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Abstract 

This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia 
patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients 
with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three 
classes is generated based on class conditions and random noise by leveraging a combination of conditional adver-
sarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized 
as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic 
data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively 
evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model 
employing synthetic data is demonstrated by showcasing improved classification accuracy through a compara-
tive analysis between results obtained using solely real data and those obtained when both real and synthetic data 
are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare 
domain, employing deep learning methodologies, and developing early disease diagnosis tools.
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Introduction
With the advancements of deep learning (DL) technology 
utilizing data-driven deep neural networks such as large 
language models based on transformer [1, 2], various DL 
studies are actively underway in digital healthcare [3–6]. 
One of the key challenges influencing the robustness 
and reliability of DL models is the acquisition of suffi-
cient high-quality learning data [7]. Specifically, obtain-
ing adequate high-quality, class-balanced dataset poses a 
substantial challenge in applying DL technology in medi-
cal and clinical fields, where obtaining real data inher-
ently difficult and often severely limited. However, recent 
developments in generative adversarial networks (GANs) 
[8], a DL-based generative model, have facilitated syn-
thetic data generation closely resembling the distribu-
tion of real data [9]. Studies employing this approach to 
overcome data scarcity issues and effectively execute var-
ious tasks in medical and clinical fields are actively pur-
sued [10–12]. For instance, the encoder-decoder-based 
DL generative models have been utilized to classify cer-
ebellar ataxia types and predict the disease using func-
tion scores and magnetic resonance images (MRI) [13]. 
Additionally, research employing synthetic data of motor 
symptoms [6] and digital handwriting drawings [11] gen-
erated using GANs to develop DL models for Parkinson’s 
disease diagnosis has been introduced. However, a direct 
evaluation of the reliability of the synthesized data result-
ing from DL-based generative models has not been pre-
sent. Instead, the effect has been demonstrated through 
the improvement rate of accuracy in patient classification 
tasks before and after data augmentation using synthetic 
data.

In this study, we evaluate the fidelity and clinical util-
ity of the synthetic data generated for a visuomotor adap-
tation task and use it to develop a classifier to identify 
patients with cerebellar ataxia, thereby aiding in the clini-
cal diagnosis of cerebellar ataxia.

The cerebellum is recognized for its substantial role 
in motor learning and control [14]. Cerebellar ataxia 
represents a prominent motor disorder characterized 
by impairments in balance, posture, extremity dysdia-
dochokinesia, and eye movement abnormalities, often 
accompanied by cognitive and emotional disorders 
[15–19]. Various behavioral tests have been developed to 
assist clinicians in identifying cerebellar ataxia [20, 21], 
alongside clinimetric scales such as the assessment scale 
and rating of ataxia (SARA) [22] for evaluating its sever-
ity. However, ataxia rating scales may not encompass all 
neurological abnormalities stemming from cerebellar 
atrophy or lesions. Notably, individuals with cerebellar 
lesions often struggle with tasks requiring adaptation to 
visual rotation, like prism adaptation [23, 24]. Hence, the 
visuomotor adaptation task holds promise as a behavioral 

test for detecting behavioral deviations associated with 
cerebellar atrophy. In the early stages of degenerative cer-
ebellar ataxias, cerebellar atrophy may be mild, making 
detection of ataxia challenging through clinical examina-
tions. Several studies have investigated visuomotor adap-
tation abilities in patients with cerebellar disorders [16, 
25, 26], but there has been limited research on the effects 
of aging. Since controlling for age-related changes is cru-
cial for increasing the sensitivity of tests using behavio-
ral markers to detect the disease, further research in this 
area is needed. Consequently, there remains an unmet 
need for early diagnosis of movement disorders result-
ing from cerebellar ataxia, necessitating the development 
of sensitive methods to detect neurological symptoms 
related to cerebellar atrophy in asymptomatic carriers of 
hereditary cerebellar ataxias [27].

Thus, our study aims to develop a synthetic data gen-
eration and evaluation method for the visuomotor adap-
tation task and a classifier distinguishing between normal 
subjects and patients with cerebellar ataxia using syn-
thetic data in conjunction with real data, to create a DL 
model aiding in the early diagnosis of movement disor-
ders due to degenerative cerebellar ataxia. To procure 
initial real data on visuomotor adaptation, degenerative 
cerebellar patients and age-matched healthy controls, 
including young and older adults, were tasked with per-
forming a task in a virtual reality (VR) environment 
utilizing a head-mounted display (HMD) for digitiza-
tion of results [28]. The obtained real dataset from this 
experiment consists of 46 cases, and additional learn-
ing data is required to develop a DL model for the early 
identification of cerebellar ataxia. To this end, we intro-
duce a conditional GAN-based generative model named 
“TraCA_CGAN” to generate synthetic visuomotor adap-
tation data using the acquired small real data sample and 
evaluate its fidelity. “TraCA_CGAN” is an abbreviated 
notation for a model that generates trajectories of cer-
ebellar ataxia patients using conditional GAN. Further-
more, we aim to develop a patient classification model, 
“CA_CLS,” for cerebellar ataxia diagnosis utilizing both 
real and synthetic data and examine the clinical utility of 
the proposed model. “CA_CLS” is an abbreviated nota-
tion for a classification model for identifying patients 
with cerebellar ataxia.

