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Abstract

Whole-genome sequencing (WGS) has changed our understanding of bacterial pathogens, aiding 

outbreak investigations and advancing our knowledge of their genetic features. However, there 

has been limited use of genomics to understand antimicrobial resistance of veterinary pathogens, 

which would help identify emerging resistance mechanisms and track their spread. The objectives 

of this study were to evaluate the correlation between resistance genotypes and phenotypes for 

Staphylococcus pseudintermedius, a major pathogen of companion animals, by comparing broth 

microdilution antimicrobial susceptibility testing and WGS. From 2017–2019, we conducted 

antimicrobial susceptibility testing and WGS on S. pseudintermedius isolates collected from dogs 

in the United States as a part of the Veterinary Laboratory Investigation and Response Network 

(Vet-LIRN) antimicrobial resistance monitoring program. Across thirteen antimicrobials in nine 

classes, resistance genotypes correlated with clinical resistance phenotypes 98.4 % of the time 

among a collection of 592 isolates. Our findings represent isolates from diverse lineages based 

on phylogenetic analyses, and these strong correlations are comparable to those from studies of 

several human pathogens such as Staphylococcus aureus and Salmonella enterica. We uncovered 

some important findings, including that 32.3 % of isolates had the mecA gene, which correlated 

with oxacillin resistance 97.0 % of the time. We also identified a novel rpoB mutation likely 

encoding rifampin resistance. These results show the value in using WGS to assess antimicrobial 

resistance in veterinary pathogens and to reveal putative new mechanisms of resistance.
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1. Introduction

Antimicrobial resistance is a One Health issue that poses a major threat to human and animal 

health. Genomics is an essential tool to track the spread of resistance, detect outbreaks 

caused by resistant bacteria, and inform strategies to combat resistance.

Recent advances in genomics have allowed for the rapid and accurate identification of 

resistance genes and mutations in bacterial sequences. Thus, genomics data have been used 

to accurately predict phenotypic resistance for a number of bacterial species, including 

Salmonella enterica, Escherichia coli, and Mycobacterium tuberculosis, among others 

(McDermott et al., 2016; Tyson et al., 2015; Witney et al., 2016). The development of 

publicly available resistance gene databases such as AMRFinder and ResFinder have aided 

in these efforts (Feldgarden et al., 2019; Zankari et al., 2012).

Fewer studies have used genomics to understand antimicrobial resistance in bacteria from 

companion animals, where treatment failures can result in animal deaths, as well as 

zoonoses that may impact human health (Walther et al., 2017). Recent work has shown that 

genomics can be used to help track the spread of resistant bacteria in companion animals and 

identify resistance mechanisms (Cole et al., 2020; Tyson et al., 2019).

To date, most genomics work in staphylococci has been on the human pathogen S. aureus 
(Gordon et al., 2014). Staphylococcus pseudintermedius is a veterinary pathogen that 

primarily causes skin and soft tissue infections in dogs and cats, although it can also 

cause more serious and invasive infections (Bannoehr and Guardabassi, 2012; Qekwana et 

al., 2017). It also occasionally infects humans in close contact with infected companion 

animals (Blondeau et al., 2020). Infections in companion animals are typically treated with 

antimicrobials, which depending on the location of infection may be systemic or topical. 

Treatment failures can occur when the bacteria are resistant to drug classes of medical 

importance, such as with methicillin-resistant S. pseudintermedius (MRSP) (van Duijkeren 

et al., 2011). MRSP has emerged globally across multiple lineages and is frequently resistant 

to multiple major classes of antibiotics used in veterinary medicine (Perreten et al., 2010).

Antimicrobial resistance (AMR) genomics work in S. pseudintermedius and other veterinary 

pathogens has been limited. One of the most significant efforts was from a collection of 50 

MRSP isolates, where 98 % of resistance genotypes correlated with phenotypes (Wegener et 

al., 2018). However, this was a small dataset and only included methicillin-resistant isolates. 

