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Rectified activity-dependent population
plasticity implicates cortical adaptation
for memory and cognitive functions

Check for updates

Hong Xie 1,2,9,10 , Kaiyuan Liu3,4,9, Dong Li5,9, Chang-Shui Zhang6,7, Claus C. Hilgetag5 &
Ji-Song Guan 3,8,10

Cortical network undergoes rewiring everyday due to learning and memory events. To investigate the
trendsofpopulation adaptation in neocortexovertime,we recordcellular activity of large-scale cortical
populations in response to neutral environments and conditioned contexts and identify a general
intrinsic cortical adaptation mechanism, naming rectified activity-dependent population plasticity
(RAPP). Comparing each adjacent day, the previously activated neurons reduce activity, but remain
with residual potentiation, and increase population variability in proportion to their activity during
previous recall trials. RAPP predicts both the decay of context-induced activity patterns and the
emergence of sparse memory traces. Simulation analysis reveal that the local inhibitory connections
might account for the residual potentiation inRAPP. Intriguingly, introducing theRAPPphenomenon in
the artificial neural network show promising improvement in small sample size pattern recognition
tasks. Thus, RAPP represents a phenomenon of cortical adaptation, contributing to the emergence of
long-lasting memory and high cognitive functions.

The brain is dynamic and plastic1,2. One excellent example is sensory
adaptation. In auditory or visual cortex and many other areas of the
neocortex, neural responses to the same stimulus during repeated
exposure, typically become smaller and smaller with the passing of time.
Memories, on the other hand, reflect the stability of the brain, where the
responses to some stimuli are robust and long-lasting3. Other processes,
such as extinction and reconsolidation, add more dynamics into the
neuronal responses. Synaptic plasticity is fundamental underlying both
the sensory adaption4 and the formation of consolidated memories and
their reconsolidation5–7. At cellular level, memory trace neurons (neural
engrams), representing new memories8, emerge in hippocampus,
amygdala9, and neocortex10,11. While memory trace neurons are activated
upon learning12,13, some memory traces appear inactivated overtime14,15

and a few memory trace neurons in neocortex are engaged in long-term
memory16–18. It is unclear if such cellular changes and adaptation are
following specific regulation. In this study, we asked whether the adap-
tation of cellular activities at large scale in neocortex is modulated,

instead of randomized, and whether such adaptation might underlie
some aspects of sustained and long-lasting memories.

In the biological nervous system, homeostasis is a strong trend to reset
neuronal activity level back to their set points, after perturbation. For
example, at cellular level and synaptic level, studies have uncovered an
adaptive phenomenon that the neuronal firing rates return to the set point
during a constantly changing environment due to the homeostatic synaptic
scaling, both in neuron cultures19, and in neocortex of mice20,21. Such
homeostasis regulation could contribute to the dynamics ofmemory traces.
Although the homeostasis regulation described aspects of adaptation in
some neurons by electrophysiological recording, the quantitative survey of
adaptation in amuch larger population requires a high-throughputmethod.

Immediate early gene expression is positively correlated with the
neuronal activation22 and is used to label memory traces under many
conditions17,23–25. Florescent proteins driven by immediate early gene pro-
moter allows quantitively measuring neural activity-related signals in a
relatively large population in vivo17,24,26. Here, we used Egr1 gene transgenic
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mice to monitor the neural activities. The task-induced-signal increase of
Egr1-EGFP about 1–2 h after the stimuli is positively correlated with the
inducedneural activity.While in theneuronswithhigh spontaneous activity
(post-stimulus period), fluorescent intensities of Egr1-EGFP are positively
correlated with their sustained basal activities26. As the Egr1-EGFP signal is
suitable for large scale recording, we monitored the adaptation of cortical
population activity of awake mice by quantitative in vivo imaging in Egr1-
EGFP mice. During contextual fear conditioning training, the changes of
signal reflect the sensory and memory induced neuronal activity. At the
resting state in their homecage, alterations of signals in each neuron might
reflect the network adaptation.

Although there could exist different activity-induced plasticity rules for
different subtypes of neurons, we found evidence of a general principle for
the population level adaptation of neurons in cortical networks, through
rectified activity-dependent population plasticity (RAPP). The linear rec-
tified function (ReLU), as the activation function of neurons, has been
widely used in artificial neuronal network to introduce sparsity27,28. In this
study, the observed rectified linear correlation of neuronal population
plasticity predicted the homeostatic adaptation of population activity, as
well as the emergence of sparse memory traces in neocortex. Hippocampus
reinstated the population activation pattern, against adaptation. Model
simulation indicates two factors mainly account for the RAPP phenom-
enon: the preserved local inhibitory connections, instead of excitatory
connections, and activation-engaged alteration of cellular excitability.
Interestingly, the RAPP rule embedded learning algorithm in deep con-
volutional neural network (CNN) achieved significant improvement over
the state-of-art training algorithms in pattern recognition task with small
sample size. These findings suggest a phenomenon of regulated population
adaptation to form sparse long-lasting memory traces in a constantly
changing network in the mammalian neocortex.

Results
We measured the cellular activity of local circuits in neocortex in EGR1-
EGFP mice17. EGR1 is an immediate early gene, the expression of which is
induced by neural activation and it is critical for long-term memory
formation22. Neurons that selectively express the immediate early gene
during memory encoding are present as memory traces or neural engrams
in different brain areas, including hippocampus, amygdala, and
neocortex9,25,26,29. In the Egr1-EGFP reporter mice, the florescent intensity
changes in each neuronwere positively correlated with the spiking rate over
several hours in neural cultures (Supplementary Fig. 1) and in the brain
induced by a behavioral task17,26,30. The induced increase of signals is posi-
tively correlated with the accumulative summation of task-induced calcium
events and spontaneous neural activity in absence of sensory inputs26.
Cellular Egr1-EGFP Signals are segmented using a CNN-based algorithm
(supplemental materials) and the 3D volumes were aligned to its original
signal on day 1 in pixel precision as previously described17,26,30. We imaged
cellular signals 1–1.5 h after each training trial or homecage condition in a
systematic manner for multiple cortical areas of the samemouse, including
visual cortex (VIS), primary somatosensory cortex (SSp), motor cortex
(MO) and retrosplenial cortex (RSP). All EGR1+ neurons recorded from
layer 1 through layer6within the same volume (Fig. 1A).Here,we only used
cortical layer 2–3 neurons data in the analysis to focus on the adaptation of
memory-related populational changes17,31.

Rectified linear correlation between prior and posterior popula-
tion activity changes
To quantify the populational adaptation in neocortex, we recorded mice in
three trials for the highly habituated homecage environment. Under the
conditionwithout trained stimuli, the spontaneous activity levels of neurons
are correlatedwith their Egr1-EGFP signal intensities26. In this case, wewere
wondering if any randomevents inducedperturbation in the brain (between
two homecage trials) will leave traces for long time. If the events are trivial
and random, leaving no impacts on the following days, the changes of
cellular activities between adjacent trails should be anticorrelated with a

slope around −1. If the events have long-enduring impact, terming as a
memory phenomenon, the changes of cellular activity between trials should
be higher than −1.

We pooled the cellular signals across 10 areas (n = 28,736) of the same
mice from layer 2/332 and plotted the correlation of the activity change of
each neuron between the earlier and later trials (Fig. 1B). Importantly, the
population density plot of this data showed an asymmetric distribution,
different from a two-dimensional Gaussian. While the total averages of
signal variations, in the earlier as well as later trials, were not significantly
different from zero (p = 0.747, p = 0.337, respectively; two-tailed one sample
t-test) (Fig. 1C), the means of signal variations in the previously enhanced
neurons, but not in the previously repressed neurons, were significantly
different from zero (p = 0.0009, p = 0.211, respectively, two-tailed one
sample t-test). This asymmetry in the activity changes of previously
repressed and enhanced neurons implied that population signal variations
between the prior and the posterior trials were not random, but specifically
modulated.

In order to identify the source of this modulation, we divided recorded
neurons into subpopulations according to their activity changes in earlier
trials. The subpopulation with increased signals in the earlier trials (day
3–day 0) showed activity-dependent reductions in average signal strength
and an increase in the population activity variability (standard deviation) in
the later trials (day 6–day 3; Fig. 1D). This systematic adaptation was not
present in the subpopulationwith reduced signals in earlier trials, which just
changed its activity stochastically in the later trials. The highly activated
neuron population (ΔF = 0.35 ± 0.01, n = 97) showed a much wider dis-
tributionof signal changes aswell as stronger reductionofmean signals than
the less strongly activated neuron population (ΔF = 0.15 ± 0.01, n = 1953).