Data
The behavioral task used in this study aims to evaluate the 
cerebellum’s role in motor adaptation and motor control 
in response to visual perturbations. Such experiments are 
widely recognized as highly effective methods for detect-
ing cerebellar dysfunctions and identifying changes in 
motor adaptation patterns. To assess the impact of cer-
ebellar dysfunction on motor adaptation, we compared 
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the cerebellar patient group with the age-matched con-
trol group. Additionally, to evaluate the effects of aging 
on motor adaptation, we compared the age-matched 
control group with the young adult control group [16, 25, 
26]. Motor trajectory data were collected from patients 
with cerebellar ataxia, age-matched controls, and young 
healthy individuals [28]. Participants engaged in a goal-
directed reaching task toward a target positioned 20 
cm in front of them within an HMD-VR environment. 
This environment allowed for real-time visual distortion 
based on the participant’s hand position while perform-
ing the task, as depicted in Fig.  1a. Participants were 
seated in front of a table and experienced the VR envi-
ronment through an HMD, manipulating a cup attached 
to a tracker with their right hand. In Fig. 1b, participants 
executed goal-directed reaching movements within the 
VR environment. The left side of Fig.  1b illustrates the 
established HMD-VR experimental setup. Hand posi-
tions, starting points, and targets were represented as 
spheres (0.5 cm radius), distinguished by colors (pink for 
hand position, green for starting, and red for target), and 
positioned 12 cm above the table, which corresponded to 
the cup’s height. During the practice session, five targets 
were simultaneously represent, while each trial of the 
experimental task focused on a single target. The targets 

(red spheres) were spaced 15◦ apart on an invisible sec-
tor around the starting point (green sphere) with a radius 
of 20 cm. The real-world view is depicted on the right of 
Fig.  1b. Participants manipulated a VR tracker attached 
to a cup for each reaching movement.

Based on the visual cues provided in the virtual reality 
experimental environment, each participant held a dis-
posable paper cup attached to the tracker with their right 
hand and executed quick straight-stretch tasks toward 
the target. In Fig. 1c, participants moved the tracker from 
the starting point (green sphere) to a target (red sphere). 
As the participant moved the tracker and the cursor 
(pink sphere) reached the starting point (green sphere), 
the target (red sphere) appeared, disappearing immedi-
ately upon the cursor reaching the target position. For 
each trial, the target randomly appeared at one of five 
positions at 15◦ (-30◦ , -15◦ , 0 ◦ , +15◦ , +30◦ ), with a radius 
of 20 cm from the starting point (Fig. 1c).

The entire experiment comprised three phases: base-
line (BL), adaptation (AD), and washout (WO) as illus-
trated in Fig.  1d. During the BL phase, both the hand 
trajectory and cursor trajectory were identical. A total 
of 20 trials were conducted, with no visual distortion 
of the hand’s position. Subsequently, the AD phase tri-
als connected. In the AD phase, the cursor was rotated 

Fig. 1 Experimental overview [28]: (a) experimental setup, (b) experimental environment. c experimental task consisting of baseline, adaptation, 
and washout with (d) 20, 160, and 40 trials
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20◦ clockwise from the actual hand trajectory, and par-
ticipants learned to adjust their hand movements to 
compensate for this rotation. The visual feedback of the 
hand movement was also rotated 20◦ clockwise. Con-
sequently, at the beginning of the AD phase, the initial 
heading of the hand constrained an error of up to 20◦ . In 
typical scenario, through the mechanism of visuomotor 
adaptation, these heading angle errors gradually dimin-
ish with continued trials. However, it is recognized that 
patients with cerebellar ataxia encounter challenges with 
visuomotor adaptation, resulting in substantial residual 
heading angle errors over multiple trials. The AD phase 
is divided into four experimental blocks comprising 40 
trials. A one-minute rest period is provided between the 
first and second blocks and between the third and fourth 
blocks. After completing the 40 trials of fourth block in 
the AD phase, the visual rotation of the hand position is 
removed. During these WO trials, heading angle errors 
of the opposite direction occur. Similar to the AD blocks, 
as a total of 40 trials progress, the heading angle error 
gradually diminishes.

A total of 52 subjects participated in the experi-
ment, comprising 18 patients diagnosed with cerebel-
lar ataxia, 11 healthy age-matched adults, and 23 young 
adults. The patient group consisted of individuals 
diagnosed with hereditary spinocerebellar ataxias or 
idiopathic late-onset cerebellar ataxia, regularly moni-
tored at the movement disorders clinic in the neurology 
department of Seoul Metropolitan Government-Seoul 
National University Boramae Medical Center (SMG-
SNU BMC). These individuals, aged 20 to 70, exhibited 
no brain lesions except cerebellar degeneration in brain 
MRI. Patients with dementia or other etiologies for 
cerebellar atrophy besides primary degenerative condi-
tions were excluded from the study. The age-matched 

controls were recruited from individuals visited the 
family medicine department of SMG-SNU BMC. They 
were healthy adults without neurological disease or 
a family history of cerebellar disease. The young adult 
group with normal visual acuity participated in this 
study. They had none or fewer than two VR experi-
ences. All participants from the three groups gave their 
written informed consent prior to participation. All 
experimental procedures, including recruitment, were 
conducted in accordance with ethical guidelines and 
procedures approved by the Institutional Review Board 
of SMG-SNU BMC (IRB no. 30-2019-88). After com-
pleting the experiments for data collection, preproc-
essing was conducted. During this process, the entire 
dataset of an individual had to be excluded from analy-
sis if a single trial was poorly performed or contained 
an error. This led to the removal of data from 2 patients, 
1 age-matched control, and 3 young healthy controls. 
The final dataset consisted of 16 patients (8 females, 8 
males, mean ag =  56.94  ±  7.19), 10  age-matched con-
trols (8 females, 2 males, mean age = 51.2 ± 13.55), and 
20  young healthy controls (4  females, 16  males, mean 
age = 21.5 ± 2.48), which were used for data synthesis 
and the development of the classification model.

