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Abstract 

Background  Clinically important lineages in Klebsiella, especially those expressing multi-drug resistance (MDR), pose 
severe threats to public health worldwide. They arose from the co-evolution of the vertically inherited core genome 
and horizontal gene transfers by plasmids, which has not been systematically explored.

Methods  We designed KleTy, which consists of dedicated typing schemes for both the core genome and plasmids 
in Klebsiella. We compared the performance of KleTy with many state-of-the-art pipelines using both simulated 
and real data.

Results  Employing KleTy, we genotyped 33,272 Klebsiella genomes, categorizing them into 1773 distinct populations 
and predicting the presence of 87,410 plasmids from 837 clusters (PCs). Notably, Klebsiella is the center of the plasmid-
exchange network within Enterobacteriaceae. Our results associated the international emergence of prevalent Kleb-
siella populations with only four carbapenem-resistance (CR) PCs, two hypervirulent PCs, and two hvCR-PCs encoding 
both carbapenemase and hypervirulence. Furthermore, we observed the ongoing international emergence of blaNDM, 
accompanied by the replacement of the previously dominant population, blaKPC-encoding HC1360_8 (CC258), dur-
ing 2003–2018, with the emerging blaNDM-encoding HC1360_3 (CC147) thereafter. Additionally, expansions of hyper-
virulent carbapenem-resistant Klebsiella pneumoniae (hvCRKP) were evidenced in both populations, driven by plas-
mids of MDR-hypervirulence convergences.

Conclusions  The study illuminates how the global genetic landscape of Klebsiella has been shaped by the co-evolu-
tion of both the core genome and the plasmids, underscoring the importance of surveillance and control of the dis-
semination of plasmids for curtailing the emergence of hvCRKPs.
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Background
Nosocomial infections by carbapenem-resistant Kleb-
siella pneumoniae (CRKP) that also express multidrug 
resistance (MDR), first reported in the 1990s, now have 
a worldwide distribution [1]. In particular, the emergence 
of hypervirulent CRKPs (hvCRKPs) in China, India, and 
many other countries has drawn special attention [2] 
due to their association with the increased prevalence of 
bloodstream infections [3]. To investigate infections and 
transmission of K. pneumoniae, a wide range of typing 
techniques have been utilized [4], including serotyping, 
pulsed-field gel electrophoresis (PFGE), and multi-locus 
sequence typing (MLST). State-of-the-art pipelines, such 
as Kleborate [4], rely on MLST and serotyping to char-
acterize Klebsiella strains. Recently, cgMLST schemes for 
the K. pneumoniae Species Complex (KpSC) have been 
developed and hosted by Institut Pasteur (629 genes) 
[5], which also designed cgLINcodes to infer population 
structures. Clinical use of the cgMLST scheme, however, 
has been restricted by the requirement to upload nucleo-
tide sequences into central databases, which can be dif-
ficult for clinicians and/or epidemiologists [6].

Mobile genetic elements harboring antimicrobial-
resistant genes (ARGs) and virulence factors (VFs) have 
been regarded as one of the major driving factors behind 
the emergence of epidemic lineages in K. pneumoniae [7]. 
Notably, the recent emergence of ST11 hvCRKP strains 
in China has been associated with the acquisition of 
virulence factors (VFs) in the CRKPs [8], calling for sys-
tematic analyses of the complex interplay between the 
plasmids and the bacterial hosts. In addition, K. pneumo-
niae has long been regarded as the hub for inter-species 
horizontal genetic transfers (HGTs) of plasmids, espe-
cially among Enterobacteriaceae [9]. Investigation of the 
contextual genetic diversity of plasmids in Klebsiella will 
facilitate our understanding and control of the inter-spe-
cies spreading of ARGs, which has been frequently asso-
ciated with the plasmids [1]. Currently, low resolution 
limits state-of-the-art techniques, such as replicon typing 
and MOB typing [10], thereby highlighting the need for 
new algorithms that systematically predict and catalog 
plasmid content.

Here we describe an automatic pipeline, KleTy, that 
enables unified genotyping of both the core genome 
and the plasmids in all Klebsiella species. KleTy consists 
of three modules: (1) a population assignment mod-
ule based on a novel dcgMLST + HierCC scheme, (2) 
a plasmid prediction module based on a novel plasmid 
clustering (PC) scheme, and (3) an ARG/VF prediction 
module. We showed that KleTy outperformed state-of-
the-art pipelines in both population assignments and 
plasmid predictions based on the prediction of 1773 nat-
ural populations and 87,410 plasmids in 33,272 Klebsiella 

genomes. This work expanded our understanding of the 
genetic diversity of plasmids in Klebsiella and the dynam-
ics of predominant populations that are associated with 
the global elevation of hvCRKP over decades.

Implementation
Genome sequence collection
To capture the broadest possible diversity of Klebsiella 
populations, we established a comprehensive genomic 
dataset of Klebsiella that consists of a total of 33,272 
assemblies and short reads retrieved from GenBank (as 
of Aug. 2022, Additional file 1: Table S1). All short reads 
were assembled into draft genomes using EToKi [11]. 
These genomes represent isolates collected between 1886 
and 2022 from 94 different countries, with the major-
ity from the Americas (27.8%, n = 9243), Europe (25.2%, 
n = 8383), and Asia (20.5%, n = 6815). The STs, ARG/VF 
profiles, and capsular types of each genome were pre-
dicted using Kleborate v2.3.2 [4], and the genes were pre-
dicted and annotated using Prokka [12].

Establishments of the dcgMLST + HierCC schemes
Construction of the dcgMLST scheme consisted of three 
stages (Fig. 1a). First, to reduce genetic redundancy due 
to the over-representation of genetically nearly identi-
cal strains in Klebsiella, we employed fastANI [13] to 
estimate the pairwise genetic distances of all 33,272 
genomes and separated them into single-linkage clusters 
of ≥ 99.8% identities. One genome with the greatest N50 
value was chosen for each cluster and subjected to qual-
ity checking using FetchMG [14]. We kept only 7269 rep-
resentative genomes that carried ≥ 37/40 single-copy core 
genes (SCGs), including 5109 that shared ≥ 95% ANIs to 
the K. pneumoniae type strain (GCA_000281755). Fur-
thermore, we repeated the procedures above on the rep-
resentative genomes to a further sub-selected seed set of 
1478 genomes of < 99.3% identities, which were used as 
the seeds for pan-genome estimation.

We applied PEPPAN [15] to predict a pan-genome of 
52,415 genes based on the 1478 genomes in the seed set. 
Furthermore, we employed the EToKi MLSTdb module to 
identify and remove potential paralogs that shared over 
80% amino acid similarity. A total of 42,061 pan genes 
were kept and used to build the whole-genome MLST 
(wgMLST) scheme for Klebsiella. We estimated the 
presence of genes in the wgMLST scheme in all 33,272 
genomes using DTy (https://​github.​com/​ADSGF​203com/​
DTy) and selected a subset of 3058 core genes that (1) 
present in ≥ 95% of genomes, and (2) maintained intact 
open reading frames in > 94% of its alleles using EToKi 
cgMLST module. The distributed cgMLST scheme was 
built based on the core genes and made publicly available 
as part of the KleTy pipeline at https://​github.​com/​zhemi​

https://github.com/ADSGF203com/DTy
https://github.com/ADSGF203com/DTy
https://github.com/zheminzhou/KleTy
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Fig. 1  The workflow and evaluation results for the KleTy pipeline. a KleTy consists of three modules that (1) genotype each genome into a set 
of curated hierarchical clusters using the dcgMLST + HierCC scheme, (2) identify plasmids and assign each to one of the 14,728 clusters 
in the Plasmid Clustering (PC) scheme, and (3) predict ARGs and VFs based on curated gene sets. b Visualizing the HC1360 groups, clonal 
complexes (CCs), cgLINcodes sub-lineages (LIN-SLs), and PopPUNK clusters (PPCs) in the supertree of 5109 K. pneumoniae genomes summarized 
from 3058 gene trees (see the “Methods” section). The circular bars surrounding the tree from outer to inner showed the PPCs, LIN-SLs, HC1360s, 
and CCs of each genome (inset Keys). Arrows show the genomes inaccurately assigned to CC17 (red) or CC14 (pink). c Comparisons of the plasmid 
predictions by KleTy, mlplasmids, MOB-recon, Plasmer, Platon, PlasmidHunter, and geNomad on benchmark datasets of 1271 complete (columns 
1–3) or draft (columns 4–6) Klebsiella genomes. The simulated draft genomes were assembled from simulated short reads by wgsim based 
on public complete genomes and made available at https://​doi.​org/​10.​5281/​zenodo.​12633​486. The results with the two greatest or lowest values 
were highlighted in red or green, respectively. d The similarity network of 9782 reference plasmids from Enterobacteriaceae. Plasmids (nodes) 
from the top 30 most abundant PCs were color-coded

https://doi.org/10.5281/zenodo.12633486
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nzhou/​KleTy. DTy designated each allele in the dcgMLST 
based on the MD5 hash value of its sequence, rather than 
an arbitrary sequential integer from a central database 
in the traditional cgMLST scheme. This allowed each 
genome to be characterized as a collection of up to 3058 
MD5 hash values, which each represented a unique core 
gene allelic sequence. All the genotyping results were also 
available in the KleTy repository.

