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Abstract

Rationale: Obstructive sleep apnea (OSA) is a chronic prevalent condition characterized 

by intermittent hypoxia (IH) and is associated with endothelial dysfunction and coronary 

artery disease (CAD). OSA can induce major changes in gut microbiome (GM) diversity and 

composition, which in turn may induce the emergence of OSA-associated morbidities. However, 

the causal effects of IH-induced GM changes on the vasculature remain unexplored.

Objectives: To assess if vascular dysfunction induced by IH is mediated through GM changes.

Methods: Fecal microbiota transplantation (FMT) was conducted on C57BL/6J naïve mice for 

6 weeks to receive either IH or room air (RA) fecal slurry with or without probiotics (VSL3). In 

addition to 16S rRNA amplicon sequencing of their GM, FMT recipients underwent arterial blood 

pressure (aBP) and coronary artery and aorta function testing, and their trimethylamine N-oxide 
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(TMAO) and plasma acetate levels were determined. Finally, C57BL/6J mice were exposed to IH, 

IH treated with VSL3, or RA for 6 weeks, and assessed aBP and coronary artery function.

Results: GM taxonomic profiles correctly segregated IH from RA in FMT mice, and the 

normalizing effect of probiotics emerged. Furthermore, IH-FMT mice exhibited increased aBP 

and TMAO levels, and impairments in aortic and coronary artery function (p<0.05) that were 

abrogated by probiotic administration. Lastly, Treatment with VSL3 under IH conditions did not 

attenuate elevations in aBP or CAD.

Conclusions: Thus, GM alterations induced by chronic IH underlie, at least partially, the typical 

cardiovascular disturbances of sleep apnea, and can be mitigated by concurrent administration of 

probiotics.

Plain language summary:

Using a well-established mouse model of sleep apnea consisting of long-term intermittent hypoxia 

(IH), we show that the adverse cardiovascular effects of IH can be recapitulated in naïve mice 

receiving fecal material from IH exposed mice and that co-administration of probiotics markedly 

improves those cardiovascular outcomes. Thus, probiotics may serve as adjuvant treatment of 

sleep apnea to potentially mitigate sleep apnea-associated cardiovascular disease.

Take home summary:

intermittent hypoxia-induced gut microbiome alterations elicit cardiovascular disturbances such as 

hypertension and coronary artery dysfunction that are prevented by probiotics administration

INTRODUCTION

Obstructive sleep apnea (OSA) is a chronic and extremely frequent condition that has been 

estimated to affect nearly a billion people around the world [1]. OSA is characterized 

by recurrent partial or complete upper airway obstruction during sleep, and can result 

in intermittent hypoxia (IH) [2]. These recurrent events over long periods of time can 

induce and propagate pathological processes, including endothelial dysfunction, which is a 

critical effector of cardiovascular disease (CVD) [3, 4]. The prevalence of OSA is as high 

as 40–80% in patients with CVD, including ischemic stroke and coronary artery disease 

(CAD) [5]. Despite these strong associations, interventional trials based on continuous 

airway positive pressure (CPAP) as the treatment modality have inconsistently detected the 

anticipated improvements in CVD, suggesting the need for adjuvant therapies aimed at the 

core disturbances induced by the disease [6, 7]. To address these issues, multiple studies 

using animal models of OSA, especially consisting of IH exposures during the sleep period, 

reported the emergence and propagation of endothelial dysfunction and atherosclerosis in 

numerous rodent vascular beds [4, 8] including the coronary circulation [9].

The gut microbiome (GM) network plays many vital roles beyond digestion, including 

maintenance of structural integrity of the gut barrier [10]. Perturbations in the GM 

community can result in changes in diversity and proportion of commensal bacteria, and are 

attributed to various environmental factors including diet and drugs [11]. Recent evidence 

suggests that GM changes are associated with multiple diseases including CVD [12] 
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and OSA [13]. Indeed, studies involving fecal microbiota transplantation (FMT), specific 

GM-dependent pathways and metabolites have been shown to influence host metabolism 

and CVD [14]. For example, increases in GM-mediated systemic Trimethylamine N-

oxide (TMAO) levels adversely impact CVD in animal models, and human studies have 

further corroborated such associations in CAD and hypertension [14–16]. As a corollary, 

interventional studies using pre- and probiotics improved cardiovascular outcomes in 

patients with CVD via multiple mechanisms involving gastrointestinal mucosal barrier 

protection, reducing systemic inflammation and TMAO levels, and increasing levels of short 

chain fatty acids (SCFA) [15, 16].

Similar to CVD, GM diversity and abundance are altered in OSA patients and in animals 

exposed to chronic IH exposures [16–19]. Indeed, fecal matter obtained from OSA patients 

revealed GM changes that varied with the severity of OSA, and suggested that they may 

underlie some of the cardiometabolic perturbations in such patients [13, 20]. Furthermore, 

we and others showed that in animals exposed to chronic IH pronounced alterations in gut 

microbiota were detected [18, 21, 22], and persisted even after IH cessation for six weeks 

[18]. The characteristics of IH-induced GM alterations further suggested that the changes 

in GM may mediate cardiometabolic disease [16, 23–25]. However, there are no studies 

exploring whether IH-mediated GM alterations can directly affect vascular function in the 

absence of concurrent IH. Therefore, we hypothesized that FMT from mice exposed to IH 

to naïve mice may alter their GM and impair coronary artery and aortic vascular function. 