To characterize these observations more systematically, layer 2/3
neurons from one visual volume were divided into subgroups (n > 200
neurons in each subgroup) according to their signal changes in the earlier
trials. The cortical population activity showed a clear, rectified linear cor-
relation between the signal changes in consecutive trials, such that popu-
lations with increased signals in the earlier trials had reduced activity in the
later trials. The amplitudeof the signal reduction in the later trialwas linearly
correlatedwith the signal increase in theprior trial (r2 = 0.96, Supplementary
Fig. 2A). By contrast, neuronal subgroups with decreased signals in the
earlier trials subsequently showed a general activity increase by a small
constant (Supplementary Fig. 2A). Such a rectified linear correlation was
consistently observed in all of the individual cortical volumes (slope =
−0.34 ± 0.03, b =−0.001 ± 0.002, for ΔFprior >−0.05; slope =−0.002 ±
0.057, b = 0.013 ± 0.006 forΔFprior <−0.05, Fig. 1E).As the slope is far from
−1, where the activated ones return to its original set point as predicted by
homeostasis adaptation, this result (k =−0.34) suggests a long-lasting
impact is observed in the neocortex, implicating memory in the network.

In addition to the average signal strength, the signal variation in each
subpopulation also showed a rectified linear correlation with the signal
changes in the earlier trials. Interestingly, we found for subgroups with
increased signal in earlier trials, the standard deviation was increased line-
arly in the posterior trials, proportional to the mean signal increase in the
prior trials (r2 = 0.95, Supplementary Fig. 2B). This increase in signal var-
iation (Fig. 1F)was in contrast to the expected situation inwhich the noise is
proportional to the signal strength, as here averaged cellular signals
decreased in the later trials (Fig. 1E). This rectified linear correlation was
consistently observed in all individual volumes (Fig. 1F, slope = 0.21 ± 0.03,
intercept = 0.050 ± 0.003 for ΔFpre >−0.05; slope =−0.07 ± 0.04, inter-
cept = 0.050 ± 0.005 for ΔFpre <−0.05).

Taken together, we found that while adaptation was observed that
neurons activated in the earlier trials tended to reduce their activity in the
later trials, residue potentiation of the engaged populationwere remained in
the cortical network, implicatingmemory. At the same time, those activated
neurons also showed high population variability, adding a stochastic
component to the activity of this population (Supplementary Fig. 3). On the
other hand, neurons with reduced activity in prior trials showed a tendency
to increase their signal in posterior trials by a constant amount (i.e.,
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independent of their prior activity level, slope is non-zero, p = 0.97,
F = 0.0014, linear reg.). It is noticed that this phenomenon of population
adaptation might also be interpreted as the combination of homeostasis
regulation and random walk process. In addition, it is less likely that this
phenomenon was a result of orthogonal sensory inputs in two homecage
trials. Because, if the observed population adaptation is due to the input of
orthogonal sensory signals, then the population of neurons activated on the
6th day should be different from the population activated on the 3rd day
(orthogonal), causing the neurons activated on the 3rd day to return to their
baseline state on the 6th day as they were on the 0th day, thus producing a
slope of−1 in the population neuronal response. As a prove of notion that
distinct sensory stimuli result in −1 slope, we performed a context A and
context B comparing experiment and found that the distinct sensory inputs
yield a −0.8 slope (Supplementary Fig. 4), significantly lower than that
recorded in homecage trials (−0.3).

These rectified linear correlations of population changes between later
and earlier trials were observed not only in the homecage trials, but also in
trials where the animals explored a neutral context (for context-activated
subpopulations, the slope for the amplitude is −0.31 ± 0.03, and the
slope for the standard deviation 0.25 ± 0.03, Fig. 1G and Supplemen-
tary Fig. 5).

In summary, plasticity based on rectified linear correlations between
prior andposterior population activity changeswas consistently observed in
the layer 2/3 of mouse neocortex. Although neural activities were adaptive
and variable between days, their population activities appear to be regulated
by an intrinsic property of the cortical network, which can be formulated
and described as the RAPP phenomenon.

Dynamics of cortical responses predicted by the RAPP
phenomenon
The activity-dependent population plasticity rule comprehensively pre-
dicted the dynamics of cortical responses.When thenetworkwas repeatedly
exposed to neutral inputs (CtxA) or inputs without new information
(homecage), the empirical constants of the population plasticity rule
determined the global dynamics of the network at each step of the evolution
of the population activity (Fig. 2A). Numerical simulation of this dynamical
system, starting from an initial, Gaussian-distributed population activity
(skewed in the evolution), demonstrated two features of cortical activity
patterns, representation adaptation and generation of long-lasting memory
traces. First, the model predicted that the characteristic activity patterns of
the whole population fade over time (Fig. 2B). Second, the numerical
simulation of such population adaptation rules suggested that sparse

Fig. 1 | EGR1-EGFP signals reveal activity-dependent population plasticity in
mouse neocortex. A Recording of neuronal activity in neocortex of EGR1-EGFP
mouse by 2-photon microscopy. Signals were collected 1–1.5 h after each trial.
Layers were determined by the morphology and density of cells. B Activity change
correlation between the earlier versus later trials in the homecage environment (H2-
H1 vs. H3-H2) for cortical layer 2/3 neurons. Color-coded contour lines plot the
gradient of normal distribution. 10 areas of layer 2/3 neurons were recorded (total
n(neurons) = 28,736). C Population changes of signal. Fitting with Gaussian dis-
tribution curve. Inserts are mean changes of each population (n(mouse) = 8). ***,

one sample t-test, deviated from 0.DDistribution of posterior population activity in
different subgroups of neurons in B. The subgroups are divided according to prior
activity changes. E, FThe rectified linear correlation of each subgroup between prior
and posterior changes in activity (E), or standard deviation (F). Error bar reflects
data frommultiple individuals (n = 18mice).G The population plasticity in trials of
a neutral context (CtxA). Slopes of the population plasticity in the activated neuron
population (red line in E, F) in the neocortex for homecage trials and CtxA trials
(n = 13 mice for homecage, n = 36 mice for CtxA). Error bars, s.e.m.
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individual neurons might show long-lasting activities, appearing as the
memory trace-like neuron (Fig. 2C). While subpopulations with increased
activity reduced their activity and increased the population variation, a small
portion of the activated neurons continuously increased their activity in the
next round, becoming neurons with persistent, high activity. Due to the
linear correlations both in amplitude and signal variation, the same pro-
portion of neurons as activated in the pre-prior trial increased their activity
in the posterior trial (Supplementary Fig. 3). Thereby, the size of the acti-
vated subpopulation arising from the originally active population decayed
by a power law, achieving a sparse, yet high-activity (robust) representation

of the original activity patterns. Thus, the RAPP phenomenon generated
and distilled sparse and long-lasting cortical memory traces.

Observation of biological memory traces inmouse neocortex as
predicted by RAPP
In mouse neocortex, intense (ΔF over 2.8 folds of standard deviation), but
sparse neuronal activity (in less than 1% of the population) has been
observed as stimulus-related “memory traces”17. We trained the mice for
three blocks of contextual fear conditioning training and imaged their
cortical Egr1-EGFP signals one hour after training and 1.5 h recall trials.

Fig. 2 | TheRAPP rule predicts the decay of activity patterns and the emergence of
long-lasting memory traces. A Illustration of the rectified activity-dependent
population plasticity (RAPP) and the empirical parameters describe it (Amp& s.d.).
S, population response state; Amp., amplitude, the mean response of the subgroup;
s.d., standard deviation of the subgroup. B,C Simulation of population dynamics in
neocortex. A Gaussian-distributed pattern was seeded in the first step. Activity
changes from one step to the next were determined by the empirical parameters. (B)
Pattern decay. Rows indicate the same neuron; columns indicate sequential steps.
The left activity map was plotted by the deviation of each neuron (smallest deviation
at top); the right activity map was sorted according to the signal intensity in the first
step. Representative patterns in steps were enlarged in separated columns. Scatter
plots show the decay of patterns by loss of correlation over increasing time steps.
C Dynamics of individual neurons in adaptation. The right activity map was sorted
according to the position of the peak activity step for each neuron. Small panels show
the enlarged sector indicated as the gray and black bars. D–F Dynamics of cortical

memory traces. D Mice were subjected to several trials of contextual fear con-
ditioning training or memory recall over one month. Representative images of
EGR1-EGFP signal in recent and early recall trials in visual cortex. Red, EGFP signal
in homecage trial of day 0; Green, EGFP signal in context A recall trials. Arrowheads
indicate the trace neuron of day 4 and arrows indicate the trace neurons of day 17.
Scale bar, 40 μm. E, F Simulated activities of individual neurons (for details see
“Methods” section) (E) and recorded memory trace responses over 30 days (F).
Neurons counted as traces are the most active neurons on the referenced day (ΔF
over 3x of standard deviation). In the simulation (E), neurons counted as traces are
the most active neurons on the referenced cycle (ΔF over 3 x of standard deviation,
on 20th, 40th, and 140th round of updating). Simulated activities in those three cell
populations are shown. Early phase, day 2–4 traces vs. later phase, day 7–28 traces:
n > 80 memory trace neurons from 6 mice for each group; ***p < 0.001, two-way
ANOVA. Error bars, s.e.m.

https://doi.org/10.1038/s42003-024-07186-2 Article

Communications Biology |          (2024) 7:1487 4

www.nature.com/commsbio


Repeated anesthetization processes every other day did not alter animal
performance in memory retrieval trials (Supplementary Fig. 6). Mice
showed stable freezing behavior from day 4 to day 28 (Supplementary
Fig. 7). Consistent with the predictions of the RAPP rule, when the mice
were imaged in CtxA for one month, memory traces were identified in
different neurons (Fig. 2D) in early and late trials. Some strongly activated
neurons in early trials reduced their activities in later recall trials. In contrast,
some weakly activated neurons in the early phase significantly increased
their activities later on.