The performance of the subjects’ experimental task 
was assessed based on the heading angle. The heading 
angle was defined as the angle between the straight line 
from the start of the movement to the point of peak 
movement speed and the ideal straight trajectory from 
the starting point to the target. During BL trials, the 
overall heading angle remained at 0 ◦ . However, dur-
ing the AD phase, it could reach up to 20◦ due to the 
imposed visual rotation. The reduction of this error was 
quantified as the visuomotor adaptation of each partici-
pant, as illustrated in Fig. 2.

Fig. 2 Heading angle in baseline (trials 1-20), adaptation (trials 21-180), and washout (trials 181-220) phases of real data for the groups of normal 
young, normal old, and patients
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Methods
The cerebellar ataxia diagnosis model comprises two 
main components: the TraCA_CGAN, which generates 
synthetic data about the visuomotor adaptation trajec-
tory, and the CA_CLS classification model, which dis-
criminates between patients and normal individuals 
using both real and synthesized data.

TraCA_CGAN
As depicted in Fig.  3, TraCA_CGAN consists of two 
main components: a conditional GAN (Fig. 3a) for syn-
thesizing trajectories for patients and normal individuals, 
and a data reconstruction network  (Fig. 3b) for evaluat-
ing the validity of the generated trajectories. In Fig.  3a, 
the conditional GAN receives input with random noise 
conditioned on one of three classes  (Class Vector; C): 
patient, Normal_Y, and Normal_A. This input is pro-
cessed through a multilayer perceptron (MLP; M), result-
ing in a latent vector. The latent vector is then fed into the 
Generator  (G) to generate trajectory data. Concurrently, 
the Discriminator  (D) evaluates whether the generated 
trajectory data, along with real trajectory data mapped to 
the class condition, is real or fake. In Fig. 3b, the recon-
struction component receives the same real trajectory 
data used in the conditional GAN as input. This data 
is passed through a 3D Encoder  (E) to extract features, 
resulting in a latent vector. The latent vector is then fed 
back into the input of G to generate reconstructed trajec-
tory data.

Through the simultaneous learning of the conditional 
GAN and reconstruction networks, TraCA_CGAN can 
effectively generate trajectory data that closely resem-
bles real data. Additionally, the validity of the generated 
data can be assessed by comparing it with the recon-
structed trajectory data. The architectural details of the 
individual sub-networks comprising TraCA_CGAN, 
including G, MLP, D, and E, are presented in Figs. 3 and 
4. In Fig. 4a, G generates trajectory data from a latent 
vector. Three paths are utilized to generate x- and y-axis 
coordinates and time, respectively. These sequences are 
concatenated along the channel axis to produce the 
final output sequences. The concatenation is achieved 
through bilinear upsampling of each features of x- and 
y-axis coordinates and time via GenBlock2d, as illus-
trated in Fig. 4d. The MLP depicted in Fig. 4b receives 
noise and a class vector as conditions and embeds them 
into vectors before delivering them to G. In Fig. 4c, D is 
composed of an image discriminator  (DI ) and a video 
discriminator  (DV  ). DI determines whether an indi-
vidual trajectory is real or fake, while DV  assesses the 
entire trajectory’s authenticity. D learns spatial features 
of trajectories (x,y) while preserving temporal informa-
tion of the input trajectory sequence. Subsequently, it 
compares the learned spatial and spatiotemporal fea-
tures with ground-truth data to determine authentic-
ity. The detailed layer construction of DisBlock, which 
comprises D, is depicted in Fig. 4e.

Fig. 3 Framework of TraCA_CGAN for (a) generating synthetic data on visuomotor adaptation trajectory of cerebellar ataxia patient and normal 
and (b) data reconstruction module for evaluating the validity of generated data
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Fig. 4 Architectural details of (a) Generator, (b) MLP, (c) Discriminator, (d) GenBlock2d in Generator, and (e) DisBlock in Discriminator constituting 
the TraCA_CGAN in Fig. 3a

Fig. 5 Architectural details of (a) 3D Encoder with (c) EncBlock and (b) Transformer comprising the reconstruction network depicted in Fig. 3b
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In Fig.  5a, E maintains the temporal information 
of the input sequence while learning the spatial fea-
tures of each (x, y) trajectory through the EncBlock as 
depicted in Fig.  5c. Finally, E generates latent vectors 
by encoding temporal information through a Trans-
former in the last layer, as shown in Fig. 5b. The Trans-
former in Fig. 5b produces the temporal feature of the 
spatial feature vector sequence in the last layer of D 
and E. It is trained to encode the positional informa-
tion of each sequence through positional encoding and 
to determine useful temporal information with a high 
contribution among them.