Furthermore, we postulated that treatment with probiotics would prevent, or at least mitigate 

vascular dysfunction in naïve mice receiving IH-FMT and in mice exposed to IH.

MATERIALS AND METHODS

All experiments were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Missouri (Protocols #9586 and #9720) and performed 

according to the Declarations of Helsinki conventions for the use and care of animals. Male 

C57BL/6J mice (8-week-old) were purchased from The Jackson Laboratory (Bar Harbor, 

ME, USA). Animals were housed in a controlled environment with 12 h light–dark cycles 

(07.00 h–19.00 h) at constant temperature (26 ± 0.2°C) with ad libitum access to water and 

food (normal chow). At the end of the experimental period, mice were euthanized using 

carbon dioxide (1 min) followed by cervical dislocation.

Intermittent hypoxia exposures and probiotic treatment

The IH exposure protocol used has been described in detail previously [26]. Briefly, 

intermittent hypoxia (IH) mice were subjected to IH for 6 weeks while room air (RA) 

control mice were housed in standard housing conditions and exposed to normoxic gas (n 

= 10/group). IH exposures included alternating 21% FIO2 and 6% FIO2, 20 cycles h−1 for 

12 h day−1 during daylight (07:00 h – 19:00 h) using a commercially available commercial 

system (80 × 50 × 50 cm; Oxycycler A44XO, BioSpherix, Redfield, NY, USA). The 

exposures recapitulate nadir oxyhemoglobin saturations in the range of 68–75%, which 

are the primary correlate of moderate to severe OSA in humans [27]. The mice were in 

normoxic conditions (21% FIO2) for the rest of the day (dark period from 19.00 h–07.00 h). 
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Mice were treated concomitantly with the probiotic VSL3 In drinking water (4 × 109 colony 

forming units). VSL3 is a commercial probiotic containing eight bacterial strains: four 

strains of Lactobacillus (Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus 
casei, and Lactobacillus delbrueckii subspecies bulgaricus), three strains of Bifidobacterium 
(Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium infantis), and one strain 

of Streptococcus (Streptococcus salivarius subspecies thermophilus).

Fecal Microbiota Transplantation (FMT) in Naïve Mice

Fecal pellets from mice exposed to 6 weeks of IH or RA were collected on ice daily at 

noon (ZT-5) for one week then transferred to −80°C until use (n=10/group). FMT was 

performed by oral gavage of a fecal slurry into naïve mice three times a week at ZT-5 

(male C57BL/6, 8 weeks old, Jackson Lab, n=10/group) as previously described [17, 28]. 

To prevent cage-related effects, recipients were randomly selected from different cages and 

housed with non-recipient mice and the experiments were repeated twice (n=5 in each 

experiment) to demonstrate reproducibility. Recipient mice were fasted for 2 hours prior to 

FMT, and the fecal slurry was obtained daily from fecal pellets of 5 donor mice suspended 

by vortexing in 1 mL PBS per 100 mg of fecal matter. Fecal mixtures were then centrifuged 

at 500g for 5 min and the supernatants were collected for FMT. Each recipient mouse 

received 100 μl of fecal slurry by oral gavage three times a week for 6 weeks with or without 

VSL3 probiotics (Alfasigma, Covington, LA) in all groups: i) RA-FMT, ii) IH-FMT, iii) 

RA-FMT-PRO, IV) IH-FMT-PRO. VSL3 was administered with FMT and in drinking water 

(4 × 109 colony forming units).

16S rRNA amplicon sequencing of gut microbiota

Fecal matter from mice corresponding to IH-FMT, RA-FMT, IH-FMT-PRO, and RA-FMT-

PRO conditions were collected at ZT-5 on dry ice then processed using PowerFecal kits 

(Qiagen, Germany) according to the manufacturer’s instructions [29]. Briefly, bacterial 16S 

rRNA amplicons were constructed via amplification of the V4 region of the 16S rRNA 

gene with universal primers (U515F/806R), flanked by Illumina standard adapter sequences 

[30]. The final amplicon pool was evaluated using the Advanced Analytical Fragment 

Analyzer automated electrophoresis system, quantified using quant-iT HS dsDNA reagent 

kits (Invitrogen, Carlsbad, CA, USA), and diluted according to Illumina’s standard protocol 

for sequencing on the MiSeq instrument (Ilumina, San Diego, CA, USA) as 2×250 bp 

paired-end reads. Primers were designed to match the 5’ ends of the forward and reverse 

reads. Cutadapt (https://github.com/marcelm/cutadapt) was used to remove the the primer 

from the 5’ end of the forward read. If found, the reverse complement of the primer to 

the reverse read was then removed from the forward read as were all bases downstream. 

