release of soil nutrients28, have been 
suggested to explain the phenomenon behind enhanced plant growth. However, the effects of BF on soil fertility, 
sweet potato root yield and quality are rarely reported, especially in alleviating continuous cropping obstacles.

Based on the above summary, methods for determining suitable techniques for continuous cropping of sweet 
potato under plastic film-mulched, drip-fertigated field conditions that improve soil fertility, root yield, and 
quality have not yet been reported. Therefore, an experimental site in which sweet potato was continuously 
planted for five years was chosen for this study. A split application of water-soluble (WS) fertilizer and a basic 
application of BF containing Trichoderma or Bacillus species were used. The following scientific hypotheses are 
proposed in this study: (i) root yield will increase with split application or basic application of BF by increasing 
dry matter (DM) accumulation in plants, driven by the ability of fertilizers to meet nutrient requirements and 
increase crop growth; (ii) soil fertility will increase after BF application due to the increased in soil enzyme 
activities; (iii) soil nutrients and plant nutrient absorption will improve in response to split application or BF 
application, which will impact nutrient contents in tuberous roots, may influence root properties, and increase 
yield, which is also beneficial for improving nutrient utilization efficiency. The main objectives of this study were 
to evaluate the effects of the application of BF and WS fertilizers on root yield, root quality, and soil properties 
under plastic film-mulched drip-fertigated sweet potato field conditions and to verify an optimal approach for 
alleviating continuous cropping obstacles.

Materials and methods
Experimental site
The field experiment was conducted in Dazhai village (36° 09′ N, 116° 35′ E), Jinan, Shandong Province, China, 
from 2018 to 2019. The experimental field was planted with sweet potato continuously for five years prior to 2018. 
The study area had a mean yearly temperature of 14.5 °C, average rainfall of 726.2 mm, and 60–70% precipitation 
during the summer months (June–August). The soil at this site is classified as a Cambisol according to the World 
Reference Base (WRB) for Soil Resources29, with a silt loam texture consisting of 175 g kg− 1 clay, 560 g kg− 1 silt 
and 265 g kg− 1 sand. The 0–20 cm soil layer in the field contained 10.3 g kg− 1 organic matter, 65.3 mg kg− 1 alkali-
hydrolyzable N, 25.9 mg kg− 1 available P, and 75.2 mg kg− 1 available K before planting in 2018.

Experimental design
The cultivar ‘Jishu 26’ was used for assessment. Five treatments were established in the experiment as follows: (1) 
no fertilizer application (T0), (2) 450 kg ha− 1 WS fertilizer applied by drip irrigation as basal fertilizer (T1), (3) 
60 L ha− 1 BF and 450 kg ha− 1 WS fertilizers applied by drip irrigation as basal fertilizer (T2), (4) 450 kg ha− 1 WS 
fertilizer by drip irrigation in accordance with the ratio of 2:5:3 in stages of root branching, ridge covering, and 
tuberous root expansion, respectively (T3), and (5) 60 L ha− 1 BF applied by drip irrigation as basal fertilizer and 
split application of WS fertilizer as the same description as T3 (T4). A high-density black polyethylene film was 
used as mulching plastic for all treatments, and the same amount of drip irrigation water was used among the 
five treatments. Before planting sweet potato seedlings, the operation of ridging, mulching, and spreading drip 
irrigation belts was completed using machinery at one time. Basal fertilizers were applied with drip irrigation 
on the planting day. The five treatments were arranged in a randomized complete block design. Each treatment 
had three replicates, and a total of 15 plots were arranged. Each plot was designed to have dimensions of 8 m × 
10 m. In the 2019 growing season, all treatments were performed in the same plot as those in the 2018 growing 
season. The sweet potato seedlings were planted with a spacing of 80 cm × 24 cm (row × plant) on 18 May 2018 
and 16 May 2019 and harvested on 22 October 2018 and 20 October 2019, respectively. The other cultivation 
management practices were the same as in a regular field.
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The WS fertilizer used in this study was a granulated compound fertilizer manufactured by Shandong 
Agricultural Fertilizer Technology Co., Ltd, China. The total N, P2O5, and K2O contents of the fertilizer were 
10%, 10%, and 30%, respectively. WS fertilizer was applied through a fertigation system with a fertilizer tank and 
venturi. The BF applied in the experiment was a liquid mixing fertilizer manufactured by Shandong Kaoshan 
Biotechnology Co., Ltd, China. The quantity of each component of BF was 40% Bacillus subtilis fermentation 
liquid, 40% Trichoderma pseudokangensis fermentation liquid, 1% WS chitin, 1% K fulvic acid, 10% decomposed 
organic matter, 4.5% surface-active agent, and 3.5% stabilizing agent. The number of viable bacteria in the 
fermentation broth of B. subtilis was ≥ 1 × 109 per ml, and the effective spore concentration in T. pseudokangensis 
fermentation broth was ≥ 3 × 108 per ml.