Furthermore, the simulation work also predicted that the responses of
the trace neurons are dynamic. Traces activated in early trials decay fast and
traces emerging in the later trials decay slowly (Fig. 2E). The empirically
observed biological responses in the brain confirmed this prediction
(Fig. 2F). Thereby, the quantitative formula of cortical adaptation as the
RAPP phenomenon perfectly predicts the emergence and the dynamics of
the long-lasting memory traces in layer 2/3 of neocortex.

The slope of population adaptation in RAPP is modulated by
hippocampus-dependent memory
It has been reported that the hippocampus reinstates the cortical repre-
sentation during memory recall33. Thus, we wondered if hippocampal input
might reverse the effect of populational adaptation. To address this question,
mice were trained for a contextual fear conditioning task (using amild electric

footshock) in context A on day 1, followed by recall tests in the same context
for 3 trials. While the population activity showed a rectified linear correlation
(slope =−0.4) between the early and later testing in the homecage trials
(Fig. 3A), indicating a general decay of the activated ensemble on day 3, it
produced no significant adaptation (slope > 0) in the conditioned context
(Fig. 3B). Interestingly, in hippocampus damaged mice, the population
activity showed strong adaptation (slope < 0) in the conditioned context
(Fig. 3C, D). Such a hippocampus-induced reversal of populational activity
adaptation appears to reinstate the cortical activity patterns, preventing it
from adaptation. Consistent with is observation, previous studies have shown
that activities of cortical memory traces are engaged by hippocampus-
regulated cortical γ-synchrony34. Thereby, the slope in the RAPP phenom-
enon appears as the result of two factors: the homeostatic adaptation reset the
network to its original state and the hippocampus-dependent memory signal
reinstate the perturbation in each day.

Functional distinct cortical areas show different adaptation rate
in RAPP
As hippocampus-dependent memory signals might be variable in distinct
cortical areas, we were wondering if the population adaptation described as
RAPP are region specific. To this end, we presented the mice in a neutral
context for several days to observed the context associated population
adaptation. RAPP predicts the decay of cortical populational response in a

Fig. 3 | The hippocampus reverses cortical population adaptation in the condi-
tioned context. A–CExample of cortical population plasticity in the visual cortex, in
homecage (A), or conditioned context in normalmice (B) or animals withHC lesion
(C). Each dot shows the mean changes of signal intensity in a neuron subgroup.

DThe decay slope (as the dashed lines inA–C) of the activated neurons between the
prior and the posterior section. n = 13mice for home; 9 for HC-lesion; 17 for normal
recall. Error bars, s.e.m.
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time-dependent manner (Fig. 2B). To quantify the pattern changes, we
calculated the slope parameter α of the CtxA-activated cellular Egr1-EGFP
signal (compared to homecage) versus the alterations of recall signals
(compared to thefirstCtxA trial) for themeanactivity values of all theCtxA-
activated subgroups (Fig. 4A). Thereby, signal reductions in highly activated
neuron subgroups in CtxA imposed stronger influence on the general
activity pattern of CtxA than the reduction in less activated subgroups.
Model simulation based on the RAPP demonstrated a putative time-
dependent decay of the populational activation pattern (Fig. 4B). We then
experimentally measured the pattern decay in mouse visual cortex. The
subjects were placed in box A for 5 repeated trials. The representation
pattern (relative to day 1 in CtxA) in layer 2/3 neurons of visual cortex
indeed showed a trial-to-trial decay across twoweeks,with ahalf-life around
5 days (Fig. 4C).

To ask if the decay of population activation patterns is regulated by
hippocampus, we performed a hippocampus-dependent fear memory task.
As the hippocampus reverses the population adaptation in neocortex, the
decay of response patterns would be attenuated in the conditioned context.
The hippocampus was critical for the recall of contextual fear memory and
was engaged by conditioned context33,35–37. In the experiment, normal mice,
but not hippocampal damaged mice (HC-lesion), showed freezing upon
repeated exposure to the conditioned box (CtxA) (Fig. 4D). Consistently, in
HC-lesionmice, the representationpatterndecayedmuch faster than that in
the normal mice in the visual cortex (Fig. 4E).

At last, we measured population activation pattern decay in distinct
cortical areas, including visual cortex, retrosplenial cortex, somatosensory
and motor cortices. Interestingly, higher order cortices, such as the retro-
splenial cortex, showed a slower decay of the activation pattern than the
early sensory cortices for the neutral context (Fig. 4F). But in the contextual
fear memory task, all of the recorded areas showed slow decay (Fig. 4F).
Furthermore, in the hippocampus-lesioned mice, the pattern decay rate for
the conditioned context were similar to those in the neural context in VIS,
SSp and Mo of normal mice. Interestingly, retrosplenial cortex showed

significant faster decay in the HPC lesioned mice than that in the normal
mice, suggesting this regionmight receive inputs fromhippocampus both in
the neural context and the conditioned context. These observations impli-
cated differential cortical adaptation dynamics at distinct regions aremainly
due to inputs from hippocampus (Fig. 4F).

Simulation reveals contributions of both local inhibitory con-
nections and learning modulated neural excitability in
shaping RAPP
Long-term memory is consolidated in neocortex, the process of which is
mediated by hippocampus. Then, the long-termmemory could be retrieved
independent of hippocampus5,38. The question is how the cortical network
modified it properties to store the information from hippocampus. As the
observedRAPPphenomenondemonstrates the hippocampus reinstates the
cortical signals against homeostatic adaptation, similar to the consolidation
process, we wanted to simulate the parameters of RAPP by manipulating
synapses in an artificial cortical network. We would ask if the synaptic
plasticity in cortical network is able to hold on to the RAPP parameter
(k >−1) without external influence (i.e. from hippocampus).

Under this hypothesis, we considered the RAPP parameter in
homecage conditions to avoid strong and direct influences from sensory-
related activation, as well as from hippocampus-related activation. In
habituated homecage condition, the Egr1-EGFP signal is mainly correlated
with spontaneous activities so that the alterations of population activities are
mainly due to the network rewiring.

For the simulation model, we considered on the artificial neural net-
work with inhibitory connections and excitatory connections on excitable
neurons (n = 5000) with 20% of inhibitory neurons and 80% of excitatory
neurons. The model was adapted from Ref. 39, and its parameters were
modified by referring to the Refs. 40,41. And the random inputs to the
network were used to simulate the habituated homecage conditions to
generate this RAPP adaptive responses. Connections between neuronswere
rewired randomly across days (for details see Methods section).

Fig. 4 | Hippocampus reinstates cortical representation pattern inmultiple areas
of neocortex for the conditioned context. A, B Simulation of the pattern similarity
decay using the empirical parameters of the population plasticity. A Gaussian-
distributed activity pattern was used as the initial seed. The pattern in the third cycle
was treated as the initial representation. α, is the slope parameter. C Representative
example of pattern similarity decay after repeated CtxA exposure in VIS cortex of
mice. The mouse explored the box A for 3 min each day. Data was fitted with an
exponential curve (red). D Freezing in box A after contextual fear conditioning in

hippocampus-lesion group (n = 5 mice) and normal group (n = 9 mice), Two-way
ANOVA test, group p < 0.0001. E Representative example of population activity
pattern decay in the VISam of normal mice (Blue) and HC-lesion mice (Red).
F Quantifications of the half-life for the pattern decay in each recorded areas of
normal mice (Control) and HC-lesion mice. Context only group, n = 6 mice; con-
textual fear group, normal, n = 9mice; HC-lesion, n = 5mice. Multiple cortices were
recorded from one mouse. The roof of half-life was set to 40 days. Error bars, s.e.m.
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Computational modeling reveals that the rectified linear adaptation of
the neural activity of memory traces can be directly accounted for by cor-
related and long-tail distributed neuronal activities (Fig. 5A). In layers II-III
of cortical networks, the balance of Excitation/Inhibition (E/I) as an intrinsic
cortical property skews the neural activity distributions to have a long
tail42,43, which then results in a rectified linear correlation (Fig. 5B,C).Due to
the total rewiring of connections, the slope is around−1, indicating the total
loss of thememory.We found thismodel can qualitatively account for those
observations in a very wide range of parameters, not only limited to the
parameters we demonstrated.

In order to modify the network to mimic the slope in RAPP to reverse
homeostatic adaptation and encodememories, we tried to preserve parts of
the network connections. Interestingly, the modeling results show that
alteration of inhibitory connectionsmore strongly affect the adaptation rate
than excitatory ones (Fig. 5D). When all of the inhibitory connections
remained stable, rewiring of the excitatory connections did not alter the
slope in RAPP (Fig. 5D, red line). This simulation suggests the regulation of
inhibitory neurons would be essential to adjust the population adaptation
and to keep the memory components in neocortex. Giving inhibitory
neurons play a major role in local oscillatory activities44, the simulation was
consistent with the biological evidences that regulation of the cortical-
cortical oscillation synchrony is essential for corticalmemory storage34, even
in the hippocampus damaged animals. In addition, this simulation also
provides the potential for encoding and recalling multiple memories in a
single balancednetwork (seeMethods for details). Further simulations show
that learning of the firing threshold at the single cell level can further reduce
the adaptation to gain stronger memory component by the network (cf.
parameter α in Fig. 5E, F). Thereby, simulations on the cortical RAPP
phenomenon implicates the situation of memory system consolidation
where the hippocampus strongly alters the adaptation rate of neocortex via
remodeling local inhibitory circuits.

