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Abstract

Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized 

by partial or complete obstruction of the upper airway during sleep. The respiratory events 

in OSA induce transient alterations of the cardiovascular system that ultimately can lead to 

increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis 

is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for 

pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-

resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel 

deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram 

tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model 

was implemented to automatically predict pediatric OSA by estimating its severity based on 

the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, 

overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy 
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Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 

20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of 

the proposed CNN model largely outperformed the most accurate previous algorithms that relied 

on ECG-derived features (4-class Cohen’s kappa coefficient of 0.373 versus 0.166). Specifically, 

for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities 

of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 

75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by 

our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test 

that can be implemented in clinical practice.
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1. Introduction

Obstructive Sleep Apnea (OSA) is a common breathing disorder characterized by multiple 

episodes of partial or total upper airway obstruction during sleep, resulting in either 

reduction or cessation of the airflow with attendant alterations in gas exchange, and 

recurrent arousals fostering the occurrence of sleep fragmentation [1]. In otherwise healthy 

children, the prevalence of OSA ranges between 1% and 5%, affecting both sexes 

similarly [2]. Enlarged adenoids and tonsils are one of the major pathophysiological 

processes enhancing the risk of OSA occurrence [3], and the disease can impose a 

significant deleterious impact on the cardiovascular and central nervous systems when 

left untreated. Indeed, the obstructive respiratory events and accompanying manifestations 

(i.e., intermittent hypoxia and hypercapnia and recurrent arousals along with enhanced 

intrathoracic pressure swings) induce increased cardiac workload as well tachy- and 

brady-arrhythmias and catecholaminergic and sympathetic nervous system bursts [1,4–8]. 

Moreover, OSA has been linked to an elevated risk of developing cardiovascular disease 

during adulthood, particularly if left untreated [2,7,9,10].

OSA is routinely diagnosed using overnight polysomnography (PSG), which involves 

monitoring various physiological parameters, such as the electrocardiogram (ECG), 

oral and nasal airflow (AF), peripheral blood oxygen saturation (SpO2), and the 

electroencephalogram (EEG), among others [1,2]. The signals obtained from PSG are 

manually analyzed by trained medical personnel to derive the apnea-hypopnea index (AHI), 

the standard metric used in the diagnosis of OSA [11]. AHI measures the frequency of 

apnea and hypopnea events per hour of sleep (e/h) and helps determine the severity of the 

disease [2]. However, nocturnal PSG is an uncomfortable, time-consuming, and complex 

test, especially in children. It requires a sleep laboratory with appropriately trained staff, 

and pediatric subjects have to spend the night in the hospital facility while being monitored 

with sensors, thus potentially disrupting their natural sleep patterns [1]. Limited availability 

of such facilities for children, coupled with the cost of conducting overnight PSG, leads to 
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underdiagnosis of pediatric OSA, particularly in developing countries where resources are 

limited [12,13].

To simplify OSA diagnosis in children, investigators have focused on developing approaches 

that require a limited number of signals coupled with artificial intelligence techniques 

[14,15]. These proposed methodologies have mainly focused on the use of overnight SpO2 

and AF [15]. However, none of these approaches relied on cardiac signals derived from 

the ECG which contains a plethora of relevant information that can be used for diagnostic 

purposes involving both cardiorespiratory coupling and changes in heart rate frequency and 

variability associated with the respiratory events [2–4,7,16]. These physiological behaviors, 

together with the increased risk for developing cardiovascular disease, make ECG signal 

analysis worthy of special interest in the study of OSA [7,9,10]. Furthermore, because the 

ECG is one of the most widely analyzed signals in clinical practice around the world, an 

ECG-based application to aid in the diagnosis of OSA could be readily implementable and 

accessible [17–19].

Several investigative groups have focused on the analysis of cardiac information using deep 

learning (DL) methods, such as convolutional neural networks (CNN), recurrent neural 

networks (RNN), combinations of CNN and RNN, and hybrid methods to automatically 

detect the severity of OSA in adult patients, achieving overall robust performances [20–

26]. However in children, most studies have relied on derivatives of cardiac function 

such as heart rate variability (HRV) or photoplethysmography (PPG), but not used the 

raw ECG signal [3,27–33]. These methodologies, while yielding satisfactory results, rely 

on existing knowledge of the effects of pediatric OSA on the ECG to extract features 

from different analytical approaches [34,35]. However, these approaches do not use all the 

information available in the ECG, which could be crucial for achieving a more thorough 

understanding and accurate diagnosis of the disease. Moreover, most of these previous 

studies relied on a feature-engineering approach, which is demanding and time-consuming 

due to comprehensive signal preprocessing and feature extraction [3,27–33].

To the best of our knowledge, no studies have investigated the use of raw ECG signals 

coupled with DL methods to explore their feasibility in the diagnosis of pediatric OSA. 

Such combinatorial approach is essential for two reasons: on the one hand, DL methods 

are gaining great interest in many fields due to a large number of existing databases [36], 

especially highlighting their application in the biomedical sector to help in the diagnosis and 

treatment of diseases [37–39]. Specifically, DL methods can handle high-dimensional data 

due to multiple-layer processing that allows for extracting relevant information intrinsically 

without exhaustive signal preprocessing [40]. On the other hand, analyzing the ECG signal 

could be very helpful for pediatric OSA due to associated cardiovascular risk, particularly in 

more severe cases [2].

Furthermore, analyzing previous studies focused on automatically detecting the severity 

of OSA using DL, most of them used architectures based on CNNs [20–26]. Although 

CNNs were originally created for image analysis [41], these networks have proven to be 

appropriate for time series analysis in a wide range of fields [42], especially in the domain 

of biomedical signal analysis [35,43,44]. CNNs contain a multi-layer architecture and their 
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design is characterized by weight sharing, sparse connections, and pooling operations [41]. 

This structure allows them to identify short- and long-term patterns happening in distinct 

regions of the data sequences [43], with a computational efficiency that outperforms other 

DL models [41]. This property of CNNs can be essential in identifying patterns in the ECG 

signal associated with apneic events, which may manifest at different times during the night. 

In addition, CNNs have the ability to generate higher-level representations [41], which may 

allow them to learn complex patterns in prolonged segments of the ECG signal, such as 

heart rate fluctuations that are triggered in response to apneic events [2,7].