Sampling methods
Soil samples were collected from each plot. Five soil cores with a diameter of 5 cm were collected using a soil auger 
from the 0–20 cm depth of each plot in an ‘S’ shape and mixed thoroughly to form a composite sample. Each 
sample was placed in a sterilized plastic bag, sealed, stored in a cold container, and transported to the laboratory. 
The composite sample was sieved (< 2 mm) to remove large rocks, visible roots, and debris and separated into 
air-dried and fresh samples. The air-dried samples were finely ground and stored at room temperature prior to 
analysis of soil chemical properties, whereas the fresh soil samples were kept at 4°C prior to the analysis of soil 
enzyme activity30.

Variable measurements
Random plants, which were divided into stems, leaves, petioles and root tubers, were selected at harvest. The 
plant samples were placed in the oven and dried to constant weight. The dry weight of each organ of the plant 
sample was recorded. The proportion of the dry matter (DM) distribution of each part was the dry weight of the 
part divided by the total dry weight31. The efficiency of N, P, and K fertilizers expressed in harvest index, N/P2O5/
K2O productive efficiency and N/P/K utilization efficiency was determined using Eqs. 32,33.

 (1)  Harvest index (%) = ((amount of N/P/K absorption of the root tuber)/(amount of N/P/K absorption of the 
whole plant)) × 100%,

 (2)  N/P2O5/K2O productive efficiency (kg/kg) = (fresh yield of root tuber)/(amount of N/P2O5/K2O fertilizer),
 (3)  N/P/K utilization efficiency (kg/kg) = (fresh yield of root tuber)/(amount of N/P/K absorption of the whole 

plant).

The soil urease activity was determined using sodium phenol–sodium hypochlorite colorimetry. The soil alkaline 
phosphatase (ALP) activity was measured using disodium phenyl phosphate colorimetry. The soil dehydrogenase 
(DHA) activity was determined using triphenyl tetrazolium chloride colorimetry. The soil sucrase activity was 
determined using the 3,5-dinitrosalicylic acid colorimetric method34–36.

The soil organic matter (SOM) content, alkali-hydrolyzable N, available P, and available K were measured 
using the K2Cr2O7 solution heating method, alkaline diffusion method, molybdenum-antimony colorimetry, 
and flame photometry, respectively37.

All storage roots were harvested and weighed in the yield measurement area. Storage roots and plants were 
counted. The number of storage roots per plant and the average fresh weight per storage root were also calculated. 
The storage root was preserved for quality index determination.

The protopectin and WS pectin were measured using H2SO4–carbazole colorimetry38. The soluble sugar 
and starch contents were measured using anthrone colorimetry39. The carotenoid content was measured using 
the method of Sumanta et al.40. N was determined using the micro-Kjeldahl technique, and the crude protein 
content (N × 6.25) was calculated41.

Statistical analysis
Microsoft Excel (Microsoft Cooperation, Redmond, WA, USA) was used for data preprocessing, and the means of 
three replicates are presented. The statistically significant differences between treatment groups were determined 
via Duncan’s multiple range test at P < 0.05 via ANOVA with SPSS 22.0 (SPSS Inc., Chicago, IL, USA). The 
correlation coefficients were calculated via Pearson’s correlation coefficients among various parameters.

Results
DM accumulation and distribution
In 2018, the DM accumulation in leaves (DMAL) under T4 was not significantly different than that under T2 
and T3, but it was significantly greater than that under the other treatments. In 2019, T2 and T4 resulted in 
significantly greater DMAL values than did the other treatments (Fig. 1a). In 2018, the DM accumulation in 
tuberous roots (DMAT) under T4 was the highest. T4 resulted in significantly greater DM accumulation in 
the tuberous roots (DMAT) than did T1 and T2. In 2019, the DMAT under T4 was not significantly different 
from those under T2 and T3 but was significantly greater than that under T1. The DM distribution ratio in the 
tuberous roots did not significantly differ among the fertilizer treatments in either year (Fig. 1b).

