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Abstract

(1) Background.—Early childhood experiences have long-lasting effects on subsequent 

mental and physical health, education, and employment. Measurement of these effects relies 

on insensitive behavioral signs, subjective assessments by adult observers, neuroimaging or 

neurophysiological studies, or retrospective epidemiologic outcomes. Despite intensive search, 

the underlying mechanisms for these long-term changes in development and health status remain 

unknown.

(2) Methods.—We analyzed scalp hair from healthy children and their mothers using 

an unbiased proteomics platform using tandem mass spectrometry, ultra-performance liquid 

chromatography, and collision induced dissociation to reveal commonly observed hair proteins 

with spectral count of 3 or higher.
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(3) Results.—We observed 1368 non-structural hair proteins in children, 1438 non-structural 

hair proteins in mothers, with 1288 proteins showing individual variability. Mothers showed 

higher numbers of peptide spectral matches and hair proteins compared to children, with important 

age-related differences between mothers and children. Age-related differences were also observed 

in children, with differential protein expression patterns between younger (2 years and below) and 

older children (3-5 years). We observed greater similarity in hair protein patterns between mothers 

and their biological children as compared to mothers and unrelated children. The top 5% proteins 

driving population variability represent biological pathways associated with brain development, 

immune signaling, and stress response regulation.

(4) Conclusion.—Non-structural proteins observed in scalp hair include promising biomarkers 

to investigate the long-term developmental changes and health status associated with early 

childhood experiences.
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1. Introduction

Early human development remains exquisitely sensitive to parental, environmental, and 

societal influences that multiplex the history of each individual (via genetic and epigenetic 

factors) with their daily experiences. Variations in these factors, such as stress and social 

determinants of health, can singly or collectively introduce differences in developmental 

outcomes1–4. Such differences are then magnified in the higher-order cognitive and 

behavioral capacities of the human mind-brain-body connectome, which are built on a series 

of sequential or staggered developmental epochs that can enable or constrain their future 

potential, role(s) in society, as well as their mental and physical health4–8.

Objective assessment of social, emotional, or other environmental inputs across multiple 

timescales is challenging in early childhood. These challenges result from most subjects 

being pre-verbal, coming from unknown environments, or accompanied by unreliable, 

fearful, or distrusting historians1, 3, 9, 10. Developmental timescales can also range from 

milliseconds to minutes (e.g., affecting acute neuromodulatory tone, neuronal oscillations, 

neuroendocrine changes), days to weeks (e.g., affecting circadian rhythms, metabolic 

functions, memory and learning), or months to years (e.g., affecting brain growth and brain 

plasticity, or emerging cognitive, behavioral, or social capacities)4, 11. Neurophysiological, 

neuroimaging, and observational studies have attempted to describe and quantify early 

developmental changes, but there remains a need for non-invasive, objective biomarkers that 

can be measured serially across the months and years required for childhood development12–

15.

Human scalp hair of preschool children, derived from the neuroectoderm and mesoderm, 

grows constantly at about 1 cm/month and evolves via prenatal lanugo, postnatal vellus, 

intermediate medullary, and terminal hair stages16. Hair contains 65-85% proteins, 15-35% 

water, 1-9% lipids, and 0.1-5% pigments like melanin and trace elements17. Constantly 
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growing scalp hair incorporates both endogenous and exogenous proteins in a time-averaged 

chronological manner18, unlike any other biospecimens19. Therefore, it is used routinely to 

monitor drug exposures, heavy metals, and other environmental toxins20, or even reflect the 

social determinants of health3.

Developmentally regulated hair proteins could offer biomarker candidates for the mind-

brain-body connectome with the potential to monitor health status in real-time during 

early childhood development. However, all published data on hair proteins are limited 

to adult subjects, include relatively small sample sizes, and focus mainly on structural 

hair proteins. Lee et al. reported 343 hair proteins from three adults, showing evidence 

for post-translational modifications21. Laatsch et al. analyzed hair from 18 males and 3 

females, reporting ethnic differences in keratins and keratin-associated proteins (KAPs)22. 

Carlson et al. characterized hair proteins from one adult with limited sample availability23 

whereas Wu et al. used hierarchical protein clustering to match 10 monozygotic twin pairs 

and differentiate them from unrelated individuals24. Parker et al. reported quantifiable 

measures21 of identity discrimination and racial ancestry by detecting genetically variant 

peptides in the structural hair proteins for forensic purposes25.

To fill the extant gaps in knowledge, we analyzed non-structural hair proteins using ultra-

performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and ELISA 

based validation studies conducted on a limited subset of the detected non-structural hair 

proteins present in preschool children and their mothers. Our subjects were not exposed to 

early life adversity, as evidenced by parental income, household structure, health insurance, 

and parent education5 or by their hair cortisol concentrations (HCC)4, 26.

2. Materials and Methods

After IRB approval and parental consent, mothers and children aged 1-6 years were enrolled 

from local preschool facilities. All children were developmentally appropriate, healthy, and 

belonged to stable nuclear families (Table 1). We excluded children with tinea capitis, 

alopecia areata, eczema, or other scalp conditions; those receiving any prescription or over-

the-counter drugs; or steroid therapy in the past 3 months; or those with chronic medical 

conditions, developmental delay, or chemical exposures to hair prior to study entry. Hair 

samples from the posterior vertex (1 cm2 area) were trimmed at 0.1 mm from the scalp and 

stored in Ziploc® bags at 4°C.

2.1 Hair protein extraction

Proprietary methods were developed for the extraction of soluble protein components of 

human scalp hair.

2.2 Proteomics method

Protein pellets were resuspended in 50 mM ammonium bicarbonate in the presence of 

0.0015% ProteaseMAX (Promega) and total protein amount was estimated with Pierce 

BCA assays (Thermo Fisher Scientific) for a consistent loading of all samples. Proteins 

were digested with 0.25 μg of Trypsin/LysC (Promega) at a 1:100 enzyme/substrate ratio 

overnight at 37°C. Proteolytic digestion was quenched with 1% formic acid; peptides were 
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dried by speed vac before dissolving in 30μl of reconstitution buffer (2% acetonitrile + 0.1% 

Formic acid) to a concentration of 1 μg/μl; 2 μl of this solution was injected into the MS 

instrument.

Experiments were performed on the Orbitrap Fusion Tribrid mass spectrometer (Thermo 

Scientific) coupled with ACQUITY M-Class ultra-performance liquid chromatography 

(UPLC, Waters Corporation). For a typical LCMS experiment (Liquid Chromatography/

Mass Spectrometry), a flow rate of 450 nL/min was used, where mobile phase A is 0.2% 

formic acid in water and mobile phase B is 0.2% formic acid in acetonitrile. Analytical 

columns were pulled using fused silica (I.D. 100 microns) and packed with Magic 1.8-

micron 120Å UChrom C18 stationary phase (nanoLCMS Solutions) to a length of ~25 

cm. Peptides were directly injected onto the analytical column using a gradient (2-45% B, 

followed by a high-B wash) of 80 minutes. The MS was operated in data-dependent fashion 

using CID (collision induced dissociation) for generating MS/MS spectra, collected in the 

ion trap with collisional energy set at 35.

The *.RAW data files were processed using Byonic v3.2.0 (ProteinMetrics) to infer protein 

isoforms using the Uniprot homo sapiens database. Proteolysis with Trypsin/LysC was 

assumed to be semi-specific allowing for N-ragged cleavage with up to 2 missed cleavage 

sites. Precursor mass accuracies were held within 12 ppm and 0.4 Da for MS/MS fragments. 