Additionally, we hierarchically grouped the allelic 
profiles of all genomes into multi-level clusters using 
pHierCC [16] and evaluated the consistencies and cohe-
siveness of each cluster using the pHCCeval module, 
which is also in the pHierCC package. Briefly, pHCCeval 
estimated the similarity of all potential clustering thresh-
olds pairwisely using the normalized mutual information 
(NMI) score, revealing “stable blocks” that yielded simi-
lar clusters sharing NMI of > 0.9. Furthermore, pHCCe-
val used silhouette scores to evaluate the cohesiveness of 
each cluster, identifying the optimal thresholds in these 
stable blocks for population inferences.

Comparison of HC1360s with clusters from other schemes
The clustering schemes were compared based on 5109 K. 
pneumoniae genomes in the representative set. First, the 
supertree of these genomes was estimated using a divide-
and-conquer algorithm implemented in the cgMLSA 
package [17]. The CCs were estimated as clusters of 
single-locus variants of the 7-gene MLST profiles by the 
eBURST algorithm implemented in the goeBURST soft-
ware [18]. Furthermore, we used PopPUNK to create a 
database of the 5109 genomes and used the bgmm model 
to separate them into 796 clusters. The command lines 
are:

poppunk –create-db –output < database_name > –r-files  
< query_list > –threads 20.
poppunk –fit-model bgmm –ref-db < database_
name > –K 11.

Finally, we also uploaded all 5109  K. pneumoniae 
genomes to PathogenWatch (https://​patho​gen.​watch) in 
batches of 1000 genomes each to obtain the cgLINcode 
predictions. Sub-lineage information was obtained for 
5025 genomes, while the remaining 84 genomes were 
designed as “new.”

Scheme of plasmid clusters (PCs)
The complete sequences of 103,412 plasmids, span-
ning > 2400 species across the Tree of Life, were down-
loaded from GenBank (as of March 2023). Sequences 
that shared high similarity with bacterial chromosomes 
or viruses (≥ 95% identities and ≥ 60% coverages) were 
identified based on BLAST searches against all complete 

sequences of bacteria and viruses (https://​www.​ncbi.​
nlm.​nih.​gov/​genom​es/​Genom​esGro​up.​cgi), which were 
also downloaded from GenBank at the same time. A 
total of 102,248 high-quality plasmids were retained. We 
employed BinDash [19] to estimate the pair-wise genetic 
distances of the plasmids and grouped them into 28,206 
single linkage clusters of ≥ 99% identities. The reference 
plasmid dataset was built by selecting one sequence 
of the greatest size for each cluster. Furthermore, we 
employed FastANI [13] with parameters of “–fragLen 
1000 –minFraction 0.5” to calculate average nucleotide 
identity (ANI) between pairs of plasmids in the refer-
ence dataset and used the Leiden algorithm [20] to sepa-
rate them into 14,728 plasmid clusters (PCs) with ANIs 
of ≥ 90% and alignment coverage of ≥ 50% (Fig.  1a). The 
similarity network of the plasmids and the resulting PCs 
were visualized using the Fruchterman Reingold lay-
out algorithm [21] implemented in the Gephi software 
[22]. The resulting reference sequences, together with 
the associated host species and PC assignments, were all 
deposited in the KleTy repository (https://​github.​com/​
zhemi​nzhou/​KleTy/​tree/​main/​db).

The plasmid prediction module in KleTy employs 
BLASTn [23] to align each Klebsiella genome onto 
the reference plasmids (Additional file  2: Fig. S1). To 
remove potential nonspecific matches, it removes any 
alignment with < 85% identity or < 400  bp length. KleTy 
evaluates each contig by its alignment coverages to ref-
erence plasmids and keeps only alignments that are 
located in contigs with ≥ 30% of its sequences similar to 
the corresponding plasmid. Furthermore, KleTy iden-
tifies the PCs iteratively using a greedy algorithm. In 
each iteration, a PC that has the greatest proportion of 
its sequences found in the assembly is selected, and all 
contigs with ≥ 50% coverage and ≥ 85% identity to the PC 
are removed from the following iterations. The program 
stops when no PCs had ≥ 50% of its sequences aligned by 
the contigs, and reports all the identified PCs as well as 
their associated contigs. Optionally, KleTy also explores 
potential PC fragments that were only partially aligned 
by the contigs. At this step, only contigs that had ≥ 50% of 
their sequences similar to a reference plasmid were kept. 
The iterative searching of PC fragments stops when no 
PCs had ≥ 30% of their sequences aligned by the contigs.

Gene annotation and network construction
KleTy predicts ARGs based on a modified version of 
Kleborate with its default parameters. Furthermore, 
KleTy employs BLASTn to predict gene encoding hyper-
virulence or resistance to biocides and metal by aligning 
the sequences to the reference genes hosted in Klebo-
rate and AMRfinder, respectively, keeping only hits 
with ≥ 80% identities and ≥ 60% coverages. Furthermore, 

https://github.com/zheminzhou/KleTy
https://pathogen.watch
https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi
https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi
https://github.com/zheminzhou/KleTy/tree/main/db
https://github.com/zheminzhou/KleTy/tree/main/db
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regions responsible for Inc, MOB, and MPF types were 
obtained by comparing to the reference sequences hosted 
in MOB-typer [10]. An HC1360 cluster was designated 
as multi-drug resistance if 50% or more of its genomes 
carry ARGs for at least three of the following drug cat-
egories: aminoglycosides, beta-lactams, carbapenems, 
ESBLs, fluoroquinolones, macrolides, phenicols, sulfona-
mides, tetracyclines, or trimethoprim. Furthermore, an 
HC1360 cluster was considered hypervirulence if ≥ 30% 
of its genomes carry both aerobactin (iuc) and salmo-
chelin (iro) genes. Similarly, PCs with ≥ 20% of the car-
bapenemase genes, iuc gene, or both were designated 
carbapenem-resistant (CR-PCs), hypervirulent (hvPCs) 
PCs, or hvCR-PCs, respectively.

We visualized the association between bacterial hosts 
and the PCs in Enterobacteriaceae as a network, in which 
the nodes represent PCs or bacterial genera. Edges were 
drawn between a PC and bacteria if the PC was found 
in the corresponding genus. The resulting network was 
rendered and visualized using the OpenOrd layout algo-
rithm [24] in Gephi.

Comparison of KleTy against other plasmid prediction tools
All 1271 complete Klebsiella genomes that were available 
in GenBank as of June 2023 were downloaded, encom-
passing 1273 chromosome sequences and 4796 plasmid 
sequences. Furthermore, for each complete genome, we 
simulated reads using wgsim with 55 × coverage and no 
error rate (“-N 1000000 -e 0 -1 150 -2 150”). SPAdes was 
used to perform de novo assembly of the simulated reads, 
and the plasmid- or chromosome-associated contigs 
were identified by aligning all contigs back to the corre-
sponding complete genomes using BLASTn, with ≥ 98.5% 
identity and ≥ 80% coverage. A total of 1674 contigs 
(~ 1.3 per genome) that failed to align, or aligned to both 
chromosome and plasmids were excluded. Furthermore, 
contigs with a length smaller than 1000  bp were also 
removed because many of the prediction tools were not 
able to handle them. The final simulated dataset consists 
of 662,128 contigs from chromosomes and 64,981 con-
tigs from plasmids, which are all deposited in a publically 
accessible repository (https://​doi.​org/https://​doi.​org/​10.​
5281/​zenodo.​12633​486).