Thus, a forward read could be trimmed at both ends if the insert were shorter than the 

amplicon length. The same approach was used on the reverse read, but with the primers 

in the opposite roles. Read pairs were rejected if one read or the other did not match a 5’ 

primer, and an error-rate of 0.1 was allowed. Two passes were made over each read to ensure 

removal of the second primer. A minimal overlap of three bp with the 3’ end of the primer 

sequence was required for removal. The QIIME2 DADA2 plugin (version 1.10.0) was used 

to denoise, de-replicate, and count ASVs (amplicon sequence variants), incorporating the 

following parameters: 1) forward and reverse reads were truncated to 150 bases, 2) forward 
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and reverse reads with number of expected errors higher than 2.0 were discarded, and 3) 

Chimeras were detected using the “consensus” method and removed. A feature table rarefied 

to 44,960 features per sample was used for all 16S rRNA microbiome analyses. Taxonomies 

were assigned to final sequences using the Silva.v138 database, using the classify-sklearn 

procedure. Differential abundance testing was performed using analysis of composition of 

microbes (ANCOM) within QIIME2 v2021.8 and ALDEx2 within R v3.6.2 [31, 32]. An 

EMPress plot was generated using QIIME2 v2021.8. R v3.5.1 and Biom version 2.1.7 were 

used in QIIME2 [33].

Blood pressure measurements

Heart rate and arterial blood pressure (aBP) were measured using the tail-cuff method 

by volume pressure recording (CODA system—Kent Scientific, Torrington, CT, USA) in 

conscious animals between ZT-5 and 6. The tail-cuff method is reliable and comparable 

to telemetry measurements using an aortic catheter [34]. Mice were placed in a cylindrical 

holder over a warmed blanket. After 30 min of habituation, at least 8 recordings were 

obtained, each separated by 5 min. The mean of the lowest five values for systolic, diastolic 

and mean blood pressure were retained for analyses [35].

Aortic and Coronary artery function

After euthanasia, the heart was excised, and the left anterior descending (LAD) coronary 

artery was micro-dissected and mounted for isometric tension recordings (Danish Myo 

Technology, Model 630MA, Aarhus, Denmark). In the subset of mice exposed to 

FMT experiments, the aorta was concurrently harvested and prepared for the myograph 

experiments. Data were analyzed using PowerLab software (AD Instruments). Excised 

vessels were normalized to a tension equivalent to that experienced by the vessels 

in vivo at 90mmHg pressure as previously described [36] in tissue baths of warmed 

(37 °C), aerated (95% O2, 5% CO2), in a physiological solution (118.99 NaCl; 4.69 

KCl; 1.17 MgSO4; 0.03 EDTA; 2.5 CaCl2; 25 NaHCO3; 1.18 KH2PO4; 5.5 glucose). 

Vessel viability was assessed by exposure to 80mM KCl. Vasoconstrictor responses were 

assessed to incremental concentrations of thromboxane A2 analog U46619 (10−9–10−5 M). 

For relaxation studies, vessels were pre-constricted with U46619 (0.1–0.3 μM), before 

administration of Acetylcholine (ACh) (10−9-10−5M) and sodium nitroprusside (SNP) 

(10−9-10−5M) [36]. Constrictor responses are presented as a percent of the max response 

to 80mM KCl and the vasodilator responses are presented as a percent of maximal dilation 

from the pre-constricted tension.

Plasma TMAO determination

Plasma levels of TMAO (50μl) were prepared and analyzed as described previously [37] 

using liquid chromatography-mass spectrometric multiple reaction monitoring (LC-MS 

MRM) (Acquity Ultra Performance Liquid Chromatography coupled with TQ-S triple-

quadrupole mass spectrometry; Waters, PA) at The University of Missouri Metabolic Core. 

Serum (50 ul) was mixed with 350 ul methanol and 25 ul solution of labelled internal 

standard (10 ug/mL) in methanol. After vortex, the samples were centrifuged at 13000 g for 

5 min. The clear supernatant (~350–400 uL) was recovered and analyzed on a Water TQ 

MS. A series of standard solutions were prepared by diluting a master solution (5 ug/mL) 
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with methanol containing internal standard labeled TMAO solution. The final concentrations 

were: 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0 and 5.0 ug/mL. The concentration C13 labeled 

internal standard is aa ug/mL. A linear calibration curve was obtained by plotting area under 

curve against concentration of standard solutions. LC-MS MRM analyses were performed 

on a Waters Xevo TQ MS coupled to a Waters Acquity UPLC system (Waters, PA). 

Separations of amino acids were achieved on a Waters High Strength Silica (HSS) C18 

column (2.1 × 150 mm, 1.7-μm particles) using a linear gradient of mobile phase A (A: 

0.1% formic acid) and B (B: methanol). The gradient condition was: B increased from 5% 

to 46% over 19 min, then to 90% in 0.1 min and held at 90% for 1.9 min, returned to 

5% for equilibrium in 0.1 min where it was hold for another 3.9 mins. The flow rate was 

0.375 mL/min and the column temperature was 40 °C. Under the current LC conditions, 

the retention time of TMAO and TMAO-13C3 were found to be 0.85 min. MRM analyses 

were performed on the Waters Xevo TQMS in positive electrospray ionization mode for 

TMAO/TMAO-13C3. Two transitions, i.e., one qualitative and one quantitative transition, 

were monitored. The transitions were auto-optimized using Waters Masslynx Intellistart 

program. The two transitions for TMAO were (exact mass: 75.06) were: m/z 76.1 -> m/z 

42.17 (cone voltage: 26 V, collision energy: 44 eV), m/z 76.1 -> m/z 57.40 (cone voltage: 

26 V, collision energy: 16 eV). For TMAO-13C3 (exact mass: 78.08), m/z 79.1 -> m/z 

41.13 (cone voltage: 24 V, collision energy: 46 eV), and m/z 79.1 -> m/z 63.09 (cone 

voltage: 24 V, collision energy: 14 eV) were used. MS MRM data were processed using 

Waters TargetLynx software. Transition m/z 76.1 -> m/z 42.17 was used as the quantitative 

transition for TMAO and transition m/z 79.1 -> m/z 63.09 was used for TMAO-13C3.