For these reasons, we here propose the development of a CNN-based algorithm for the 

classification of pediatric patients at risk of OSA based on their overnight ECG recordings 

that permits delineation of pediatric OSA severity according to the conventional AHI 

categories. This study presents two main novelties: 1) it is the first time that a DL approach 

is used along with raw ECG signals for the diagnosis of pediatric OSA; and 2) our approach 

is a new CNN-based regression model trained to aid in the diagnosis and severity estimation 

of pediatric OSA, in which we first estimate the number of apneic events per signal segment 

and then the AHI values per subject. For this purpose, we propose a data augmentation 

technique by dividing the whole night recordings into 10-minute segments with a 50% 

overlap to increase the volume of the dataset during model training. Thus, we hypothesize 

that a CNN-based architecture fed with the raw ECG signal can enhance and streamline the 

diagnosis of pediatric OSA by utilizing all relevant cardiac signal data to estimate disease 

severity. Accordingly, the main objective of our proposal is to evaluate a CNN-based model 

with the ECG signal to estimate the AHI, and accurately establish a diagnosis of OSA and 

its severity in pediatric patients.

2. Database and signals

The Childhood Adenotonsillectomy Trial (CHAT) database was used in this study (number 

of clinical trial: NCT00560859). Access to CHAT data is public upon request from the 

National Sleep Research Resource website (https://sleepdata.org/datasets/chat). A total of 

1,610 overnight PSG recordings performed on children between the ages of 5 and 9.9 years 

old with suspected clinical symptoms of OSA were analyzed. Sleep studies were collected 

from 6 pediatric sleep centers in the United States of America (Children’s Hospital of 

Boston, Boston, MA; Cardinal Glennon Children’s Hospital, St. Louis, MO; Children’s 

Hospital of Philadelphia, Philadelphia, PA; Cincinnati Children’s Hospital, Cincinnati, OH; 

Montefiore Children’s Hospital, New York, NY; Rainbow Babies and Children’s Hospital, 

Cleveland, OH) [45]. All nocturnal PSGs were conducted following the 2007 American 

Academy of Sleep Medicine (AASM) recommendations [11]. Inclusion and exclusion 

criteria for the study can be found in previous literature [45,46]. CHAT is a randomized, 

controlled, single-blind, multicenter trial aimed at assessing the effectiveness of a surgical 

treatment for pediatric OSA. Details of the trial design, performance, and initial results 

obtained in the original study are explicitly documented in published reports [45,46]. 

Studies of nocturnal PSG were divided into three groups. Initially, the baseline cohort 

(451 subjects) that met the inclusion criteria, completed an initial PSG, and individuals 

were then randomly assigned to either early surgical adenotonsillectomy (eAT) or watchful 

waiting with supportive care (WWSC) [46]. In addition, the nonrandomized group (755 
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subjects) corresponded to individuals who did not meet the inclusion criteria conditions 

in the original study but had undergone an initial PSG. Finally, the follow-up group (404 

subjects) comprised the subjects in the baseline group who underwent a follow-up PSG 

seven months after the initial PSG. Approximately half of the children in the follow-up 

group were treated with eAT and the other half randomly allocated to WWSC.

In this study, all recordings were randomly divided into training (60%), validation (20%) 

and test (20%) subsets. This partition was made so that no subject could be present in two 

subsets. In turn, following the recommendations from the AASM [11], all PSG recordings 

from CHAT included annotated data on the beginning and duration of apnea and hypopnea 

events. Accordingly, OSA diagnosis was established by calculating the AHI [11]. Then, 

pediatric OSA severity was divided into four categories based on AHI values: no OSA 

(AHI < 1e/h), mild OSA (1≤AHI<5 e/h), moderate OSA (5≤AHI<10 e/h), or severe OSA 

(AHI≥10 e/h) [11]. Table 1 presents the demographic and clinical characteristics of the 

subjects included in the training, validation, and test subsets.

3. Methods

This section presents the methodology to obtain the proposed solution for predicting 

pediatric OSA and its severity. The workflow followed is introduced (see Figure 1), based 

on six principal stages: 1) ECG signals were extracted from pediatric PSG recordings; 2) 

A minimal preprocessing was conducted to obtain 10-minute ECG segments; 3) CHAT 

database was divided into training (60% of the subjects), validation (20% of the subjects), 

and test (20% of the subjects) subsets; 4) A regression CNN-based architecture was 

designed. This CNN model was trained using the preprocessed 10-minute ECG segments 

belonging to the training subset S1, …, SN  as input data. AHIcnn was calculated for each 

subject by adding the estimated events in all segments ŷ1, …, ŷN  of a pediatric overnight 

recording and dividing them by the total recording time in hours. The value of this rate 

calculated after training with CNN underestimates the value of the actual AHI (AHIactual) 

extracted from the CHAT database because the index in our initial proposal uses the total 

signal recording time rather than the total sleep time. To correct this tendency, we calculated 

the final estimated AHI (AHIest) by implementing a support vector regression (SVR) model; 

5) The validation subset was used to adjust the algorithm hyperparameters and select the 

optimal model; and 6) The optimal model was applied to the test data to evaluate the 

diagnostic ability of the CNN-based algorithm.

3.1. ECG signal preprocessing

Following the AASM recommendations, ECG was obtained from the bipolar lead II [47]. 

ECG was minimally preprocessed before its use on the CNN. The raw signals were 

resampled at a sampling frequency of 100 Hz, which is consistent with the sampling 

frequencies used in prior studies [20,25,48–51]. Subsequently, the signals underwent a 

two-step filtering process. First, the continuous component was corrected by eliminating the 

signal mean within 30-second duration windows. Then, we applied a low pass filter with 

a pass band between 0 and 25 Hz to reduce noise, being a less restrictive approach than 

in previous studies which was intent on avoiding loss of important frequency components 
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[25,50,52]. Specifically, we employed a linear-phase finite impulse response digital filter 

using a Hamming window to smooth out any discontinuities at the start and end of the signal 

[53]. After the complete records were filtered, ECG signals were divided into 10-minute 

segments, with a 50% overlap between segments to increase the volume of data for model 

training, i.e., as a data augmentation technique [54]. The final preprocessing step consisted 

of normalizing the amplitude of each ECG segment by extracting the mean value to the 

segment and dividing it by the standard deviation [55].