CA_CLS
The framework of the CA_CLS classifier for diag-
nosing cerebellar ataxia and its architectural details, 
specifically the classifier C with ClsBlock, is outlined 
in Fig.  6. The trained G of TraCA_CGAN receives 
input with random noise under one of three class 
conditions  (Class Vector; C): patient, Normal_Y, and 
Normal_A. It then generates synthesized trajectory 
data as output, which is combined with real data used 
to train the classifier C.

The classifier C is trained using a supervised 
approach, utilizing both synthesized and real trajec-
tory data with corresponding class labels (i.e., patient, 
Normal_Y, or Normal_A). This allows the classi-
fier to classify any trajectory input into one of these 
three classes based on learned features and class 
information.

Learning strategy and loss functions
TraCA_CGAN incorporates both GAN loss  (LGAN ) and 
reconstruction loss  (Lrecon ), aiming to minimize them 
simultaneously. Lrecon is designed to reconstruct the 
latent representation for real trajectory data back to its 
original form. This approach addresses the challenge of 
limited real data samples available for model training 
before data augmentation through data GAN-based data 
generation. It serves to mitigate potential issues such as 
overfitting of D and G, which is trained to deceive D [29]. 
Therefore, Lrecon function as a training loss that encour-
ages G to generate all training data samples, regardless of 
D’s state. The formulation of Lrecon is as follows:

Next, the D is trained to differentiate between real and 
fake trajectory data using GAN loss  (LDGAN (M,G,D) ), 
while G and M are trained to deceive D making them 
mutually hostile ( LM,G

GAN (M,G,D) ). Consequently, the 
entire conditional GAN loss is represented as:

To address the learning instabilities inherent in GANs 
[30], particularly in the training of D, we employ the 
Wasserstein GAN with gradient penalty  (WGAN-GP) 
[31] loss. This approach offers improved gradients during 
the training phase, leading to more stable convergence. 
WGAN imposes a Lipschitz constraint on D, requiring 
it to be within the space of 1-Lipschitz functions, thus 

(1)Lrecon(E,G) = Ex∼P(x)

i

(xi − G(E(x))i)
2.

(2)
LCGAN (M,G,D) = LDGAN (M,G,D)+ LM,G

GAN (M,G,D).

Fig. 6 The framework of (a) CA_CLS for cerebellar ataxia diagnosis and its architectural detail of (b) classifier C with (c) ClsBlock 
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preventing gradient explosion or vanishing. To enforce 
the Lipschitz constraint, we incorporate GP into the loss 
function of D. GP penalized D when its gradient devi-
ates substantially from 1. Moreover, to selectively gener-
ate trajectory data of a specific class, we configure M and 
D in the form of a conditional GAN, which receives class 
vectors as additionally input. The loss functions for D and 
G are derived as follows:

where � is set to 10 to control the intensity of the GP [32], 
and P(·) denotes a data distribution. The second term of 
Eq.  3, �(�∇D(α x + (1− α)G(M(z, c)), c)�2 − 1)2 , rep-
resent the GP loss. Training of the WGAN-GP involves 
alternating between the optimization of LM,G

GAN (M,G,D) 
and LDGAN (M,G,D) using a stochastic gradient descent 
algorithm, similar to original GAN.

The C is trained for class classification. It utilizes syn-
thesized trajectory data generated from the trained G in 
TraCA_CGAN along with real trajectory data. The loss 
functions for training C are formulated as follows:

Experiments
Although individual trajectories obtained through the 
visuomotor adaptation task performed by participants 
may consist of varying number of points, all trajectories 
were standardized to consist of 128 points through inter-
polation. This standardization was essential for using 
the trajectories as input data for the proposed network 
training. Each trajectory, created by a participant, was 
represented as a sequence vector, where a three-dimen-
sional  (3D) vector of (x-axis, y-axis,  time) continued for 
the duration of the time steps. The shape of the input 
data for network training was formatted as (channel, time 
step,  width), resulting in a shape of (3,  220,  128). Real 
trajectories obtained from the visuomotor adaptation 
tasks were rotated and aligned to ensure that the starting 
point was (0,0) and the ending point was (1,1).This align-
ment was necessary because the destination points var-
ied irregularly even within experiments conducted by the 
same individual.

The ablation experiment for determining the TraCA_
CGAN architecture is performed on the proposed 2D 
CNN as a generator for generating synthetic trajec-
tory time series data and the state-of-the-art (SOTA) 

(3)L
D
CGAN (M,G,D) =Ex∼P(x), c∼P(c|x), z∼P(z)[−D(x, c)+ D(G(M(z, c)), c)

+ �(�∇D(α x + (1− α)G(M(z, c)), c)�2 − 1)2],

(4)
LM,G
CGAN (M,G,D) = Ec∼P(c), z∼P(z)[−D(G(M(z, c), c)],

(5)
LCLSCA = E(z,x)∼P(z,x), c∼P(c)[c · logC(G(M(z, c)), x)].

MoCoGAN [33] for decomposing motion and content 
for video generation, which shows excellent perfor-
mance in generating time series data for motion data. 
In addition, for more accurate trajectory generation, 
the TraCA_CGAN is a structure that performs multi-
task learning by performing synthetic trajectory data 
generation and trajectory reconstruction tasks simul-
taneously, and a comparative experiment is also con-

ducted to compare the effect of reconstruction task. 
Furthermore, an ablation experiment is conducted on 
the proposed 3D CNN as a CA_CLS classifier for the 
three-class classification task for trajectories, with the 
2D CNN that basically learns the features of the input 
data.