The results suggested that split fertigation was conducive to the improvement of DMAS and DMAT in both 
years compared with single fertigation. The combination of BF and split fertigation effectively improved DMAT. 
The application of BF or split fertigation had no significant effect on the DM distribution ratio in the tuberous 
roots.
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Soil enzyme activities
In 2019, the soil urease activity (URE) under T2, T3, and T4 was significantly greater than that under T0 and T1 
(Fig. 2a). The soil sucrase activity (SUC) and DHA activity under T4 were the highest in both years (Fig. 2b and 
c). T2 resulted in significantly greater soil SUC than did T0, T1 and T3 in 2019. In 2018, the soil DHA activity 
under T2 and T3 was significantly greater than that under T0 and T1. In 2019, with the exception of T4, T2 
resulted in the highest soil DHA activity, followed by T3. In 2018, the soil ALP activity under T4 was significantly 
greater than that under T1 and T3 (Fig. 2d). In 2019, the soil ALP activity under T4 was the highest, followed by 
that under T2 and that under T3.

The results revealed that the BF application significantly increased the activities of soil SUC and ALP in the 
second year and soil DHA activity in both years. Split fertigation significantly increased the activities of soil ALP 
in the second year and soil DHA activity in both years in comparison to single fertigation. The combined BF 
and split fertigation was the most conducive to improving the activities of soil SUC, DHA, and ALP, especially 
in the second year.

Soil fertility
There is no significant difference in the parameters of soil fertility in the 0–20  cm soil layer between years 
(Table  1). The impact of fertilizer treatments on the alkaline hydrolysis N (AN) content varies between the 

Fig. 1. Dry matter accumulation (a) and distribution ratio of dry matter (b) in different organs at harvest 
under different treatments. Means denoted by different letters are significantly different at P < 0.05 as 
determined by ANOVA-Duncan’s multiple range test.
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two years. No significant difference in AN was detected among fertilizer treatments in 2018. In 2019, the AN 
under T4 was significantly greater than that under T0 and T1. The available P contents (AP) under T2 and T4 
were significantly greater than those under the other treatments in both years. In 2019, the AP under T3 was 
significantly greater than that under T1. T4 resulted in a significantly greater available K content (AK) than T1 
in 2018 and both T1 and T2 in 2019. T4 resulted in a significantly greater SOM content than did T1 and T2 in 
both years as well as the highest SOM content in 2019.

The results showed that BF or split fertigation improved the contents of AP and SOM in the second year. The 
combination of BF and split fertigation for two consecutive years effectively improved the AP, AK and SOM.

Root yield
There is no significant difference in the root yield (RT) between years (Table 2). In both years, there was no 
significant difference in the number of tuberous roots per plant between T1 and T2 or between T3 and T4, 
suggesting that BF had no significant effect on the number of tuberous roots per plant. In both years, the lowest 
RT was observed under T0, followed by T1. In 2018, there was no significant difference in RT between T4 and 
T3, and T4 resulted in significantly greater RT than did T2. In 2019, T4 resulted in the highest RT. The tuberous 
root weight per plant tended to be similar to that of RT.

The results revealed that split fertigation or BF increased the tuberous root weight per plant and the RT. The 
combination of BF and split fertigation was the most conducive to improving RT, especially in the second year.

Index of quality
There is no significant difference in the contents of protopectin, soluble pectin, carotenoids or crude protein 
between years (Table 3). However, the contents of starch and soluble sugar in 2018 were significantly lower than 
those in 2019. In 2018, the fertilization treatments showed no significant effects on the contents of protopectin 
or soluble pectin. The contents of starch and carotenoids under T2, T3, and T4 were significantly greater than 
those under T0 and T1. In 2019, T4 resulted in a significantly greater protopectin content than did T1 and T2. 

Fig. 2. Activities of soil urease (a), soil sucrase (b), soil dehydrogenase (c), and soil alkaline phosphatase (d) at 
in 0–20 cm soil layer at harvest under different treatments. Means denoted by different letters are significantly 
different at P < 0.05 as determined by ANOVA-Duncan’s multiple range test.
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The soluble pectin content under T3 and T4 was significantly greater than that under T1 and T2. Similar results 
were observed for the starch content.