Proteins were held to a false discovery rate (FDR) of 1% or lower, using standard target-

decoy approaches27, and only the proteins with >3 spectral counts were selected for further 

data processing; keratins and KAPs were removed at this stage.

2.3 Generation of age-associated proteomic libraries

Initially, the standard UPLC-MS/MS methods (section 2.2) were employed to identify 

non-structural hair shaft proteins, using protein purification to remove keratins and for 

establishing age-associated hair shaft proteomic libraries using pooled hair samples from 

40 children of diverse race/ethnicity (Asian, White, Mixed, or Other races; Hispanic/non-

Hispanic ethnicity), aged 1-5 years (mean/SD = 44.5 months±12.6 months), and 43 mothers 

also of diverse race/ethnicity (aged 39 years±5 years). Utilization of large numbers of 

individuals of diverse race and ethnicity favors our ability to detect representative patterns 

of non-structural proteins incorporated in the hair shaft. We observed 1368 non-structural 

hair proteins in children, 1438 non-structural hair proteins in mothers, with 1288 proteins 

showing individual variability. The total number of age-associated proteins discovered in 

these libraries were also detected in the analyses of 40 independent individual subjects that 

had not been used for generation of the libraries. Individual hair samples from 8 mothers 

with 16 biologically-related children and 16 unrelated children were analyzed against the 

pooled hair protein libraries to create a master library of hair proteins. These data were 

deposited through the PRIDE repository28 into the ProteomeXchange Consortium29, 30.

2.4 Human scalp hair shaft proteoforms validation studies

Surplus volumes of protein remaining after UPLC-MS/MS generated libraries, individual 

evaluations, and quantification of hair cortisol concentrations (HCC) were pooled based 

on low, intermediate, or high HCC values. Hair cortisol (HCC) assays were validated 
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previously31. These pools were evaluated using commercially available ELISA kits, 

used according to manufacturer’s instructions: cortisol (ALPCO/11-CORHU-E01-SLV), 

arginine vasopressin (AVP, Enzo/ADI-900-017A), Cu/ZN superoxide dismutase (SOD1, 

Enzo/ALX-850-033), glial fibrillary acidic protein (GFAP, Bioatrik/EKU04380), and HtrA 

serine peptidase 2 (HTRA2, Thermoscientific/EHHTRA2).

2.5 Statistical analysis

Spectral counts were used to calculate Euclidean distances between individuals, and to 

determine hierarchical clustering. A correlation matrix with Spearman’s coefficient was also 

used for rank-based depiction of similarities between the individual hair proteomes.

Principal Component Analysis (PCA)32–34 was used to reduce dimensionality of this rich 

dataset. PCA is a widely used technique for analytical modeling of linear combinations 

of the original dimensions called principal components34. The largest proportion of data 

variance is captured by the first principal component, the second largest proportion of 

variance falls along the second principal component, and so on32. For the first five principal 

components from each PCA, we multiplied the loading scores of each protein by the percent 

variance explained by that corresponding principal component; these weighted scores were 

summed for each protein to give its Total Loading Score (TLS).

Weigℎted Score = Loading Score ∗ Proportion of Variance

Total Loading Score TLS = = ∑
PC = 1

5
Weighted score

Based on their TLS values, top 5% proteins were selected as the main drivers of variability 

in hair protein expression.

Additionally, we used t-distributed stochastic neighboring embedding (tSNE), a non- 

linear probabilistic approach35, 36, to visualize proteins with non-linear similarity in 

high-dimensional space as neighbors in low-dimensional linear depictions. Unlike the 

reproducible PCA results, the probabilistic nature of tSNE can result in somewhat different 

results with each computation. To avoid serendipitous results, we ran each computation at 

least 10 times to ensure reproducibility. For each computation, the maximum number of 

iterations to converge was set to 1000, and perplexity set to the maximum permitted value. 

Statistical significance of tSNE clustering was calculated by how often a given statistic was 

reproduced in 1000 simulations of permuted versions of the dataset.

Boolean profiles of the hair proteins were also compared between the original dataset (each 

mother coupled with her own children) and 5000 simulated datasets, created by swapping 

mothers between families such that no mother was paired with her own children, but the 

two siblings remained together in all simulated datasets. Observed conservation in pairwise 
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intra-family Manhattan distances from the original dataset could then be attributed to the 

similarities in hair protein expression between each mother and her children.

For the top 5% proteins in children (n=32), we averaged spectral counts for girls and 

boys separately, and divided the girls’ average by the boys’ average. Resulting values were 

converted to log-base 2. The same process was followed for spectral counts from mothers 

and children.

Log fold-change values of the top 5% proteins were used as input for Ingenuity Pathway 

Analysis (Qiagen: https://digitalinsights.qiagen.com/products/features/). We analyzed direct 

and indirect relationships between molecules based on experimentally observed data, 

restricted to human databases in the Ingenuity Knowledge Base. We used Random Forest 

(RF) models for both the classification (boy vs. girl, mother vs. child) and regression 

(age prediction) tasks, with protein concentrations as model features and individuals as 

samples37. In classification, the model output was the probability of an individual being 

female (sex classification) or being a mother (person classification). For regression (age 

prediction), the model output was the individual’s predicted age.

Results were based on a 10-fold cross-validation repeated 100 times. Members of the same 

family were included in the same set, i.e. either training or test sets, to avoid information 

leak due to familial similarities. For the age prediction, we evaluated results using the 

R2 coefficient of determination and the linear model p-value fitted on the predicted and 

observed data. For the classification tasks, we used area under the ROC curve (AUC) and 

the Wilcoxon-Mann-Whitney test, testing the null-hypothesis that one distribution is not 

stochastically greater than the other.

3. Results

3.1. Features of hair proteins

There were 3,124 proteoforms, representing the gene products of 2,278 genes. Expression 

of protein isoforms, alternative splicing of messenger RNA (mRNA), and post-translational 

modifications resulted in a higher number of hair proteins than their associated genes21, 

38. Hair proteins observed in individual mothers and children contained 2,269 unique 

‘proteoforms’ or protein isoforms; 1,438 proteins were commonly observed in mothers, 

1,368 proteins were commonly observed in children, whereas 1,288 hair proteins showed 

individual variability among mothers and children. Higher spectral counts (p=0.0004) and 

higher numbers of proteins (p=0.001) were observed in mothers compared to children 

(Figure 1), perhaps reflecting a wider array of biological functions in adult females related 

to reproduction39–41, aging37, 42, or disease states43. These age differences were explored 

further in subsequent analyses.

3.2 Hair protein profiles in individuals and families

Peptide spectral matches for each protein were combined to compare protein expression for 

all individuals and assess Spearman rank correlations. Hair proteins from the mothers were 

closely correlated with each other, whereas hair proteins in children showed correlations 

based on age and sex (Figure 2A). Euclidean distances were calculated for pairwise 
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comparisons between individuals (Figure 2B) and used for hierarchical clustering to 

identify subjects with similarities in the hair protein patterns (Figure 2C). Consistent 

with the correlation matrix, all mothers were clustered close together, younger children 

(0-2 years) were mostly located in one cluster, whereas older children were clustered 

with the mothers (Figure 2C). Boolean profiles of the hair proteins for each mother and 

her two biological children showed significantly shorter intra-family Manhattan distances 

(p<0.0002) as compared to 5000 ‘simulated’ families with mismatched mothers and children 

(Figure 2D), revealing hereditary vs. environmental conservation of hair protein profiles 

within each family.