Discussion
The plasticity of the neocortex and hippocampus for memory storage has
been widely recognized5,45,46, implying the existence of persistent stimulus-
relatedmemory traces in thebrain.Our studies indicated that the adaptation

of network activity patterns is a fundamental intrinsic property of the
neocortex and appears as a characteristic activity-dependent population
plasticity phenomenon. The populational activity adaption in RAPP results
in the decay of activity patterns overtime. In the same time, sparse neuronal
outliners emerge and are distilled as long-lasting memory traces due to the
increased variability in the engagedpopulation and the residual potentiation
on top of hemostatic adaptation. Although the response in each neuron
appears stochastic, RAPP directed adaptation of population responses in
neocortex implicates the emergence of long-term memory.

Previous studies have shown the causal role of the immediate-early-
gene-labeled cells in retrosplenial cortex and hippocampus as sparse
memory traces for the storage and recall of memories25,47. While the hip-
pocampal activity reinstates the corticalmemories33, cortical engramactivity
is modulated by hippocampus for memory encoding and retrieval34. The
population plasticity rule ensures the generation of long-lasting memory
traces in the plastic brain, by strengthening the activity of just a few trace
neurons. At the same time, theRAPP rule also implies that the activity of the
majority of memory-related cortical neurons goes through time-dependent
adaptation.

Adaptation is the intrinsic property of the brain, as it has been shown in
homeostasis regulation20,21. While the populational adaptation can be
characterized as the RAPP phenomenon, it is still unknow how it is gen-
erated. While neurons receive balanced excitatory inputs and inhibitory
inputs48, increased activity could promote synaptic facilitation either in
inhibitory or in excitatory connections in a random manner, thereby
increasing the population variability. Furthermore, the occurrence of inhi-
bitory connections may be higher than that of excitatory connections49–51.
Consistently, simulations using spiking neural network model demon-
strated that the modification on inhibitory connections provides the much
stronger contributions to the network adaptation than the excitatory con-
nections (Fig. 5D). Similar to thisfinding,memory encoding and retrieval in
neocortex are regulated by oscillatory activities34, whereas local inhibitory
neurons play critical role in modulating the oscillatory activity44.

One interesting questionwill be if RAPP-imbedded learning algorithm
in the artificial neural network (CNN) showed better performance? With
the finding of RAPP in the cortical network, we studied whether this RAPP
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will contribute to the efficient learning of the brain. To answer this question,
we implanted the RAPP rule into the backpropagation algorithm in a deep-
learning network for handwritten digit recognition. We adopt a well-
describedCNNstructure provided by Schott et al. 52 used in recognition task
of handwritten digits (MINST Database). There are 4 convolutional layers
with kernel sizes = [3–5] and channel numbers = [20,70,256,10] in the
CNN model.

All subsequent comparisons of optimizers are performed on this net-
work. The idea is to use the RAPP as an adaptivemodule for themomentum
of each round of backpropagation step (Supplementary Fig. 8A). With this
RAPP module of momentum, the gradient descend steps will introduce the
adaptation and memory components for each movement to identify the
optimal weights toward zero error (Supplementary Fig. 8B). The “Adam”
optimizer is a state-of-art learning algorithm53 for this task to achieve high
accuracy and fast training speed.Weused “Adam”optimizer as a reference to
test the effects of RAPP module. To ask if the cortical adaptation rules will
help with small-sample size problem, we trained the DNNs for the MINST
recognition task with only 50/100/500 samples and then tested their recog-
nition accuracy in 10000 samples. Theminibatch size for training is also set to
2 for 50/100 samples and4 for 500 samples tofit for the small sample size task.

To make a fair comparison between each optimizer, we chose the
parameters to get the best accuracy as the benchmark parameters for each
one (See Methods for details). While the learning speed is adjusted in
“Adam” to improve the best accuracy, RAPP converge considerably faster
than Adam in the case of small sample size (50 or 100 samples) (Supple-
mentary Fig. 8C). Importantly, the final recognition accuracy of DNN
trainedwithRAPPmodule achieves thebest score, comparing to thebaseline
without optimizer (p = 0.031, 0.00095 in 50, 100 samples, paired Student’s t
test, Supplementary Fig. 8D). However, RAPP rule manifests a clear dis-
advantage both in terms of performancewhen given training samples with a
big size (500). We speculate the improvement by RAPP module is mainly
due to the momentum factor that keeps the residual impact of each sample,
rather thannormalizing them.To confirm it, we set the variation inRAPP to
0, leavingno tracememoryof those samples, themodel didnot result ingood
performance. Thereby, RAPP module might help to improve learning in
current CNN, in condition of vary small sample size.

Population plasticity is an intrinsic property of dynamic neural net-
works. We postulate that such population dynamics are essential for both
the flexibility and the long-lasting nature of memories in the brain. The
decay of population responses might largely reduce the redundancy of
sensory representations54, leaving sparse traces of highly active neurons to
efficiently represent the information1. For example, the population repre-
sentation of neurons in VISam for a novel environment gradually adapts to
selective responses in a few trace neurons17. Thus, our studies revealed a
fundamental rule of cortical dynamics and suggested its role in the adap-
tation of cortical representations and learning.

Methods
In vivo imaging
Mouse strain: BAC-EGR-1-EGFP (Tg(Egr1-EGFP)GO90Gsat/Mmucd,
from Gensat project, distributed from Jackson Laboratories). Animal care
was in accordance with the Institutional guidelines of Tsinghua University
and ShanghaiTechUniversity. All animalsweremaintained in theTsinghua
University animal research facility. The Laboratory Animal Facility at the
Tsinghua University is accredited by Association for Assessment and
Accreditation of Laboratory Animal Care International (AAALAC), and
protocols are approved by the Institutional Animal Care and Use Com-
mittee (IACUC). Mice were housed in groups of 3–5 on a standard 12-h
light/12-hdark cycle, andall behavioral experimentswereperformedduring
the light cycle. We have complied with all relevant ethical regulations for
animal use. 3–5 months old mice received cranial window implantation as
previously described17; recording began 1month later. To avoid unexpected
damage to the cranial window, mice were single housed. To implant the
cranial window, the animal was immobilized in custom-built stage-
mounted ear bars and a nosepiece, similar to a stereotaxic apparatus. A

1.5 cm incision was made between the ears, and the scalp was reflected to
expose the skull. One circular craniotomy (6–7mm diameter) was made
using a high-speed drill and a dissecting microscope for gross visualization.
A glass-made coverslip was attached to the skull. For surgeries and obser-
vations, mice were anesthetized with 1.5% isoflurane. EGFP fluorescent
intensity (FI) was imaged with an Olympus Fluoview 1200MPE with pre-
chirp optics and a fast AOM mounted on an Olympus BX61WI upright
microscope, coupled with a 2mm working distance, 25x water immersion
lens (numerical aperture, 1.05). A mode-locked titanium/sapphire laser
(MaiTai HP DeepSee-OL, Spectra-Physics, Fremont, CA) generated two-
photon excitation at 920 nm, and three photomultiplier tubes including two
GaAsP equipped with cooling features (Hamamatsu, Ichinocho, Japan)
collected emitted light in the range of 380–480, 500–540, and 560–650 nm.
The output power of the laser was maintained at 1.56W, and power
reaching the mouse brain ranged from 7.8 to 12.5 mW. For each cortical
volume, the laser power was consistent during time-lapse images under
multi-tasks. The depth effect of the 2-p microscope was calibrated by
adjusting the PMT voltage, calibrated for the mouse line with universally
expressed EGFP. To facilitate localization of cortical volumes from section
to section, Dextran Texas Red (Dex Red; 70,000 molecular weight; Invi-
trogen)was injected into a lateral tail vein to create a fluorescent angiogram,
as previously described55.

Imaging data analysis and quantification
The multi-photon images were subjected to 3-D motion detection using a
custom-made algorithm. In brief, we choose the positions of cells detected
by classifiers, which were trained through a Support Vector Machine
(SVM), as key alignment points of the recorded cortical volume. Then the
least square rule was used to estimate the transformationmatrix and a Scale
Invariant Feature Transform (SIFT) algorithmwas used as the descriptor of
those key points to perform the motion correction in 3-D space. The stack
imageswere furtherquantifiedwithMatlab (MathWorks,Natick,MA).The
3D volume view was created using Image-J (NIH). The center position of
each detected neuron was determined automatically through a deep neural
network-based recognition algorithm and further validated manually. The
EGFP intensity in each cell for each trial was quantified around the cell
center as the averaged intensity in a 12×12×9 μm voxel. Data analysis was
performedby custom-written code inMatlab. Imaging datawere segregated
using the algorithms developed in the lab17 andmanually corrected to detect
each neuron. Typically, 9000–14,000 EGR1+ neurons were quantified in a
cortical volume (509x509x800μm, layer I-VI). The automated 3-Dalign and
segmentation software is available upon request from the corresponding
author. The EGFP signal in each volume at each trial was normalized by the
maximum signals of the top 50 neurons in each volume.