Plasma acetate determination

Plasma acetate levels were determined using enzyme-linked immunosorbent assay (ELISA) 

kit according to the manufacturer protocol (Abcam, Cambridge, UK).

Statistical analysis

Data analysis was performed using MetaboAnalyst 5.0, Past4.04, Prism 9 (GraphPad, San 

Diego, Ca, USA), and R version 3.6.2 statistical software. One-way and Two-way ANOVA 

with repeated measures and Tukey post-hoc test, two-way PERMANOVA, and differential 

abundance testing were used as appropriate. Data were tested for normality using Shapiro-

Wilk test and expressed as mean ± SD. A p value < 0.05 was considered as statistically 

significant.

RESULTS

Changes in gut microbiome composition in naïve mice subjected to FMT from mice 
exposed to RA and IH and treated with VSL3

To assess the causal relationship between IH-associated changes in the fecal microbiome, 

FMT experiments were performed. IH was associated with changes in the microbiome 

similar to those seen previously, and several features of the microbiome were successfully 

transferred via FMT (Fig. S1). The PCoA plots shown (Fig. 1A, 1B) reveal significant 

differences in fecal bacterial composition in all four groups using weighted and unweighted 

UniFrac distances. As in other mammalian hosts, Bacteroidetes and Firmicutes were 
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the predominant phyla, with phylum Bacteroidetes dominated by class Bacteroidia, 

order Bacteroidales, and phylum Firmicutes being dominated by class Clostridia, order 

Clostridiales (Fig. S2). The relative abundance of bacterial taxa in IH-FMT group shows 

higher abundance of Lachnospiraceae and Ruminococcaceae from the phylum Firmicutes 

and Prevotellaceae and Muribaculaceae from the phylum Bacteroidetes, when compared to 

the other three groups (Fig. S3, Table S1). Two separate tools, ANCOM and ALDEx2, 

were used in tandem to test for differences in ASV relative abundance between groups. 

Fig. S1 shows a cladogram of all ASVs detected among the four groups, with concentric 

outer circles indicating the strength of the differences detected using those methods. ASVs 

identified as differentially abundant between groups included two taxa present in VSL3 

(Fig. 1C). Treatment with VSL3 resulted in a higher abundance of Lactococcus and 

Bifidobacterium species, which were noted in both RA-FMT-PRO and IH-FMT-PRO groups 

(Fig. 1C, Table S1) relative to IH-FMT. Thus, FMT procedures using different fecal GM 

as obtained from IH-exposed and RA-exposed mice altered the GM of naïve mice to 

recapitulate the previously documented differences in GM induced by IH [17]. Furthermore, 

treatment with VSL3 prevented the selective increases in bacteria abundance induced by 

FMT from IH mice, and increased abundance of the putatively beneficial bacteria.

VSL3 treatment normalizes elevated blood pressure in naïve mice receiving FMT from IH 
exposed mice

IH-FMT induced elevations of systolic (122 ± 10 mmHg), diastolic (93± 9 mmHg) and 

mean (102 ± 10 mmHg) blood pressure values, and such changes were abrogated by VSL3 

treatment (systolic BP: 107 ± 8 mmHg, p = 0.004; diastolic BP: 83 ± 5 mmHg, p = 0.02; 

mean BP: 91 ± 6 mmHg, p = 0.02, all p values vs. IH-FMT; Fig. 2A–2C). aBP values in RA 

FMT and RA-FMT-PRO experimental groups were also significantly lower when compared 

to IH-FMT but were similar to those obtained in IH-FMT-PRO treated animals.

VSL3 treatment mitigates coronary artery dysfunction in naïve mice induced by IH-FMT

IH-FMT enhanced maximal coronary artery contractility responses to the thromboxane A2 

analog U46619 (174 ± 20%) when compared to RA-FMT (141 ± 18%, p < 0.0001), and 

such effects were attenuated by VSL3 treatment (IH-FMT-PRO: 157 ± 13%, p = 0.02; 

Fig. 3A). IH-FMT impaired coronary artery endothelium-dependent relaxation responses to 

ACh (65 ± 9%) when compared to RA-FMT (85 ± 7%, p < 0.0001; Fig. 3B). Concurrent 

administration of VSL3 prevented the relaxation impairments induced IH-FMT (IH-FMT-

PRO: 79 ± 9%, p < 0.0001). Similar to the coronary arteries, IH-FMT increased maximal 

aortic contractility responses to phenylephrine (166 ± 22%) when compared to RA-FMT 