3.3. Age- and sex-related differences in hair proteins

Both PCA32–34 and tSNE35, 36 were used to reduce the data dimensionality and to identify 

the major contributors of hair protein variability. Principal components 1-5 accounted for 

61.6% of hair protein variability for all subjects, 57.5% for all children, 84.0% for all 

mothers, 60.8% for mothers and related children, and 62.3% for mothers and unrelated 

children.

Age differences were observed by plotting the first two principal components (PC1, PC2) 

and tSNE dimensions (Figure 3). We observed two separate clusters of the younger children 

and the mothers, with the older children dispersed across these groups (Figure 3A). Similar 

clusters were observed from the remaining principal components. The tSNE projections also 

showed mothers located separately from the children (Figure 3B). Proteins driving these 

differences showed higher spectral counts in mothers vs. children for SERPINB4 (serine 

protease inhibitor), POF1B (actin filament binder), PLEC (cytoskeleton binding protein), 

A2ML1 (α2-macroglobulin-like proteinase inhibitor), HIST1H3A (histone), UQCRQ 

(electron transfer from ubiquinol to cytochrome C), and AHCY (adenosylhomocysteine 

hydrolase). In contrast, mammaglobin-B (SCGB2A1), a heterodimerization protein that 

binds androgen and other steroids, was observed only in children (Table 2). Older children 

had higher spectral counts for PLEC (plectin), EIF3A (eukaryotic translation initiation 

factor 3), AHCY (adenosylhomocysteinase), HAL (histidine ammonia- lyase), and TUBA1C 

(Tubulin alpha 1c), whereas younger children had higher protein spectral counts for 

SCGB2A1 (secretoglobin 2A member 1) and CSN2 (casein beta) (Table 3).

Sex differences showed slightly higher spectral counts in girls vs. boys (p=0.038) but no 

difference in the number of proteins (Table 1). PCA analyses and tSNE projections showed 

overlapping clusters of boys and girls (Figure 3C, 3D). When comparing individual proteins, 

higher spectral counts were observed for CSN2 (Casein beta, p = 0.0184) in boys and 

ALMS1 (Alström syndrome protein 1, p = 0.0214) in girls (Table 3).

To further characterize the effects of early childhood and adulthood on hair proteins, 

Random Forest regressions44 were used to predict the participants’ age from their hair 

protein profiles. This model predicted age differences in mothers and children (R2=0.37, 

Figure 4A), but the regression model improved (R2=0.45) when mothers were removed from 

this analysis and only children were included in this predictive model (Figure 4B). Random 

Forest classifier algorithms showed an acceptable mean accuracy for classifying mothers and 
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children based on their predicted vs. observed age (mean area under the ROC curve = 0.93, 

Figure 4C; Wilcoxon test p=0.00011, Figure 4).

A Random Forest classifier to predict sex from hair protein profiles in children could 

not reliably differentiate boys from girls (mean area under the ROC curve = 0.6, Figure 

4E; Wilcoxon test p = 0.1703; Figure 4F), but predictions improved when classifying all 

participants including mothers and children (area under the ROC curve = 0.73, Figure 4G; 

Wilcoxon test p = 0.0083, Figure 4H). The latter result is likely due to the age-based 

distinction between mothers and children, although sample size-related effects cannot be 

ruled out (25 vs. 17 females).

3.4. Top contributors to hair protein variability

The top 5% proteins identified as the most prominent contributors, based on their total 

loading scores (TLS), explained 64.3% of hair protein variability in all individuals, 89.5% 

in all mothers, 57.5% in all children, 49.3% in mothers and related children, and 64.6% in 

mothers and unrelated children (Figure 5). Higher TLS indicates higher influence of that 

protein on total variability. Keratins and KAPs are structural components, but are usually 

considered as contaminants in most proteomics experiments, due to their high abundance 

in common lab analyses. We therefore performed PCA analyses for all individuals with 

(Figure 5A) and without excluding the keratins and KAPs (Figure 5B). Structural proteins 

contributed to hair protein variability but have limited biological significance. Separate 

PCA analyses performed to characterize the hair proteins observed in mothers (Figure 

5C), children (Figure 5D), mothers and related children (Figure 5E), and mothers and 

unrelated children (Figure 5F) showed the same proteins as those ranked in all individuals 

and all children. Other than histones, no other proteins were common between mothers and 

children. TUBA1C, PLEC, SERPINB4, and UQCRQ were observed in multiple subgroups.

3.5. Biological role(s) of the strongest contributors to hair protein variability

Based on experimentally observed human data in the Ingenuity Knowledge Base, log- 

fold-change values of the top 5% proteins from our dataset were used to analyze direct 

and indirect relationships between protein molecules. Protein networks for the top 5% hair 

proteins contributing to age-related differences between mothers and children (Figure 6) 

and similar analyses for sex-related differences between girls and boys were examined 

(Figure 7). Using these molecular relationships as input for Ingenuity Pathway Analysis, we 

identified protein classes involved in cellular metabolism such as the protein ubiquitination 

pathway, Sirtuin signaling pathway, 14- 3-3 mediated signaling, Wnt-Ca++ pathway, 

histidine degradation, mitochondrial function, and oxidative phosphorylation (Figure 8). 

Other proteins were associated with immune responses, including phagosome maturation, 

IL-8 signaling, and regulation of macrophages, fibroblasts, and endothelial cells, or involved 

in the regulation of stress-related pathways, including corticotropin releasing hormone 

signaling, glucocorticoid receptor signaling, prolactin and aldosterone signaling. Finally, 

hair proteins associated with brain development including axonal guidance and gap junction 

signaling were also identified (Figure 8).
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3.6 ELISA validation of other non-structural hair proteins

Select proteins of interest detected via standard UPLC-MS/MS methods were validated 

and quantified using commercially available ELISA kits. The first portion of the surplus 

volumes of individual protein extracts remaining after UPLC-MS/MS and HCC measures 

were pooled based on low, intermediate, or high HCC values. Hair sample pools were used 

to quantify cortisol and arginine vasopressin (AVP), which potentiate hypothalamic release 

of corticotropin releasing hormone45, 46, Cu/Zn superoxide dismutase (SOD1), an important 

cellular defense against reactive oxygen species47, 48, HTrA serine peptidase 2 (HTRA2), 

a mitochondrial protease chaperone that regulates cellular proteostasis and cell-signaling 

events49; and glial fibrillary acid protein (GFAP), a protein responsible for the cytoskeletal 

structure of glial cells50, 51 (Table 4).

4. Discussion

The chemical composition of hair17, 52–56 and its structural proteins (keratins, KAPs) 

are well-studied22–25, but minimal data exists on non-structural hair proteins. This study 

represents the first description of non-structural hair proteins in mothers and young children. 

We found 2,269 non-structural hair proteins with important differences between mothers 

and children, age- and sex-related differences among preschool children, and conserved hair 

protein profiles within families. Hair proteins driving variability in different populations 

were found to play vital roles in functions other than those of trichocytes in the hair follicle, 

including cellular metabolic pathways, brain development, immune signaling, and stress 

regulation.

We observed age-related hair protein profiles in children and mothers, with distinct 

patterns emerging in multiple analyses. Differences between mothers and children were 

largely driven by increased maternal expression of SERPINB4, PLEC, and UQCRQ. 

SERPINB4 is a granzyme inhibitor linked with squamous cell carcinomas and chronic 

liver disease57–59, Plectin mutations are linked with epidermolysis bullosa simplex and may 

be a susceptibility gene for testicular germ cell tumors60–62, and UQCRQ is a nuclear 

protein in the mitochondrial respiratory chain complex III essential for brain development63. 