The participant data included 30 healthy individuals 
and 16 patients (labeled as P-05 to P-23, excluding P-11, 
P-16, and P-18). The healthy group was further catego-
rized into 20 young individuals  (Normal_Y; labeled as 
Y-01 to Y-23, excluding Y-02, Y-05, and Y-08) and 10 
aged individuals  (Normal_A; labeled as A-01 to A-11, 
excluding A-06). Among these groups, 16, 8, and 12 
dataset were utilized as training data for the TraCA_
CGAN and initial CA_CLS. The remaining 4 (Y-20, 
Y-21, Y-22, Y-23), 2 (A-10, A-11), and 4 (P-20, P-21, 
P-22, P-23) datasets were allocated for testing. TraCA_
CGAN received conditions for three classes and ran-
dom noise, and was trained with real data augmented 
by adding 4,000 trajectory data points. The generator 
(G), trained through TraCA_CGAN, generated 20 syn-
thetic trajectory data points for each of the patients, 
Normal_Y, and Normal_A groups. These synthetic data 
points were utilized for training and testing the CA_
CLS. In total, 46 real datasets and 60 synthetic datasets 
were utilized to train a CA_CLS for diagnosing patients 
with cerebellar ataxia.

In addition, in order to conduct experiments on 
experimental reproducibility and performance consist-
ency, while maintaining the training-test data split ratio 
at 80:20, we performed four experiments in which the 
test samples were randomly configured so that they did 
not overlap, and the relevant data division is as shown 
in Supplementary Table 1.

TraCA_CGAN is trained using the Adam optimizer 
with a learning rate ( η ) of 0.0001, β1 of 0, and β2 of 0.9. 
The values of β1 and β2 are set according to the WGAN-
GP training conditions. Training involves 10,000 itera-
tions, and following the learning method of WGAN-GP, 
the G is updated once every time the D is updated 5 
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times. The CA_CLS undergoes repeated training for 
10,000 iterations using the Adam optimizer with a 
learning rate ( η ) of 0.0001, β1 of 0.9, and β2 of 0.999.

Model training and all experiments were conducted on 
a workstation equipped with an NVidia RTX 3090 GPU 
with 24  GB memory, an Intel i9 CPU, and 48 GB main 
memory. The batch size used for training was 9. The rea-
son why the batch size was decided to be 9 is because it 
is the maximum size available on a single GPU with 24G 
memory used in the experiment. In this experiment, 
batch size 1 consists of 220 trajectories, so in reality, it 
is equivalent to updating the model with the gradient 
calculated from 1,100 (9x220) trajectories. Since enough 
trajectories are used for model update, the model error 
decreases steadily even at smaller batch size (5), and for 
larger batche size (18), the error decreases quickly in 
the early stage of training, but after the model has been 
sufficiently updated, about 10,000 iterations or more, 
it reaches a global optimum that is almost the same 
regardless of the batch size. The proposed network and 
algorithms were implemented using Python 3.6.9 and 
PyTorch 1.8.1.

Results
The evaluation of synthetic trajectory data generated 
by TraCA_CGAN encompasses two primary aspects: 
1)  assessing the fidelity of synthetic data compared to 
real trajectory data and 2)  evaluating its clinical utility 
in diagnosing patients with cerebellar ataxia. The fidel-
ity of the synthesized data is quantitatively evaluated by 
comparing its distribution similarity with real data, while 
the validity and diversity of the generated trajectory are 
qualitatively assessed visually. Additionally, the clinical 
utility of the synthetic data as an early diagnosis tools for 
patients with cerebellar ataxia is determined by measur-
ing the classification accuracy of CA_CLS, which was 
trained using real and synthetic data.

Figure 7 depicts the performance of the subject’s exper-
imental task, as indicated by heading angle, with real and 
synthetic data overlaid for all 200 trials across each of the 
three classes (i.e., groups). The heading angle is defined 
as the angle between the straight line from the start of 
the movement to the peak movement speed and the ideal 
straight trajectory from the starting point to the target. 
During baseline trials, the overall heading angle remains 
at 0 ◦ , while in the adaptation phase, it can extend up to 
20◦ . The reduction of this error serves as a measure of the 
visuomotor adaptation of each participant. Note that for 
real data, the number of samples per class is 16, 20, and 
10 for patients, Normal_Y, and Normal_A, respectively. 
Conversely, for synthetic data, there are 20 samples avail-
able for each class.

The Kullback-Leibler divergence (DKL ), also known 
as relative entropy, is a measure utilized to quantify the 
distinction between two probability distributions [34]. 
Hence, D KL serves as a valuable evaluation metric for 
assessing the similarity or dissimilarity of various distri-
butions. Let P(x) and Q(x) represent two probability dis-
tributions of a discrete random variable x. Hence, both 
P(x) and Q(x) sum up to 1, and P(x)> 0 and Q(x) > 0 for 
any x in X. The definition of D KL(P(x),Q(x)) is provided in 
Eq. 6.