Other AMR genomics work in S. pseudintermedius has included few isolates to help 

elucidate resistance mechanisms in specific drug classes (Kadlec et al., 2011; Kizerwetter-

Swida et al., 2016). More recent work involved sequencing 130 S. pseudintermedius isolates 

from New England to study the diverse lineages of this species, but did not correlate 

resistance genotypes with phenotypes (Smith et al., 2020). Similarly, another study involved 

sequencing 160 isolates from Texas, but did not include comparison of resistance genotypes 

and phenotypes (Little et al., 2019).

In 2017, the FDA’s Veterinary Laboratory Investigation and Response Network (Vet-LIRN) 

started a pilot AMR monitoring program, with routine susceptibility testing and sequencing 

of veterinary pathogens collected from clinical cases by a network of veterinary diagnostic 
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laboratories. Bacteria collected as part of this monitoring included S. enterica from all 

animals, and E. coli and S. pseudintermedius from dogs. We had previously published 

preliminary genomics analysis from the AMR monitoring program, including 60 S. 
pseudintermedius, but there was no comparison with phenotypic data (Ceric et al., 2019).

Vet-LIRN’s continued AMR monitoring has resulted in the collection of 592 isolates of 

S. pseudintermedius from dogs that have both susceptibility testing and sequencing data. 

This work describes the use of genomics to identify resistance mechanisms in these isolates 

and their correlation with clinical resistance phenotypes. This work helps advance our 

knowledge of S. pseudintermedius genomics, as well as track and monitor the spread of 

AMR in this important pathogen.

2. Materials and methods

2.1. Isolation and Antimicrobial Susceptibility Testing (AST)

S. pseudintermedius isolates were collected from dogs from 2017 to 2019 from twenty-

five sites across the United States and five from Canada. A total of 592 isolates were 

from the United States and had both AST and WGS conducted, with 41 isolates from 

Canada that had only WGS data. Bacteria were identified by the original/source laboratory’s 

protocol, which included a variety of identification methods within the Vet-LIRN network. 

These included matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), 

polymerase chain reaction (PCR), or biochemical identification, such as with analytical 

profile index (API) or Sensititre Identification System. Isolates consisted of clinical 

specimens collected predominantly from skin, urine, and ear as part of routine processes 

(Ceric et al., 2019). The minimum inhibitory concentration (MIC) of each drug was 

determined by broth microdilution. The types of panels varied across laboratories, including 

the drugs included and MIC ranges, so not every isolate was tested for susceptibility to 

every drug reported. Panels were read by various AST systems, in accordance with the 

manufacturer’s instructions (Sensititre, Biomic or Vitek). MIC testing was in accordance 

with CLSI methods using prescribed media, atmosphere, reading times, and quality control 

strains (CLSI, 2018b). Resistance breakpoints followed the CLSI standards in the Vet08 

document (CLSI, 2018a), with breakpoints based on those listed for S. pseudintermedius 
or Staphylococcus spp. These breakpoints to denote resistance are as follows: penicillin, 

≥ 0.25 μg/mL; oxacillin, ≥ 0.5 μg/mL; gentamicin, ≥ 16 μg/mL; tetracycline, ≥ 1 

μg/mL; minocycline, ≥ 2 μg/mL; doxycycline, ≥ 0.5 μg/mL; enrofloxacin, ≥ 4 μg/mL; 

marbofloxacin, ≥ 4 μg/mL; pradofloxacin, ≥ 2 μg/mL; vancomycin, ≥ 32 μg/mL; rifampin, 

≥ 4 μg/mL; erythromycin, ≥ 8 μg/mL; clindamycin, ≥ 4 μg/mL; chloramphenicol, ≥ 32 

μg/mL; and trimethoprim-sulfamethoxazole, ≥ 4/76 μg/mL. MICs below these breakpoints 

were considered susceptible for genotype-phenotype correlations, including those with 

intermediate MICs.