Mammaglobin-B (SCGB2A1), which is linked with familial febrile seizures in preschool 

children64, 65 and chemoresistant cancers in adults66, was observed only in children’s hair.

We found minimal sex differences in early childhood, confirmed by Random Forest 

predictive models. Biological pathways for cellular metabolism and innate immunity 

appeared more prominent in girls, whereas brain development and stress regulation appeared 

more prominent in boys. Perhaps sex differences in hair proteins may be accentuated 

following the onset of puberty67. Although hair protein profiles were conserved in mothers 

and their biological children, future studies in mother-child dyads and monozygotic vs. 

dizygotic twins will be required to explore to gene × environment interactions responsible 

for hair protein profiles68.

From Ingenuity Pathway Analysis, we identified the hair proteins associated with axonal 

guidance69 and gap junction signaling70, both signifying important mechanisms in brain 

development. By cross-referencing the Uniprot database (https://www.uniprot.org/) with the 
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Allen Brain Atlas (https://human.brain-map.org/static/brainexplorer) and the Human Brain 

Protein Atlas (https://www.proteinatlas.org/search/brain_category), we identified 191 hair 

proteins that are regionally enriched in the brain. Further studies will examine whether hair 

proteomics can complement neuroimaging and neurophysiological studies of early brain 

development12. A study from Nepal reported specific plasma proteins associated with higher 

non-verbal intelligence and pro-inflammatory proteins associated with lower intelligence in 

children71. This study, however, used an FDR of 5%, whereas the FDR threshold for our 

analyses was set at 1% or lower. Future developmental studies with large sample sizes could 

correlate hair proteins with cognitive or behavioral outcomes, thus investigating their role 

in brain development72. Thus, unbiased or targeted protein profiles from serial hair samples 

(or sequential hair segments in the same hair sample) could be used as probes for child 

development73, 74 or life-course studies43, 75, 76.

These findings must be interpreted in the light of three limitations. First, our sample 

size of 32 children was insufficient to examine developmental differences at each age 

in the preschool period. We selected healthy children from homogenous socioeconomic 

environments; they did not experience any adverse conditions and therefore, our data do not 

represent the full range of hair protein profiles present in the general population. Despite 

this, our sample size is larger than most other studies of hair proteomics in adults and it is 

the first to include mothers and children. Our study design also allowed us to investigate 

differences in hair protein profiles between related and unrelated individuals, as well as 

differences between adults and children.

Second, our proteomics platform relied on peptide spectral matches, which presented only 

semi- quantitative data on the abundance of hair proteins in individuals. Since this is 

the first study investigating non-structural proteins from hair in humans, we chose a ‘shot-

gun’ proteomics approach rather than targeted and more quantitative approaches. We did, 

however, orthogonally confirm the presence of specific hair proteins using well-validated 

ELISA assays. Having established the first hair protein libraries in mothers and children, 

future studies can be designed for the quantitation of specific protein targets or protein 

groups. Lastly, we did not correlate hair proteins with the child’s developmental milestones 

or their cognitive and behavioral data. We feel that the sample size limitations at each age 

would preclude any generalizable conclusions from such analyses.

Despite these limitations, our initial findings reveal the potential importance of non-

structural hair proteins as biomarkers for brain development, or other cellular regulatory 

pathways, providing a rich source of chronologically ordered information for life-course 

studies and early childhood development.

5. Conclusions

This research shows that exposures to family adversity, chronic stress, parenting and 

caregiving practices, and early attachment can be monitored by serial hair sampling to 

determine the child’s health status, brain development, physical and mental health. We 

found that hair protein profiles are related to age, sex, and family relationships. The 

top 5% contributors to variability in hair protein patterns are associated with regulation 
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of: (a) immune pathways (for phagosome maturation, IL-8 signaling, PKR interferon 

induction, regulation of fibroblasts, macrophages, and endothelial cells); (b) stress signaling 
pathways (for corticotropin releasing hormone, glucocorticoid receptors, prolactin, and 

aldosterone); (c) brain development (axonal guidance, gap junction signaling); and (d) 

cellular metabolic pathways (for oxidative phosphorylation, mitochondrial dysfunction, 

histidine degradation, caveolar-mediated endocytosis, as well as the heat shock proteins, 

14-3-3 protein, Sirtuin, and Wnt/Ca++ signaling pathways). When amalgamated with 

well-established methods for tracking changes in hair hormones, this approach may 

provide mechanistic explanations for the developmental sequences leading to HPA axis 

(dys)regulation in early life. The assessment of parent-child synchrony, the child’s circadian 

rhythms, or positive and negative attachments need not depend on subjective questionnaires, 

invasive blood sampling, or neuroimaging. We propose that non-invasive hair sampling 

and tandem mass spectrometry methods can be used to compare non-structural hair 

protein profiles in healthy, normal children against hair protein profiles in subpopulations 

of children with confirmed exposures to toxic stress and/or adverse living conditions. 

Future studies are designed to quantify and characterize panels of related hair proteins 

to probe changes in the immune system, stress regulation, brain development, and cellular 

metabolism to monitor environmental influences on the health status and development of 

children2.

6. Patents

Pursuant to the Patent Cooperation Treaty, an international patent was filed on November 

10, 2022, identifiable in the United States Patent and Trademark Office by Application No. 

US2022/079619.

Acknowledgments:

The authors sincerely acknowledge the leadership of Santa Clara County Office of Education, the children, parents 
and staff at Bing Nursery School, Stanford Arboretum Children’s Center, Children’s Center of the Stanford 
Community, Stanford Madera Grove Children’s Center, McKinley, Rouleau, and Wool Creek Head Start Centers 
for their partnership. We also thank Drs. David K. Stevenson, Gary Shaw, and Timothy Cornell for their valuable 
suggestions on previous versions of this manuscript; Sahil Tembulkar and Jitka Hiscox for help with collecting or 
processing hair samples, Tanida Plamintr for administrative assistance, and Grant Padia for grant management.

Funding:

The Maternal & Child Health Research Institute (MCHRI) at Stanford, the Eunice Kennedy Shriver National 
Institute for Child Health & Human Development (R01 HD099296), the National Cancer Institute (P30 CA124435) 
for the Stanford Cancer Institute Proteomics/Mass Spectrometry Shared Resource, and the National Institute of 
General Medical Sciences (R35 GM138353) supported this research. Study sponsors had no role in the design or 
conduct of the study; the collection, management, analysis, or interpretation of the data; the preparation, review, 
approval, or decision to publish this manuscript.

Data Availability Statement:

Minimal datasets related to results presented in this manuscript are available on request from 

the corresponding author. These data are not publicly available due to privacy, proprietary, 

and ethical considerations.