The impact of fertilizer treatments on the contents of soluble sugar, carotenoids and crude protein varied 
between the two years. In 2018, the soluble sugar content under T3 was the highest. In 2019, the soluble sugar 
content under T3 was not significantly different from that under T4 but was significantly greater than that under 
T1 and T2. In 2018, the carotenoid contents under T2, T3 and T4 were significantly greater than those under T0 
and T1. However, in 2019, T4 resulted in the highest carotenoid content, followed by T3. In both years, T3 and 
T4 resulted in a significantly greater crude protein content than did T0 and T1.

The results revealed that the effects of fertilizer application on the quality indices gradually increased. 
Compared with single fertigation, two consecutive years of split fertigation was conducive to increasing the 
contents of pectin, starch, carotenoids, and crude protein. However, BF application only increased the contents 

Year Treatments Number of tuber roots per plant Tuber root weight per plant (g)
Root yield
(kg ha− 1)

2018 T0 3.18 b 446.85 d 24284.29 d

T1 3.71 a 536.44 c 29152.65 c

T2 4.07 a 611.03 b 33206.42 b

T3 3.82 a 657.58 ab 35736.43 ab

T4 3.93 a 680.51 a 36982.27 a

2019 T0 3.38 c 433.10 d 23536.78 d

T1 3.96 b 579.82 c 31510.16 c

T2 3.98 b 661.82 b 35966.43 b

T3 4.36 a 683.51 b 37145.19 b

T4 4.02 ab 744.17 a 40441.87 a

ANOVA

 Year ns ns ns

 Treatment * ** **

 Year×Treatment ns ns ns

Table 2. Number of tuber roots per plant, tuber root weight per plant and root yield at harvest under different 
treatments. T0: no fertilizer application, T1: basic application of 450 kg ha− 1 WS fertilizer, T2: basic application 
of 60 L ha− 1 BF and 450 kg ha− 1 WS fertilizer, T3: split application of 450 kg ha− 1 WS fertilizer, T4: combined 
basic application of 60 L ha− 1 BF and split application of 450 kg ha− 1 WS fertilizer. Values within the same 
column of the same year with different letters differ significantly as determined by ANOVA-Duncan’s multiple 
range test (p < 0.05). *, P ≤ 0.05; **, P ≤ 0.01; ns, not significant.

 

Year Treatments Alkali-hydrolyzable nitrogen content (mg kg− 1)
Available phosphorus
content (mg kg− 1) Available potassium content (mg kg− 1) Organic matter content (g kg− 1)

2018 T0 45.53 b 15.13 c 67.27 c 8.50 d

T1 49.76 ab 17.07 bc 73.13 b 9.10 c

T2 51.49 ab 21.03 a 76.98 ab 9.32 bc

T3 51.87 a 18.97 b 77.91 ab 9.79 ab

T4 48.12 ab 22.34 a 81.07 a 10.18 a

2019 T0 41.15 c 14.54 d 61.53 c 8.26 d

T1 47.39 b 17.67 c 75.95 b 9.03 c

T2 54.49 a 22.64 a 75.22 b 9.77 b

T3 54.91 a 20.47 b 79.39 ab 9.98 b

T4 56.41 a 24.22 a 84.36 a 10.99 a

ANOVA

 Year ns ns ns ns

 Treatment ns ** * *

 Year×Treatment * ns ns ns

Table 1. Soil fertility at 0–20 cm soil layer at harvest under different treatments. T0: no fertilizer application, 
T1: basic application of 450 kg ha− 1 WS fertilizer, T2: basic application of 60 L ha− 1 BF and 450 kg ha− 1 WS 
fertilizer, T3: split application of 450 kg ha− 1 WS fertilizer, T4: combined basic application of 60 L ha− 1 BF and 
split application of 450 kg ha− 1 WS fertilizer. Values within the same column of the same year with different 
letters differ significantly as determined by ANOVA-Duncan’s multiple range test (p < 0.05). *, P ≤ 0.05; **, 
P ≤ 0.01; ns, not significant.
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of soluble sugars and carotenoids. The combination of BF and split fertigation was beneficial for improving root 
quality as demonstrated by relatively high values of these parameters.