2.2. Whole-genome sequencing

A subset of isolates with susceptibility testing data were de-identified and sent as part 

of routine care to six laboratories that performed whole-genome sequencing (WGS) 

using standardized methods (Ceric et al., 2019). These included a total of 592 isolates 
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from the United States and 41 from Canada. Library preparation was performed using 

Illumina Nextera XT or DNA Flex/Prep kits, and sequencing was performed on the 

Illumina MiSeq platform using V2 or V3 chemistry. Sequences were submitted to 

NCBI’s Sequence Read Archive (SRA) in BioProjects PRJNA318593, PRJNA318594, 

PRJNA324567, PRJNA324579, PRJNA481347, and PRJNA503853. Individual accession 

numbers are listed in Table S1. All sequences met GenomeTrakr network requirements for 

quality, including ≥ 30 average read quality Q score for R1 and R2, ≥ 20-fold coverage, 

and ≤ 300 contigs. Sequences were assembled by NCBI with SKESA and resistance genes 

were identified with AMRFinder version 3 (Feldgarden et al., 2019). Resistance gene calls 

were downloaded on April 10, 2020 from the NCBI Isolates Browser for further analysis. 

Regulatory genes identified by AMRFinder (blaI, blaR1 for blaZ and mecI, mecR for 

mecA) were removed from the outputs for clarity, with blaPC1 being renamed to blaZ for 

consistency. Resistance genotype information is displayed in Table S1. Sequence typing was 

performed in silico with MLST 2.0 (Larsen et al., 2012), with sequence types listed in Table 

S1.

2.3. Genotype-phenotype correlations

In addition to resistance gene outputs from AMRFinder, analysis of amino acid changes in 

GyrA, GrlA, RpoB, PBP2, PBP4, and FolP was also conducted using MEGA version 7. 

The presence of relevant resistance genes and/or mutations were compared to MIC data to 

determine genotype-phenotype correlations. When an isolate was resistant to a particular 

drug and had an accompanying resistance gene or mutation, then genotype and phenotype 

were correlated. The same was true if an isolate was susceptible and no mechanism was 

identified. In cases of mis-correlations or partial genes, additional BLAST analysis was 

conducted to determine whether resistance genes were full-length.

We performed repeat susceptibility testing on 26 isolates that had genotype-phenotype 

discrepancies across multiple drug classes. Repeat sequencing was conducted for the isolates 

where discrepancies were not resolved.

3. Results

3.1. Resistance prevalence

Broth microdilution MIC testing was performed to assess the antimicrobial resistance of 592 

S. pseudintermedius isolates collected from dogs in the United States. From data aggregated 

from Vet-LIRN labs across the United States, the resistance prevalence for these drugs 

differed significantly, ranging from 0% for vancomycin to 68.2 % for penicillin (Fig. 1). 

Not every isolate was tested for susceptibility to the same drugs, but there were at least 400 

MICs for each of the 15 drugs reported.

WGS was conducted to determine the resistance mechanisms underlying the phenotypes. 

The most common resistance genes identified included the aminoglycoside resistance genes 

ant(6)-Ia/aph(3′)-IIIa (35.6 %), the beta-lactam genes blaZ and mecA (74.8 % and 32.3 %, 

respectively), the macrolide resistance gene erm(B) (34.6 %), and the tetracycline resistance 
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gene tet(M) (45.1 %). Information on the prevalence of all resistance mechanisms is listed in 

Table 1.

3.2. Genotype-phenotype correlations

To perform resistance genotype-phenotype correlations, we compared the resistance 

phenotypes based on MIC testing with the genotypes identified by the presence of resistance 

genes and resistance-associated mutations.

Fluoroquinolones tested included enrofloxacin, marbofloxacin, and pradofloxacin. 

Resistance in staphylococci is typically mediated by mutations resulting in amino acid 

changes in the target DNA gyrase GyrA, as well as the DNA topoisomerase, GrlA 

(Gordon et al., 2014). We found that GyrA amino acid changes in the quinolone resistance 

determining region (QRDR) were associated with fluoroquinolone resistance, with S84L, 

S84A, S84W, S85A, E88G, and E88K amino acid changes in resistant isolates. Only the 

S84L and E88G amino acid changes have been reported in S. pseudintermedius (Descloux 

et al., 2008; Kizerwetter-Swida et al., 2016; Wegener et al., 2018), although the other 

amino acid changes have been found in S. aureus (Fitzgibbon et al., 1998; Ito et al., 2003; 

Strahilevitz and Hooper, 2005).