We evaluated the performance of KleTy in both the 
complete and draft assemblies and compared it with 
mlplasmids (v 2.1.0), MOB-recon (v 3.1.0), Plasmer (v 
0.1), Platon (v 1.7), PlasmidHunter (v 1.2), and geNomad 
(v 1.7.1). The plasmid prediction tools were all run with 
the default parameters, using the following command 
lines:

Mlplasmids:

	 Mlplasmids < query_assembly >  < output > 0.7 
’Klebsiella pneumoniae’.
Mob-recon:
	 Mob_recon –infile < query_assembly > –outdir  
< output > 
Plasmer:
	 Plasmer -g < query_assembly > -d /path/to/Plas-
mer/db/ -p < prefix > -o < output >
Platon:
	 Platon -t 4 -o < output > -p < prefix >  < query_
assembly >
PlasmidHunter:
	 Plasmidhunter -o < output > -i < query_assembly > 
geNomad:
	 Genomad end-to-end –cleanup –splits 8 < query_ 
assembly >  < output > /path/to/genomad_db.
KleTy:
	 KleTy -q < query_assembly > 

All predictions from each tool were also deposited in 
the aforementioned public repository and their preci-
sion, sensitivity, and F1-score were calculated using 
scikit-learn. Particularly, we also ran mlplasmids with 
a higher prob_threshold of 0.8, which was not reported 
here because it yielded worse predictions than the default 
prob_threshold in terms of the F1-score.

Phylogenetic analysis of the genomes
The minimum spanning tree of 33,272 Klebsiella genomes 
was constructed using the MSTreeV2 algorithm and visu-
alized in GrapeTree [25]. The maximum-likelihood (ML) 
trees of HC1360_3 and HC1360_8 were calculated using 
the EToKi package [11]. Briefly, EToKi employs mini-
map2 [26] to align 1493 HC1360_3 genomes and 2530 
HC1360_8 ST11 genomes onto the reference sequences 
of GCF_005944305 and GCF_011066505, respectively, 
to obtain a multi-sequence alignment. It then estimates 
ML trees based on the alignments using IQ-TREE [27]. 
Furthermore, we used RecHMM [28] to identify and 
remove DNA sketches that were imported by homolo-
gous recombination and estimated the tree again based 
on the remaining non-recombinant regions. All resulting 
trees were visualized online using either GrapeTree or 
iTOL v6 [29].

Phylogenetic analysis of the plasmids
Publically available, complete sequences of PC_499, 
PC_394, PC_456, and PC_1293 plasmids were retrieved 
from GenBank (Additional file  1: Table  S2) and their 
alignment fractions to the reference plasmid (PC_499: 
AY378100; PC_394: OW969913; PC_456: CP031850; 
PC_1293: CP024041) were measured using BLASTn 
(Additional file  2: Fig. S2). Furthermore, contigs 

https://doi.org/
https://doi.org/10.5281/zenodo.12633486
https://doi.org/10.5281/zenodo.12633486
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associated with each of these PCs, predicted by KleTy, 
were extracted from the corresponding Klebsiella assem-
blies. For each PC, we used “EToKi align” module to align 
all genomes onto the reference plasmid. Regions shared 
by ≥ 80% of the plasmids were maintained, accounting 
for 40–81% of the sequences in the reference. SNPs in 
these conserved regions were subjected to ML phylogeny, 
using the phylo module in EToKi, and the results were 
visualized in iTOL.

Inferences of population dynamics for HC1360_3
The spatiotemporal dynamics of the HC1360_3 popula-
tion were estimated by TreeTime [30] based on the ML 
tree. We pruned all genomes without isolation dates 
from the tree, and ran TreeTime on the remaining tree 
with the parameters of “–keep-polytomies –confidence 
–covariation –time-marginal always –relax 0.5 0.5 –coa-
lescent skyline –n-skyline 20” to obtain a date-calibrated 
tree. We then run TreeTime again on the dated tree in the 
“mugration” mode to estimate the ancestral international 
transmission of the bacteria with default parameters.

Statistical analysis
All statistical analyses were performed using R v4.2.2 or 
Python v3.8. The Normalised Mutual information score 
and the Silhouette score of the hierarchical clusters were 
calculated using scikit-learn implemented in pHCC_eval 
in the pHierCC package. The Cramer’s V statistic was 
used to test the strength of association between two cat-
egorical variables and computed using the rcompanion 
package in R. Both Pearson’s and Spearman’s correla-
tions between the carbapenem resistance and geographic 
distributions were performed using the cor.test func-
tion in the stats package in R. Linear regression analysis 
was performed for the carbapenem resistance and geo-
graphic distribution of the HC1360s using the ggplot2 
package (Method = lm) in R. The pairwise similarity of 
the four clustering schemes was assessed as the adjusted 
Rand index (ARI) using scikit-learn in Python. Further-
more, the Wallace index was also applied to measure 
the containment relationship of the three genome-based 
approaches. The precision, sensitivity, and F1-score for 
the results of each plasmid prediction pipeline were also 
calculated using scikit-learn. A p-value of < 0.01 was con-
sidered statistically significant in all tests.

Results
A unified genotyping scheme for chromosome 
and plasmid in Klebsiella
Here we establish KleTy, a tool that rapidly genotypes 
core genomes and plasmids in Klebsiella with three mod-
ules, including population assignment, plasmid predic-
tion, and genome annotation (Fig.  1a). Based on KleTy, 

one can easily assign a given Klebsiella genome to a pre-
defined population and identify clinically relevant genes 
and plasmids in ~ 60 s with eight threads.

Population assignment module based on dcgMLST + HierCC 
scheme
A total of 33,272 Klebsiella genomes were retrieved 
from public databases as of June 2022 (Additional file 1: 
Table  S1). To reduce redundancy caused by geneti-
cally similar strains and simplify calculations, we first 
selected a seed set of 1478 sequences of < 99.3% aver-
age nucleotide identities (ANIs) and used them to esti-
mate a pan-genome of 52,415 genes, including 3058 
soft-core genes with ≥ 95% presence. These soft-core 
genes were employed to establish a distributed cgMLST 
(dcgMLST) scheme [6], an extension of the standard 
cgMLST scheme that allows de-centralized allelic desig-
nation using a hash-based algorithm (see the “Methods” 
section). Furthermore, we used pHierCC to evaluate a 
series of single-linkage clustering results designated after 
their allowed allelic differences from HC0, namely no 
observed allelic differences, to HC3057, which allowed 
different sequences for all but one core gene. A block of 
clustering levels from HC100 to HC1800 was found to be 
similar to each other based on their pairwise normalized 
mutual information scores (Additional file  2: Fig. S3), 
indicating gradual genetic diversifications [16]. Among 
them, HC1360 clusters (arrows in Additional file  2: Fig. 
S3b) had the greatest average silhouette score and exhib-
ited high similarity to the clonal complexes (CCs) in the 
7-gene MLST scheme, with an adjusted Rand index (ARI) 
of 0.967, likely representing natural populations in Kleb-
siella (Additional file 1: Table S3).

To evaluate the performance of population characteri-
zation, we selected a representative set of 5109 K. pneu-
moniae genomes with < 99.8% ANIs. A supertree of these 
strains was built by combining 3058 trees of their core 
genes using a divide-and-conquer strategy [17]. Further-
more, we calculated their CCs, HC1360s, and PopPUNK 
clusters (PPCs), and also obtained their cgLINcodes by 
uploading the genomes into PathogenWatch (https://​
patho​gen.​watch). The sub-lineage (LIN-SL) assignments 
in the cgLINcode were selected for the comparison 
because they exhibited the greatest silhouette score as 
proposed in Hennart et  al. [5]. We obtained LIN-SL for 
5025 strains, while the other 84 strains were designated 
as “NEW” without actual nomenclatures.

After mapping all four clustering results onto the 
supertree, we found that 16.8% of the CCs mistakenly 
generated paraphyletic groups (Fig. 1b, Additional file 1: 
Table S4). For example, CC17 was found in 45 monophy-
letic clades (red arrows in Fig. 1b, Figs. S2a, S2b) across 
the tree and CC14 was split into 10 clades (pink arrows 

https://pathogen.watch
https://pathogen.watch
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in Fig. 1b, Figs. S2a, S2c). Notably, the representative set 
minimized the overrepresentation of strains from large 
populations of clinical relevance and thus amplified the 
inconsistencies between the CCs and the other three, 
genome-based clustering schemes. The CCs exhibited an 
ARI of 0.81 with the HC1360s, and slightly lower ARIs of 
0.79 with the other two schemes. Nearly all of the CCs 
that were incompatible with HC1360s were also incon-
sistent with either LIN-SLs or PPCs or both (Table 1).