Hippocampal lesions
Mice were anesthetized with 2% isoflurane and placed into a stereotaxic
frame. Amidline incision wasmade on the scalp, the skin was reflected and
the skull overlying the targeted region was removed. Injections of NMDA
(10mg/ml, dissolved in 0.01m PBS) were given using a 2ul Hamilton syr-
inge (AP,−2.2; ML,−2; DV,−2.5). Injections of 0.25 μl were given over a
2.5min delivery period. Behavior assessments of the subject for seizure and
mobility abnormality were performed immediately after surgery to deter-
mine the effect of hippocampal lesions. Themicewere allowed to recover for
1 week before receiving the cranial window implantation.

Contextual fear conditioning and neutral context exploration
trials (Context A)
Context-dependent fear conditioning in context A. Context A is a cylinder
box with white walls and grid floor. The box was wiped out with alcohol to
generate an olfactory stimulus. Training consisted of a 3min exposure of
animals to the conditioning box (Multi-conditioning system, TSE system)
followed by a foot shock (2 sec, 0.8mA, constant current). For intensive
training, the same procedure is performed for 3 times. Thememory test was
performed 24 h later by re-exposing the mice for 3min to the conditioning
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context. The resultswere validated by the automatic freezing counting in the
TSE system. We also measured freezing by human observer. Freezing,
defined as a lack of movement except for heart beat and respiration asso-
ciated with a crouching posture, was recorded every 10 sec by two trained
observers (one was unaware of the experimental conditions) during a 3min
period (a total of 18 sampling intervals). The number of observations
indicating freezing obtained as themean of both observers was expressed as
a percentage of the total number of observations. For the retrieval trial, the
mousewasplaced in the chamber for 3min. In each recall section,micewere
tested for 3min in the chamber and returned to their homecage, then, 1.5 h
later, they were subjected to two-photon imaging. For the long-term
memory task (Fig. 2), a foot shock was delivered immediate after the recall
section on day 7 and day 19 to reinforce the fear memory. For the control
experiment, mice were trained in conditioning context and returned to
homecage. Mice were anesthetized with 1.5% isoflurane for one hour to
perform a mock section of observation on day 3 and day 6 and a recall
section was performed on day 8.

Behavioral analysis. All animal behaviors in the contexts were recored
and analyzed using the computerized TSE Multi Conditioning System 2.0
(TSE 2.0). The location of mouse was detected by the horizontal and depth
infrared photobeams. Analysis parameters used in the software were
defined as follows. Grooming > 3 s, freezing > 1000ms, activity > 3.0 cm/s.

Neuronal culture and stimulation. Embryonic cortices (E17) of EGR1-GFP
BAC transgenic mice (Genesat Project) were isolated using standard pro-
cedures and trituratedwith trypsin/DNAsedigestion.Cortical neuronswere
plated at a density of 10,000 cells perwell in black/clear bottomplates coated
with the poly-D-lysine (Costar) in the neurobasal medium (1.6% B27, 2%
glutamax, 1%pen/strep, and 5%heat-inactivated fetal calf serum) and in the
neurobasal medium without serum 24 h later. Under these culture condi-
tions, the percentage of glia was estimated to be in the range of 5–25. The
optogenetic method was used to perform the light-induced stimulation.
pLenti-CaMKIIa-hChR2-mCherry-WPRE was a gift from Dr.
Deisseroth56,57. ChR2-mCherry vector was transfected in the cultures. An
array of LED lamps (~480 nm, 3.0–3.2 v, 1000–1200mcd/lamp, 25mW)
was placed 10 cm above the culture dish. LED lamps were controlled by the
SCMcontrol electric circuit (single chipmicyoco, specifically, AT89S52 and
AT89C52). Light pulses were given at 5ms per pulse. The cultured neurons
were transfected at DIV4 and stimulated at DIV7. After the transfection,
neurons were kept in a dark box. Cells were harvested and subjected to RT-
qPCR at the indicated time points immediate after LED pulses. Total RNA
was extracted from cells or tissues with TRIzol (Invitrogen) using the
manufacturer’s protocol. 1ug of total RNA was reverse transcribed by
TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix
(Transgene), using Oligo(dT)15 for mRNA and random primer for nascent
RNA. Quantitative PCR was performed with SYBR-Green-based reagents
(SsoFastTM EvaGreen supermix; Bio-Rad), using a CFX96 real-time PCR
Detection system (Bio-Rad).

Statistics and reproducibility
Datawere represented asmean± s.e.m. Box or violin plots were represented
as themean, interquartile range and theminimumandmaximum. Column
values are tested if the values come from a Gaussian distribution via
D’Agostino & Pearson omnibus normality test. Statistical significance was
determinedbyunpairedorpaired two-tailed Student’s t test, oneor two-way
ANOVA.*P < 0.05;**P < 0.01;***P < 0.001;****P < 0.0001.Quantitative
displays were produced using GraphPad Prism version 6 (GraphPad soft-
ware, SanDiego California USA) and Matlab (Mathworks, Natick, MA,
USA). Data is available upon request.

Data processing and simulation
The pattern similarity (Fig. 4) was calculated as slope+ 1, where the slope
was determined by the linear regression of activity changes to the learning
trial (the reference trial) in each neuron and the task-induced activity in the

reference trial (v.s. the homecage trial). The slope for the activity pattern
identical to the learning trial was 0, resulting in a similarity pattern of 1. For
each volume, neuronswere grouped inmultiple subgroups, according to the
intensity of task-induced activity in the reference trials. More than 200
neurons were considered in each subgroup. Only the activated neurons in
the reference trial were considered. The means of signals for each subgroup
were used for the linear regression to reduce the noises.

Trace neurons were defined as those neurons with induced activity
(ΔF, v.s. homecage) higher than 3 folds of standard deviation in the layer 2/3
population of the reference day.

For the simulation, 3,000 neurons with Gaussian-distributed activ-
ities were used as seed. A random perturbation, using Gaussian-
distributed noise, was imposed on the second trial with 8% of variation.
In the following trials, the system was updated according to the empirical
constants of the population plasticity rules, as summarized in
Figs. 1 and S2. Activities of each neuron are determined according to
RAPP rule by adding an alternation amplitude component as ΔS2

Amp and
a random variation component determined by ΔS2

s.d.. Thus, we define the
adaption is following normal distributed random number under this
given conditions. That means:

R xð Þ � N μ xð Þ; σ xð Þ2� �
;

when

μ xð Þ ¼ ΔSAmp

σ xð Þ ¼ ΔSs:d:

Where

ΔSAmp
2 ¼ �0:34×ΔSAmp

1 ;ΔF1>� 0:05

0:013; ΔF1<� 0:05

(

ΔSs:d:2 ¼ 0:21×ΔSAmp
1 þ 0:05; ΔF1>� 0:05

�0:07×ΔSAmp
1 þ 0:05; ΔF1<� 0:05

(

In the next round, the signal is updated accordingly. In this way, the
trace neuron responses and the representation pattern decay in the simu-
lated system were quantified in the same way as the experimentally mea-
sured activities in mouse neocortex.

Excitation-inhibition (E-I) balanced network model and data
analysis
While using artificial models to explain the mechanisms underlying RAPP,
in order to match the experimental procedures, data in the model simula-
tions were analyzed in the same way.

Data were firstly sorted according the activity changes from the default
state (on day D0 in home cage) to the first exploration of the event (on day
D1), labeled asActivity (D1-D0).Amovingwindowof the sizenwinwasused
to group the neuron in terms of sorted activities and we calculated the
averaged activities within this group, labeled asMean activity (D1-D0). The
step of the moving window was ndropout , meaning that for each step we
dropped out thendropout data points with the smallest values ofActivity (D1-
D0), and brought the nextndropout points into the group, to calculate the next
value ofMean activity (D1-D0). At themeantime,we calculatedwithin each
group the mean values of the change of the neural activities from day D1 to
day D2 when the animal explored the repeated event, labeled as Mean
activity (D2-D1) and the standard deviation of those changes, labeled as
STD (D2-1).

To fully match the experimental procedures, we also focused on the
dependence ofMean activity (D2-D1) onMean activity (D1-D0), as well as
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the dependence of STD (D2-D1) on Mean activity (D1-D0). Specifically,
after using the linear least squares to fit the data, we denoted the slope as α.

Without loss of generality, we simulated a representative integrate-
and-fire models. Specially, the he model was adapted from Ref. 39, The
qualitative properties of the model are in fact robust in a very wide range
of system parameters, and we particularly modified the parameters
referring to the Refs. 40,41, in order to make the model also quantita-
tively plausible.