Finally, the determination of segment labels was performed by considering the annotations 

regarding the duration, beginning, and end of apneic events from CHAT annotations of 

the recordings [56,57]. The labels were calculated as the number of apneic events in each 

segment. In this way, both complete events and the proportion of incomplete events found 

at the edges of the segments were included as part of the target. For instance, when a 

single event was identified within a segment, it was labeled as 1. For segments containing a 

complete event along with, for example, 70% of another event (equivalent to 1.7 events), a 

label of 1.7 was assigned to that segment.

3.2. Design of the CNN architecture

Although CNN were initially created to deal with image data, they have been highly 

effective in processing time series in many fields [58], including biomedical signal 

processing [59]. In this work, we implemented a one-dimensional (1D) CNN-based 

approach since our input data responded to physiological single-channel ECG signals 

(see Figure 2). The network began with a data input layer containing a tensor of 60,000 

samples (10-minute ECG segment) and a batch normalization (BN) layer of the input data 

[60]. Subsequently, the network processed the segments, which was composed of three 

convolutional blocks BC1 − 3 , and each of them consisting of convolutional sub-blocks Nblock

with the layers described below.

First, we incorporated a 1D convolutional layer to extract feature maps based on relevant 

patterns [40]. The 1D convolution operation in this layer was calculated by following the 

next equation [41]:

xl
m[n] = ∑

i = 1

Ks
wi

m * al[n − i + 1] + bi
m,

(1)

where xl
m is the m-th feature map and m=[1:convolutional filters (Nf)], Ks is the kernel size, 

which determines the filter size, wi
m values are the weights of the convolutional filter, al n

are the input ECG segments, and bi
m is the bias term. The convolutional layer comprised a 

set of 1D filters Nf  with kernel size Ks * 1, a step length strides = 1, and zero padding 

(padding= ‘same’) to obtain the output with the same dimension as the input [41]. Secondly, 

we integrated a BN layer to normalize the Nf feature maps obtained from the previous 

convolutional layer [60], followed by an activation layer. This layer used the rectified linear 

unit activation (ReLU) function [41]:
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f(x) = max(0, x) = 0, x < 0
x, x ≥ 0,

(2)

where x is the value of each sample in the feature map. This activation is the standard 

choice in DL architectures and was used to introduce nonlinearity and solve the problem of 

vanishing gradient during training [41]. A max-pooling layer with a window size 2 (pool 

size = 2) and a two-step window offset (strides = 2) was then included, which reduces the 

dimensionality of the input data by half while keeping the most relevant features [41]. In the 

last step of each sub-block, we applied regularization through a dropout layer that randomly 

deactivated a fraction of the neurons with probability p during training. This layer was 

used to prevent the network from overfitting and improve the generalization of the model. 

Particularly, we used spatial dropout, an approach derived from the standard dropout for 

CNN [61]. The conventional dropout discards individual units with a certain probability in 

the training process. In contrast, in the case of spatial dropout, complete feature maps are 

discarded to improve generalization between the different feature maps [61,62].

Finally, after the BC1 − 3 configurations, we added a flattening layer to rearrange the spatial 

information into 1D vectors, and a densely/fully connected layer with linear activation to 

provide the final estimation [41]. Linear activation was selected for a regression problem to 

estimate apnea events by 10-minute segment as output from the proposed CNN.

The proposed CNN model was trained using the He-normal method to randomly initialize 

layer weights following a normal distribution [41]. We used the adaptative moment 

estimation (Adam) algorithm to optimize weight updates, with an initial learning rate of 

0.001 [63]. Training data was presented to the network in batches of 15 samples for a 

maximum of 250 epochs, with randomized samples at the start of each epoch to improve 

convergence [41]. The loss function used to minimize the Adam algorithm in the validation 

subset was Huber loss with a delta parameter of δ = 1 . 5, which is robust in the presence of 

outliers [64]. During training, we monitored the validation loss and decreased the learning 

rate by a factor of 2 if there was no improvement after 10 epochs. We also used an early stop 

method to prevent overfitting, which stopped training after 30 epochs without a decrease 

in validation loss. The weights were then readjusted to the epoch in which the minimal 

validation loss achieved [41].

3.3. AHI estimation

As previously explained in Section 1, AHI is the standard respiratory metric for diagnosing 

OSA and its severity. In this study, once we obtained the predictions of the apnea and 

hypopnea events for each 10-minute ECG segment in the CNN, we calculated for each 

subject the overnight rate of events per hour of recording AHIcnn . This was done by adding 

the estimated events in all segments of an overnight recording and dividing them by the 

total recording time in hours. It is essential to highlight that the value of this rate calculated 

after CNN training underestimates the value of the actual AHI AHIactual  , extracted from 

the CHAT database. This underestimation occurs because the rate of our initial proposal 
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uses the total recording time of the signal rather than the total sleep time. Total recording 

time is typically greater than the total sleep time which is used to calculate the AHI, and 

which requires EEG and other signals for this purpose. To address this issue, we calculated 

the final estimated AHI AHIest , through the implementation of a support vector regression 

(SVR) model [65]. This model is more robust than ordinary least squares when dealing with 

outliers. It determines the best regression function using a kernel function and minimizes the 

ε-insensitive loss function. This function allows a certain degree of prediction error within a 

margin defined by the ε hyperparameter [66]. The loss function is defined as follows:

L(y, f(x)) = max(0, |y − f(x) | − ε ) = 0, y − f(x) | ≤ ε
|y − f(x) − ε , |y − f(x) | ≥ ε,

(3)

where y is the actual value of the target variable, f x  is the model prediction and ε is 

the acceptable margin of error [66]. It is necessary to set a minimum value for the margin 

ε, being ε ≥ 0, to delimit an area around f x  where the difference between AHIactual and 

AHIest  does not contribute to the error. The formulation of the loss function ensures that 

only errors exceeding the threshold ε are penalized, while smaller errors do not contribute to 

the loss [67]. The purpose of the ε parameter is twofold: to control the model’s sensitivity 

to errors and to determine the size of the tolerance band around the regression line [66]. 

In this way, the loss function penalizes errors outside the tolerance band. In addition to 

the ε hyperparameter, other hyperparameters influence the SVR model optimization, such 

as the penalty parameter C and the γ kernel coefficient. The C hyperparameter balances 

the accuracy of model predictions and complexity, determining how prediction errors are 

penalized. The γ coefficient is responsible for controlling the form that the kernel function 

takes [65,66].