(138 ± 14%, p = 0.006; Fig. S4A), while IH-FMT-PRO treated mice showed no significant 

differences compared to controls (IH-FMT-PRO: 131 ± 19%, p = 0.0004). Endothelium-

dependent relaxation was also impaired in the aorta of the IH-FMT group (69 ± 22%) when 

compared to RA-FMT mice (85 ± 4%, p = 0.003; Fig. S4B) and VSL3 concurrent treatment 

mitigated such impairments (IH-FMT-PRO: 82 ± 4%, p = 0.04 vs. IH-FMT). Endothelium-

independent relaxation responses to the nitric oxide donor sodium nitroprusside (SNP) were 

similar in all groups in both aortic and coronary arteries (Fig. 3C, S4C).
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VSL3 treatment reduces TMAO levels in naïve mice receiving FMT from mice exposed to IH

Plasma levels of TMAO were significantly elevated in IH-FMT mice (0.43 ± 0.06 ng/ml) 

when compared to RA-FMT mice (0.19 ± 0.11 ng/ml, p = 0.008; Fig. 4A). Administration 

of VSL3 to IH-FMT-treated mice abrogated the increase in TMAO levels (IH-FMT-PRO: 

0.27 ± 0.06 ng/ml, p = 0.02). However, acetate plasma concentrations were significantly 

lower in IH-FMT mice (1.1 ± 0.2 μM) when compared to RA-FMT mice (3.5 ± 1.3 μM, p 

= 0.01, Fig. 4B), but VSL3 treatment was not associated with significant improvements in 

acetate concentrations in IH-FMT-PRO treated mice (1.8 ± 0.6 μM, p = 0.6).

VSL3 administration does not attenuate mean BP elevations or coronary artery 
dysfunction in mice exposed to IH

After 6 weeks of IH exposures and co-administration of VSL3, mean BP was significantly 

elevated in mice exposed to IH (111 ± 6 mmHg) when compared to RA (92 ± 4 mmHg, 

p < 0.001) (Fig. 5A). Treatment with VSL3 had modest non-significant reductions of mean 

BP (IH-PRO: 105 ± 7 mmHg vs. RA, p = 0.0009). IH exposure enhanced maximal coronary 

artery contractility responses to the thromboxane A2 analog U46619 (182 ± 31%) when 

compared to RA (133 ± 14%, p < 0.0001, Fig 5B) that were not attenuated by VSL3 

treatment (161 ± 28% vs. RA, p = 0.0015). Furthermore, maximal response to endothelium-

dependent relaxation by ACh was abolished in coronary arteries of IH-exposed mice (63 

± 9%) in comparison with RA (85 ± 5%, p < 0.0001; Fig. 5C) and was not rescued with 

VSL3 administration (68 ± 13% vs. RA, p = 0.0002). Endothelium-independent relaxation 

responses to the nitric oxide donor sodium nitroprusside (SNP) were similar in all groups 

(Fig. 5D)

DISCUSSION

The present study uncovers several novel and unprecedented findings. First, we show that 

changes in the composition and diversity of the GM induced by IH exposures but in the 

absence of actual hypoxia elicits elevations in blood pressure levels and induces impairments 

in coronary and aortic blood vessel functions. Furthermore, such GM changes promote 

increases in TMAO levels in IH-FMT mice. Secondly, VSL3 probiotic administration 

prevents the emergence of the vascular phenotypes induced by IH-FMT and abrogates 

the increases in aBP. Lastly, supplementing mice exposed to IH with VSL3 does not 

attenuate aBP elevations nor mitigates coronary artery dysfunction. Taken together, current 

findings indicate that alterations in GM diversity caused by IH can singlehandedly elicit 

cardiovascular perturbations, even in the absence of environmental IH, and that such 

cardiovascular changes can be mitigated or abrogated altogether by probiotics such as VSL3. 

However, IH clearly incorporates additional mechanisms that are not represented exclusively 

by GM alterations and likely involve autonomic dysfunction, oxidative stress, and systemic 

inflammation.

IH- mediated hypertension and coronary artery dysfunction

Heart disease remains the main cause of death and disability in the United States according 

to the 2020 Heart Disease And Stroke statistics [38]. OSA is a well-recognized risk factor 

for CVD, independent of other commonly associated risk factors such as sex, age, obesity 
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and hypertension [39]. Moreover, approximately 35% of OSA patients have hypertension, 

while an estimated 50% of patients with hypertension suffer from concomitant OSA [40, 

41].. Inevitably, untreated patients with severe OSA are 2.6 times more likely to suffer 

incident CAD [42]. Unfortunately, the beneficial effects of current OSA therapies such as 

CPAP on CVD outcomes are inconsistent and fraught with scientific controversy [6, 43]. 

Clinical and experimental studies denote chronic IH as the most detrimental perturbation in 

OSA-induced hypertension and CVD [2, 8]. Indeed, IH can induce sympathetic activation, 

oxidative stress, systemic inflammation, dyslipidemia and insulin resistance, all of which 

can contribute to elevated blood pressure, endothelial dysfunction and atherosclerosis [3, 

4, 44, 45]. Multiple studies so far have reported evidence of endothelial dysfunction 

in animals exposed to IH, manifesting as reduced nitric oxide bioavailability, enhanced 

vasoconstriction, and impaired vasodilation in multiple vascular beds, including aorta, and 

cerebral, femoral or carotid arteries [46–49]. Only recently, our lab has demonstrated that IH 

can also impair coronary artery function (left anterior descending) and reduce flow velocity 

reserve [9]. Thereby, there is an established link between IH mimicking OSA and CAD. 

However, more mechanistic studies are required to elucidate the pathways underlying the 

effects of IH on coronary structure and function.