Thedynamics of themembranepotentialVof eachneuron is described
by

τinh;ex
dV
dt

¼ Vrest � V
� �þ gex Eex � V

� �þ ginh Einh � V
� �

where τinh;ex describes the time scale of the neuron in inhibitory or excitatory
populations. Specifically, τinh = 20ms for inhibitory neurons, and
τex = 10ms for excitatory neurons. Whenever the membrane potential of a
neuron crosses a spiking thresholdVth, an action potential is generated and
the membrane potential is reset to the resting potential Vrest =−60mV.
Reversal potentials of synapses for excitatory and inhibitory neurons are
Eex = 0mV and Einh =−80mV, respectively. Vth equals to a baseline value
Vth0 plus a temporal fluctuation Vthf . Vthf uniformly distribute between
−2.5mV and 2.5mV. gex and ginh are the positive and negative dimen-
sionless synaptic conductance, and their evolutions exponentially decaywith

τse
dgex
dt

¼ �gex

and

τsi
dginh
dt

¼ �ginh

When a neurons fires, appropriate dimensionless synaptic conductance of
its postsynaptic targets is increased as gex;inh ! gex;inh þ δg. The value of
δg, depends on the excitatory or inhibitory properties of both the pre-
synaptic and postsynaptic neurons. Specifically, we used δg ¼ 0:2 if both
the pre- and postsynaptic neurons are excitatory, δg ¼ 0:46 if the pre-
synaptic neuron is excitatory and postsynaptic neuron is inhibitory, δg ¼
3:05 if the other way around, and δg ¼ 3 if both the pre- and postsynaptic
neurons are inhibitory, to ensure the system located in the balanced region
and have proper firing rates. The refractory period for all the neurons is a
constant, and fixed as 2.5 ms. Time step for simulation is fixed as 0.05ms.
For each time step, a random input is injectedwith a small probability pinput ,
and the neurons which will receive external input are randomly selected
each time from the excitatory population, of the numberwhich is uniformly
distribute between zero and Ninput max . When one neuron receives external
input, the same operation is taken as the neuron receives the excitatory
inputs on thenetwork, i.e. gex ! gex þ δg, and the value of δg is the sameas
the one with both pre- and postsynaptic neurons are excitatory, namely
δg ¼ 0:2. We totally simulate n = 5000 neurons randomly located on a
L× L 2-dimentional plane. The proportion of inhibitory neurons is fixed as
20%, and the excitatory neurons is 80%.

It is easy to setupanE.-I. balancemodelwith suchconnectionproperties
and connective strength parameters. In order to demonstrate that the results
are parameters robust, we used different sets of parameters in this work. For
example, it can be that τse = 20ms and τsi = 5ms, and regarding the input,
pinput ¼ 3% and Ninput max ¼ 4, by using which the model does not have
macroscopic rhythm, andwhen we used τse = 10ms, τsi = 5ms, pinput ¼ 2%
andNinput max ¼ 40, the macroscopic dynamics is oscillatory in alpha band.
In this step, we do not aim to set up any intrinsic particular difference among
neurons, so that we fix Vth0 identically as−50mV for all the neurons.

1000 excitatory neurons uniformly and randomly connect their post-
synaptic targets with a proportion μ ¼ μ0 ¼ 8%. The other 3000 excitatory
neurons and all the 1000 inhibitory neurons only connect locally to their

postsynaptic targets, with the probability

μ ¼ μ0
2πr0

e�
r2
2r0

Where r is its distance to thepotentiallypostsynaptic target, and r0 ¼ 0:12L.
Periodic boundary condition is used.

Memory encoding indicates the change of system parameters. In
theory, there could be variousways of changing the parameters to enable the
network to encode memories, out of which, we used two examples to
demonstrate the memories can always be embedded in RAPP. First, we
preserved parts of the network connections and randomly rewired others.
Second, we enabled single cells to learn the firing threshold on dayD2 based
on the neural activities on day D1. Specifically, we first calculated the
average, the maximum and the minimum firing rates of all excitatory
neurons on day D0, labeled as ρmean, ρmax, and ρmin, respectively, and
defined the range of the firing threshold sampling pool as [Vth min S,
Vth max S,]. Thefiring threshold ondayD2of theneuronwhichhad thefiring
rate ρ on day D1 was then defined as

Vth ¼
Vth0 � η Vth max S � Vth0

� � ρ�ρmeanð Þ
ρmax�ρmeanð Þ ; if ρ>ρmean

Vth0 þ η Vth0 � Vth minS

� � ρmean�ρð Þ
ρmean�ρminð Þ ; if ρ≤ ρmean

8><
>: ;

where η is a random number uniformly distributed between 0 and 1.

Encoding and recall of two memories in a single network
Even with the same statistical property, one can always generate different
networks realizations by sampling connections from the fixed distribution.
In this part, different network realizations with the same statistical property
were used to mimic how the cortical network morphologies encoded dif-
ferent environments, and the recalling processes were mimicked by
injecting additional excitatory inputs to target inhibitory populations.

We selected two network realizations NB and NC corresponding to
two environments B and C where the animal is supposed to remember
specific contexts (NB and NC encoded the whole information of environ-
ments B and C), and arbitrarily selected another two network realizations
N0 and N1 (without any information of the environments B or C). N0 was
supposed to correspond to the default environment (home cage), and parts
of the connections of N1 were used to design the target network realization
NX, which was supposed to encode thememories of environments B and C
simultaneously. To this end, NX was set to have all the excitatory connec-
tions from N1, i.e. totally different compared to NB and NC, but its con-
nections originated from the first 400 inhibitory neurons (40%) which were
the same as for NB (which we labeled as inhibitory population InB), and
connections from the next 400 inhibitory neurons (40%) were the same as
for NC (inhibitory population InC). The connections from the remaining
200 inhibitory neurons are the same as N1, i.e. different compared to NB or
NC. In the simulation of mimicking a recalling process, named SB-Recall,
we still gave additional excitatory inputs to inhibitory population InB of
network realization NX, and in another recalling simulation, we gave
additional excitatory inputs to the inhibitory population InC.

Deep convolutional neural network (CNN) model with RAPP rule
According to the learning rule that we discovered in neocortex during
memory coding (Fig. 1B), we tried to find a way to apply those parameters
provided by biological data of EGR1-EGFP signals. As the accumulative
neural activity changes reflect the alternations of connections, we estimate
the adaption of connections according to the EGR1-EGFP data. Firstly, we
obtain an adaptation parameter (R(x)) for every step of learning. From the
meanactivity changes of earlier and later,we assume that thekeyparameters
x of the network in the neocortex obey a similar distribution RðxÞ.
According to the adaptation of EGR1-EGFP signal (Fig. 1E, F), we define
that the adaptation of data is normally distributed under the given
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conditions. That means:

R xð Þ � N μ xð Þ; σ xð Þ2� �
;

when

μðxÞ ¼ 0:017; x <�0:05;

�0:34x; x ≥ �0:05:

�

σðxÞ ¼ �0:07x þ 0:05; x < 0;

0:21x þ 0:05; x ≥ 0:

�

Considering that the connections between neuron nodes in CNN
should obey a certain law, we set it to obey the distribution R xð Þ. To test the
RAPPrule on few-shot tasks, we adopt awell-describedCNNstructure used
in recognition task on MNIST dataset. For 5/10 samples per category, the
training batch size is set to 2 and the training batch size is set to 4 for
50 samples per category. For the original backpropagation optimizer, the
CNN are trained with the learning rate of 0.01, 0.015, and 0.05 for 50, 100,
and 500 training samples. For the Adam optimizer, the CNN are trained
with the learning rate of 10−5, 5 × 10−6 and 0.0002 for 50, 100, and 500
training samples. For the RAPP optimizer, the CNN are trained with the
learning rate of 0.01, 0.015, and 0.05 for 50, 100, and 500 training samples.
During learning, for each step of error-driven connectionmodification (Δwi

(t+1)), we add a component ofmomentum following theRAPP rule, setting
as the following:

Δwi t þ 1ð Þ ¼ lr� ∂f t þ 1ð Þ
∂wi

þ c tð Þ�R Δwi tð Þ
� �� �

:

Here f tð Þ is the whole CNN network, lr is the learning rate and t is the
number of training batches. In addition, we set a decay factor, the memory
component weight c tð Þ, is set as the following:

c tð Þ ¼ 2

t=w1þ 1
� �p :

For the RAPP optimizer, the CNN are trained with thew1 of 150, 300,
and 5 for 50, 100, and500 training samples. The p is set to 1, 1, and0.8 for 50,
100, and 500 training samples. According to the training set with few
samples are sometimes not representative enough, we will restart the
training if thefinal accuracy is lower than 50%on the training set.When the
training samples are expanded to 500, the RAPP optimizer shows a dis-
advantage in terms of accuracy sowe just choose a set of parameters to show
the result. On the other cases, the parameters are set to get the best accuracy
for each optimizer. In each experiment, the original net and the training
dataset is consistent across three different optimizers. The small sample
training set is randomly picked in the regular training set consist of
50,000 samples when the test set is the regular test set with 10000 samples.
We repeat 36, 74, and 34 experiments for 50, 100, and 500 training samples
and show the mean accuracy in supplemental Fig. 8.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Detailed automatic signal processing methodology
Automated cell detection
In the least squaremethod,we should know in advance some corresponding
points that are at the same position after image transformation. Generally,
these key points can be chosen from corner points, rotationally invariable
points and so on. For our particular problem, locations of cells can be
naturally used as key points.