Every isolate with GyrA amino acid changes also had GrlA amino acid changes, including 

S80I, S80R, D84N, D84G, D84Y, and D84H in GrlA (Table 1). These may be necessary 

for resistance to pradofloxacin, as this is a dual target drug (Wetzstein, 2005). There were 

also 45 isolates with only QRDR GrlA amino acid changes, but they were not sufficient to 

confer clinical resistance. Potential slight elevations in MICs from GrlA amino acid changes 

could not be assessed (Haenni et al., 2020), due to limited MIC ranges on our testing panels. 

Overall resistance genotypes and phenotypes correlated 98.9 % (1624/1642) of the time for 

fluoroquinolones (Table 2). Correlations were somewhat lower for pradofloxacin at 97.6 % 

(451/463), since five of seven isolates with an MIC of 1 μg/mL were labeled as susceptible 

but had amino acid changed in GyrA.

Trimethoprim-sulfamethoxazole was the sole folate synthesis inhibitor tested. A total of 

202 isolates had dfrG genes, with three isolates having dfrC. No other dfr genes were 

detected, resulting in a genotype-phenotype correlation of 98.1 % (569/580). Although 

these genes only confer resistance to trimethoprim, their presence was sufficient to predict 

resistance phenotypes to the combination drug trimethoprim-sulfamethoxazole. Mutations in 

folP have previously been associated with sulfonamide resistance in staphylococci, however 

the previously reported F17L, S18L, and T51M amino acid changes in FolP were not found 

(Griffith et al., 2018). There was, however, a four amino acid insertion of EEVT after T59 in 

FolP found in 396 of 592 isolates (66.9 %), and it was present in all but one isolate with dfr 
genes. The isolate without the insertion was susceptible to trimethoprim-sulfamethoxazole, 

indicating the possibility that alterations of folP play a role in resistance to sulfonamides and 

therefore the combination drug.

Many genes are associated with phenicol resistance in Gram-positive organisms, including 

fexA, catA, optrA, and cfr, among others. Only catA was detected among isolates 
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in our collection, resulting in a 98.6 % (581/589) genotype-phenotype correlation for 

chloramphenicol.

For beta-lactams, the known resistance genes in staphylococci include mecA and blaZ. The 

mecA gene was found in 191 of the 592 isolates (32.3 %), indicating MRSP was common. 

The presence of mecA correlated well with oxacillin resistance, as expected, at 97.0 % 

(558/575). Surprisingly, there were 12 isolates that were resistant to oxacillin without mecA 
or mecC present. None of the isolates without mecA possessed any other regulatory mec 
genes, including mecI or mecR alleles.

Penicillin is not typically used clinically for treatment of infections caused by staphylococci, 

but blaZ correlates with resistance to penicillins in S. aureus based on the presence of 

blaZ (Gordon et al., 2014). A total of 99.5 % (188/189) of isolates with mecA were 

penicillin-resistant, which is consistent with reporting mecA-positive isolates as resistant 

to all beta-lactams. Among the remaining isolates, the presence of blaZ did not fully 

account for the penicillin resistance phenotypes. This is because blaZ was present in 88.0 

% (184/209) of the non-mecA penicillin-resistant isolates, but also in 42.4 % (78/184) of 

the susceptible ones (Table S1). The presence of blaZ in phenotypically susceptible isolates 

is not surprising, however, as penicillinase testing is recommended for Staphylococcus spp. 

that test susceptible to penicillins (Kaase et al., 2008). We did additional analysis of amino 

acid changes in PBP2 and PBP4, as mutations in the associated genes can confer beta-lactam 

resistance in staphylococci (da Costa et al., 2018; Hackbarth et al., 1995), but this could 

not account for resistance in isolates lacking blaZ. Overall, we did not calculate resistance 

genotype-phenotype correlations for this drug due to our inability to accurately predict 

resistance.