IH-induced GM changes

In an effort to identify potential contributors to IH-induced vascular dysfunction, we opted 

to explore the GM as a causal determinant of the vascular phenotype in OSA. Indeed, 

it is now well established that the stability and equilibrium of the GM ecosystem are 

essential for maintaining health, but that perturbations leading to GM alterations can 

induce and propagate detrimental health consequences [11]. Recent evidence suggests 

that OSA is associated with GM alterations in adults and children [13, 19, 50] where 

most of these findings reported higher Firmicutes to Bacteroides ratio and significantly 

lower microbial diversity and richness. Findings in mice exposed to IH for 6 weeks 

revealed significant alterations in GM profiles, with increases in obligate anaerobes, such as 

Prevotella, Lachnospiraceae and Desulfovibrio [51], suggesting that fluctuations in oxygen 

partial pressures in the gut drive such changes. Increased presence of Desulfovibrio has 

been linked to increased mucin degradation, while Prevotrella is strongly linked to systemic 

inflammation through the generation of lipopolysaccharides (LPS) [51].

Evidence from different studies shows a controversial role played by Lachnospiraceae, 

but it is plausible that the increases in are likely a response to IH as an environmental 

stressor [52]. In accordance with our results, other studies using IH and hypercapnia in low-

density lipoprotein receptor-deficient mice (Ldlr−/−) found more than 80 microbial different 

features, with the largest including Lachnospiraceae and Clostridiaceae families [53]. In 

previous work, we showed that naïve mice kept in normoxic conditions and receiving FMT 

from animals exposed to IH led to GM changes that were remarkably similar to those 

observed in mice exposed to IH, along with corresponding increases in the abundance of 

the aforementioned bacteria. Our current results concur with such earlier findings, indicating 

that FMT from IH-exposed donors is accompanied by reproducible and consistent GM 

changes in the recipient mice. In mice exposed to 4 weeks of sleep fragmentation (SF), 

another hallmark characteristic of OSA, there were GM changes that were predominantly 
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reflected by the growth of Ruminococcaceae and Lachnospiraceae, and such changes were 

accompanied by impaired insulin sensitivity and white adipose tissue inflammation [29]. 

Indeed, increased GM abundance of Ruminococcaceae and Lachnospiraceae is associated 

with atherosclerotic lesions in apolipoprotein E knockout mice (ApoE−/−) fed a western 

diet [54]. Although these bacteria can produce SCFAs such as butyrate [55], they also 

contain bile acid inducible genes that encode enzymes involved in converting host primary 

bile acids to secondary bile acids and act on farnesoid X receptor (FXR) and G-protein-

coupled receptor (TGR5) that have been implicated in atherosclerosis [56]. Muribaculaceae 
bacterium are a dominant family in the gut and are capable of degrading complex 

carbohydrates [57]. Although it has been reported that the timing of fecal material collection 

and the cyclical effects of IH and intermittent hypercapnia (IC), another hallmark of OSA, 

can cause dyssynchrony of the microbiome and metabolome [58], we standardize our 

procedures to minimize any potential factors that introduce variance and we found relative 

stability of the GM after 2–4 weeks of IH exposures in our previous work. The relative 

changes in GM are modest from week to week if the IH exposure continues and even after 6 

weeks of IH cessation we noted an incomplete recover of the GM [18]. The overall net effect 

of such GM changes on the intestinal permeability of IH-FMT recipients was not examined, 

but clearly warrants future studies, since the overall metabolomic composition of the GM 

may facilitate the translocation of CAD-inducing metabolites in IH-exposed and IH-FMT 

mice.

IH-induced GM changes and cardiovascular disturbances

Recent evidence suggests an obligatory role of microbiota in BP homeostasis. Indeed, the 

absence of microbiota in germ-free rats resulted with relative hypotension accompanied 

by marked reduction is vascular reactivity, and both were restored by the introduction 

of microbiota to germ-free rats [59]. The evidence linking an association between GM 

alterations and hypertension is much more robust in both human and animal studies 

[16]. Apparent differences are consistently detected between the GM of normotensive 

and hypertensive mice and patients [60]. Collectively, there is less microbial richness and 

diversity, lower abundance of SCFA-producing bacteria, all of which play a role in inducing 

hypertension [61]. Indeed, SCFA (e.g., acetate, butyrate) are essential for maintaining gut 

barrier integrity, decreasing gut wall inflammation, and most importantly, reducing aBP. 

Previous studies using FMT from hypertensive mice and humans to normotensive mice 

resulted in increased aBP levels [60]. A recent review summarized the major mechanisms 

underlying GM induced-cardiovascular complication of OSA being decreased abundance 

of SCFAs, mucin-degradation and increased inflammation [62]. In animals, following FMT 

from rats exposed to a procedure aimed a reproducing OSA (repetitive tracheal balloon 

inflations during sleep) coupled with a high fat diet (HFD), recipient rats fed normal chow 

developed hypertension along with detectable changes in the GM diversity and abundance 

of SCFA-producing bacteria [63]. In the present study, we show that FMT from animals 

exposed to IH elicited elevations in systolic, diastolic, and mean arterial aBP. Furthermore, 

acetate levels were reduced in IH-FMT mice, which may account for the GM-induced 

elevations in aBP, since chronic acetate infusion in the cecum of rats exposed to a model of 

OSA for 2 weeks prevented the emergence of inflammation and hypertension, implicating 

acetate as a key player in OSA-induced hypertension [63].
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Most CVD risk factors, including OSA, can induce GM alterations. The associated intestinal 

inflammation and intestinal barrier damage can facilitate the translocation of microbial 

structural components and metabolites, including TMAO, to promote the development 

of CVD [14]. TMAO is a product of gut microbial metabolism of TMA-containing 

nutrient precursors (i.e., choline) using TMA-lyases. Following transport to the liver 

via the portal vein, TMA is metabolized by flavin monooxygenases into TMAO [64]. 