3.4. Model hyperparameter search and algorithm evaluation

To achieve optimal algorithm performance, we tuned a set of hyperparameters to 

minimize the generalization error of the CNN-based architecture. First, we heuristically 

selected the parameter Nf of the convolutional layers for each block BC1 − 3. We used an 

approach with ascending value in powers of two as the depth of the network increased: 

Nf = 16 BC1 , Nf = 32 BC2 , Nf = 64 BC3 . This choice was made because the deeper the layers, 

the more complex the characteristics that are extracted [41,68]. Subsequently, for choosing 

the remaining CNN hyperparameters, we implemented a more exhaustive tuning strategy 

using a grid search method. With this method, different combinations of hyperparameters 

were tested in the search space. Specifically, we searched for the following values 

Nblock = 4, 5 , Ks = 7, 9, 17, 33  and dropout withp = {0.0,0.05,0.1}.

Considering the initial analyses performed, we selected this set of search hyperparameters 

so that the network had enough complexity to train and generalize properly. If we included 

smaller values in the implementation of CNN, it could not adjust sufficiently. If we increased 

the values, CNN took too long to train and adapted too much to the training data. In 

addition, the increased complexity of the network led to a computational cost not supported 
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by the training of the CNN-based algorithm (NVIDIA GeForce RTX 2080 GPU; Keras 2.4.3 

framework with TensorFlow 2.3 backend).

Then, for each of the CNN models trained with a specific combination of hyperparameters, 

we conducted a sequential search of three more hyperparameters in the SVR 

model ε = 0 . 1:0 . 05: 0 . 5, C = [0:100] with logarithmic scale value search, and 

γ = 0 . 01:0 . 01: 0 . 1, Ultimately, to determine the optimal hyperparameter configuration, we 

evaluated the performance of the CNN-based approach. This involved calculating the 4-class 

Cohen’s kappa coefficient k  for the subject-wise OSA severity classification (no OSA, 

mild, moderate, and severe OSA) in the validation subset. We selected the architecture with 

the highest k. Cohen’s kappa is a statistical metric used to measure agreement, particularly 

appropriate in classification tasks with unbalanced class distributions. Its usefulness comes 

from its capability to consider the likelihood of chance agreement, which reduces the bias 

towards the predominate class typically associated with accuracy metric [69].

3.5. Statistical analysis and figures of merit

To establish the agreement between the AHIest with our proposed algorithm and the AHIactual

extracted from the CHAT database, we performed a statistical analysis. First, we calculated 

the intraclass correlation coefficient (ICC), which consists of a statistical measure used to 

evaluate the reliability or consistency of measurements made by different observers [70]. In 

addition to this metric, we obtained Bland-Altman plots [71] to have a more representative 

view of the agreement between AHIest and AHIactual.

To assess the effectiveness of the proposed algorithm in diagnosing pediatric OSA, we 

classified subjects into four severity groups based on their estimated AHI values: AHI < 

1 e/h (no OSA),1 ≤ AHI ≤ 5 e/h (mild OSA), 5 ≤ AHI < 10 e/h (moderate OSA), AHI 

≥ 10 e/h (severe OSA). After establishing these categories, we calculated the confusion 

matrix and 4-class accuracy (Acc4) to assess the overall performance of the model across 

classes. Additionally, k coefficient was calculated to assess the agreement between the 

actual classes, i.e., the true OSA severity level of each subject, and the classes derived 

from the AHI predicted by the model. The importance of k should be emphasized, as it 

has the advantage of correcting for agreement that occurs by chance [69]. Furthermore, 

we calculated different merit figures for each of the OSA severity thresholds (AHI = 1,5, 

and 10 e/h) from the values obtained in the confusion matrix. In this way, we determined 

accuracy (Acc which reflects the proportion of correct predictions overall. In addition, we 

obtained values for sensitivity (Se) and specificity (Sp), which measure the ability of the 

model to detect true positives and negatives, respectively. Additionally, we used the positive 

predictive value (PPV) and negative predictive value (NPV) to assess the proportion of true 

positive and negative predictions. Moreover, we calculated positive likelihood Ratio (LR+) 

and negative likelihood Ratio (LR−), which provide information on how the predictions 

affect the probability of a positive or negative case, respectively. These metrics, in addition 

to giving information on crucial aspects of model performance, allow us to fully and fairly 

evaluate and compare the efficacy and generalizability of our model relative to previous 

approaches in the literature [3,29,31,72]. Finally, we calculated the 2-class kappa to assess 

the agreement between the actual classes and the classes predicted by the model for each 
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AHI threshold. With this metric, we can determine at which threshold the model performs 

higher in terms of classification [69].

4. Results

4.1. Optimal CNN-based approach configuration

As described in Section 3.3, to select the optimal configuration of the CNN-based model, 

we performed an exhaustive search of different hyperparameters in the CNN network 

Nblock, Ks, p . Subsequently, sequential adjustment of the hyperparameters of the SVR model 

ε, C, γ  was performed. The training of the algorithms with each of the combinations of 

search values was conducted with the training subset. The evaluation was made with the 

validation subset, calculating the k coefficient when classifying OSA severity. Figure 3 

shows the result of the CNN optimization process throughout the model training. On the 

one hand, the graph on the left shows how the Huber loss value decreases as the training 

epochs progress. In addition, it can be seen that training stopped with early stopping 

at epoch 155, 30 epochs after the minimum validation loss value was reached. On the 

other hand, the graph on the right shows how the mean absolute error obtained from the 

AHIreal and AHIcnn is also decreasing in each training epoch. Figure 4 shows the boxplots 

(median and interquartile range) of the k values obtained in the models for each search 

hyperparameter. The model that obtained the highest k value (k = 0.3964) presented the 

CNN hyperparameters Nblock = 4, p = 0 . 1, and Ks = 33 BC1 , 17 BC2 , 7 BC3  (Figures 4(a), 4(b), 

and 4(c), respectively). To optimize the model with this configuration learning rate reached 

a final value of 3 × 10−5. Finally, after adjustment of the SVR regression, the optimal 

hyperparameters of ε = 0.15, C = 5 . 84, and γ = 0 . 02 were selected. Additionally, Table 1 of 

the supplementary material shows all the combinations of hyperparameters tested and the k 
results obtained in the validation subset.