Meanwhile, all genome-based approaches of HC1360, 
PopPUNK, and cgLINcode yielded clusters of good 
consistencies with the supertree (Fig.  1b). Particularly, 
HC1360 clusters exhibited high similarity (ARI = 0.90–
0.91) with both PPCs and LIN-SLs, whereas the PPCs 
and LIN-SLs were less similar (ARI = 0.82). We attrib-
uted such differences to the varied sizes of the clusters. 
Broadly speaking, the PPCs were the largest, followed 
by HC1360s and LIN-SLs, evidenced by their directional 
Wallace indexes [31] of > 0.97 versus only 0.88–0.94 in 
the other direction. Notably, detailed investigations sug-
gested that over 86% (599/693) of the HC1360s exhib-
ited one-to-one correspondence with the LIN-SLs while 
the remaining 94 were split into 342 sub-clusters in the 
LIN-SLs (Additional file  1: Table  S5). We also assessed 
the Klebsiella pneumoniae genomes in the representative 

set between different clustering methods (Additional 
file 2: Fig. S4). The genome-based schemes were generally 
comparable in clustering structure except for resolution 
differences. CCs varied more significantly. For instance, 
CC17 and CC14 were linked to numerous distinct 
HC1360s, LIN-SLs, and PPCs (Figs. S2b, S2c).

Plasmid prediction module based on pre‑curated plasmid 
clusters (PCs)
We retrieved all 103,412 complete plasmids from over 
2400 bacterial species in GenBank (as of March 2023) 
to capture their full genetic diversity. Using BinDash 
[19], we estimated the pairwise genetic distances of the 
plasmids and grouped them into single-linkage clusters 
(SLCs) with a distance threshold of < 0.01. One repre-
sentative sequence from each cluster was selected and 
screened for potential mislabeling of chromosomal or 
viral DNAs (see the “Methods” section). Pairwise com-
parisons of the remaining 28,206 high-quality repre-
sentatives were estimated using FastANI [13] (Additional 
file  2: Fig. S5) and subsequently grouped into plasmid 
clusters (PCs) using the Leiden algorithm [20] with a res-
olution of 0.01.

To optimize clustering, we tested various ANI and 
alignment fraction (AF) thresholds (Additional file  2: 

Table 1  A summary of the correspondence between HC1360, CC, PPC, and LIN-SL

* consistent—identical clusters (comprise the same set of genomes); merge—multiple query clusters are merged into one cluster in the reference scheme; split—one 
query cluster is split into multiple clusters in the reference; incompatible—scenarios that cannot be assigned into any of the three categories above

Reference: query Category Count Representative CCs

HC1360: CC Consistent 344

Incompatible 468 CC17 (n = 45); CC23 (n = 19); CC63 (n = 19); CC26 (n = 15); CC25 (n = 12); CC132 (n = 11); CC35 (n = 11); CC134 
(n = 11); CC200 (n = 10); CC14 (n = 10)

Merge 74

Split 72

LIN-SL: CC Consistent 386

Incompatible 392 CC17 (n = 44); CC23 (n = 19); CC63 (n = 18); CC26 (n = 14); CC25 (n = 12); CC14 (n = 11); CC200 (n = 11); CC35 
(n = 10)

Merge 40

Split 135

LIN-SL: HC1360 Consistent 599

Incompatible 0

Merge 0

Split 242

LIN-SL: PPC Consistent 648

Incompatible 25

Merge 31

Split 157

PPC: HC1360 Consistent 632

Incompatible 30

Merge 52

Split 127
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Fig. S6, Additional file 2: Fig. S7). At a fixed AF of 50%, 
the number of clusters decreased as ANI thresholds 
increased (Additional file  2: Fig. S7). Using the “elbow 
method,” we identified 90% ANI as optimal, yielding clus-
ters 2000 fewer than those at 95% ANI but only slightly 
more than those at 85% and 80% ANI. This was also con-
sistent with the fact that 82% of plasmid pairs with ≥ 50% 
AF had an ANI of ≥ 90%, while only 15% fell between 80 
and 90% ANIs.

We also evaluated clustering with varying AFs and a 
fixed 90% ANI (Additional file 2: Fig. S6a). The number 
of PCs increased as AF thresholds rose, without a clear 
elbow point (Additional file 2: Fig. S6c). However, lower 
AF thresholds resulted in greater plasmid size variation 
within clusters, with some PCs showing larger standard 
deviations at AF < 50% (Additional file 2: Fig. S6b). Ulti-
mately, we defined 14,728 plasmid clusters using 90% 
ANI and 50% AF (Fig. 1d, Additional file 1: Table S6; see 
the “Methods” section). A bimodal distribution emerged: 
the 20 most common PCs encompassed 23% of plasmids, 
while the majority of remaining PCs were rare, each con-
taining 1–10 plasmids (Additional file  2: Fig. S8). This 
likely reflects the under-sampling of plasmid diversity in 
public databases, an issue further explored in Klebsiella.

Furthermore, the low-resolution Leiden algorithm pro-
duced clusters similar to SLCs, which suffered from the 
“chaining phenomenon,” where distant clusters might be 
merged due to a few close elements. To address this, we 
further divided each PC into complete-linkage clusters, 
designated as plasmid types (PTs), ensuring the plasmids 
within each PT were similar.

Based on the PCs, we constructed a plasmid-exchange 
network of Enterobacteriaceae by bridging each PC 
with its associated genera (Fig.  2a, Additional file  1: 
Table  S7). For example, the PC_654, PC_671, PC_548, 
and PC_1517 contained over 90% Escherichia plas-
mids, while PCs such as PC_456, PC_466, and PC_219 
spanned Escherichia, Salmonella, Enterobacter, and 
Citrobacter. Additionally, we found that 76% and 71% 
of the PCs harbored by Klebsiella and Escherichia were 
also present in other genera including Enterobacter and 
Salmonella. This makes Klebsiella and Escherichia the 
predominant centers of the plasmid-exchange network, 

with the greatest eigenvector centralities of 1.0 and 
0.98, respectively (Fig.  2b). To minimize the impact of 
the unequal amount of public plasmids in each genus, 
we randomly downsampled the maximum number of 
plasmids each genus to 1000. With 100 random down-
samplings, we found that Klebsiella and Escherichia still 
ranked at the top in terms of their eigenvector centrali-
ties (Additional file 1: Table S7).

We designed an algorithm as the plasmid module in 
KleTy for predicting PCs and compared its performance 
with six existing algorithms: mlplasmids [32], MOB-
recon [10], Plasmer [33], Platon [34], PlasmidHunter 
[35], and recently published geNomad [36]. To this end, 
we retrieved all 1271 publically available complete Kleb-
siella genomes from GenBank (June 2023), containing 
4796 plasmids (Additional file 1: Table S8). Furthermore, 
we also simulated 1271 draft assemblies, averaging 521 
and 51 contigs for chromosomes and plasmids, respec-
tively, by simulating and assembling the short reads from 
each complete genome. All tools performed reasonably 
well with complete genomes (F1-score of 0.940–0.997) 
(Fig.  1c), although MOB-recon and geNomad suffered 
from low sensitivities of ~ 0.89. In contrast, the perfor-
mances varied in the draft genome dataset. KleTy ranked 
2nd in sensitivity (0.964) and 3rd in precision (0.867), 
leading to the top F1-score of 0.913. Plasmer and MOB-
recon also performed well with the draft assemblies, with 
an F1-score of 0.908 and 0.901, respectively. Particularly, 
Plasmer ranked 3rd in sensitivity (0.960) and MOB-recon 
ranked 2nd in precision (0.895). Platon and mlplasmids 
both had high precision of 0.967 and 0.857 but missed 
many true positives, resulting in a lower F1-score of 
0.845 and 0.703, respectively. In contrast, PlasmidHunter 
ranked 1st in sensitivity (0.982) but had low precisions 
(0.411), resulting in an F1-score of 0.579. Finally, geNo-
mad performed poorly in both sensitivity and preci-
sion, resulting in the lowest F1-score of 0.328, possibly 
because it was designed for metagenomic data rather 
than genomes.