All isolates were vancomycin-susceptible, and none had van genes, which are typically 

responsible for vancomycin resistance (Werner et al., 2008).

Rifampin resistance is mediated by mutations in rpoB in staphylococci (Kadlec et al., 2011). 

There were only three resistant isolates, and all had rpoB mutations, with none found in 

susceptible isolates. Two isolates had previously known S486L and H481Y amino acid 

changes in RpoB, while one had a three nucleotide insertion encoding an alanine after A473. 

This mechanism has not been previously reported and is a new insertional rpoB mutation.

Aminoglycoside resistance is typically conferred by aminoglycoside modifying enzymes. A 

total of 145 isolates had the bifunctional aac(6′)-Ie-aph(2″)-Ia gene, which should confer 

resistance to gentamicin based on prior work in S. aureus (Gordon et al., 2014). This gene 

was found in 57 of 95 (60.0 %) gentamicin-resistant isolates, but also in 86 of 493 (17.4 

%) susceptible isolates. Given these discordant results, no correlations were calculated for 

this drug. Several additional aminoglycoside resistance genes were identified (Table 1), but 

these are expected to confer resistance to aminoglycosides other than gentamicin (Shaw et 

al., 1993).

Tetracycline drugs in this study included tetracycline, doxycycline, and minocycline. 

Resistance to this drug class is typically conferred by tet genes, and we identified 267 

isolates with tet(M) and 11 with tet(K) (which does not confer minocycline resistance). All 
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isolates with tet(K) also had tet(M) genes. Genotypes and phenotypes overall correlated 96.8 

% of the time (1317/1360) for the tetracyclines (Table 2). Three of five isolates with an MIC 

of 1 μg/mL (phenotypically susceptible) for minocycline had tet(M) genes.

Erythromycin and clindamycin were the macrolide and lincosamide drugs in this study, 

respectively. For these drugs, erm genes are the predominant resistance mechanisms known 

in Gram-positive organisms. The most common gene was erm(B), in 205 isolates, with 

one isolate with erm(A) and two with erm(C). Correlations were 98.3 % (563/573) for 

clindamycin and 98.8 % (568/575) for erythromycin (Table 2). Both isolates with MICs 

of 4 μg/mL for erythromycin (phenotypically susceptible) had erm genes. We did not 

see significant evidence for inducible clindamycin resistance based on comparison of 

erythromycin and clindamycin phenotypes (Table S1), although this can occur with erm 
genes (Moosavian et al., 2014).

Some additional resistance genes were identified that did not confer resistance to drugs 

tested phenotypically. These included lincomycin (lnu(A), lnu(G)), mupirocin (mupA), and 

streptothricin (sat4) resistance genes (Table 1). The identification of mupA in three isolates 

was of interest since mupirocin can be used as a topical treatment of S. pseudintermedius 
and resistance is rare (Godbeer et al., 2014).

3.3. Additional genomics analyses

The isolates in this study were diverse, since 494 of the 592 isolates were not in clusters 

based on single nucleotide polymorphisms (SNPs) in the NCBI Pathogen Detection Isolates 

Browser (https://www.ncbi.nlm.nih.gov/pathogens/isolates, accessed April 10, 2020). This 

means among those 494 isolates, none were within 50 SNPs of each other or any other 

public S. pseudintermedius sequences. The remaining 98 isolates were in 32 SNP clusters 

with a maximum of 12 isolates, indicating no large clonal clusters accounted for a large 

proportion of the isolates in our study (Table S1). These findings were confirmed by in silico 
multilocus sequence typing (MLST), which identified 99 different sequence types, with the 

most common being ST181 (5.6 % of isolates), ST155 (2.9 %), and ST551 (2.4 %). Most 

isolates (58.3 %, 345/592) were not assigned a known sequence type, further illustrating the 

isolate diversity.

There were 74 different combinations of resistance genes present in the 592 isolates, 

indicating substantial diversity of resistance gene content in the samples (Table S1). In total, 

17 different resistance genes were identified, in addition to various resistance-associated 

mutations (Table 1). Isolates typically had either few resistance genes or many, as most 

isolates had resistance mechanisms for zero to two drug classes (58.8 %) or six to eight drug 

classes (32.6 %) (Fig. 2). This largely reflects the distribution of isolates into those with and 

without mecA.