Nutrient use efficiency
The productive efficiencies of N, P2O5 and K2O in 2019 were significantly greater than those in 2018 (Table 4). 
In 2019, the N harvest index (NHI) under T4 was the highest. T2 and T3 resulted in significantly higher NHIs 
than did T1 (Table 4). The P harvest index (PHI) under T4 was the highest in both years. There was no significant 

Year Treatments
N harvest 
index

N utilization 
efficiency
(kg kg− 1)

N productive 
efficiency
(kg kg− 1)

P harvest 
index

P utilization 
efficiency
(kg kg− 1)

P2O5 
productive 
efficiency
(kg kg− 1)

K harvest 
index

K utilization 
efficiency
(kg kg− 1)

K2O 
productive 
efficiency
(kg kg− 1)

2018 T0 41.74 c 225.64 a 47.99 c 978.00 ab 49.84 b 208.64 a

T1 46.96 b 192.33 b 647.84 c 53.03 b 961.31 b 647.84 c 50.73 b 145.13 c 215.60 c

T2 49.65 ab 194.02 b 737.92 b 52.46 b 1034.51 a 737.92 b 49.58 b 149.81 bc 245.58 b

T3 50.22 a 202.18 b 794.14 a 54.00 b 982.02 ab 794.14 a 50.51 b 155.52 b 264.29 a

T4 52.67 a 199.29 b 821.83 a 60.91 a 1031.01 a 821.83 a 54.41 a 157.80 b 273.50 a

2019 T0 37.87 d 214.10 ab 46.36 c 803.82 c 47.89 b 194.98 a

T1 45.12 c 202.07 b 700.23 c 56.97 b 839.72 bc 700.23 c 53.96 a 144.99 c 233.03 c

T2 51.03 b 201.78 b 799.25 b 56.04 b 917.37 a 799.25 b 48.60 b 166.70 b 265.99 b

T3 49.44 b 205.59 b 825.45 b 55.60 b 872.96 ab 825.45 b 55.84 a 145.31 c 274.70 b

T4 56.69 a 219.39 a 898.71 a 64.41 a 942.90 a 898.71 a 53.26 a 161.42 b 299.08 a

ANOVA

 Year ns ns * ns ** * ns ns *

 Treatment * ns ** ** * ** ns * **

 Year×Treatment ns ns ns ns ns ns ns * ns

Table 4. The harvest indexes, utilization efficiency and productive efficiency of N, P and K under different 
treatments. T0: no fertilizer application, T1: basic application of 450 kg ha− 1 WS fertilizer, T2: basic application 
of 60 L ha− 1 BF and 450 kg ha− 1 WS fertilizer, T3: split application of 450 kg ha− 1 WS fertilizer, T4: combined 
basic application of 60 L ha− 1 BF and split application of 450 kg ha− 1 WS fertilizer. Values within the same 
column of the same year with different letters differ significantly as determined by ANOVA-Duncan’s multiple 
range test (p < 0.05). *, P ≤ 0.05; **, P ≤ 0.01; ns, not significant.

 

Year Treatments
Protopectin content
(mg g− 1 FW)

Soluble pectin content
(mg g− 1 DW)

Starch content (mg 
g− 1 FW)

Soluble sugar content 
(mg g− 1 FW)

Carotenoid
content (µmg g− 1 
FW)

Crude 
protein
content 
(%)

2018 T0 155.59 b 27.57 b 113.43 c 41.57 c 7.45 b 2.97 c

T1 177.65 a 32.19 a 140.46 b 63.02 b 8.22 b 3.57 b

T2 193.27 a 33.10 a 154.79 a 61.19 b 10.49 a 4.15 a

T3 193.16 a 32.79 a 153.84 a 74.98 a 10.93 a 4.32 a

T4 196.49 a 33.21 a 157.12 a 62.05 b 11.39 a 4.11 a

2019 T0 146.98 d 28.45 b 123.43 c 44.16 d 7.07 d 3.01 c

T1 171.85 c 31.50 b 153.03 b 64.60 c 7.67 d 3.96 b

T2 188.27 bc 32.42 b 162.21 b 70.98 b 10.02 c 4.18 b

T3 206.84 ab 39.11 a 181.08 a 80.40 a 11.16 b 4.81 a

T4 203.33 a 38.21 a 180.48 a 76.27 ab 13.43 a 4.65 a

ANOVA

 Year ns ns * * ns ns

 Treatment ** ns ** ** * **

 Year×Treatment ns ns ns * * *

Table 3. Index of quality at harvest under different treatments. T0: no fertilizer application, T1: basic 
application of 450 kg ha− 1 WS fertilizer, T2: basic application of 60 L ha− 1 BF and 450 kg ha− 1 WS fertilizer, 
T3: split application of 450 kg ha− 1 WS fertilizer, T4: combined basic application of 60 L ha− 1 BF and split 
application of 450 kg ha− 1 WS fertilizer. Values within the same column of the same year with different letters 
differ significantly as determined by ANOVA-Duncan’s multiple range test (p < 0.05). *, P ≤ 0.05; **, P ≤ 0.01; 
ns, not significant.
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difference among the other fertilizer treatments. There was no significant difference in the K harvest index (KHI) 
under T1, T2 and T3 in 2018 or under T1, T3 and T4 in 2019.