Rovnaghi et al. Page 11

Psych. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Bitsko RH, Holbrook JR, Robinson LR, Kaminski JW, Ghandour R, Smith C, Ed S, Peacock 
G. Health Care, Family, and Community Factors Associated with Mental, Behavioral, and 
Developmental Disorders in Early Childhood - United States, 2011-2012. MMWR Morb Mortal 
Wkly Rep. 2016;65(9):221–6. Epub 20160311. doi: 10.15585/mmwr.mm6509a1. [PubMed: 
26963052] 

2. Lopez M, Ruiz MO, Rovnaghi CR, Tam GK, Hiscox J, Gotlib IH, Barr DA, Carrion VG, Anand 
KJS. The social ecology of childhood and early life adversity. Pediatr Res. 2021;89(2):353–67. 
Epub 2021/01/20. doi: 10.1038/s41390-020-01264-x. [PubMed: 33462396] 

3. Dubowitz H, Kressly SJ. Documenting Psychosocial Problems in Children’s Electronic Health 
Records. JAMA Pediatr. 2023;177(9):881–2. doi: 10.1001/jamapediatrics.2023.2380. [PubMed: 
37486683] 

4. Rovnaghi CR, Rigdon J, Roue JM, Ruiz MO, Carrion VG, Anand KJS. Longitudinal Trajectories of 
Hair Cortisol: Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Early Childhood. Front Pediatr. 
2021;9:740343. Epub 2021/10/29. doi: 10.3389/fped.2021.740343. [PubMed: 34708011] 

5. Anand KJS, Rigdon J, Rovnaghi CR, Qin F, Tembulkar S, Bush N, LeWinn K, Tylavsky FA, 
Davis R, Barr DA, Gotlib IH. Measuring socioeconomic adversity in early life. Acta Paediatr. 
2019;108(7):1267–77. Epub 2019/01/08. doi: 10.1111/apa.14715. [PubMed: 30614554] 

6. Nelson CA, Scott RD, Bhutta ZA, Harris NB, Danese A, Samara M. Adversity in childhood is 
linked to mental and physical health throughout life. BMJ. 2020;371:m3048. Epub 2020/10/30. doi: 
10.1136/bmj.m3048. [PubMed: 33115717] 

7. Palmer FB, Anand KJ, Graff JC, Murphy LE, Qu Y, Volgyi E, Rovnaghi CR, Moore A, Tran QT, 
Tylavsky FA. Early adversity, socioemotional development, and stress in urban 1-year-old children. 
J Pediatr. 2013;163(6):1733–9 e1. doi: 10.1016/j.jpeds.2013.08.030. [PubMed: 24070827] 

8. Erema VV, Yakovchik AY, Kashtanova DA, Bochkaeva ZV, Ivanov MV, Sosin DV, Matkava 
LR, Yudin VS, Makarov VV, Keskinov AA, Kraevoy SA, Yudin SM. Biological Age Predictors: 
The Status Quo and Future Trends. Int J Mol Sci. 2022;23(23). Epub 20221201. doi: 10.3390/
ijms232315103.

9. Anand KJS, Rovnaghi CR, Rigdon J, Qin F, Tembulkar S, Murphy LE, Barr DA, Gotlib IH, 
Tylavsky FA. Demographic and psychosocial factors associated with hair cortisol concentrations 
in preschool children. Pediatr Res. 2020;87(6):1119–27. Epub 2019/12/04. doi: 10.1038/
s41390-019-0691-2. [PubMed: 31791042] 

10. Timmers I, Quaedflieg CWEM, Hsu C, Healthcote L, Rovnaghi CR, and Simons L The 
interaction between stress and chronic pain through the lens of threat learning. Neuroscience and 
Biobehavioral Reviews. 2019.

11. Reh RK, Dias BG, Nelson CA 3rd, Kaufer D, Werker JF, Kolb B, Levine JD, Hensch TK. Critical 
period regulation across multiple timescales. Proc Natl Acad Sci U S A. 2020;117(38):23242–51. 
Epub 2020/06/07. doi: 10.1073/pnas.1820836117. [PubMed: 32503914] 

12. Brown TT, Jernigan TL. Brain development during the preschool years. Neuropsychol Rev. 
2012;22(4):313–33. Epub 2012/09/26. doi: 10.1007/s11065-012-9214-1. [PubMed: 23007644] 

13. Jernigan TL, Brown TT, Hagler DJ Jr., Akshoomoff N, Bartsch H, Newman E, Thompson 
WK, Bloss CS, Murray SS, Schork N, Kennedy DN, Kuperman JM, McCabe C, Chung Y, 
Libiger O, Maddox M, Casey BJ, Chang L, Ernst TM, Frazier JA, Gruen JR, Sowell ER, 
Kenet T, Kaufmann WE, Mostofsky S, Amaral DG, Dale AM, Pediatric Imaging N, Genetics 
S. The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. Neuroimage. 
2016;124(Pt B):1149–54. Epub 2015/05/06. doi: 10.1016/j.neuroimage.2015.04.057. [PubMed: 
25937488] 

14. Tozzi L, Garczarek L, Janowitz D, Stein DJ, Wittfeld K, Dobrowolny H, Lagopoulos J, Hatton 
SN, Hickie IB, Carballedo A, Brooks SJ, Vuletic D, Uhlmann A, Veer IM, Walter H, Bulow R, 
Volzke H, Klinger-Konig J, Schnell K, Schoepf D, Grotegerd D, Opel N, Dannlowski U, Kugel H, 
Schramm E, Konrad C, Kircher T, Juksel D, Nenadic I, Krug A, Hahn T, Steinstrater O, Redlich 
R, Zaremba D, Zurowski B, Fu CHY, Dima D, Cole J, Grabe HJ, Connolly CG, Yang TT, Ho 
TC, LeWinn KZ, Li M, Groenewold NA, Salminen LE, Walter M, Simmons AN, van Erp TGM, 
Jahanshad N, Baune BT, van der Wee NJA, van Tol MJ, Penninx B, Hibar DP, Thompson PM, 

Rovnaghi et al. Page 12

Psych. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Veltman DJ, Schmaal L, Frodl T, for the E-MDDC. Interactive impact of childhood maltreatment, 
depression, and age on cortical brain structure: mega-analytic findings from a large multi-site 
cohort. Psychol Med. 2020;50(6):1020–31. Epub 2019/05/16. doi: 10.1017/S003329171900093X. 
[PubMed: 31084657] 

15. Warrier V, Stauffer EM, Huang QQ, Wigdor EM, Slob EAW, Seidlitz J, Ronan L, Valk SL, 
Mallard TT, Grotzinger AD, Romero-Garcia R, Baron-Cohen S, Geschwind DH, Lancaster MA, 
Murray GK, Gandal MJ, Alexander-Bloch A, Won H, Martin HC, Bullmore ET, Bethlehem 
RAI. Genetic insights into human cortical organization and development through genome-wide 
analyses of 2,347 neuroimaging phenotypes. Nat Genet. 2023. Epub 20230817. doi: 10.1038/
s41588-023-01475-y.

16. Ruiz MO, Rovnaghi CR, Tembulkar S, Qin F, Truong L, Shen S, Anand KJS. Linear hair growth 
rates in preschool children. Pediatr Res. 2023. Epub 20230904. doi: 10.1038/s41390-023-02791-z.

17. Nicolaides N, Rothman S. Studies on the chemical composition of human hair fat. II. The overall 
composition with regard to age, sex and race. J Invest Dermatol. 1953;21(1):9–14. [PubMed: 
13069836] 

18. Adeola HA, Van Wyk JC, Arowolo A, Ngwanya RM, Mkentane K, Khumalo NP. Emerging 
Diagnostic and Therapeutic Potentials of Human Hair Proteomics. Proteomics Clin Appl. 
2018;12(2). Epub 2017/09/30. doi: 10.1002/prca.201700048.

19. Tobin DJ. Chapter 2. In: Tobin DJ, editor. Hair in toxicology: an important bio-monitor. 
Cambridge: (Royal Society of Chemistry (U.K.); 2005. p. 34–56.