The D KL measures the expected number of extra bits 
required to encode samples from the probability distribu-
tion P(x) when using a code based on Q(x), rather than 
using a code based on P(x) [34]. In our study, P(x) repre-
sent the probability distribution of heading angles in syn-
thesized trajectories. Figure 8 illustrates the distribution 
of heading angles from both real and synthetic trajectory 
data for each of the three groups: patients, Normal_Y, and 
Normal_A. The D KL values for each groups are as follows: 

(6)DKL(P(x)||Q(x)) =
∑

x

P(x) log

(

P(x)

Q(x)

)

Fig. 7 Heading angle in baseline (1-20 trial), adaptation (trials 21-180), and washout (trials 181-220) phase of real and synthetic data for the groups 
of (a) healthy young individuals, (b) age-matched subjects, and (c) patients diagnosed with cerebellar ataxia
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for the healthy young group  (Normal_Y), the D KL was 
0.0625; for the age-matched normal group  (Normal_A), 
the D KL was 0.1787; and for the group of patients with 
cerebellar ataxia, the D KL was 0.1135.

For qualitative visual assessment of the validity and 
diversity of synthetic data generated by the proposed net-
work, the reconstructed trajectories extracted from the 
TraCA_CGAN learning process and the synthetic trajec-
tories generated through the trained G in TraCA_CGAN 
are presented in Figs.  9 and 10, respectively. The aim is 
to extract represented features from the TraCA_CGAN 
for the real trajectory used in model training, reconstruct 
them through a reconstruction network, and compare 

them with real data to evaluate the similarity of the gen-
erated trajectory to the real trajectory. Figure  9a, b, c, 
and d depict the real (black line) and reconstructed (blue 
line) trajectories for patient data P-05, P-06, P-07, 
and P-08 used as training data, respectively, in trial 
10 (BL), 40 (AD1), 80 (AD2), 120 (AD3), 160 (AD4), and 
200 (WO) from left to right in the picture. It is observed 
that the TraCA_CGAN effectively generates straight 
trajectories and a variety of curved trajectories that are 
exhibit greater diversity than real trajectories.

Additionally, Fig. 10a, b, c, and d display the real (black 
line) and reconstructed  (blue line) trajectories for 
Normal_Y of (a)  Y-03 and (b)  Y-06, and the Normal_A 

Fig. 8 Probability distribution of heading angle from real (red bars) and synthetic (blue bars) trajectory data of (a) healthy young (Normal_Y), (b) 
age-matched normal (Normal_A), and (c) patients with degenerative cerebellar ataxia

Fig. 9 Comparison of trials 10, 40, 80, 120, 180, and 200 with trajectory generated by the reconstruction network using the features from E of real 
trajectory data for patients of (a) P-05, (b) P-06, (c) P-07 and (d) P-08 during TraCA_CGAN learning
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of (c)  A-01 and (d)  A-02 used as training data, respec-
tively, in trial 10  (BL), 40  (AD1), 80  (AD2), 120  (AD3), 
160  (AD4), and 200  (WO) from left to right in the pic-
ture. These trajectories demonstrate a pattern close to a 
straight line with less variation compared to the patient 
data depicted in Fig. 9. Importantly, the generated trajec-
tories (blue line) are well reconstructed to closely match 
the real trajectory (black line).

Furthermore, Fig.  11 illustrates synthesized trajecto-
ries generated by the generator G of the trained TraCA_
CGAN by receiving random noise and the class to be 
generated as conditions. Among the 20 synthesized data-
sets for each class, 5 trajectories  (represented by lines 

of black, blue, red, pink, and cyan) are visualized for 
patients, Normal_Y, and Normal_A. From left to right in 
the figure, the 5 trial stages BL, AD1, AD2, AD3, AD4, 
and WO are displayed. It is evident that the variation in 
the shape of trajectories at AD1 is greater than other trial 
stages, indicating that trajectories exhibit diverse shapes 
during the adaptation phase. More, similar but diverse 
trajectories are synthesized at each class or trial stage, 
highlighting the TraCA_CGAN’s capability to generate 
varied trajectory patterns based on different conditions.

Figure 12a, b, and c depict the trained attention maps 
for patient, Normal_Y, and Normal_A, respectively, 
generated through the Transformer’s self-attention 

Fig. 10 Comparison of trials 10, 40, 80, 120, 180, and 200 with trajectory generated by the reconstruction network using features from E of real 
trajectory data for healthy young (Normal_Y) participants (a) Y-03 and (b) Y-06, and age-matched normal (Normal_A) participants (c) A-01 and (d) 
A-02

Fig. 11 Synthesized trajectories for trials BL, AD-1, AD-2, AD-3, AD-4, and WO using the trained G of the TraCA_CGAN: (a) patient, (b) healthy young 
(Normal_Y), and (c) age-matched normal (Normal_A)
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mechanism (as illustrated in Fig. 5b) located at the bot-
tom of the E in Fig.  5a. These attention maps reveal 
which trajectories contributes a higher weight com-
pared to others during TraCA_CGAN training with 
input data, depending on the class. From the visualized 
attention map in Fig. 12a, it is evident that the main tra-
jectories distinguishing patients are primarily AD4 and 
WO trials. Figure 12b and c display the trained attention 
maps for Normal_Y, and Normal_A, respectively. It can 
be observed that in the case of Normal_Y, the attention 
weight is concentrated on AD4, while for Normal_A, 
there are instances where attention weight is also given 
to WO trials, similar to the characteristics observed in 
the patient group. Considering this collectively, it can be 
inferred that TraCA_CGAN has learned distinguishing 
features primarily from WO trials for patients and from 
AD4 trials for the normal group in the visuomotor adap-
tation task data. Furthermore, within the normal groups 
of Normal_A and Normal_Y, TraCA_CGAN appears to 
differentiate between Normal_A and Normal_Y, respec-
tively, depending on whether it primarily learns the fea-
tures of trials on AD4 alone or incorporates the features 
of trials on both AD3 and WO together.