There was no significant difference in N utilization efficiency (NUE) among T1, T2 and T3 in either years. 
However, the P utilization efficiency (PUE) under T2 and T4 was significantly greater than that under T1. In 
2019, the K utilization efficiency (KUE) under T2 and T4 was significantly greater than that under T1 and T3. In 
2018, the N production efficiency values under T3 and T4 were significantly greater than those under the other 
treatments, and T2 resulted in greater N production efficiency than did T1. In 2019, the N production efficiency 
under T4 was the highest, and T2 and T3 resulted in significantly higher N production efficiencies than did T1. 
The productive efficiency of P2O5 and K2O showed similar changes to those of the N productive efficiency.

The results suggested that split fertigation or BF application effectively improved the NHI and the productive 
efficiency of N, P2O5 and K2O in the second year. The combination of BF and split fertigation resulted in the 
highest NHI, PHI, and productive efficiency of N, P2O5, and K2O after two years of application.

Correlation analysis
We used correlation coefficients to assess the relationships among the parameters of root yield (RT), biomass 
accumulation, NUE, PUE, KUE, soil fertility, and soil enzyme activity (Table 5). The DMAL, DMAS, DMAT, 
KUE, AN, AP, AK, SOM, URE, SUC, DHA, and ALP were significantly positively correlated with RT. Similar 
correlations were observed among DMAT, AN, AP, AK, SOM, and all soil enzymes. AN, AP, AK, SOM, SUC, 
DHA, and ALP were positively correlated with PUE. Significant correlations were observed among AN, URE, 
SUC, DHA, and ALP. Similar correlations were observed among AP, AK, SOM and all soil enzymes.

Discussion
According to Li et al.42, split fertilizer application is conducive to increasing soil available N, P, and K in tobacco 
fields. In the present study, split fertigation for two continuous years increased the activities of soil DHA and 
ALP, thereby promoting soil nutrient activation and exhibiting positive increased effects on soil available P and 
SOM. Split fertigation ameliorated soil nutrients in the continuous sweet potato cropping field. In a continuous 
maize and lettuce cropping systems, manure application is conducive to the enhancement of soil quality43,44. In 
a sweet potato field, the combined application of NPK fertilizer and poultry manure gives higher soil available 
N and P45. The application of BF that contains living microorganisms is one of the management practices that 
can improve soil fertility in arable soils46. The combination of chemical fertilizer and BF increases the soil 
chemical properties of available P and K and SOM in a continuous cropping cotton system47,48. The BF applied 
in the present study contained B. subtilis, T. pseudokiningii, and K fulvic acid and decomposed organic matter. 
The BF applied for two consecutive years significantly increased the activities of soil sucrase, DHA, and ALP, 
and significantly improving the soil available P and SOM. These results verified that the soil activity of ALP 
is positively correlated with the contents of soil available P and SOM49. Most of the microbial species in the 
soil are positively correlated with the nutrient content in the soil50. Li et al.47 showed that soil organic carbon 
and available P are positively correlated with the abundances of Bacillus and Trichoderma in monocropping 
cotton fields. In a sweet potato continuous cropping field, the increased soil available P may be attributed to the 
increased abundances of Bacillus and Trichoderma added in the BF. Moreover, the SOM provided by K fulvic 
acid and decomposed organic matter may increase SOM and exhibit a priming effect on increasing soil available 
N and mineralize with time, in which the inorganic P available from the WS fertilizer increases the available 
P3,51. In a continuous monocropping sweet potato field, the recommended utilization of combined WS and BF is 
considered useful for the preservation of high soil biological activity and fertility.