4.2. AHI estimation

After training the model with the training subset and establishing the optimal configuration 

using the validation subset, the test subset was used to estimate the AHIest and evaluate 

the performance of the CNN-based algorithm. The Bland-Altman plot was calculated to 

establish the similarity between the estimated final AHI of each subject in the proposed 

model and the AHI extracted from the PSG in the CHAT database (see Figure 5). 

The solid black line of the Bland-Altman plot shown in Figure 5 indicates the average 

difference between AHIest and AHIactual. A negative value indicates that our proposed model 

underestimates in the test subset slightly. However, despite this underestimation, the limits of 

the confidence interval ([7.40, −9.40]), together with the ICC = 0.79, show that there is high 

agreement between AHIest and AHIactual.

4.3. Diagnostic ability of pediatric OSA

To evaluate the diagnostic ability of the model, we determined the severity of pediatric OSA 

after estimating the AHIest in the test subset. We calculated the confusion matrix, Acc4, and 

k (Figure 6). On the one hand, the cells of the confusion matrix show the proportion of 

subjects of the actual class assigned to each severity group. These values are associated 
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with a cell color, indicating the performance of the model. On the other hand, the values 

of the number of subjects estimated in each of the four groups are shown. We observe an 

overestimation of the OSA severity in healthy subjects (no OSA) and an underestimation 

of the OSA severity in mild OSA subjects. According to the number of correctly classified 

subjects on the main diagonal, the performance of the model is better in subjects with mild 

OSA (65.28%), followed by those with moderate (55.10%), severe OSA (53.66%), and no 

OSA subjects (46.15%). Finally, it is important to note that all the subjects estimated with an 

AHIest ≥ 10e/h are patients who have at least moderate OSA.

Table 2 presents the diagnostic performance of our pediatric OSA estimation algorithm in 

the three severity thresholds (AHI = 1 e/h, AHI = 5 e/h, AHI = 10 e/h). We can observe that 

the values of Sp are higher as the severity of OSA increases and, conversely, the values of 

Se decrease. The AHI threshold with the most balanced Se and Sp is 5 e/h. If we focus on 

the values of PPV and NPV, the highest values are obtained in 1 e/h and 10 e/h, respectively. 

Regarding LR values, it is essential to highlight the LR+ value obtained for the threshold 

10 e/h (27.69), which indicates a relevant diagnostic utility for this threshold. Finally, as the 

severity of OSA increases, the Acc of the model is higher, with 91.97% Acc for 10 e/h. If 

we analyze the 2-class kappa at each threshold, we can observe that the highest value is 

obtained for 5 e/h (0.69). Thus, in strict terms of classification, we can state that the highest 

2-class kappa results are obtained for 5 e/h. However, we consider it essential to emphasize 

that determining the most suitable threshold for model performance depends significantly on 

aligning it with the specific objectives of the clinicians using our approach. Consequently, 

we show various metrics to let the potential users of the model make the last decision on its 

application. This inherent versatility constitutes a notable advantage of our proposal.

5. Discussion

This work evaluated a CNN-based model reliant on raw overnight ECG signals to estimate 

respiratory events per segment and AHI per subject for diagnosing OSA severity in pediatric 

patients. A CNN-based algorithm reached a moderate-to-high diagnostic performance for 

the thresholds of 1 e/h, 5 e/h, and 10 e/h. Results demonstrate that using single-channel 

ECG signal and a CNN shows an excellent potential for identifying pediatric OSA severity, 

thus enabling a simple, fast, objective, and accurate diagnosis. Furthermore, the diagnostic 

performance obtained with the proposed approach could be a valuable starting point to 

assess for cardiac co-morbidities, a significant risk factor in children, particularly those with 

severe OSA [2].

5.1. Comparison between adult and pediatric OSA

Pediatric OSA disease is a serious health problem due to its elevated prevalence and the 

associated morbidities it can cause [2]. As a result of the cost of PSG and the human and 

instrument resources required for its detection, much effort has been invested in simplifying 

the signals required to enable automatic OSA diagnosis in children [14]. Diagnosing 

pediatric OSA using a single-channel ECG signal is particularly interesting for its simplicity 

of recording and comfort for children. Analysis of this signal is crucial due to the relevant 

information it contains including potential underlying cardiovascular pathology [2,10].
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In adults, some approaches have analyzed the ECG signals through DL methods. 

Specifically, CNN networks have been implemented for event detection and classification 

of OSA, achieving high performance in the OSA classification, with Acc values ranging 

from approximately 90% to 99% [20–23,25,26]. However, DL methods have yet to 

be exhaustively evaluated in conjunction with cardiac signals in children. Therefore, 

we developed a CNN-based model to analyze ECG signals aimed at identifying OSA 

in children and establishing its severity. Lower diagnostic performances emerged when 

compared to adults, with differences likely due to the lower AHI traditionally seen in 

clinical practice among children, the latter reflecting the reduced upper airway collapsible 

of the upper airway during childhood. As a corollary, the criteria required to establish the 

presence of OSA are markedly different, being substantially more restrictive for the pediatric 

population [1,4]. Additionally, AHI thresholds for determining the degree of severity of 

OSA are lower in children compared to adults (1 e/h, 5 e/h, and 10 e/h versus 5 e/h, 15 

e/h, and 30 e/h, respectively) [73,74]. Another critical factor involves the differences in the 

kinetics of cardiac and other physiological responses during apnea episodes. Accordingly, 

the analysis of the ECG signals must be specifically restricted to data in children [2,10].

5.2. Configuration of CNN-based model

Regarding the architecture of the model, a regression CNN was implemented. Initially, the 

number of events per signal segment was estimated, and later, the AHI index per subject 

was calculated. This methodology had already been used in previous studies by our research 

group while analyzing other PSG signals such as SpO2 or AF to identify the severity of 

pediatric OSA, achieving high accuracy in the classification [56,57].

During the preliminary testing runs, we trained the model with 5-minute segments to avoid 

any impact on the delay between apnea events and the patterns of tachycardia/bradycardia 

onset [7]. Later, we used 10-minute segments to train the CNN. The algorithm showed a 

higher k coefficient with 10-minute segments (0.3762 versus 0.3244 in the validation set), 

indicating that larger segment sizes have a lesser effect on inter-event delay and bradycardia/

tachycardia patterns. However, if the training included segments longer than 10 minutes, 

there was a high computational cost. Then, once the 10-minute segments were selected, 

we trained the network initially with 10-minute ECG segments and then applied a 50% 

overlap as a data augmentation strategy. This approach served to minimize overfitting during 

training and to facilitate the optimal performance of the model. The highest results in terms 

of k in the validation subset were obtained in the CNN trained with segment overlap (0.3964 

versus 0.3762 ). Therefore, we selected 10-minute segments with 50% overlap to evaluate 

the model on the test subset.