ARG/VF prediction module
To evaluate the clinical importance of predicted popu-
lations and plasmids, we employed a third module that 

Fig. 2  The host association and genetic characteristics of the PCs. a A graph of the plasmid-exchange network in Enterobacteriaceae. Nodes show 
the plasmids (gray pots) and genera of the hosts (colored) and the colored edges show the presence of the plasmids in the corresponding hosts. b 
Histogram of the eigenvector centralities of genera in the network in part a. c Scatter plot of the average carriage of carbapenemase genes (X-axis) 
and the iuc gene (Y-axis) in each PC. Each circle represents a PC and is sized proportional to the number of associated plasmids and color-coded 
as in the Key. The two dashed lines show the criteria for assigning PCs as CR-PCs (≥ 0.2 carbapenemases), hvPCs (≥ 0.2 iuc), or hvCR-PCs. d Bubble 
plot of the HC1360 distribution for each PC. Each bubble indicates a PC and is sized relative to the associated plasmids. The piechart in each bubble 
shows the proportional presence of the PC in different HC1360s. The halos surrounding some bubbles indicate that these PCs belong to one 
of the CR-PCs (red), hvPCs (blue), or hvCR-PCs (purple), as defined in part c

(See figure on next page.)
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predicts ARGs and VFs based on a slightly modified ver-
sion of Kleborate [4]. Additionally, we used the reference 
sequences hosted in AMRfinder [37] for predicting genes 
responsible for resistance to biocides and metals.

Genetic landscape of populations and plasmids in 
Klebsiella.

We identified 1773 HC1360 populations in Klebsiella 
based on all 33,272 publicly available genomes (Fig. 3a), 

Fig. 2  (See legend on previous page.)
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making it slightly more divergent than Escherichia/
Shigella, which has 1379 HC1100 populations [17]. 
Over 70% of the HC1360s fell within only three spe-
cies of K. pneumoniae (43%, 757), Klebsiella variicola 
subsp. variicola (17%, 299), and Klebsiella quasipneu-
moniae subsp. similipneumoniae (11%, 193) (Additional 
file  1: Table  S9). Notably, nearly half of the Klebsiella 

genomes were from one of the five predominant popu-
lations of HC1360_8 (CC258; 8587 strains), HC1360_10 
(CC14; 2403), HC1360_52 (CC17; 1714), HC1360_148 
(CC307; 1645), and HC1360_3 (CC147; 1493) (Fig.  3b). 
HC1360_8 (CC258) is the primary source of Kleb-
siella in China, Israel, the USA, and countries in South 
America and Europe; HC1360_10 (CC14) predominates 

Fig. 3  The population structure and geographical distribution of the Klebsiella genomes. a A minimum spanning tree of 33,272 Klebsiella 
genomes based on their dcgMLST profiles. Branches with < 400 allelic distances are collapsed. The HC1360 populations with ≥ 100 genomes 
are color-coded as in the Key and some are also labeled. Only branches with < 3035 allelic distances are shown by clarity. b Hierarchical bubble 
plot for the population structure of the Klebsiella genus. The bubbles indicate the genus, species, and HC1360 populations in Klebsiella. Some 
HC1360s are color-coded because the majority of the genomes in them are MDR (red), hypervirulence (blue), or both (orange). c Global 
distribution of the five major HC1360 populations in countries with ≥ 1000 genomes visualized using D3.js. d The heat plot of the prevalence 
of antimicrobial-resistant genes (ARGs; red) and hypervirulence factors (VFs; blue) in the top 36 HC1360 populations. The histogram on the top 
shows the numbers of genomes in the HC1360 populations. e The predicted percentages of each of the ARGs and VFs from the plasmids. The 
dotted line indicates 80% of plasmid origins
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in many countries around the Indian Ocean (Fig.  3c) 
and HC1360_52 (CC17) were prevalent in Thailand 
some other Southeast Asian countries. Furthermore, 
HC1360_148 (CC307) and HC1360_3 (CC147), two 
emerging populations, were found in almost all con-
tinents. HC1360_148 was prevalent in France, Korea, 
and the USA, while HC1360_3 was primarily from Italy, 
Libya, and Russia. None of the predominant HC1360s 
has been frequently found in North Europe or Africa, 
which might be attributed to their distinct epidemio-
logical patterns [38]. Alternatively, variations in sampling 
frameworks—particularly in the selection of clinical, 
community, or environmental sources, or the focus on 
antimicrobial resistance—may have also influenced the 
results.

KleTy also predicted the presence of 87,410 plasmids 
from 837 PCs in Klebsiella (Additional file 1: Table S10). 
Of the identified PCs, 38% (314/837) were novel for Kleb-
siella, having been previously found only in other genera, 
such as Enterococcus, Escherichia, Staphylococcus, Aci-
netobacter, Bacillus, Neisseria, Enterobacter, and Salmo-
nella (Additional file 1: Table S11). The addition of these 
plasmids reshaped the PC distribution in Klebsiella, sub-
stantially reducing the relative frequencies of rare PCs 
and increasing the prevalence of PCs associated with 11 
to 500 plasmids, indicating improved plasmid sampling.

Additionally, KleTy assigned Incompatibility (Inc) types 
to ~ 78% (68,103/87,410) of the plasmids, with ColRNAI, 
IncFIB, and IncFII being the most frequent (Additional 
file  2: Fig. S9a). It also assigned 46,715 (53%) plasmids 
to MOB types, with MOBF, MOBP, and MOBH being 
the most frequent (Additional file 2: Fig. S9b). There was 
minimal association between typing schemes, with most 
PCs linking to multiple Inc and MOB types. In summary, 
our findings substantially expand our understanding of 
the genetic diversity in Klebsiella.

Emergence of MDR HC1360_8 (CC258) population 
with blaKPC-carrying plasmids.

Approximately 29% (524/1773) of the HC1360s from 
13 Klebsiella species had > 50% of its genomes encoding 

resistance to ≥ 3 drug classes, and thus designed as MDR 
(Additional file  1: Table  S12). Half (265/513) of these 
MDR HC1360s fell among K. pneumoniae, followed by 
K. quasipneumoniae subsp. similipneumoniae (82) and K. 
michiganensis (58) (Fig. 3b).

Nearly half (47%; 15,509/33,272) of the Klebsiella 
genomes exhibited carbapenem resistance (CRKP) due 
to the acquisition of carbapenemases (Fig. 4a). We found 
50 carbapenem-resistant PCs (CR-PCs) that each has 
a ≥ 20% carbapenemase carriage rate (Fig.  2c). CR-PCs 
accounted for four of the six most abundant plasmids 
(Additional file  2: Fig. S9) and carbapenemases (Addi-
tional file 2: Fig. S10) in Klebsiella as previously reported 
[39], including PC_341 (37% blaKPC, 88% IncFIB/IncFII), 
PC_355 (17% blaKPC, 60% IncFIB/IncFII), PC_394 (34% 
blaNDM, 80% IncFIB/IncHI1B), and PC_804 (51% blaOXA, 
99% IncL/M). Meanwhile, geographically restricted CR-
PCs also exhibited almost exclusive association with 
only one category of carbapenemase (Fig.  4b), such as 
the blaKPC-2-encoding PC_362 and PC_499 in China and 
blaKPC-3-encoding PC_396 and PC_1671 in the US.

In our genomic data, the earliest CRKP in HC1360_8 
(CC258) was isolated in 2003. After the acquisition of a 
blaKPC-3-encoding PC_341 plasmid, HC1360_8 CRKP 
isolates were found to increase over time, reaching > 80% 
carriage in 2008 (Fig.  4c). Meanwhile, the isolation fre-
quencies of HC1360_8 strains also increased, accounting 
for 58% of available Klebsiella genomes in 2008 (Fig. 4d). 
Early HC1360_8 isolates were predominantly ST258 
from the USA, but by 2007 [40], blaKPC-2-producing ST11 
strains from China also emerged as major contributors [8].