Application timing is one of the management strategies that can influence the efficiency in which the applied 
fertilizer is utilized by crops. Tarkalson and Payero52 found that increased N is supplied to plants with multiple 
in-season fertigations compared with a single fertigation. Liu et al.53 reported that split fertigation increases 
aboveground N uptake compared with single fertigation. According to Yin et al.54, split fertigation can be used 
to replace single broadcast applications on the soil surface of pear orchards and improve the NUE and PUE. In 
sweet potato, compared with basal application, split K fertigation (half at planting and half at the tuberous root 
expansion stage) increases N and K accumulation and NUE and KUE55. In the present study, compared with 
single fertigation, split fertigation at a ratio of 2:5:3 in the stages of root branching, ridge covering, and tuberous 
root expansion increased the productive efficiency of N, P2O5, and K2O in both years. This finding was attributed 
to the higher root yield obtained using split fertigation. No significant change in the NUE, PUE, and KUE may 
be related to the simultaneous increase in the absorption of N, P, and K in sweet potato plants. The application 
of BF can increase the nutrient uptake efficiency and minimize the negative effects of consuming too much 
fertilizer56. Increases in N concentrations were observed in the leaves of plants inoculated with Trichoderma 
and Bacillus isolates57. The BF containing Bacillus subtilis regulated the microbial N transformation process and 
reduced N loss in soil; it also significantly increased N use efficiency18. In potato, the use of the bacteria Bacillus 
subtilis promoted greater P uptake kinetics and increased the production of P fertilizer efficiency58. Similar 
results were observed in wheat plants59. In the present study, the BF applied in drip irrigation for two consecutive 
years had positive effects on NUE and PUE. This strategy significantly increased the KUE and the productive 
efficiency of N, P2O5, and K2O. Positive effects on biological parameters in a monoculture banana field were 
observed in the BF application only for a 1-year period60. These effects may be attributed to the different crops 
and soil environments. The BF consisting of B. subtilis and T. pseudokiningii in the present study may alter the 
microbial community structure and stimulate the population of beneficial microorganisms61, which increased 
the activities of soil sucrase, DHA and ALP, resulted in soil nutrient improvement (soil available P and SOM) 
and finally increased yield and element utilization efficiency, especially PUE and KUE. The combination of BF 
and split fertigation was the most conducive to obtaining higher root yield and higher productive efficiency in 
N, P2O5, and K2O fertilizers in sweet potato continuous cropping fields.
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The improvement in DM accumulation with humic acid could be attributed to it potential effect to enhance 
plant piments, stomatal conductance and photosynthesis process62. Chen et al.63 reported that humic acid urea 
fertilizer increases the DM accumulation of storage roots and aboveground parts in sweet potato plants during the 
growth stages. In the present study, compared with the control, fertilizer application increased DM accumulation 
in leaves, stems, and tuber roots and decreased the distribution ratio of DM in leaves and stems at harvest. Split 
fertigation or BF application was beneficial in increasing DM accumulation in tuberous roots, which was the 
material basis for increasing yield production. The maize yield under split fertigation is significantly greater than 
that under single fertigation53. Compared with the broadcast application of N and P, split fertigation increases 
the marketable fruit of pear54. Kelling et al.64 reported that splitting N fertilizer into stages of emergence, early 
tuberization, and tuberization can increase potato yield in sandy soil. However, Zebarth et al.65 have shown that 
split N application exhibits limited benefits on tomato yield. In the present study, the split fertigation of WS 
fertilizer in stages of root branching, ridge covering, and tuberous root expansion increased root yield in both 
years. This phenomenon was related to meeting the nutrient needs at different periods for sweet potato plants. 
The combined application of organic and inorganic fertilizers provided greater crop productivity. Choudhary 
et al.66 showed that a significantly higher yield was observed in plots receiving NPK combined with manure 
in a soybean–wheat cropping system. In sweet potato, the combined application of NPK fertilizer and poultry 
manure exhibits higher tuber yield45. Bonanomi et al.24 found that combining photoselective mulching films 
with beneficial microbes (i.e., Trichoderma and Bacillus subtilis) promotes crop yield. In cucumber, Trichoderma 
pseudokoningii inoculations stimulate metabolism in plants and enhance the activities of stress-resistance 
enzymes, which consequently promote plant growth and improve yield67. Ding et al.68 showed that BFs 
containing B. subtilis increase potato yield. In the present study, BF consisting of B. subtilis, T. pseudokiningii and 
organic matter improved root yield by increasing tuberous root weight per plant. The combination of BF and split 
fertigation with WS fertilizer exhibited the highest root yield after continuous application for two years. Huang 
et al.50 reported that a high concentration of BF increased cucumber production after continuous cropping, 
possibly through improving soil chemical conditions and manipulating the composition of the soil microbial 
community. In the sweet potato continuous cropping field, the BF consisting of B. subtilis and T. pseudokiningii 
also exhibited soil nutrient improvement, especially in soil available P and SOM. The yield increase was related 
to the soil nutrient improvement by the soil microenvironment regulation altered by beneficial microbes added 
in this kind of BF. The combination of BF and split fertigation with WS fertilizer was the most conducive to the 
improvement of sustainable productivity under continuous sweet potato cropping.