Since the deep convolution neural network (CNN) showed outstanding
performance in diverse image processing applications in recent years, we
trained a convolution neural network classifier to detect cells, with parameters
as shown in Table 1. By using sliding windows of different scales in a single
frame of a 3-D image, we extracted candidate 2-D patches, rescaled them to a
uniform size (17*17 pixel), which is suitable for our data) and identified them
through the CNN classifier. To speed up the process, we also trained a simple
linear classifier that showed a high recall rate for the training dataset, to select
candidates for the CNNmodel. By observing that the center of a cell patch is
brighter than the surroundings, while non-cell patches in this frame
do not have this property, we extracted the mean gray value of each
row and each column as the feature used in the linear classifier. Due
to the sliding windows approach, we typically obtained more than
one location for a cell. Therefore, we calculated the simple connected
regions with an 8-connected neighborhood in a frame and merged
centers in different frames in a small domain.

Automated image registration
For the convenience of comparison and tracking, we developed an algo-
rithm to automatically warp one 3-D image into another.

Under the assumption that an affine transformation would work well
(which indeed proved to be very effective), our algorithm followed the
typical framework of image registrationwith the least square rule, and some
modification was made to adapt to the given problem:
1. Locate cells that appear in the two 3-D images I1 and I2 in each image

frame and employ them as key anchor points.
2. Extract SIFT features at key points to represent these points and find

pairs of key points that should be at the same position after
interpolation.

3. Calculate the transformation matrix used in the XY coordinate plane
with the conclusion of least square method and warp I1 with the
obtained matrix.

4. Apply the operation in step 3 successively on the YZ, XZ
coordinate plane

5. Repeat step 1–4 until convergence, which means that I1 changes little
after interpolation.

We can see from the above that there are mainly two stages in our
algorithm—finding the key points and interpolation. In the first stage, for
finding the key points used in the second stage, a classifier is trained in
advance to determine whether a small patch is constructed by a cell or not.
Then in the second stage, a standard least square method is used on a 2-D
plane. This approach is inspired by the idea that an affine transformation in
3-D space can be equally divided into three affine transformations in the
subspace ofXY,XZ, andYZplanes. These two stageswill be explained in the
next two sections.

Cell detection
In the least squaremethod,we should know in advance some corresponding
points that are at the same position after transformation. Generally, these
key points can be chosen from corner points, rotationally invariable points
and so on. For our special problem, locations of cells cannaturally be used as
key points.

By observing a single frame of a 3-D image, we noticed that cell patches
have the property that the center of this patch is significantly brighter than
surroundingswhile non-cell patches in this frame do not have this property.
In viewof this observation, the featureweused in classificationwas themean
gray value of each row and each column. Then values near the middle of
each row (column) will be bigger than sides. For example, if the size of a
patch is 15*15, then we can get a 30-dimensional vector as feature in which
the first 15 dimensions represent the mean gray value of each row and the
last 15 dimensions represent the mean gray value of each column. For
different sizes of patches, we can respectively train classifiers or rescale them
to a uniform size, and only one classifier is needed.
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The classifier is trained with a Support Vector Machine (SVM). It is
worth pointing out that we do not need high precision in this step as these
locations are served as key points in interpolation, instead of investigating
the cells themselves. Therefore, the parameters and threshold can be chosen
loosely to make sure more key points are found. And in experiments, pat-
ches with a size of 15 × 15 proved appropriate for our data.

Warping and interpolation
After the stage of cell detection, we obtain two sets C1, C2 that contain
locations of cells in I1 and I2. Before interpolation, we need to match
coordinates inC1 andC2.Anatural idea ismatching eachpoint inC1 to the
nearest point in C2 under the Euclidean metric. However, for regions that
have high density of cells, we can easilyfind that pointsmatched by this way
cannot guarantee the right one, as the distance between severalmatchesmay
be close. If we just refuse matching for this case, obviously, much infor-
mation is lost. Considering this aspect, we draw on SIFT feature while
matching. SIFT is a powerful descriptor in the field of image processing. By
comparing the similarity of SIFT feature inC1andC2,we canobtainpairs of
points we need in interpolation. The toolbox of Vl_feat[1] is used while
extracting SIFT feature and matching. Besides, we also restrict the distance
between pairs of points matched cannot bigger than the threshold set
artificially.

Theoretically, using the pairs of key points, a standard process of
interpolation can be carried out to achieve our goal [2]. However, as 3-D
interpolation is fairly time-consuming, we make some modification to this
process anddivide the3-D interpolation into three 2-D interpolations. In 3-D
space, any affine transformation can be equally replaced by three successively
affine transformations in three orthometric 2-D planes. In the frame of axes,
we choose XY plane, YZ plane and XZ plane for convenience. Then each
interpolation in 2-D plane can be executed following the step in [2].

Besides, our method is an iterative algorithm. It will stop if the image
changes little after one iteration. This ismeasured by the Frobenius distance
between the transformation matrix and identity matrix which means no
change is made after interpolation. [1] http://www.vlfeat.org/overview/sift.
html [2] http://en.wikipedia.org/wiki/Scale-invariant_feature_transform.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request. The source data behind the
graphs in the paper (supplementary Data 1).

Code availability
Program codes of both the simulation and CNN RAPP module is available
via the following link: https://www.myqnapcloud.cn/smartshare/
74he137i7p84o28qu6x85y70_e795j94li22n21830vs3878223dbhgig.

Received: 28 January 2024; Accepted: 31 October 2024;

References
1. McDonnell, M. D. & Ward, L. M. The benefits of noise in neural

systems: bridging theory and experiment. Nat. Rev. Neurosci. 12,
415–426 (2011).

2. Stein, R. B., Gossen, E. R. & Jones, K. E. Neuronal variability: noise or
part of the signal?. Nat. Rev. Neurosci. 6, 389–397 (2005).

3. Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past
and imagining the future. Science 367, 39-+ (2020).

4. Wark, B., Lundstrom, B. N. & Fairhall, A. Sensory adaptation. Curr.
Opin. Neurobiol. 17, 423–429 (2007).

5. McGaugh, J. L. Memory–a century of consolidation. Science 287,
248–251 (2000).

6. Kandel, E. R. The molecular biology of memory storage: a dialogue
between genes and synapses. Science 294, 1030–1038 (2001).

7. Bozon, B., Davis, S. & Laroche, S. A requirement for the immediate
early gene zif268 in reconsolidation of recognition memory after
retrieval. Neuron 40, 695–701 (2003).

8. Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory engram
cells have come of age. Neuron 87, 918–931 (2015).

9. Han, J. H. et al. Neuronal competition and selection during memory
formation. Science 316, 457–460 (2007).

10. Czajkowski, R. et al. Encodingandstorageof spatial information in the
retrosplenial cortex. Proc. Natl Acad. Sci. USA 111, 8661–8666
(2014).

11. Roy, D. S. et al. Brain-wide mapping reveals that engrams for a single
memory are distributed across multiple brain regions. Nat. Commun.
13, 1799 (2022).

12. Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S.
Memory. Engram cells retain memory under retrograde amnesia.
Science 348, 1007–1013 (2015).

13. Ding, X. et al. Activity-induced histone modifications govern
Neurexin-1 mRNA splicing and memory preservation. Nat. Neurosci.
20, 690–699 (2017).

14. Roy, D. S. et al. Memory retrieval by activating engram cells in mouse
models of early Alzheimer’s disease. Nature 531, 508–512 (2016).

15. DeNardo, L.A. et al. Temporal evolutionof cortical ensemblespromoting
remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

16. Vetere, G. et al. Chemogenetic interrogation of a brain-wide fear
memory network in mice. Neuron 94, 363–374.e364 (2017).

17. Xie, H. et al. In vivo imaging of immediate early gene expression
reveals layer-specific memory traces in the mammalian brain. Proc.
Natl Acad. Sci. USA 111, 2788–2793 (2014).

18. Kitamura, T. et al. Engrams and circuits crucial for systems
consolidation of a memory. Science 356, 73–78 (2017).

19. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & SB,
NelsonActivity-dependent scaling of quantal amplitude in neocortical
neurons. Nature 391, 892–896 (1998).

20. Hengen, K. B., Lambo, M. E., Van Hooser, S. D., Katz, D. B. &
Turrigiano, G. G. Firing rate homeostasis in visual cortex of freely
behaving rodents. Neuron 80, 335–342 (2013).

21. Hengen, K. B., Torrado Pacheco, A., McGregor, J. N., Van Hooser, S.
D. & Turrigiano, G. G. Neuronal firing rate homeostasis is inhibited by
sleep and promoted by wake. Cell 165, 180–191 (2016).

22. Jones, M. W. et al. A requirement for the immediate early gene Zif268
in the expression of late LTP and long-termmemories.Nat. Neurosci.
4, 289–296 (2001).

23. Bozon, B. et al. MAPK, CREB and zif268 are all required for the
consolidationof recognitionmemory.Philos. Trans.R.Soc. Lond.Ser.
B Biol. Sci. 358, 805–814 (2003).

24. Barth, A. L., Gerkin, R. C. & Dean, K. L. Alteration of neuronal firing
properties after in vivo experience in a FosGFP transgenic mouse. J.
Neurosci. 24, 6466–6475 (2004).