Concerning the selection of CNN hyperparameters, Figure 4 shows that the highest value of 

k was obtained with Nblock = 4, p = 0.1, and Ks = 33 BC1 , 17 BC2 , 7 BC3 . Figure 4 (a) shows 

that increasing the Nblock value and, therefore, increasing the complexity of the network, 

would not lead the CNN to an improvement in the capture of characteristic patterns in 

the ECG. Figure 4 (b) indicates that further increasing the dropout would lead to lower 

median values of the boxplots and lower k values for most models, as shown by the trend of 

interquartile ranges. From Figure 4 (c), we can extract that those models with Ks of similar 
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values obtain lower median and interquartile ranges in the boxplots. This finding highlights 

the importance of optimizing this hyperparameter.

5.3. Proposal of a diagnostic protocol

Regarding the confusion matrix of Figure 6, it can be observed that 96.9% of healthy 

children (no OSA) were estimated with an AHIest < 5 e/h (no OSA or mild OSA). In 

addition, of the subjects with AHIactual < 5e/h, 91.4% were predicted as no OSA or mild 

OSA. All subjects belonging to the no OSA or mild OSA class were estimated with an 

AHIest < 10e/h. Finally, of the children who were estimated with an AHIest > 10e/h (severe 

OSA), 100% were subjects with at least moderate OSA.

Based on these results, a diagnostic protocol could be created from the developed CNN 

algorithm to demonstrate its clinical utility, according to the following criteria:

1. If our estimate is AHIest < 1e/h (no OSA), the presence of OSA can be discarded 

since most of these subjects (95.5%) would have an AHIactual < 5 e/h. In these 

children, a follow-up evaluation of the symptoms would need to be done 

periodically. If the symptoms were to persist over time (i.e., 2-3 months), a 

determination of the need for PSG would be then made by the sleep specialist.

2. If 1 ≤ AHIest < 5 e/h is estimated by the algorithm, 77.2% of the subjects could 

have AHIactual > 1 e/h (OSA presence), so the specialist would then recommend a 

PSG to establish a more precise diagnosis.

3. If the model estimates 5 ≤ AHIest < 10e/h, the clinician would consider treatment 

because 96.7% of these subjects would suffer from at least mild OSA.

4. If the model estimates AHIest ≥ 10e/h, treatment would be established since 

100% of children would have an AHIactual > 5e/h (moderate OSA or severe OSA).

As a result, 51.5% of the PSG would be avoided with this screening protocol. Moreover, 

only 3.1% of children with an AHIactual < 1 e/h would be indicated for treatment and 3.3% 

with an AHIactual > 5 e/h would not be referred to PSG/treatment in the first visit to the 

specialist. This solution would reduce waiting lists in the hospital service, achieving a more 

accurate pediatric OSA diagnosis and timely treatment of the more severe cases.

5.4. Comparison with previous studies

Table 3 summarizes the diagnostic performance of previous publications that used cardiac 

information, but not the raw ECG signal, and where conventional machine learning (ML) 

techniques were applied for feature extraction. In the study by Shouldice et al. [3], the binary 

classification of segments (normal/apnea) and subsequent binary classification of subjects 

was performed using a single AHI threshold of 1 e/h. RR interval features were used to 

achieve Se = 85.7%, Sp = 81.8%, PPV = 85.7%, NPV = 81.8%, and Acc = 84%. Comparing 

the results, our approach at that threshold achieved lower values of Sp, NPV, and Acc, but 

similar values of Se and NPV. It is important to highlight that in their study they used only 

50 total recordings and 25 for the test subset, compared to 1,610 total recordings and 299 in 
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the test subset used in this study. Thus, we can conclude that our results are more powerful 

and generalizable.

Other investigators used extracted features from the PPG signal for binary classification 

of pediatric OSA (AHI < 5 No OSA and AHI > 18 OSA) [28–30]. Compared to these 

studies, although Se was lower, our approach achieved higher Sp, LR+ and Acc for the 

most restrictive threshold of 10 e/h. Thus, we can conclude that the current methodology 

is preferable to correctly identifying healthy children without severe OSA. Moreover, these 

studies had smaller samples (50 and 21 recordings compared to 1,610 recordings), limiting 

the generalizability of their results.

Martín-Montero et al. [32,33] used HRV spectral characteristics in two studies to 

automatically classify pediatric OSA with the common AHI thresholds. In [33], the authors 

achieved slightly higher Se for 1 e/h (85.47% vs. 84.19%) and Sp for 5 e/h (93.78% vs. 

91.39%) than our approach. However, our algorithm achieved a better balance between 

Se-Sp for both thresholds, resulting in higher Acc (75.95% vs. 74.58% for 1 e/h and 86.96% 

vs. 84.95% for 5 e/h). We also obtained better predictive accuracy for the threshold of 10 

e/h for all measures, thus highlighting the ability of our algorithm to identify severe OSA 

cases more accurately. Compared to Martín-Montero et al. [32] who obtained slightly higher 

NPV values for all thresholds, our approach achieved higher Sp values, providing a better 

balance between NPV and Sp results. Notably, our LR+ value of 27.69 at the threshold of 

10 e/h (versus 7.90) demonstrates the clinical utility of our algorithm in identifying children 

with severe OSA. Additionally, our algorithm showed higher classification measures for 

Se, Sp, Acc, PPV, LR+, and LR− at the thresholds of 1 e/h and 5 e/h. This indicates the 

ability of this approach to distinguish between healthy children and patients with OSA and 

differentiate between mild and moderate pediatric OSA.