20. Villain M, Cirimele V, Kintz P. Hair analysis in toxicology. Clin Chem Lab Med. 
2004;42(11):1265–72. Epub 2004/12/04. doi: 10.1515/CCLM.2004.247. [PubMed: 15576289] 

21. Lee YJ, Rice RH, Lee YM. Proteome analysis of human hair shaft: from protein identification to 
posttranslational modification. Mol Cell Proteomics. 2006;5(5):789–800. Epub 2006/02/01. doi: 
10.1074/mcp.M500278-MCP200. [PubMed: 16446289] 

22. Laatsch CN, Durbin-Johnson BP, Rocke DM, Mukwana S, Newland AB, Flagler MJ, Davis 
MG, Eigenheer RA, Phinney BS, Rice RH. Human hair shaft proteomic profiling: individual 
differences, site specificity and cuticle analysis. PeerJ. 2014;2:e506. Epub 2014/08/29. doi: 
10.7717/peerj.506. [PubMed: 25165623] 

23. Carlson TL, Moini M, Eckenrode BA, Allred BM, Donfack J. Protein extraction from human 
anagen head hairs 1-millimeter or less in total length. Biotechniques. 2018;64(4):170–6. Epub 
2018/04/18. doi: 10.2144/btn-2018-2004. [PubMed: 29661011] 

24. Wu PW, Mason KE, Durbin-Johnson BP, Salemi M, Phinney BS, Rocke DM, Parker GJ, Rice 
RH. Proteomic analysis of hair shafts from monozygotic twins: Expression profiles and genetically 
variant peptides. Proteomics. 2017;17(13-14). Epub 2017/05/26. doi: 10.1002/pmic.201600462.

25. Parker GJ, Leppert T, Anex DS, Hilmer JK, Matsunami N, Baird L, Stevens J, Parsawar K, 
Durbin-Johnson BP, Rocke DM, Nelson C, Fairbanks DJ, Wilson AS, Rice RH, Woodward 
SR, Bothner B, Hart BR, Leppert M. Demonstration of Protein-Based Human Identification 
Using the Hair Shaft Proteome. PLoS One. 2016;11(9):e0160653. Epub 2016/09/08. doi: 10.1371/
journal.pone.0160653. [PubMed: 27603779] 

26. Tawfik DS, Rovnaghi C, Profit J, Cornell TT, Anand KJS. Prevalence of burnout and its relation 
to the neuroendocrine system among pediatric residents during the early Covid-19 pandemic: 
A pilot feasibility study. Compr Psychoneuroendocrinol. 2023;14:100174. Epub 20230201. doi: 
10.1016/j.cpnec.2023.100174. [PubMed: 36742128] 

27. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein 
identifications by mass spectrometry. Nat Methods. 2007;4(3):207–14. Epub 2007/03/01. doi: 
10.1038/nmeth1019. [PubMed: 17327847] 

28. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti 
A, Griss J, Mayer G, Eisenacher M, Perez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, 
Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaino JA. The 
PRIDE database and related tools and resources in 2019: improving support for quantification 
data. Nucleic Acids Res. 2019;47(D1):D442–D50. Epub 2018/11/06. doi: 10.1093/nar/gky1106. 
[PubMed: 30395289] 

29. Anand KJS, Leib RD, Rovnaghi CR and Singhal K PRIDE Repository, ProteomeXchange. PRIDE 
Repository, ProteomeXchange, 2019 December 22, 2019. Report No.

Rovnaghi et al. Page 13

Psych. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-
Llinares M, Okuda S, Kawano S, Moritz RL, Carver JJ, Wang M, Ishihama Y, Bandeira N, 
Hermjakob H, Vizcaino JA. The ProteomeXchange consortium in 2017: supporting the cultural 
change in proteomics public data deposition. Nucleic Acids Res. 2017;45(D1):D1100–D6. Epub 
20161018. doi: 10.1093/nar/gkw936. [PubMed: 27924013] 

31. Slominski R, Rovnaghi CR, Anand KJ. Methodological Considerations for Hair 
Cortisol Measurements in Children. Ther Drug Monit. 2015;37(6):812–20. doi: 10.1097/
FTD.0000000000000209. [PubMed: 25811341] 

32. Abdi HaW LJ . Principal component analysis. WIREs Comput Stat. 2010;2:433–59.

33. Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of 
Educational Psychology 1933;24:417–41

34. Jolliffe IT. Principal component analysis. New York, NY: Springer; 1986.

35. Linderman GC, Steinerberger S. Clustering with t-SNE, provably. SIAM J Math Data Sci. 
2019;1(2):313–32. Epub 2019/01/01. doi: 10.1137/18m1216134. [PubMed: 33073204] 

36. van der Maaten LaH G Visualizing data using t-SNE. Journal of Machine Learning Research. 
2008;9:2579–605.

37. Jylhävä J, Pedersen NL, Hägg S. Biological Age Predictors. EBioMedicine. 2017;21:29–36. Epub 
2017/04/12. doi: 10.1016/j.ebiom.2017.03.046. [PubMed: 28396265] 

38. Barthelemy NR, Bednarczyk A, Schaeffer-Reiss C, Jullien D, Van Dorsselaer A, Cavusoglu N. 
Proteomic tools for the investigation of human hair structural proteins and evidence of weakness 
sites on hair keratin coil segments. Anal Biochem. 2012;421(1):43–55. Epub 2011/11/08. doi: 
10.1016/j.ab.2011.10.011. [PubMed: 22056946] 

39. Gomes J, Au F, Basak A, Cakmak S, Vincent R, Kumarathasan P. Maternal blood 
biomarkers and adverse pregnancy outcomes: a systematic review and meta-analysis. Crit Rev 
Toxicol. 2019;49(6):461–78. Epub 2019/09/12. doi: 10.1080/10408444.2019.1629873. [PubMed: 
31509042] 

40. Handelman SK, Romero R, Tarca AL, Pacora P, Ingram B, Maymon E, Chaiworapongsa T, 
Hassan SS, Erez O. The plasma metabolome of women in early pregnancy differs from that 
of non-pregnant women. PLoS One. 2019;14(11):e0224682. Epub 2019/11/15. doi: 10.1371/
journal.pone.0224682. [PubMed: 31726468] 

41. Romero R, Erez O, Maymon E, Chaemsaithong P, Xu Z, Pacora P, Chaiworapongsa T, Done B, 
Hassan SS, Tarca AL. The maternal plasma proteome changes as a function of gestational age 
in normal pregnancy: a longitudinal study. Am J Obstet Gynecol. 2017;217(1):67 e1–e21. Epub 
2017/03/07. doi: 10.1016/j.ajog.2017.02.037.