Moreover, to assess the clinical utility of the pro-
posed method, such as early diagnosis for patients with 

cerebellar ataxia, the classification performance of CA_
CLS for patients is evaluated using synthetic data gener-
ated through the trained G in TraCA_CGAN. To show 
classification accuracy, recall  (or sensitivity), and preci-
sion are calculated using the confusion matrix for the 
three classes. Table  1 presents the accuracy-recall  (or 
sensitivity)-precision values in % of CA_CLS, which cate-
gorizes the input trajectory data into one of three classes: 
patients, Normal_Y, and Normal_A. This is a multi-class 
classification with three classes. If the predicted value 
is the same as the real value, it is calculated as positive, 
and all others are calculated as negative. A confusion 
matrix is created in the same way as binary classifica-
tion, and accuracy, recall  (or sensitivity), and precision 
are calculated from the confusion matrix [35]. Two data-
sets are available for training and test CA_CLS: real and 
synthetic data. Additionally, there are three scenarios in 
which these datasets can be used separately or together, 
resulting in a total of nine experiments. When only real 
data was used for both training and test, the classifica-
tion accuracy for three classes was 90.00%. However, 
when both real and synthetic data were combined for 
training, and only real data was used for test, the accu-
racy improved to 94.08%, representing a 4.08% increase. 
Conversely, when only synthetic data was utilized for 

Fig. 12 Attention maps for (a) patients, (b) healthy young (Normal_Y), and (c) age-matched normal (Normal_A) extracted through feature 
representation learning of TraCA_CGAN from trials of visuomotor adaptation task data for each class

Table 1 Classification performance in the order of accuracy / recall (or sensitivity) / precision in % depending on the combination of 
real and synthetic trajectory data used for training and test

Test

Real data Real data + Synthesized data Synthesized data

Training Real data 90.00 / 83.33 / 93.33 96.67 / 96.67 / 96.75 80.00 / 66.67 / 55.56

Real data + Synthesized data 94.08 / 86.60 / 94.16 98.33 / 98.33 / 98.41 98.00 / 91.45 / 86.51

Synthesized data 71.31 / 59.42 / 52.71 76.17 / 64.07 / 59.13 96.50 / 96.05 / 96.07
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training, the classification accuracy of real data dropped 
to 71.31%, indicating the poorest classification perfor-
mance. Remarkably, when real and synthetic data were 
employed together for both training and test, the classi-
fication accuracy reached its peak at 98.33%. This notable 
improvement compared to the classification accuracy of 
94.08% observed when testing only with real data indi-
cates that the synthetic data closely followed the data dis-
tribution for each class, as indicated by the D KL results.

Furthermore, Table 2 shows the classification perfor-
mance on real data according to the with and without 
multi-task learning that performs both the generation 
task and the reconstruction task, and the use of 2D 
CNN and MoCoGAN, a SOTA model, as Genera-
tors in TraCA_CGAN for producing trajectory time 
series data. When performing trajectory time series 
data generation and reconstruction tasks simultane-
ously using 2D CNN of TraCA_CGAN’s generator, it 
shows the best classification performance of 90% for 
real data. Many SOTA time-series generation GAN 
models include modules that can learn relationships 
between adjacent time series, such as Long Short-Term 
Memory (LSTM), Transformer, or 3D CNN. However, 
the trajectory data in this study consists of three stages 
(baseline, adaptation, washout), and has a continuous 
feature within the same stage but discontinuous when 
the stage changes. We observed that when the Genera-
tor is encouraged to learn relationships between time 
series, including LSTM, Transformer, or 3D CNN, it 
has difficulty in generating discontinuous patterns, 
and instead is limited to generating patterns that 
change gradually to different stages. Since this is dif-
ferent from the pattern of real data, the generated data 
did not help to improve the classification accuracy any 
further. Therefore, the proposed 2D CNN-based Gen-
erator structure embeds the input latent vector into 220 
2D maps using a single linear layer, and then generates 
trajectories independently using a 2D CNN. Although 
it may lack the ability to generate continuous videos 
compared to other SOTA Generator, it is excellent in 
generating discontinuous patterns of the trajectory 
data in our experiment. Note that only real data was 

used in the performance evaluation to determine the 
optimal architecture for the model in order to exclude 
the influence of synthetic data. In addition, as a result 
of a comparative experiment using 2D CNN and 3D 
CNN (in CA_CLS) to extract the features of the input 
data, trajectory time series, as an ablation experiment 
for determining the classification model, the classifica-
tion accuracy using real data was 80% and 90%, respec-
tively. Unlike the generation task where the pattern of 
each trajectory needs to be accurate, we observed that 
the task of classifying the entire trajectory into one of 
three categories is a relatively easy task where the train-
ing loss quickly converges to 0. The more parameters 
the model has and the more complex its structure is, 
the more easily overfitting occurs, which tends to sig-
nificantly reduce the classification accuracy for the test 
dataset. Instead of adopting the SOTA classification 
model structure including self-attention, the proposed 
classifier adopts a structure that minimizes complex-
ity to prevent overfitting, and adopts the simplest CNN 
structure except for the residual structure to prevent 
the gradient vanishing problem. In addition, unlike the 
generation task where each trajectory pattern needs to 
be accurate, the classification task does not necessar-
ily need to separate the trajectories because the entire 
trajectory is classified into one of three categories, so 
the proposed 3D CNN-based classifier in CA_CLS is 
shown to be effective in extracting features of the input 
data with fewer parameters.