Finally, in another study, authors automatically classified pediatric OSA using features 

derived from HRV signal segments and a conventional ML technique [31]. This study was 

the most suitable to compare our results since the same study database (CHAT), number 

of subjects (1610), and AHI thresholds (1, 5, and10 e/h) were used. In addition, they used 

the same validation strategy as our proposal with three independent data subsets (training, 

validation, and test). Our algorithm performed better in terms of Se, Sp, Acc, PPV, NPV, 

LR+, and LR− at the thresholds of 5 e/h and 10 e/h, indicating its clinical applicability 

in identifying the more severe cases of pediatric OSA. These findings are particularly 

encouraging as children with moderate to severe OSA are at increased risk of developing 

cardiovascular and neurocognitive morbidities, and therefore will benefit most from early 

diagnosis and timely treatment [10,15]. While Se value was lower at the 1 e/h threshold in 

this work, our Sp value was higher. In this sense, our model achieved a more balanced Se-Sp 
and PPV-NPV relationships, respectively. These findings indicate that the model proposed 

here can better identify healthy children, thereby enabling improved utilization of limited 

PSG resources to those patients more likely to benefit from PSG. Overall, our proposal 

reached higher values of k (0.372 versus 0.166) and Acc4 (57.86% versus 41.89%). On the 

one hand, the difference in the k value indicates that the model proposed in this study shows 

a higher level of agreement between the OSA severity degrees derived from the estimated 

AHI and the actual OSA severity degrees. Furthermore, it can also be concluded from these 
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results that our model can better capture patterns and relationships in the data, resulting 

in predictions that are more consistent with the actual OSA severity degrees. On the other 

hand, the Acc4 results conclude that the overall performance of the proposed model on all 

classes is approximately 16% higher. This makes our CNN-based algorithm a more reliable 

diagnostic model for clinical practice.

Despite the most interesting discussion relies on comparing our results with those studies 

using cardiac information, different previous studies also used the CHAT database along 

with DL alternatives for diagnosing pediatric OSA [56,57]. They focused on the analysis 

of overnight SpO2 and/or AF signals and reached promising results. However, they only 

used respiratory information, thus obviating possible OSA pathophysiological effects on 

the cardiac system, including those associated with cardiac morbidities. Moreover, Jimenez-

Garcia et al. [56] showed higher technical complexity as they used the two signals for 

the automated diagnosis instead of a single one. On the other hand, other approaches 

worked with DL and cardiac information in contexts other than pediatric OSA [75], as for 

example the investigation of the impact of DL architectures (FC, VGGs, ResNet50, U-Net, 

and others) on accelerated cardiac T1 mapping, reaching U-Net the highest performance 

[76]. Despite all these interesting approaches, we consider that studying the ECG signal 

in pediatric OSA brings added value. First, there is demonstrated evidence of the lack of 

ECG signal analysis in the pediatric OSA context despite being an extensively studied 

signal in the clinical field [15]. Furthermore, the ECG contains a plethora of relevant 

information that can be used for diagnostic purposes, including cardiorespiratory coupling, 

heart rate changes, and heart rate variability associated with respiratory events [2,7,16]. 

Importantly, by analyzing overnight ECG the possibility of assessing cardiovascular risk in 

children is enabled, which is particularly relevant for severe pediatric OSA patients in which 

cardiovascular morbidity is a significant risk [7,10]. Finally, because the ECG is one of the 

most analyzed signals in clinical practice worldwide, an ECG-based application to aid in 

diagnosing OSA could be easily interpretable, implementable, and accessible [17–19].

Therefore, we can conclude that the application of DL-based algorithms using the raw 

ECG signal offers three notable advantages: 1) All the information contained in the ECG is 

potentially used; 2) it eliminates the need to develop specifically designed feature extraction 

methods; 3) it demonstrates higher diagnostic performance of pediatric OSA.

5.5. Limitations

This work has obviously several limitations that must be considered. Although we used a 

large sample size (1,610 PSG recordings), it would always be better to have even more 

recordings to perform the analysis to reach more generalized conclusions. Another limitation 

to consider is that all the subjects included in the CHAT database were initially suspected of 

having OSA, which could imply that the clinical characteristics of these subjects are more 

specific of OSA presence. Furthermore, all subjects in our dataset are between 5 and 9.9 

years old, which prevents us from drawing conclusions beyond these age limits. Considering 

the characteristics of the subjects and the study signals, it is challenging to compare our 

results with other studies. This is because the raw ECG signal was not analyzed before in 

the previous existing publications of pediatric OSA [28–30,32,33]. Also, of the studies in 
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the literature, there is only one in which the same database was used (CHAT) [31], which 

provides the most accurate basis for comparison. If we analyze the DL method used here, 

a CNN-based model network was implemented based on its suitability in the field of time 

series analysis and its excellent performance in previous studies in adults to diagnose OSA 

[20–25,35,44,49]. However, RNN/LSTM architectures could be tested to furtherly evaluate 

the usefulness of our proposal. Finally, there is a real limitation of DL methods in explaining 

the features extracted by the models that should be considered for future work.

6. Conclusions

To the best of our knowledge, this study reflects the first evaluation of a CNN-based 

algorithm using single-channel ECG signals to identify pediatric OSA and estimate its 

severity. Our findings demonstrate that this approach outperforms previous studies that used 

cardiac information (PPG and HRV signals) with conventional ML methods. This suggests 

the potential value of combining ECG signals and DL methods in pediatric OSA. Based on 

the diagnostic performance achieved by our approach, we suggest a diagnostic protocol that 

could serve as a valuable clinical tool. It would effectively reduce the need for unnecessary 

PSG by half, thus alleviating waiting lists in clinical facilities. In this sense, our solution 

could facilitate the objectivity and accuracy of pediatric OSA diagnosis, while ensuring 

that urgent and appropriate treatment is administered to the most severe cases. Overall, 

using ECG recordings and our CNN-based proposal provides a highly promising and viable 

alternative to PSG for diagnosing pediatric OSA.

For future works, it would always improve our study to have more recordings to perform 

the analysis. Moreover, it would be desirable to use other child AOS databases to assess 

the generalizability of the model. Additionally, a study based on screening children at risk 

for OSA would allow a more general population group to be analyzed. Furthermore, it 

would be appropriate to evaluate and compare the performance of different architectures, 

as has already been done in other approaches within the cardiac setting [76]. Specifically, 

it would be interesting to use different alternative models, such as RNN, hybrid models, 

or transformers, to evaluate their performance and test their diagnostic ability. Furthermore, 

applying explainable artificial intelligence methods may be useful for future work [77]. 