42. Lara J, Cooper R, Nissan J, Ginty AT, Khaw KT, Deary IJ, Lord JM, Kuh D, Mathers JC. A 
proposed panel of biomarkers of healthy ageing. BMC Med. 2015;13:222. Epub 2015/09/17. doi: 
10.1186/s12916-015-0470-9. [PubMed: 26373927] 

43. Deelen J, Kettunen J, Fischer K, van der Spek A, Trompet S, Kastenmuller G, Boyd A, Zierer J, 
van den Akker EB, Ala-Korpela M, Amin N, Demirkan A, Ghanbari M, van Heemst D, Ikram 
MA, van Klinken JB, Mooijaart SP, Peters A, Salomaa V, Sattar N, Spector TD, Tiemeier H, 
Verhoeven A, Waldenberger M, Wurtz P, Davey Smith G, Metspalu A, Perola M, Menni C, 
Geleijnse JM, Drenos F, Beekman M, Jukema JW, van Duijn CM, Slagboom PE. A metabolic 
profile of all-cause mortality risk identified in an observational study of 44,168 individuals. 
Nat Commun. 2019;10(1):3346. Epub 2019/08/23. doi: 10.1038/s41467-019-11311-9. [PubMed: 
31431621] 

44. Breiman L. Random Forest. Machine Learning 2001;45:5–32.

45. Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and 
vasopressin pathway genes to human behavior. Horm Behav. 2012;61(3):359–79. Epub 20111229. 
doi: 10.1016/j.yhbeh.2011.12.014. [PubMed: 22245314] 

46. Muscogiuri G, Barrea L, Annunziata G, Vecchiarini M, Orio F, Di Somma C, Colao A, Savastano 
S. Water intake keeps type 2 diabetes away? Focus on copeptin. Endocrine. 2018;62(2):292–8. 
Epub 20180719. doi: 10.1007/s12020-018-1680-7. [PubMed: 30027433] 

47. Chandrasekharan B, Montllor-Albalate C, Colin AE, Andersen JL, Jang YC, Reddi AR. Cu/Zn 
Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway. Biochem Biophys 

Rovnaghi et al. Page 14

Psych. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Res Commun. 2021;534:720–6. Epub 20201118. doi: 10.1016/j.bbrc.2020.11.011. [PubMed: 
33218686] 

48. Une M, Yamakawa M, Watanabe Y, Uchino K, Honda N, Adachi M, Nakanishi M, Umezawa 
A, Kawata Y, Nakashima K, Hanajima R. SOD1-interacting proteins: Roles of aggregation cores 
and protein degradation systems. Neurosci Res. 2021;170:295–305. Epub 20200726. doi: 10.1016/
j.neures.2020.07.010. [PubMed: 32726594] 

49. Nam MK, Seong Y, Jeong GH, Yoo SA, Rhim H. HtrA2 regulates alpha-Synuclein-mediated 
mitochondrial reactive oxygen species production in the mitochondria of microglia. Biochem 
Biophys Res Commun. 2023;638:84–93. Epub 20221118. doi: 10.1016/j.bbrc.2022.11.049. 
[PubMed: 36442236] 

50. Ganne A, Balasubramaniam M, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Glial 
Fibrillary Acidic Protein: A Biomarker and Drug Target for Alzheimer’s Disease. Pharmaceutics. 
2022;14(7). Epub 20220626. doi: 10.3390/pharmaceutics14071354.

51. Griffin STG, Stanley LC, Yeralan O, Rovnaghi CR, and Marshak DR Cytokines in Human 
Neurodegenerative Disease. De Sousa EB, editor. San Diego: Academic Press, Inc.; 1993. 295 p.

52. Cruz CF, Fernandes MM, Gomes AC, Coderch L, Marti M, Mendez S, Gales L, Azoia 
NG, Shimanovich U, Cavaco-Paulo A. Keratins and lipids in ethnic hair. Int J Cosmet Sci. 
2013;35(3):244–9. doi: 10.1111/ics.12035. [PubMed: 23301816] 

53. Franbourg A, Hallegot P, Baltenneck F, Toutain C, Leroy F. Current research on ethnic hair. 
J Am Acad Dermatol. 2003;48(6 Suppl):S115–9. Epub 2003/06/06. doi: 10.1067/mjd.2003.277. 
[PubMed: 12789163] 

54. Horvath AL. Solubility of structurally complicated materials: 3. Hair. ScientificWorldJournal. 
2009;9:255–71. Epub 20090427. doi: 10.1100/tsw.2009.27. [PubMed: 19412554] 

55. Marti M, Barba C, Manich AM, Rubio L, Alonso C, Coderch L. The influence of hair lipids 
in ethnic hair properties. Int J Cosmet Sci. 2016;38(1):77–84. doi: 10.1111/ics.12261. [PubMed: 
26171923] 

56. Wilson ASaDJT. Aging Hair. Berlin, Germany: Springer-Verlag; 2010. p. 249–61.

57. Biasiolo A, Tono N, Ruvoletto M, Quarta S, Turato C, Villano G, Beneduce L, Fassina G, Merkel 
C, Gatta A, Pontisso P. IgM-linked SerpinB3 and SerpinB4 in sera of patients with chronic 
liver disease. PLoS One. 2012;7(7):e40658. Epub 2012/07/19. doi: 10.1371/journal.pone.0040658. 
[PubMed: 22808225] 

58. Markovina S, Wang S, Henke LE, Luke CJ, Pak SC, DeWees T, Pfeifer JD, Schwarz JK, Liu 
W, Chen S, Mutch D, Wang X, Powell MA, Siegel BA, Dehdashti F, Silverman GA, Grigsby 
PW. Serum squamous cell carcinoma antigen as an early indicator of response during therapy 
of cervical cancer. Br J Cancer. 2018;118(1):72–8. Epub 2017/11/08. doi: 10.1038/bjc.2017.390. 
[PubMed: 29112685] 

59. van Kempen PM, Noorlag R, Swartz JE, Bovenschen N, Braunius WW, Vermeulen JF, Van Cann 
EM, Grolman W, Willems SM. Oropharyngeal squamous cell carcinomas differentially express 
granzyme inhibitors. Cancer Immunol Immunother. 2016;65(5):575–85. Epub 2016/03/20. doi: 
10.1007/s00262-016-1819-4. [PubMed: 26993499] 

60. Charlesworth A, Chiaverini C, Chevrant-Breton J, DelRio M, Diociaiuti A, Dupuis RP, El 
Hachem M, Le Fiblec B, Sankari-Ho AM, Valhquist A, Wierzbicka E, Lacour JP, Meneguzzi 
G. Epidermolysis bullosa simplex with PLEC mutations: new phenotypes and new mutations. Br J 
Dermatol. 2013;168(4):808–14. Epub 2013/01/08. doi: 10.1111/bjd.12202. [PubMed: 23289980] 

61. Paumard-Hernandez B, Calvete O, Inglada Perez L, Tejero H, Al-Shahrour F, Pita G, Barroso 
A, Carlos Trivino J, Urioste M, Valverde C, Gonzalez Billalabeitia E, Quiroga V, Francisco 
Rodriguez Moreno J, Fernandez Aramburo A, Lopez C, Maroto P, Sastre J, Jose Juan Fita M, 
Duran I, Lorenzo-Lorenzo I, Iranzo P, Garcia Del Muro X, Ros S, Zambrana F, Maria Autran A, 
Benitez J. Whole exome sequencing identifies PLEC, EXO5 and DNAH7 as novel susceptibility 
genes in testicular cancer. Int J Cancer. 2018;143(8):1954–62. Epub 2018/05/16. doi: 10.1002/
ijc.31604. [PubMed: 29761480] 

62. Winter L, Turk M, Harter PN, Mittelbronn M, Kornblum C, Norwood F, Jungbluth H, Thiel CT, 
Schlotzer-Schrehardt U, Schroder R. Downstream effects of plectin mutations in epidermolysis 
bullosa simplex with muscular dystrophy. Acta Neuropathol Commun. 2016;4(1):44. Epub 
2016/04/29. doi: 10.1186/s40478-016-0314-7. [PubMed: 27121971] 

Rovnaghi et al. Page 15

Psych. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, Shalev H, Nasasra A, Saada A, Birk OS. 
Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am 
J Hum Genet. 2008;82(5):1211–6. Epub 2008/04/29. doi: 10.1016/j.ajhg.2008.03.020. [PubMed: 
18439546] 