Two longitudinal monitoring projects, one in the 
USA (PRJNA288601, [41]) and the other in Australia 
(PRJNA529744, [42]), further documented the spread of 
these strains. The US study, covering eight states between 
2013 and 2016, identified ST258 as the most prevalent 
strain (n = 207), representing 43.5% of all isolates. Nearly 
99% of ST258 strains carried blaKPC, aligning with our 
data. In the Australian study, 361 strains were evaluated, 
with 48.3% carrying the blaKPC-2 plasmid and belonging 

Fig. 4  The prevalences and genetic characteristics of carbapenemase-carrying Klebsiella strains. a The annual frequencies of CRKP (yellow) 
and carbapenam-sensitive Klebsiella (CSKP; gray) in the 23,868 genomes with known isolation years. The relative percentages of the CRKP (dark gray) 
and hvCRKP (red) in each year are also shown as curves. All strains isolated before 2000 are assigned to one bin for clarity. b Sankey diagram shows 
the relationships between the HC1360 populations, carbapenemases, PCs, and the countries of the CRKPs. c The percentages of CRKPs per year 
for each of the five predominant HC1360 populations and the remaining. d–f The relative proportions of the predominant HC1360 populations 
(d), CR-PCs (e), and carbapenamases (f) per year. g Venn diagram of the carbapenemase profiles of the CRKPs. Each oval shows the carriages of one 
of the blaKPC, blaNDM, blaOXA, and other carbapenamases. The overlapping regions show genomes that each encode two or three carbapenemase 
categories simultaneously. The red numbers show the multi-carriage of both blaNDM and other carbapenamases. h The bubble plot of the country 
distributions (X-axis) and percentage of CRKPs (Y-axis) for each HC1360 population. The circles were sized relative to the number of genomes 
and color-coded according to the Key. The dark red line shows a positive correlation between the CRKP percentages and the country distributions 
of HC1360s by the linear regression, with Spearman’s correlation of R.2 = 0.28 (Pearson: 0.287), p = 2.704e − 6

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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to ST258. Both projects confirmed the dominance of 
HC1360_8 strains through 2018.

Other CRKP populations were also observed. For 
example, the blaOXA-48 carried by PC_804 accounted 
for ~ 12% of the isolates between 2011 and 2014 (Fig. 4b, 
e). However, the blaKPC-encoding HC1360_8 kept 
being the most prevalent CRKP population, account-
ing for ~ 30% of annual Klebsiella isolates until 2019 
(Fig. 4d), when it was surpassed by the blaNDM-encoding 
HC1360_3 (CC147). Similar trends were also found in 
both the US and Australia, where HC1360_3 increased 
its frequencies in recent years (Additional file 2: Fig. S11).

Emergence of HC1360_3 (CC147) with plasmid-driven 
blaNDM-hypervirulence convergence.

HC1360_3 (CC147) was the most abundant population 
after 2019 and accounted for 13% to 21% of the Klebsiella 
strains (Fig. 4d), possibly associated with multiple reports 
of associated outbreaks [43]. It exhibited a diverse 
carbapenemase profile of blaNDM-1 (53%, 606/1138), 
blaNDM-5 (7%, 77), blaOXA-48 (10%, 111), and blaKPC-2 (6%, 
68). We found an increase of blaNDM in HC1360_3 up to 
89% (317/356) during its upsurge since 2019, indicating a 
possible association between blaNDM and the population 
expansion (Fig.  4f, Additional file  2: Fig. S12). In addi-
tion, the recent growth of blaNDM carriage rates in less 
common populations was observed. Over 70% of strains 
in HC1360s with < 1000 strains carry blaNDM after 2020, 
resulting in the general elevation of carbapenem resist-
ance in Klebsiella to 90% by 2021. Moreover, blaNDM 
contributed to 94% (830/883) of multi-carbapenemase 
strains, which each carried two or more carbapenemases, 
further underscoring its complicated genetics (Fig. 4g).

Virulence also contributes to the epidemiology of 
Klebsiella. Hypervirulence in Klebsiella has been associ-
ated with the presence of five virulence loci, especially 
aerobactin (iuc), which encodes the siderophores aero-
bactin. The hvKPs and the CRKPs normally fall into dif-
ferent HC1360s (Fig.  3b, d) and are associated with the 
acquisition of different plasmids (Fig. 2d). However, some 
HC1360s have been reported to experience antimicrobial 
resistance (AMR) and virulence convergence, resulting 
in severe disease outbreaks [8, 44]. Using both iuc and 
carbapenemase genes as markers, we observed a steady 
increase of hvCRKP frequencies over time, from 4.5% 
before 2019 to 15.8% currently (Fig. 4a). This increase has 
been associated with convergence or conjugation of hv- 
and ARG-carrying plasmids [45].

Characteristics of hvCR PCs based on plasmid phylogenetic trees
The PCs encompassed nearly all plasmids (99–100%) 
that shared a significant portion of conserved sequences 
(Additional file 2: Fig. S2), facilitating robust phylogenetic 
analysis. Using both predicted plasmids in Klebsiella and 

those from the reference dataset, we constructed phy-
logenetic trees for four PCs. The PC_499 tree was built 
based on 7755 SNPs in 178  KB core sequences (81% of 
the plasmid size), and the PC_394 tree was built based on 
28,993 SNPs in 120 KB core sequences (40% of the plas-
mid size) (Fig. 5a, c). The PC_456 tree was built based on 
11,903 SNPs in 149 KB core sequences (62% of the plas-
mid size), and the PC_1293 tree was built based on 2059 
SNPs in 19 KB core sequences (57% of the plasmid size) 
(Fig. 6a, b).

From the phylogenetic trees, we found that two hvCR 
PCs had high levels of both iuc and carbapenemase genes: 
PC_499 (94.7% iuc, 37.8% carbapenemase, 89% IncFIB/
IncHI1B) and PC_394 (24.1% iuc, 54.3% carbapenemase, 
80% IncFIB/IncHI1B) (Fig.  2c, outer ring of Fig.  5 a/c). 
PC_499 resulted from the conjugation of pLVPK (also 
in PC_499), the most abundant hv-PC in Klebsiella, and 
the blaKPC-2-carrying plasmids in China (Fig.  5a). It has 
been exclusively associated with the recent emergence of 
the ST11-K64 hvCRKP clone in China and rarely found 
elsewhere. Through a phylogenetic analysis of 2530 ST11 
genomes from China, we observed that > 90% of the 
ST11-K64 hvCRKPs fell into one monophyletic cluster 
that was associated with a cluster of PC_499 hvCR plas-
mids (Fig.  5b). The hvCRKPs were much fewer outside 
this cluster and were associated with acquisitions of mul-
tiple plasmids.

PC_394 has been associated with the currently emerg-
ing HC1360_3 (CC147) [46] and causing disease out-
breaks internationally [43, 47] (Fig. 5c). It was formed by 
conjugation of the carbapenemase-carrying processor 
in PC_394 and the hypervirulence PC_5790. To inves-
tigate the population dynamics of HC1360_3 (CC147) 
and PC_394, we reconstructed a maximum-likelihood 
phylogeny based on 25,144 SNPs in the non-repetitive, 
non-recombinant core genome of 1493 international 
HC1360_3 strains (Fig.  5d) and estimated its date of 
origin and geographic transmission (Additional file  2: 
Fig. S13). The most recent common ancestor (MRCA) 
of HC1360_3 was estimated to be present before 1947 
(CI95%: 1945–1954) in the USA, and it later diverged 
there into three lineages that broadly consisted of strains 
from ST147 (1244 strains), ST392 (139), and ST273 (90). 
The ST147 lineage likely emerged before 1974 (CI95%: 
1972–1978) and was gradually transmitted into ≥ 48 
countries. A transition of primary carbapenemase from 
blaOXA or blaKPC in early strains to blaNDM encoded by 
PC_394 or PC_695 after 2017 was observed (Fig.  5d). 
Furthermore, we predicted many AMR-virulence con-
vergences along the phylogeny of PC_394, including one 
large cluster resulting from conjugation with PC_5790 
plasmids (Fig.  5c). The resulting hvCR plasmids were 
independently acquired by HC1360_3 (CC147) to form 
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Fig. 5  The maximum-likelihood phylogeny of the major hvCRKP HC1360 populations and their associated hvCR-PCs. a The phylogeny of 361 
public PC_499 plasmids and 1141 associated plasmids predicted from assemblies. The phylogeny was built based on 7755 SNPs from 178 KB 
of the conserved regions (shared by ≥ 80% of the plasmids), responsible for 81% of the reference plasmid (AY378100). The hvCR-PCs responsible 
for the majority of the hvCRKP in ST11-K64 in part B are highlighted in light blue. b The phylogeny of 1114 ST11 genomes that are from China 
or fall within the same clade of the Chinese strains. The shape in light blue highlights a cluster of ST11-K64 strains that are mostly hvCRKPs due 
to the acquisition of the hvCR PC_499 plasmids in part A. c The phylogeny of 378 public PC_394 plasmids and 2608 associated plasmids predicted 
from assemblies. The phylogeny was built based on 28,993 SNPs from 120 KB of the conserved regions (shared by ≥ 80% of the plasmids), 
responsible for 40% of the reference plasmid (OW969913). The hvCR-PCs responsible for the majority of the hvCRKPs in ST147 in part d resulted 
from a conjugation of the plasmids in PC_5790 and are highlighted in light blue. d The phylogeny of 1493 global HC1360_3 (CC147) genomes. 
The three MLST STs associated with HC1360_3 (CC147) are shown in colored arcs and the hvCRKP clades are highlighted in red, carrying 
the hvCR PC_394 plasmids in part c. The circular bars in parts a, c, and d show metadata associated with the plasmids or genomes, as in the Keys. 
Visualizations of the PC_499 and PC_394 plasmid trees are available in https://​itol.​embl.​de/​shared/​2Lj8m​fCZAi​EmU