We performed WGS for an additional 41 isolates from Canada, for which we did not have 

MIC data. The same resistance genes were most common in these isolates as in the rest of 

the collection, including blaZ, mecA, ant(6)-Ia/aph(3′)-IIIa, erm(B), and tet(M) (Table S1). 

Combined with the rest of the data, these indicate similarity in the types of resistance genes 

found in S. pseudintermedius across the United States and Canada.
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4. Discussion

Over the last decade, WGS has revolutionized our understanding of microbiology and 

antimicrobial resistance. We have gained a great understanding of resistance mechanisms in 

diverse bacterial species and how those mechanisms correlate with phenotypic measures of 

resistance. However, genomics work in veterinary pathogens has been limited.

This manuscript describes an important advance in the use of genomics to understand 

antimicrobial resistance of veterinary pathogens. With 633 whole-genome sequences (592 

of which had MIC data, all from the United States), this is the largest sequenced collection 

of S. pseudintermedius ever reported. The isolates were derived from thirty sites across 

North America making this collection not only the largest but also a geographically 

diverse collection. In addition, the identification of diverse resistance genes and mutational 

mechanisms, including a novel rpoB mutation, help aid future work to understand 

antimicrobial resistance in this important pathogen.

The bacterial isolates in this study represented diverse lineages based on SNP analyses, 

with seventeen different resistance genes identified. This diversity likely reflects the fact that 

S. pseudintermedius is widely distributed and a common resident of the skin and mucosal 

surfaces of most healthy dogs. Nevertheless, there were certain common combinations of 

resistance genes. For instance, all 52 isolates with catA genes also had erm(B). In addition, 

among 191 isolates with mecA, 89 had all the following genes: aac(6′)-Ie-aph(2″)-Ia, 

ant(6)-Ia/aph(3′)-IIIa, erm (B), blaZ, tet(M), and dfrG. This is important because this 

combination of genes results in resistance to several drug classes, potentially compromising 

treatment. In contrast, only nine isolates without mecA had all those genes. Unfortunately, 

based on the limitations of short-read sequencing, we could not further characterize potential 

genetic link-ages between resistance genes. Further work with long-read sequencing is 

planned to help uncover the genomic context for these findings.

The finding of such a high proportion of isolates with mecA was surprising and concerning. 

However, it is important to note that the resistance prevalence estimates may overstate 

the general prevalence of AMR in S. pseudintermedius. This is because infections that 

responded favorably to empiric therapy were less likely to be submitted to the diagnostic 

laboratories for subsequent antimicrobial susceptibility testing.

Overall, 98.4 % (6805/6919) of resistance genotypes correlated with phenotypes, indicating 

that WGS may become a reasonable proxy for identifying antimicrobial resistance in S. 
pseudintermedius. Of concern is that 54.4 % (62/114) of genotype-phenotype discrepancies 

result from ‘very major errors’ in which isolates were phenotypically resistant but were 

predicted to be susceptible by their resistance genotypes. These are of greater concern for 

any potential future application of genomics technologies to clinical cases and indicate some 

potential remaining data gaps, further confirming the continued value of phenotypic testing.

Interestingly, if breakpoints were one dilution lower for some drugs, most notably 

pradofloxacin, minocycline, and erythromycin, then genotype-phenotype correlations would 

have improved. These results do not necessarily mean that clinical breakpoints should be 

changed, however, as they are derived from pharmacokinetic and pharmacodynamic studies 
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and may not correspond exactly with genotypic data. The use of epidemiological cutoff 

values to correlate with resistance genotypes may result in better correlations, although 

unfortunately no such cutoff values exist for S. pseudintermedius. The use of alternative 

interpretive criteria has been done before in some other pathogens, such as S. enterica, 

where genotypic cutoff values have been developed (Tyson et al., 2017). Overall, this 

work shows the power and promise of using WGS for detecting antimicrobial resistance in 

S. pseudintermedius. In addition to largely providing the same interpretations of resistant 

and susceptible as traditional phenotypic testing, from WGS we gain valuable additional 

information about the underlying resistance mechanisms and relatedness of isolates to one 

another.