Senthong et al. found that elevated TMAO levels were an independent predictor of 

diffuse CAD atherosclerotic lesions, even after adjustment for traditional risk factors [65]. 

Initial functional studies in mice consistently show that GM-derived TMAO increases 

atherosclerosis susceptibility [14]. Indeed, dietary supplementation of choline in ApoE−/− 

mice enhanced atherosclerotic lesion formation [64]. However, not all TMAO precursor 

feeding studies have shown similar results, suggesting that differences in host microbial 

composition have a substantial influence the phenotype observed [66]. Furthermore, a 

recent study showed that IH and IC can modulate atherosclerosis progression differently 

in distinct vascular beds (aorta, pulmonary artery) in ApoE−/− mice where IH promotes an 

atherosclerotic luminal gut environment [67]. Thus, it is critical to take in consideration 

that various models of OSA may induce changes in gut metabolome and microbiome that 

can interact differently with distinct vascular beds. A study conducted by the same group 

showed that treatment with 3,3-dimethyl-1-butanol (DMB), an inhibitor microbial TMA 

lyase, reduces the size of atherosclerotic lesions enhanced in pulmonary arteries of mice 

exposed to IH and IC [68]. In our study, naïve mice receiving FMT from IH-exposed mice 

developed aortic and coronary artery endothelium-dependent relaxation impairments and 

enhanced vasoconstrictive responses, in addition to elevated TMAO plasma levels, thereby 

confirming the detrimental role of IH-induced GM alterations on endothelial function in the 

absence of IH. Furthermore, the elevated levels of TMAO despite normal chow diet suggests 

increased abundance of TMA-producing bacteria. Other modulators of atherosclerosis 

impacted by GM alterations are bile acids [69]. Several bile acids have proinflammatory 

and proatherogenic activities such as deoxycholic acid (DCA) and tauro-β-muricholic acid 

(TβMCA) and have been shown to increase in animal models of OSA [58, 67]. However, 

whether endothelial dysfunction in IH-FMT mice resulted from elevated TMAO levels, aBP 

elevation, or a combination thereof remains to be explored and the role of bile acids should 

be explored.

Probiotics effects on GM-mediated cardiovascular disturbances

Probiotics refer to species of live bacteria that confer beneficial health effects on the 

host when ingested in adequate amounts can exert a wide range of beneficial effects, 

such as inhibiting colonization by pathogenic bacteria and reinforcing the mucosal 

barrier [70]. The relatively insufficient effectiveness of pharmaceutical interventions for 

the management of atherosclerosis and CVD, combined with the recent advances in 

understanding and recognizing GM - host interactions have generated substantial interest 

in probiotics as a potential add-ons therapy for CVD [71]. Supplementation with probiotics 

significantly improved markers of CAD, including nitric oxide, inflammation and oxidative 

stress [72]. One study reported that supplementation with Lactobacillus plantarum 299v 

ameliorated vascular endothelial dysfunction and inflammation in men with CAD [73]. In 

animals, probiotic supplementation with VSL3 or Lactobacillus plantarum ZDY04 reduced 
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high HFD-induced lesion development in ApoE−/− mice along with reduced vascular 

inflammation, adhesion molecules, plasma TMAO, and TMAO-induced atherosclerosis [74],

[75]. VSL3 supplementation attenuated oxidative stress-mediated endothelial dysfunction in 

rat mesenteric arteries following bile duct ligation [76]. These data suggest that probiotics, 

such as VSL3, have the potential to ameliorate vascular dysfunction in atherosclerotic 

disease. In OSA rats fed HFD, administration of SCFA replenishing probiotic C. butyricum 
and the prebiotic Hylon VII increased the relative abundance of SCFA-producing bacteria 

and reduced elevated BP [63]. Another study in OSA rats fed HFD treated with 

Lactobacillus rhamnosus probiotic showed that TMAO levels, inflammatory cytokines, 

and hypertension severity were all reduced [77]. Lastly, mice exposed to IH and fed 

HFD with high fructose diet for 12 weeks had significant cardiac morphological changes, 

cardiac dysfunction, cardiac collagen accumulation and increased cardiac inflammation and 

oxidative stress that were all prevented by administration of Lactobacillus rhamnosus GG 
[78]. In our study, VSL3 supplementation prevented the elevations in aBP and TMAO levels 

and attenuated aortic and coronary artery endothelial dysfunction in naïve mice receiving 

FMT from IH-exposed animals. Thus, targeted probiotic supplementation exerts protective 

effects against GM alteration-induced CAD in the context of IH mimicking OSA. However, 

despite treating mice exposed to IH with VSL3, only modest decreases in aBP were noticed 

with no improvements in coronary artery function. Despite the positive results in our FMT 

experiments and previous pre- and probiotic treatments in other murine models of OSA, it 

is predictable that VSL3 treatment was insufficient to protect against the plethora of adverse 

pathological stimuli induced by chronic IH including excessive sympathetic innervation, 

oxidative stress, inflammation, and metabolic dysregulation [4, 79].

