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Genome sequence of the New Zealand cheese isolate and 
candidate probiotic strain Lactiplantibacillus plantarum FNZ042
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ABSTRACT The complete genome sequence of the candidate probiotic strain 
Lactiplantibacillus plantarum FNZ042 was determined using a hybrid genome assembly 
comprising data from Illumina and PacBio sequencing platforms. The genome assembly 
comprised 3,265,637 bp, including the complete circular chromosome and three circular 
plasmids.
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L actiplantibacillus plantarum FNZ042, a candidate probiotic strain from the Fonterra 
Culture Collection (Palmerston North, New Zealand) deposited with the Australian 

Measurement Institute (deposit number V23/018420), was sourced from New Zealand 
cheddar cheese in 1989. Taxonomy was initially determined using traditional culture 
methods and 16S rRNA gene sequencing.

A hybrid assembly approach combining Illumina and PacBio reads was employed. 
The strain was purity-streaked twice from the original −80°C glycerol stock. A single 
colony was incubated statically overnight (De Man–Rogosa–Sharpe (MRS) broth, 37°C) 
for master and working glycerol stocks and gDNA isolation for Illumina sequencing. 
DNA extraction for PacBio sequencing required an additional culturing step where 1 mL 
overnight culture was added to 12 mL of pre-warmed MRS broth and incubated at 
37°C for 5 hours. For Illumina sequencing, >200 ng of total gDNA was extracted using 
the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany), a library prepared using the 
Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA), and sequenced 
on the Illumina MiSeq platform. Paired 150-bp reads (2,183,744 total reads) were 
analyzed and quality-controlled using fastQC v0.11.9 (1) and Trim Galore v0.6.7 (2), with 
adapters removed and read ends with quality below Q30 trimmed. For PacBio sequenc
ing, >8.5 µg of total gDNA was isolated using the NucleoBond HMW DNA kit (MACHEREY-
NAGEL, Düren, Germany), while library preparation and sequencing were performed by 
Novogene (Singapore) using the Sequel platform. PacBio subreads were quality-filtered 
and converted to FASTQ format using BamTools 2.5.1 (3), retaining subreads with a 
minimum length of 1 kb and minimum quality of 0.75. PacBio sequencing statistics were 
computed with NanoPlot 1.42.0 (4), resulting in 380,915 unfiltered subreads and N50 of 
7,568 bp.

Contig circularity was determined following genome assembly using the Unicycler 
pipeline v0.4.8 in the “normal” mode (5). Genome assembly statistics were computed 
using QUAST v5.2.0 (6), SeqKit v2.5.1 (7), and Bakta v1.9.3 (8). The total genome length 
was 3,265,637 bp, G + C content 44.54%, N50 of 3,207,670 bp, and L50 of 1, with 3,034 
predicted coding sequences and a final estimated genome coverage of 982-fold. This 
included the complete circular chromosome (3,207,670 bp) and three circular plasmids; 
pFNZ042-01 (46,689 bp), pFNZ042-02 (9,254 bp), and pFNZ042-03 (2,024 bp). Taxonomy 
was confirmed using the GTDB-Tk pipeline v2.3.2 (9). The public version of the assembly 
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was annotated using PGAP (10), and all analyses were based on local annotation using 
Bakta.

No antimicrobial resistance (AMR) or virulence genes were detected, as defined by 
the European Food Safety Authority (EFSA) recommendations (11), using the AMRFinder
Plus pipeline v3.12.8 (12) and ResFinder v4.6.0 (13) at 80% sequence identity and 70% 
coverage of the reference sequence. Likewise, no known genes involved in biogenic 
amine synthesis were detected, as evaluated using KofamScan v1.3.0 (14–17). In vitro 
safety assessment was performed according to EFSA guidelines (18) using the ISO 10932|
IDF 223:2010 standards for determining the minimal inhibitory concentration (MIC) of 
antibiotics in lactic acid bacteria (19). All MIC values were lower or equal to the EFSA 
cutoffs, except for tetracycline and chloramphenicol (Table 1A). However, a previous 
analysis of 10 L. plantarum strains showed that most were resistant to these antibiotics 
(20), and a recent survey suggests that a higher MIC cutoff should be used for L. 
plantarum to better differentiate between susceptible strains and those with acquired 
resistance (21). This could indicate intrinsic resistance in the species and therefore 
minimal potential for horizontal transfer. This is supported by the absence of these AMR 
genes in FNZ042. D-/L-lactate production was assessed using the Megazyme D-/L-Lactic 
Acid (Rapid) Assay Kit (Neogen, Bray, Ireland) following the manufacturer’s instructions, 
as 60:40 wt/vol (Table 1B), consistent with other L. plantarum probiotic strains (22). The 
high-quality genomic data generated for L. plantarum FNZ042 in this study, together 
with these safety assessments, will assist in the evaluation of this strain as a potential 
probiotic.
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