One limitation was the inability to correlate resistance genotypes with phenotypes for 

penicillin and gentamicin. A lack of known resistance mechanisms for these drugs is a 

remaining knowledge gap where we cannot directly apply information from S. aureus or 

other published studies. Additional issues may include that the current breakpoints are 

too high, as EUCAST uses a lower gentamicin breakpoint of > 1 μg/mL, compared to 

≥ 16 μg/mL for CLSI. The data also support the use of beta-lactamase tests in penicillin-

susceptible isolates, since blaZ may be present in some isolates that test susceptible (CLSI, 

2018a). One opportunity for further work is to apply machine learning technologies to 

identify any additional relevant genetic markers for penicillin or gentamicin resistance, 

as has been done successfully in both Klebsiella pneumoniae and S. enterica (Nguyen 

et al., 2018, 2019). Additional work incorporating clinical data, such as drug treatment 

choice, duration, and outcome, would also greatly expand the utility of genomic data for 

antimicrobial resistance prediction. However, significant public and private investment must 

be made in order to support collection of this information.

Vet-LIRN will continue to perform susceptibility testing and WGS of veterinary pathogens 

to understand the spread of AMR, investigate emerging resistance, and further our 

understanding of the overall genetic structure of veterinary pathogens. This work also 

highlights the importance of collaboration across laboratories, states, and countries, 

demonstrating the critical value of a network approach in assessing antimicrobial resistance. 

This is an important component of a One Health system to evaluate the public health impact 

of antimicrobial resistance and monitor its spread among bacteria in animals and humans.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Resistance prevalence determined by phenotypic testing across fifteen drugs among S. 
pseudintermedius. Prevalence was based on phenotypic testing. Not every isolate was 

tested for susceptibility to each drug, which explains some slight differences in resistance 

prevalence among drugs in the same class. Table 2 shows the number of isolates with MIC 

data for each drug; see Table S1 for isolate-level details.
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Fig. 2. 
Prevalence of resistance genes by number of drug classes for individual isolates. The number 

of drug classes refers to all drug classes for which we had resistance mechanisms (Table 1). 

All isolates had resistance genes and mutations expected to confer resistance for zero to nine 

drug classes.
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Table 1

Prevalence of different resistance mechanisms among isolates in the United States.

Drug class Mechanism Number of isolates Percentage of isolates

Fluoroquinolones

GyrA (S84L) 177 29.9%

GyrA (S84A) 1 0.2%

GyrA (S84W) 1 0.2%

GyrA (E88G) 1 0.2%

GyrA (E88K) 1 0.2%

GyrA (S84L, S85A) 1 0.2%

GrlA (S80I) 213 36.0%

GrlA (S80R) 12 2.0%

GrlA (D84N) 8 1.4%

GrlA (D84G) 6 1.0%

GrlA (D84Y) 3 0.5%

GrlA (S80I, D84H) 1 0.2%

Tetracyclines
tet(M) 267 45.1 %

tet(K) 11 1.9%

Folate synthesis inhibitors dfrG 202 34.1%

dfrC 3 0.5%

Beta-lactams
mecA 191 32.3 %

blaZ 443 74.8 %

Phenicols catA 52 8.8%

Macrolides

erm(A) 1 0.2%

erm(B) 205 34.6 %

erm(C) 2 0.3%

Ansamycins

RpoB (S486L) 1 0.2%

RpoB (H481Y) 1 0.2%

RpoB (Ala after A473) 1 0.2%

Aminoglycosides

aac(6’)-Ie-aph (2”)-Ia 145 24.5%

ant(6)-Ia/aph (3’)-IIIa 211 35.6 %

ant(9)-Ia 1 0.2%

Mupirocin mupA 3 0.5%

Lincosamides
lnu(A) 10 1.7%

lnu(G) 2 0.3%

Streptothricin sat4 211 35.6 %
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