Our study has several limitations; firstly, only young lean C57Bl/6 mice were studied, and 

the effect of age, sex and obesity were not evaluated despite having great clinical relevancy. 

Secondly, recent evidence points to potential role of upper and lower respiratory microbiota 

modulation in OSA and its correlation with multiple pathologies. This study lacks the 

characterization of this microbiota which may have potentially influenced the outcomes 

[80–82]. Thirdly, the study lacks comprehensive metabolomic assessments that may reveal 

microbial metabolic pathways and identifying specific metabolites involved in IH-induced 

CAD. However, the study of the microbiome in the context of OSA is still in the early stages 

and our study contributes to the field of OSA and CVD.

In conclusion, FMT from mice exposed to IH simulating OSA into naïve mice recapitulates 

IH systemic aBP elevations and vascular perturbations in naïve recipient mice in the absence 

of IH exposures. Thus, a causal link emerges between IH-induced GM alterations and 

vascular dysfunction affecting both aortic and coronary arteries. Furthermore, probiotic 

administration prevents the detrimental cardiovascular phenotype in IH FMT recipient mice 

despite the modest attenuation observed in IH-exposed mice. The data indicates an integral 

role of GM as a one modulator, but not the only modulator of OSA-induced CAD and 

suggests probiotics as a form of targeted adjuvant therapy in patients with OSA.
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Fig.1: Alterations in fecal bacterial composition between IH and RA FMT with or without 
probiotic treatment.
Principal coordinate analysis plots ordinated using weighted UniFrac (A) and unweighted 

UniFrac (B) distances. Relative abundance of the five distinct ASVs found differentially 

abundant by ANCOM and ALDeX2 (C). FMT: fecal matter transplantation, IH: intermittent 

hypoxia, PRO: probiotic, RA: room air. Statistical analysis was done using two-way 

ANOVA followed by Tukey post-test •p<0.05 vs. IH-FMT, *p < 0.05 vs. IH-FMT-PRO, 
#p < 0.05 vs. RA-FMT, $p < 0.05 vs. RA-FMT-PRO. FMT: fecal matter transplantation, IH: 

intermittent hypoxia, PRO: probiotic, RA: room air, VEH: vehicle.
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Fig. 2: FMT from IH-exposed mice elevates BP in naïve mice, and such BP changes are 
prevented by VSL3 probiotic treatment.
Systolic blood pressure (SBP) (A), diastolic blood pressure (DBP) (B), mean blood pressure 

(MBP) (C). Values are displayed as mean ± S.D (n = 10) mice. Statistical analysis was 

done using two-way ANOVA followed by Tukey post-test *p < 0.05 vs. IH-FMT-PRO, #p 

< 0.05 vs. RA-FMT, $p < 0.05 vs. RA-FMT-PRO. FMT: fecal matter transplantation, IH: 

intermittent hypoxia, PRO: probiotic, RA: room air, VEH: vehicle
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Fig. 3: FMT from IH-exposed mice impairs coronary arteries function in naïve mice and VSL3 
probiotic administration prevents such effects.
Cumulative concentration response curve of U46619 (A), acetylcholine (ACh) (B), and 

sodium nitroprusside (SNP) (C). Values are displayed as mean ± S.D (n = 9 −10) mice. 

Statistical analysis was done using two-way ANOVA followed by Tukey post-test *p < 0.05 

vs. IH-FMT-PRO, #p < 0.05 vs. RA-FMT, $p < 0.05 vs. RA-FMT-PRO. FMT: fecal matter 

transplantation, IH: intermittent hypoxia, PRO: probiotic, RA: room air, VEH: vehicle
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Fig. 4: FMT from IH exposed mice increases TMAO plasma levels and decreases acetate plasma 
levels, and VSL3 probiotics restore TMAO but not acetate plasma concentrations.
Plasma TMAO levels (A), Plasma acetate concentrations (B). Values are displayed as mean 

± S.D (n = 5) mice. Statistical analysis was done using two-way ANOVA followed by Tukey 

post-test *p < 0.05 vs. IH-FMT-PRO, #p < 0.05 vs. RA-FMT, $p < 0.05 vs. RA-FMT-PRO. 

FMT: fecal matter transplantation, IH: intermittent hypoxia, PRO: probiotic, RA: room air, 

TMAO: trimethylamine N-oxide, VEH: vehicle
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Fig. 5: VSL3 probiotic administration does not lower elevated BP or prevent coronary artery 
dysfunction in mice exposed to IH.
Mean arterial blood pressure (MBP) (A), Cumulative concentration response curve of 

U46619 (B), acetylcholine (ACh) (C), and sodium nitroprusside (SNP) (D). Values are 

displayed as mean ± S.D (n = 8–10) mice. Statistical analysis was done using two-way 

ANOVA followed by Tukey post-test *p < 0.05 vs. RA. IH: intermittent hypoxia, PRO: 

probiotic, RA: room air
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