These approaches could provide greater clarity in interpreting the results obtained in 

the CNN-based model, thus enabling a better understanding of the extracted features 

and the relationship between apneic events and the behavior of the ECG. Finally, future 

development of user-friendly tools could be used to furtherly validate our proposal in a 

clinical environment.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A CNN aimed at simplifying the diagnosis of pediatric OSA using raw ECG 

signals.

• First study to use this signal coupled with DL methods to diagnose pediatric 

OSA.

• The model outperformed previous approaches using conventional ML 

methods.

• A diagnostic protocol is suggested as a clinical tool, halving unnecessary 

PSGs.

• Accurate detection of moderate and severe OSA cases, aiding in early OSA 

diagnosis.
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Figure 1: 
Proposed workflow for developing and validating the CNN enabling prediction of the 

severity of OSA in children based on their overnight raw ECG signal recordings. CHAT: 

Childhood Adenotonsillectomy Trial; PSG: polysomnography; ECG: LPF: low pass filter; 

electrocardiogram; CNN: convolutional neural network; AHI: apnea-hypopnea index; SVR: 

support vector regression; OSA: obstructive sleep apnea. AHIcnn: rate of apnea events 

per subject calculated after CNN regression; AHIactual: actual AHI extracted from CHAT 

database; AHIest: final estimated AHI after SVR fitting. SN: segment N; yN: estimation of 

apneic events in segment N.
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Figure 2: 
Diagram of the CNN architecture proposed in the study. The input data to the CNN are the 

10-minute ECG segments and the output corresponds to the number of apnea events that 

the CNN estimates for each segment. 1D CONV = 1-dimensional convolutional layer; Nf = 

number of convolutional filters; Ks = kernel size; strides=1 in 1D CONV indicates that the 

stride length of the convolution is 1; padding=‘same’ in 1D CONV results in padding with 

zeros evenly so that the output has the same dimension as the input. RELU = rectified linear 

unit activation; pool size = 2 in the max pooling layer indicates that the size of the pooling 

window is 2; strides = 2 in the max pooling layer specifies a two-step shift of the pooling 

window; p = probability that each neuron is deactivated during training; Nblock = number of 

convolutional sub-block; BC = convolutional block 1-3. Segn is the number of the segment 

entering the network, ranging n from 1 to 116,126.
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Figure 3: 
Evolution of Huber loss (left) and mean absolute error (right) in the training and validation 

subsets during CNN optimization as model training epochs progress. MAE: Mean absolute 

error.
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Figure 4: 
Cohen’s kappa coefficients (k) obtained in the validation subset for each model with a 

combination of hyperparameters. (a) k values obtained by modifying the hyperparameter 

Nblock; (b) k values obtained by modifying the hyperparameter p; (c) k values obtained by 

modifying the hyperparameter Ks. Nblock: convolutional sub-blocks; p: dropout; Ks: kernel 

size; BC1, BC2, BC3: convolutional blocks 1, 2 and 3, respectively.
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Figure 5: 
Bland-Altman plot and ICC value calculated from the AHI estimated by our model and the 

AHI extracted from PSG in the CHAT database. SD (standard deviation); e/h (events/hour).
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Figure 6: 
Confusion matrix of classification performance of the test subset in the four severity groups 

among pediatric patients. The color reference is associated with the proportion (%) of 

subjects of the actual class assigned in each severity group. At the top, the values of the 

4-class accuracy (Acc4) and the 4-class Cohen’s kappa coefficient (k) are shown. * No OSA: 

AHI<1 (e/h); Mild OSA: 1≤AHI<5 (e/h); Moderate OSA: 5≤AHI<10(e/h); Severe OSA: 

AHI≥10(e/h).
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Table 1:

Clinical and demographic features of the pediatric study subjects extracted from the CHAT dataset.

Features Training subset Validation subset Test subset

Baseline subjects (n) 278 (61.64%) 88 (19,51%) 85 (18.85%)

Non-randomized subjects (n) 461 (61.06%) 157 (20.79%) 137 (18.15%)

Follow-up subjects (n) 249 (61.63%) 78 (19.31%) 77 (19.06%)

Total subjects (n) 988 (61.37%) 323 (20.06%) 299 (18.57%)

Age (years) 7.00 [2.00] 7.00 [2.00] 6.90 [2.00]

Females (n) 477 (48.28%) 164 (50.77%) 161 (53.85%)

BMI (kg/m2) 17.31 [5.92] 17.12 [6.25] 17.43 [6.04]

AHI (e/h) 2.64 [4.77] 2.45 [4.77] 2.32 [5.11]

AHI < 1 (e/h)* 212 (21.46%) 67 (20.74%) 65 (21.74%)

1≤AHI<5 (e/h)* 488 (49.39%) 167 (51.70%) 144 (48.16%%)

5≥AHI<10 (e/h)* 159(16.09%) 44 (13.62%) 49 (16.39%)

AHI ≥ 10 (e/h)* 129 (13.06%) 45 (13.93%) 41 (13.71%)

Baseline ECG segments (n) 33,402 5,350 5,059

Non-randomized ECG segments (n) 53,137 9,057 7,972

Follow-up ECG segments 29,587 4,519 4,442

Total ECG segments (n) 116,126 18,927 17,473

Data are shown as number (percentage) or median [interquartile range], depending on the feature type. BMI: body mass index; AHI: apnea-
hypopnea index; e/h: apneic events per hour.

*
AHI<1 (e/h): no OSA; 1≤AHI<5 (e/h): mild OSA; 5≤AHI<10(e/h): moderate OSA; AHI≤10(e/h): severe OSA.
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Table 2:

Figures of merit obtained in the test subset for the evaluation of the diagnostic capacity of pediatric OSA in the 

AHI thresholds 1 e/h, 5 e/h, and 10 e/h. Se (sensitivity); Sp (specificity); PPV (positive predictive value), NPV 

(negative predictive value), LR+ (positive likelihood ratio), and LR−(negative likelihood ratio). e/h (events/

hour).

Test subset

AHI threshold Se (%) Sp (%) PPV (%) NPV (%) LR + LR − Acc (%) 2-class kappa

1 e/h 84.19 46.15 84.91 44.78 1.56 0.34 75.92 0.30

5 e/h 76.67 91.39 79.31 90.09 8.90 0.26 86.96 0.69

10 e/h 53.66 98.06 81.48 93.01 27.69 0.47 91.97 0.60
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