https://itol.embl.de/shared/2Lj8mfCZAiEmU
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hvCRKPs ≥ 9 times. Two of the resulting hvCRKP clus-
ters have been circulating for ≥ 10 years, one responsible 
for repetitive infections in Russia [48], and the other for 
outbreaks in both Italy [43] and the USA [47].

Colistin resistance plasmids promote specific gene 
transmission across regions and hosts
Mobilized colistin resistance gene (mcr) resulted in 
reduced susceptibility of colistin, further limiting the 
treatment options [49]. We identified a total of 23 mcr-
carrying PCs in Klebsiella. Most of these PCs were low in 
amount or had low mcr carriages, except for two, PC_456 
and PC_1293, which accounted for 70% (205/292) of mcr 
in Klebsiella.

The IncHI2A PC_456 carries an average of eight ARGs 
per plasmid and was associated with two mcr variants, 
mcr-1 (6%) and mcr-9 (51%), each by plasmids from a dif-
ferent phylogenetic clade (Fig.  6a). The mcr-1-carrying 
clade consists of plasmids from Asian Klebsiella strains, 
as well as many from Salmonella and Escherichia. Mean-
while, the mcr-9-carrying clade consists of primarily 
Euroamerican strains, plus plasmids from Enterobacter, 
Citrobacter, and Escherichia. These findings reflected the 
presence of two dynamic plasmid pools in PC_456 each 
associated with different Enterobacteriaceae spp. In con-
trast, the IncX4 PC_1293 is rarely associated with ARGs 
other than mcr. It has been primarily found in Klebsiella, 
Escherichia, and Salmonella. All mcr-1-carrying plasmids 

Fig. 6  The maximum-likelihood phylogenies of mcr-carrying plasmids. a The phylogeny of 971 public PC_456 plasmids and 304 associated 
plasmids predicted from assemblies. The phylogeny was built based on 11,903 SNPs from 149 KB of the conserved regions (shared by ≥ 80% 
of the plasmids), responsible for 62% of the reference plasmid (CP031850). Red and green branches are each associated with mcr-1 or mcr-9 
genes, respectively. b The phylogeny of 379 public PC_1293 plasmids and 149 associated plasmids predicted from assemblies. The phylogeny 
was built based on 2059 SNPs from 19 KB of the conserved regions (shared by ≥ 80% of the plasmids), responsible for 57% of the reference plasmid 
(CP024041). Red branches indicate plasmids carrying the mcr-1 gene. CARB: carbapenemase, ST: sequence type. Visualizations of the PC_456 
and PC_1293 plasmid trees are available in https://​itol.​embl.​de/​shared/​2Lj8m​fCZAi​EmU

https://itol.embl.de/shared/2Lj8mfCZAiEmU
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fell into a genetically closely related cluster in the phy-
logeny, which accounts for 50% of the PC_1293 plasmids 
(Fig. 6b).

Discussion
Klebsiella populations that are clinically significant, par-
ticularly those that exhibit multi-drug resistance, arise 
from the co-evolution of the genetically conserved core 
genome and the highly variable, accessory genes that 
have been horizontally transmitted. Here we describe 
KleTy, an integrated tool that offers high-resolution 
genotyping solutions for both the core genome and plas-
mids based on the dcgMLST + HierCC and PC schemes, 
respectively.

Here we adopted a dcgMLST scheme for Klebsiella, 
which was proposed recently [6] to allow de-centralized 
cgMLST calculation by implementing MD5 hash for 
allele designations. Furthermore, based on the dcgMLST 
types, we separated Klebsiella genomes into HC1360 
clusters that represent natural populations. These popu-
lations have been previously approximated as clonal 
complexes (CCs) in the legacy MLST scheme, subline-
ages in the cgLINcode scheme, and clusters in many 
standalone pipelines, such as PopPUNK. We showed that 
the genome-based approaches yielded more phyloge-
netic-compatible clusters than the CCs (Fig. 1b). Particu-
larly, some renowned CCs, such as CC14 [50] and CC17 
[51] which are associated with MDR infections globally, 
were found to be paraphyletic (Fig. S4), potentially lead-
ing to inaccurate biological interpretation. The HC1360 
clusters had the greatest average ARI value when com-
pared to other genome-based approaches and the CCs. 
Furthermore, the CC and PopPUNK clusters are unstable 
and may merge when adding new strains [52]. Both the 
HierCC and cgLINcode schemes overcome this problem 
by implementing an algorithm that ensures static cluster-
ing assignments [5, 16].

Plasmids have long been regarded as a “black hole” in 
phylogenetic research due to their highly variable gene 
contents and extensive HGTs across bacterial hosts [39]. 
KleTy managed to accurately predict plasmids and PCs 
based on a comprehensive reference dataset compiled 
from > 100  K existing plasmids. We demonstrated the 
superior performance of KleTy over six state-of-the-art 
pipelines of mlplasmids, MOB-recon, Plasmer, Platon, 
PlasmidHunter, and geNomad, in both complete and 
draft assemblies (Fig.  1c). Notably, all seven pipelines 
could be broadly separated by their algorithms into 
three categories: (1) similarity-based, which includes 
KleTy, MOB-recon, and Platon; (2) Kmer-based, which 
includes mlplasmids and Plasmer; (3) machine-learning 
based, which includes PlasmidHunter and geNomad. 
While the greatest sensitivity was found for results from 

PlasmidHunter, both machine-learning-based algorithms 
suffered from low precision of only 0.236–0.411 for the 
draft assemblies. Platon and mlplasmids, conversely, 
had high precision and low sensitivities of 0.596–0.750, 
which may be associated with the quality of their data-
bases. Finally, KleTy, Plasmer, and MOB-recon all per-
formed reasonably well, with balanced sensitivities and 
precisions (Fig. 1c). This indicates that the applications of 
machine-learning algorithms in detecting mobile genetic 
elements, such as plasmids, are still in need of further 
development.

We also used this massive PC dataset to investigate 
the dynamics of inter-species plasmid transfer among 
Enterobacteriaceae, which has been associated with the 
spread of ARGs [39] including carbapenemase and mcr 
genes (Fig. 2a). We demonstrated the pivotal role of Kleb-
siella and Escherichia in the plasmid-exchange network. 
These two species have been frequently associated with 
the worldwide dissemination of ARG-carrying plasmids, 
facilitating their transmission among other more viru-
lent pathogens, such as Salmonella enterica and Vibrio 
cholerae [53, 54]. Moreover, we showed that the plasmid-
exchange rate has been drastically underestimated due to 
a lack of understanding of the genetic landscape of plas-
mids. KleTy identified 314 new PCs that have not been 
previously reported in Klebsiella, reflecting HGTs from/
to other species in Enterobacteriaceae or even other 
families. The inclusion of predicted plasmids reduced the 
frequency of rare PCs in Klebsiella, showing that next-
generation sequencing data significantly improves plas-
mid sampling compared to those in GenBank. Expanding 
the use of the PC module to other bacterial species would 
allow a more systematic evaluation of plasmid exchange 
and its role in the cross-species spread of ARGs and 
other genes.