The fruit quality of pineapple was influenced by the split application of N and K69. Compared with all N 
fertilizers applied at sowing alone, the application of half or one-third of the total N fertilizer at stem elongation 
improves the grain protein content of spring wheat70. For white cabbage, split N increases indole and total 
glucosinolate concentrations compared with nonsplit N71. In the present study, the split fertigation of N, P, and K 
for two consecutive years improved tuber quality by increasing the contents of pectin, soluble sugar, carotenoid, 
and crude protein. Meeting the needs of nutrients in different growth periods was important for improving the 
root quality of sweet potato. Chemical fertilizers enhance the crop growth, leaf nutrient content and quality of 
the final product72. Yolcu73 reported that organic and chemical fertilizer applications have significant effects on 
the crude protein content of common vetch. However, no effect was recorded on tuber N, P, or starch content 
in organic potato74. Soil amended with BF improves banana quality by increasing the total soluble sugars and 
sugar/acid ratio75,76. Akca and Ercisli77 demonstrated that BF imparts positive effects on sweet cherry quality. 
Trichoderma pseudokoningii inoculations could prevent cucumber fusarium wilt and improve quality67. In the 
present study, the BF showed no significant effect on tuber quality except for increased contents of soluble sugar 
and carotenoid. This phenomenon may be related to the different crops and climate conditions. The combination 
of BF and split fertigation could improve sweet potato root yield without degrading its quality in a continuous 
cropping system under plastic film-mulched drip-fertigated field conditions.

Akhtar et al.78 reporeted that soil URE and ALP had positive correlations with soil organic carbon (SOC). 
Moreover, the soil URE had a positive correlation with soil AP and the crop yield was positively correlated with 
the soil AN and AP. Borase et al.79 showed that wheat yield was positively correlated with SOC and the SOC 
showed a significant positive correlation with all soil enzymes. Yang et al.80 also showed that SOC, soil URE and 
SUC had positive correlations with the wheat yield. Under a rice-wheat rotation in Chengdu Plain, China, there 
was positive correlation with SOC, soil URE, AP and AK81. However, there was no positive correlation between 
AP, AK, URE, and DHA under a maize–wheat rotation in a rainfed Indian soil82. For rice, there was correlation 
among the rice yield, AP and AK81. For potato, soil AN had a significant influence on SOC, soil AP and AK. 
The soil URE had a significant influence on soil SUC and ALP83. For tomato, there was no correlation between 
the tomato fruit yield and SOM, AP and AK. However, there was positive correlation with soil AP, AK, and 
SOM84 (Ye et al., 2020). In the present study, for sweet potato, significant correlations were observed among AN, 
AP, AK, SOM and URE, SUC, DHA, and ALP, indicating that the higher the activity of these soil enzymes, the 
higher contents of soil fertility. Similar correlations were observed among DMAT, AN, AP, AK, SOM, and all soil 
enzymes, suggesting that the improved soil nutrient status is beneficial for increasing DMAT, therefore, the final 
RT was increased. The improved soil nutrient status caused by the combination of BF with split fertigation was 
the main reason for increasing the final RT in this study.

Conclusions
The combination of BF with split fertigation for two consecutive years significantly increased the activities of 
soil SUC, DHA, and ALP and positively affected the soil AP, AK and SOM, thereby promoting plant nutrient 
absorption and resulting in high plant DM accumulation. This cultivation method ultimately resulted in a 
relatively high RT and improved root quality by maintaining relatively high contents of pectin, soluble sugar, 
and carotenoid, which can effectively alleviate the problems associated with the consecutive monoculture of 
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sweet potato. The combined basic application of 60 L ha− 1 BF and split application of 450 kg ha− 1 WS fertilizer 
was the most promising treatment for farming sweet potato, and it could alleviate problems associated with the 
consecutive monoculture of sweet potato.

Data availability
All data generated and/or analyzed during the current study are included in this article.
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