Table 1 | Structure of our CNN model

type input-size kernel-size channel stride

1 Input image 17 × 17 × 1 – – –

2 Convolution 17 × 17 × 1 3 × 3 10 1 (pad=1)

3 Max-pooling 17 × 17 × 10 3 × 3 10 2 (pad=0)

4 Non-linear 8 × 8 × 10 – 10 –

5 Normalization 8 × 8 × 10 5 × 5 10 –

6 Convolution 8 × 8 × 10 3 × 3 20 1 (pad=1)

7 Max-pooling 8 × 8 × 20 2 × 2 20 2 (pad=0)

8 Non-linear 4 × 4 × 20 – 20 –

9 Normalization 4 × 4 × 20 5 × 5 20 –

10 Full-connection 320 × 1 – 80 –

11 Non-linear 80 × 1 – 80 –

12 Full-connection 80 × 1 – 2 –

13 Soft-max 2 × 1 – 2 –

https://doi.org/10.1038/s42003-024-07186-2 Article

Communications Biology |          (2024) 7:1487 12

http://www.vlfeat.org/overview/sift.html
http://www.vlfeat.org/overview/sift.html
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://www.myqnapcloud.cn/smartshare/74he137i7p84o28qu6x85y70_e795j94li22n21830vs3878223dbhgig
https://www.myqnapcloud.cn/smartshare/74he137i7p84o28qu6x85y70_e795j94li22n21830vs3878223dbhgig
www.nature.com/commsbio


25. Liu, X. et al. Optogenetic stimulation of a hippocampal engram
activates fear memory recall. Nature 484, 381–385 (2012).

26. Wang, G. Y. et al. Egr1-EGFP transgenic mouse allows in vivo
recordingof Egr1expressionandneural activity.J.Neurosci.Methods
363,109350 (2021).

27. Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J. &
HS, Seung Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature 405, 947–951 (2000).

28. Dahl, G. E., Sainath T. N., & Hinton G. E. (2013) Improving deep neural
networks for Lvcsr using rectified linear units and dropout.
International Conference on Acoustics, Speech and Signal
Processing. p. 8609-8613 (IEEE, 2013).

29. Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization
of a stable neural correlate of associative memory. Science 317,
1230–1233 (2007).

30. Wang, G. et al. Switching from fear to no fear by different neural
ensembles in mouse retrosplenial cortex. Cereb. Cortex 29,
5085–5094 (2019).

31. Li, D. et al. Multimodal memory components and their long-term
dynamics identified in cortical layers II/III but not layer V. Front. Integr.
Neurosci. 13, 54 (2019).

32. Li, D. et al. Discrimination of the hierarchical structure of cortical layers
in 2-photon microscopy data by combined unsupervised and
supervised machine learning. Sci. Rep. 9, 7424 (2019).

33. Tanaka, K. Z. et al. Cortical representations are reinstated by the
hippocampus during memory retrieval. Neuron 84, 347–354
(2014).

34. Luo, W. et al. Acquiring new memories in neocortex of hippocampal-
lesioned mice. Nat. Commun. 13, 1601 (2022).

35. Phillips,R.G. &LeDoux, J. E.Differential contributionof amygdalaand
hippocampus to cued and contextual fear conditioning. Behav.
Neurosci. 106, 274–285 (1992).

36. Squire, L. R.Memory and the hippocampus: a synthesis from findings
with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

37. Bosch, S. E., Jehee, J. F., Fernandez, G. & Doeller, C. F.
Reinstatement of associative memories in early visual cortex is
signaled by the hippocampus. J. Neurosci. 34, 7493–7500 (2014).

38. Wang, S. H. & Morris, R. G. Hippocampal-neocortical interactions in
memory formation, consolidation, and reconsolidation. Annu. Rev.
Psychol. 61, 49–79 (2010).

39. Vogels, T. P. & Abbott, L. F. Signal propagation and logic gating in
networksof integrate-and-fire neurons. J.Neurosci.25, 10786–10795
(2005).

40. Wang, S.-J., Hilgetag, C. & Zhou, C. Sustained activity in hierarchical
modular neural networks: self-organized criticality and oscillations.
Front. Comput. Neurosci. 5, 30 (2011).

41. Yang, D.-P., Zhou, H.-J. & Zhou, C. Co-emergence of multi-scale
cortical activities of irregular firing, oscillations and avalanches
achieves cost-efficient information capacity. PLoS Comput. Biol. 13,
e1005384 (2017).

42. Vreeswijk, C. V. & Sompolinsky, H. Chaotic balanced state in amodel
of cortical circuits. Neural Comput. 10, 1321–1371 (1998).

43. Van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networkswith
balanced excitatory and inhibitory activity. Science 274, 1724–1726
(1996).

44. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm
and controls sensory responses. Nature 459, 663–667 (2009).

45. Abbott, L. F. & SB, Nelson Synaptic plasticity: taming the beast. Nat.
Neurosci. 3, 1178–1183 (2000).

46. Martin, S. J., Grimwood, P. D. & RG, Morris Synaptic plasticity and
memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23,
649–711 (2000).

47. Cowansage, K. K. et al. Direct reactivation of a coherent neocortical
memory of context. Neuron 84, 432–441 (2014).

48. Hofer, S. B. et al. Differential connectivity and response dynamics of
excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14,
1045–1052 (2011).

49. Petersen, C. C. The functional organization of the barrel cortex.
Neuron 56, 339–355 (2007).

50. Petersen, C. C. & Crochet, S. Synaptic computation and sensory
processing in neocortical layer 2/3. Neuron 78, 28–48 (2013).

51. Markram, H. et al. Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492 (2015).

52. Schott L., Rauber J., BethgeM., &BrendelW. (2019) Towards the First
Adversarially Robust Neural Network Model on MNIST. Seventh
International Conference on Learning Representations, pp 1-16 (ICLR
2019).

53. Kingma, D. P. & Ba J. Adam: A Method for Stochastic Optimization
(ICLR (Poster), 2015).

54. Barlow, H. B. Single units and sensation: a neuron doctrine for
perceptual psychology? Perception 1, 371–394 (1972).

55. Xie, H. et al. Rapid cell death is precededby amyloid plaque-mediated
oxidative stress. Proc. Natl Acad. Sci. USA 110, 7904–7909 (2013).

56. Zhang, F.,Wang, L. P., Boyden, E. S. &Deisseroth, K. Channelrhodopsin-
2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

57. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K.
Millisecond-timescale, genetically targeted optical control of neural
activity. Nat. Neurosci. 8, 1263–1268 (2005).

Acknowledgements
Thework is supportedby theScience&Technology Innovation2030Project
of China (2021ZD0203500) and NSFC (32225023) to J.-.S.G., NSFC
(32130043) to H.X. National Science Fundation of China and the German
Research Foundation (DFG) in project Crossmodal Learning, NSFC
(62061136001)/DGF TRR-169 to J.-S.G. and C.C.H. Shanghai Frontiers
Science Center Program 2021–2025(NO.2) to H.X. This work was also
supported by grants from NSFC (31970903, 31671104,31371059), NSFC
(Grant No. 91120301) to C.S.Z.

Author contributions
J.-S.G. designed the project. H.X. designed and performed the experiments
and data analysis. KY. L. performed theMINST test with the RAPP rule. D.L.
Performed the simulation of the RAPP rule in the local inhibitory-excitatory
balanced network. C.-S.Z. designed the 3-D motion correction algorithm.
C.H. supervised the balanced networkmodeling part and helped finalization
of the manuscript. The manuscript was written by J.-S.G., H.X. and com-
mented by all the authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-07186-2.

Correspondence and requests for materials should be addressed to
Hong Xie or Ji-Song Guan.

Peer review information Communications Biology thanks Francesco P.
Battaglia and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editor: Benjamin Bessieres.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s42003-024-07186-2 Article

Communications Biology |          (2024) 7:1487 13

https://doi.org/10.1038/s42003-024-07186-2
http://www.nature.com/reprints
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-07186-2 Article

Communications Biology |          (2024) 7:1487 14

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsbio

	Rectified activity-dependent population plasticity implicates cortical adaptation for memory and cognitive functions
	Results
	Rectified linear correlation between prior and posterior population activity changes
	Dynamics of cortical responses predicted by the RAPP phenomenon
	Observation of biological memory traces in mouse neocortex as predicted by RAPP
	The slope of population adaptation in RAPP is modulated by hippocampus-dependent memory
	Functional distinct cortical areas show different adaptation rate in RAPP
	Simulation reveals contributions of both local inhibitory connections and learning modulated neural excitability in shaping RAPP

	Discussion
	Methods
	In vivo imaging
	Imaging data analysis and quantification
	Hippocampal lesions
	Contextual fear conditioning and neutral context exploration trials (Context A)
	Behavioral analysis
	Neuronal culture and stimulation


	Statistics and reproducibility
	Data processing and simulation
	Excitation-inhibition (E-I) balanced network model and data analysis
	Encoding and recall of two memories in a single network
	Deep convolutional neural network (CNN) model with RAPP rule
	Reporting summary

	Detailed automatic signal processing methodology
	Automated cell detection
	Automated image registration
	Cell detection
	Warping and interpolation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