Notably, we found a lack of association between both 
Inc and MOB types and the PCs, consistent with pre-
vious reports [55]. Genes responsible for these tradi-
tional typings might have been horizontally transferred 
between different PCs, reflecting a new level of com-
plexity. Intriguingly, among the 453 PCs that have 
been found between different species, 68% (308) have 
not been associated with MOB genes, which may have 
reflected a loss of MOB genes after the HGT. Alterna-
tively, these plasmids might be hitchhikers that trans-
ferred together with the MOB-encoding plasmids in the 
same bacterial hosts [56].

Our analysis demonstrated the importance of chro-
mosome-plasmid co-evolution in the formation of MDR 
epidemic lineages. Over 1/3 of the HC1360 popula-
tions in Klebsiella are MDR, mostly driven by plasmid-
oriented ARGs (Fig.  3b, e). Notably, we identified 119 
CRKP HC1360s that exhibited high levels (> 80%) of 



Page 17 of 20Li et al. Genome Medicine          (2024) 16:130 	

carbapenem resistance and demonstrated positive cor-
relations (Fig. 4h) between the carbapenem resistance of 
the HC1360s and geographic distributions (P < 0.001).

It has also been clear that none of the chromosome, 
plasmid, or carbapenemase genes guarantees the suc-
cess of a population. We found only weak associations 
between Klebsiella population and carbapenemase 
(Cramer’s V (CV): 0.37), carbapenemase and CR-PCs 
(CV: 0.29), and population and CR-PCs (CV: 0.45), indi-
cating highly dynamic HGTs at all three levels. Even the 
five predominant populations are each associated with 
multiple carbapenemase genes and CR-PCs (Fig.  4b), 
and so are the five predominant PCs. Furthermore, while 
HC1360_8 (CC258) emerged after its acquisition of 
blaKPC-carrying PC_341, the same plasmid has also been 
found in 155 other HC1360s, most of which had very few 
clinical isolates. Similarly, blaNDM-carrying PC_394 was 
acquired by 99 HC1360s and resulted in the rise of only 
HC1360_3 (CC147) (Fig.  4). Moreover, blaNDM genes 
spread along in the “minority” HC1360s independent 
of the selective advantages in the hosts. All these find-
ings demonstrate the influence of co-evolution in the 
emergence of Klebsiella populations: only those that had 
selective advantages in both chromosome and plasmids 
demonstrate prevalence.

The plasmid-mediated colistin resistance genes were 
first discovered in 2015 [42], posing a significant threat 
due to their potential for rapid spread of colistin resist-
ance. We associated 70% of the mcr genes in Klebsiella to 
only two PCs of PC_456 (IncHI2A) and PC_1293 (IncX4) 
(Fig. 6). PC_456 exhibited a broad host range and carried 
both mcr-1 and mcr-9. In contrast, PC_1293 exclusively 
carried the mcr-1 genes and was found in a narrower 
range of hosts. These findings highlighted the fact that 
the characteristics of the plasmids pose a strong influ-
ence on the spreading potential and destiny of its associ-
ated ARGs.

The inclusion of over 30,000 strains in this study 
allowed a comprehensive overview of the population dis-
tribution worldwide. For example, substantial geographic 
specificities were found for HC1360_10 (CC14) and 
HC1360_52 (CC17), which were primarily found around 
the Indian Ocean and in Southeast Asia, respectively. 
Furthermore, our analysis revealed the global prevalence 
of the HC1360_8 (CC258) lineage during 2003–2018 
(Fig.  4), in both the global dataset and two independ-
ent longitudinal surveillance projects [42, 57]. Carbap-
enem resistance in HC1360_8 was primarily attributed to 
blaKPC genes (87%), blaOXA (8%), and blaNDM (6%), each 
associated with a different panel of plasmids. Over 52% of 
blaOXA in HC1360_8 was associated with PC_804, which 
was also the primary source of blaOXA in other popula-
tions. Geographic specificity was found in HC1360_8 for 

blaKPC-carrying plasmids, which were PC_341 in Europe 
and the US and PC_499 and PC_362 in China. Finally, 
similar to other populations, blaNDM in HC1360_8 was 
associated with > 20 PCs with no clear geographical pref-
erence. These findings confirmed previous reports [58] 
and further revealed that HC1360_8 has not carried a dif-
ferent carbapenemase than other, less prevalent popula-
tions. Additionally, HC1360_148 (CC307) and HC1360_3 
(CC147) were regarded as emerging populations recently, 
and we found that both populations have been reported 
across almost all continents, underscoring their threat to 
public health [59].

The recent emergence of hvCRKP due to AMR-viru-
lence convergence raises major concerns due to the high 
bloodstream infection rates and limited antimicrobial 
treatment options [3]. While the overall frequencies of 
AMR-virulence convergences remained low (4.5%), sub-
stantially more hvCRKP strains have been sequenced 
in the past 5  years, up to ~ 20% (Fig.  4a). This could be 
partially attributed to sampling bias, while there was a 
general trend of two emerging populations: (1) blaKPC-

2-carrying ST11-K64 hvCRKPs in HC1360_8 and (2) the 
blaNDM-carrying hvCRKPs in HC1360_3 (CC147). ST11-
K64 hvCRKP strains have resulted from a convergence of 
classical virulence plasmid, pLVPK (PC_499) with CR-
PCs [60]. It was first reported in 2017 in Zhejiang [8] and 
later also found in almost all provinces in China as part 
of an ongoing clonal replacement [61]. Our phylogenetic 
reconstruction of PC_499 (Fig.  5a) revealed that most 
(> 90%) of the blaKPC-virulence convergence in ST11-
K64 hvCRKPs are associated with a narrow spectrum of 
PC_499 plasmids, indicating high genetic stability of the 
convergence. Notably, these hvCRKPs have been rarely 
found in other countries, indicating the presence of 
other, unknown factors that limit the spread of hvCRKP. 
High associations have been recognized between 
hvCRKPs and the virulence plasmid markers (iuc, iro, 
rmpA, rmpA2, peg-344) [62]. Here we selected iuc as the 
marker for hv-PCs because it has been well investigated 
and exhibited a direct association with sepsis, promot-
ing the blood growth of bacteria by acquiring iron from 
transferrin [4].

Many of the hvCRKPs reported after 2019 belonged to 
HC1360_3 (CC147). This new hvCRKP group is of par-
ticular concern because both the bacterial hosts and the 
associated plasmids have been widely reported in Asia, 
Europe, and the Americas for decades before the AMR-
virulence convergences. Furthermore, the HC1360_3 
hvCRKPs have been causing disease outbreaks in Rus-
sia, Italy, and the USA [43, 47, 48]. Our results showed 
that all three outbreaks were associated with one geneti-
cally stable hvCR cluster in PC_369, and the resulting 
hvCRKPs likely have been endemic in each region for 
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decades. These hvCRKPs likely have contributed to the 
potential emergence of HC1360_3 in the past 3  years. 
Effective research and controls are urgently needed for 
this previously underestimated population.

We acknowledge the limitations of our study. Sampling 
bias and incompleteness of the metadata may have lim-
ited our ability to accurately determine the prevalence of 
HC1360s and plasmids in specific regions. Specifically, 
many projects focused on clinically relevant isolates, par-
ticularly CRKP, contributing to a sampling bias in public 
databases and affecting our overall analysis. Addition-
ally, the reference plasmid database may introduce bias, 
particularly for plasmids of highly variable or uncharac-
terized sequences. Broader samplings of both Klebsiella 
strains and plasmids from diverse sources are urgently 
needed to enhance our understanding of the genetic con-
text of these pathogens and their associated ARGs.

Conclusions
In summary, we investigated the genetic landscape of 
Klebsiella, demonstrating the role of chromosome-plas-
mid interactions in facilitating the dissemination of anti-
microbial resistance and virulence genes. We revealed 
two sequential global pandemic populations, HC1360_8 
(CC258) which was primarily associated with blaKPC-
carrying PC_341, and HC1360_3 (CC147) which has 
blaNDM-carrying PC_394. An ongoing expansion of car-
bapenemase-hypervirulence convergences was reported 
in both populations, underscoring the importance of 
understanding the association between plasmids and 
specific populations and genes, prompting monitoring of 
plasmids for effective prevention and control of serious 
infections caused by K. pneumoniae.
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