In addition, to evaluate the reproducibility and per-
formance consistency of CA_CLS, four experiments 
were conducted in which test samples were randomly 
selected without duplication. The training-test data 
split ratio was kept at 80:20. The classification perfor-
mance was represented in Supplementary Tables  1-4. 
When synthetic data is added to training and test, there 
is a slight difference in performance because different 
data is used for each experiment due to the principle 
of the generative model that generates trajectories 
from random noise. In the case where only synthetic 
data was used, the same test data set cannot be used 
due to the principle of the synthetic trajectory data 
generated from random noise, so it was excluded from 
additional experiments. Depending on the configura-
tion of the training-test data, the classification accu-
racy is the same or shows a slight difference. However, 
if there is a difference, since there are only 10 test data 
for the patient group, it should be taken into account 
that a classification error for single sample will inevita-
bly causes a 10% difference. Furthermore, we identified 
that this ±10-20% difference was due to the classifica-
tion error between young and old in the normal class, 
not the patient class.

Table 2 Classification accuracy on real data on ablation 
experiments of the TraCA_CGAN for the Generator and multitask 
learning of generation and reconstruction of the trajectory time 
series data

Generator

2D CNN MoCoGAN

With Reconstruction 90.00 % 80.00 %

Without Reconstruction 80.00 % 80.00 %
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Conclusion and discussion
In this study, we have developed a DL-based synthetic 
data generation model, TraCA_CGAN, and a classifica-
tion model, CA_CLS, for the early diagnosis of diseases 
utilizing data from the visuomotor adaptation task. We 
evaluated their performance by applying them to patients 
with degenerative cerebellar ataxia. To assess the fidelity 
of the generated synthetic data, we examined the distri-
bution similarity with real data, as well as the validity and 
diversity of the synthesized trajectories of visuomotor 
adaptation. Additionally, we evaluated the clinical util-
ity by enhancing the classification accuracy of patients 
with cerebellar ataxia, age-matched normal individuals, 
and young healthy subjects through the utilization of 
synthetic data as training data, as opposed to solely rely-
ing on real data. This assessment was crucial in measur-
ing the effectiveness of synthetic data in improving the 
diagnostic accuracy across different groups. In particular, 
the visualization of the attention map, an implicit feature 
that distinguishes the trajectory data among patients 
with cerebellar ataxia, age-matched normal individuals, 
and young healthy subjects during model training, ena-
bled us identify spatial features of the input data hold 
high relevance to the model output. This facilitated a 
deeper understanding of the distinguishing characteris-
tics present in trajectory data associated with each group, 
thereby enhancing the diagnostic capabilities of the 
models.

Synthetic data has shown promise in improving diag-
nostic and predictive accuracy in various medical fields. 
Wong et al. [36] proposed a method to increase the diag-
nostic accuracy of Alzheimer’s disease (AD) by generat-
ing synthetic magnetic resonance imaging (MRI) scans. 
The researchers employed a generative adversarial net-
work (GAN) to produce synthetic brain MRI scans rep-
resenting different stages of AD progression. This study 
demonstrated that by augmenting the training dataset 
with these synthetic images, multi-level AD classifica-
tion accuracy of over 80% could be achieved even when 
the real dataset was reduced. Additionally, [37] showed 
that seizure prediction algorithms could be improved by 
generating synthetic electroencephalography (EEG) data. 
They proposed an algorithm that generates synthetic data 
using a deep convolutional generative adversarial net-
work (DCGAN) trained on real EEG data in a patient-
specific manner. Similar to these studies, our synthetic 
trajectory data improved the diagnostic accuracy of cer-
ebellar ataxia.

One aspect to consider regarding the performance 
of the proposed model is that the current DL-based 
approach uses input with fixed size dimensions, requir-
ing trajectory data of various sizes to be converted to a 
standardized format. If variant sized trajectory data could 

be directly utilized, it might lead to better representation 
learning in patients and controls. This could potentially 
result in the generation of more realistic synthetic trajec-
tories and improve patient classification accuracy, which 
is an area of focus for our future work.

In the real data collected for this study, there is an 
imbalance in the number of samples between groups, 
which is a common challenge in clinical research. While 
our results showed that synthetic data techniques could 
effectively supplement the insufficient data, this study 
did not delve deeply into how various challenges posed 
by data imbalance can be resolved. Therefore, future 
research should focus on developing comprehensive 
strategies to effectively address data imbalance, such as 
expanding to larger cohorts or applying advanced ana-
lytical methods tailored for imbalanced data.

This study’s main contribution lies in addressing the 
challenges of data insufficiency encountered when apply-
ing data-driven approaches to the medical domain, par-
ticularly in digital healthcare. This is achieved through 
the generation of synthetic data via adversarial learning 
of a generative model. Additionally, we contributed to 
demonstrating the clinical utility of the proposed meth-
odology in early disease diagnosis by both qualitatively 
and quantitatively evaluating the fidelity of the syn-
thesized data and applying it to patient classification to 
enhance accuracy.
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