64. Eckhaus J, Lawrence KM, Helbig I, Bui M, Vadlamudi L, Hopper JL, Scheffer IE, 
Berkovic SF. Genetics of febrile seizure subtypes and syndromes: a twin study. Epilepsy 
Res. 2013;105(1-2):103–9. Epub 2013/03/26. doi: 10.1016/j.eplepsyres.2013.02.011. [PubMed: 
23522981] 

65. Lagae L. Wha’s new in: “genetics in childhood epilepsy”. Eur J Pediatr. 2008;167(7):715–22. Epub 
2008/03/06. doi: 10.1007/s00431-008-0690-5. [PubMed: 18320221] 

66. Munakata K, Uemura M, Takemasa I, Ozaki M, Konno M, Nishimura J, Hata T, Mizushima 
T, Haraguchi N, Noura S, Ikenaga M, Okamura S, Fukunaga M, Murata K, Yamamoto H, 
Doki Y, Mori M. SCGB2A1 is a novel prognostic marker for colorectal cancer associated with 
chemoresistance and radioresistance. Int J Oncol. 2014;44(5):1521–8. Epub 2014/03/04. doi: 
10.3892/ijo.2014.2316. [PubMed: 24585249] 

67. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries 
GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-
Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A. Sex and gender: modifiers of 
health, disease, and medicine. Lancet. 2020;396(10250):565–82. Epub 2020/08/24. doi: 10.1016/
S0140-6736(20)31561-0. [PubMed: 32828189] 

68. Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K, Madar V, Jansen R, Chung W, Zhou 
YH, Abdellaoui A, Batista S, Butler C, Chen G, Chen TH, D’Ambrosio D, Gallins P, Ha MJ, 
Hottenga JJ, Huang S, Kattenberg M, Kochar J, Middeldorp CM, Qu A, Shabalin A, Tischfield 
J, Todd L, Tzeng JY, van Grootheest G, Vink JM, Wang Q, Wang W, Wang W, Willemsen G, 
Smit JH, de Geus EJ, Yin Z, Penninx BW, Boomsma DI. Heritability and genomics of gene 
expression in peripheral blood. Nat Genet. 2014;46(5):430–7. Epub 2014/04/15. doi: 10.1038/
ng.2951. [PubMed: 24728292] 

69. Stoeckli ET. Understanding axon guidance: are we nearly there yet? Development. 2018;145(10). 
Epub 2018/05/16. doi: 10.1242/dev.151415.

70. Sutor B, Hagerty T. Involvement of gap junctions in the development of the neocortex. Biochim 
Biophys Acta. 2005;1719(1-2):59–68. Epub 2005/10/18. doi: 10.1016/j.bbamem.2005.09.005. 
[PubMed: 16225838] 

71. Lee SE, West KP Jr., Cole RN, Schulze KJ, Wu LS, Yager JD, Groopman J, Christian P. General 
intelligence is associated with subclinical inflammation in Nepalese children: A population-based 
plasma proteomics study. Brain Behav Immun. 2016;56:253–63. Epub 2016/04/04. doi: 10.1016/
j.bbi.2016.03.023. [PubMed: 27039242] 

72. Lakshmi Priya MD, Geetha A. A biochemical study on the level of proteins and their percentage of 
nitration in the hair and nail of autistic children. Clin Chim Acta. 2011;412(11-12):1036–42. Epub 
2011/02/23. doi: 10.1016/j.cca.2011.02.021. [PubMed: 21338594] 

73. Breen MS, Ozcan S, Ramsey JM, Wang Z, Ma’ayan A, Rustogi N, Gottschalk MG, 
Webster MJ, Weickert CS, Buxbaum JD, Bahn S. Temporal proteomic profiling of postnatal 
human cortical development. Transl Psychiatry. 2018;8(1):267. Epub 2018/12/07. doi: 10.1038/
s41398-018-0306-4. [PubMed: 30518843] 

74. Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M, Sousa AMM, Lam TT, Gerstein 
MB, Sestan N, Nairn AC. A multiregional proteomic survey of the postnatal human brain. Nat 
Neurosci. 2017;20(12):1787–95. Epub 2017/12/01. doi: 10.1038/s41593-017-0011-2. [PubMed: 
29184206] 

75. Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of 
human proteomics aging studies unveils a novel proteomic aging clock and identifies key 
processes that change with age. Ageing Res Rev. 2020;60:101070. Epub 2020/04/21. doi: 10.1016/
j.arr.2020.101070. [PubMed: 32311500] 

76. Pedlar CR, Newell J, Lewis NA. Blood Biomarker Profiling and Monitoring for High-Performance 
Physiology and Nutrition: Current Perspectives, Limitations and Recommendations. Sports Med. 
2019;49(Suppl 2):185–98. Epub 2019/11/07. doi: 10.1007/s40279-019-01158-x.

Rovnaghi et al. Page 16

Psych. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Hair Proteins in Mothers and Children
Note. (A) Protein spectral counts (p=0.0004) and (B) the numbers of proteins observed 

(with spectral counts >3) were consistently higher (p=0.001, Wilcoxon tests) in the mothers 

(M; Cyan) as compared to children (C; Pink). Mothers and their biological children (family 

labels: F107, F123, F134, F142, F183, F218, F271, F288) and Unrelated children (U) are 

identified on the X- axis: every mother except F134 and F218 had higher spectral counts and 

more hair proteins than her children.
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Figure 2. Similarities in Hair Protein Profiles of Individuals and Families
Note. (A) Spearman rank correlation matrix, with high (purple) to low (orange) correlation 

coefficients*; (B) Euclidean distances based on protein spectral counts, showing individuals 

more closely related (red) or more distant (grey) from each other*; (C) Hierarchical cluster 

dendrogram based on log spectral counts showing 7/8 mothers grouped in one cluster 

(mustard) with one mother in an adjacent cluster (pink); younger children (0-2 years) in 

one cluster (green) whereas older children dispersed in the other clusters*; (D) Intra-family 

Manhattan distances from Boolean hair protein profiles were shorter in mothers matched 

with their own children (p<0.0002) vs. 5000 simulated datasets created with mismatched 

mothers and children.
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*Individuals are listed on the X- and Y-axes with their family identifier, with Mo for mother, 

C1 for the younger child, and C2 for the older child in each family.
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Figure 3. Age and Sex-related Differences in Hair Proteins
Note. (A) The first two principal components showing spatial separations by age, with 

children above 2 years (pink) located in between the children 0-2 years (blue, upper right) 

and the mothers (green, lower left). (B) The first two tSNE dimensions by age, showing 

mothers in the left upper quadrant separate from the children. Higher spectral counts for 

7/17 hair proteins occurred in mothers (SERPINB4, POF1B, PLEC, A2ML1, HIST1H3A, 

UQCRQ, AHCY) and one protein (SCGB2A1) in children (Kruskal-Wallis ANOVA and 

post hoc Benjamini-Hochberg corrections. (C) PCA analyses of all children showing 

overlapping circles for girls (blue) and boys (pink). (D) tSNE dimensions by sex, showing 

overlap between boys and girls. Higher spectral counts were observed for CSN2 (Casein 

beta) in boys (p=0.0184) and ALMS1 (Alström syndrome protein 1) in girls (p=0.0214) (see 
Table 3).
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Figure 4. Machine Learning Algorithms Predict Age and Sex from Hair Proteins
Note. Mean scatterplot from 100 runs of Random Forest regression showing (A) observed 

vs. predicted age for mothers and children (R2 0.37, p=0.00005) and (B) only for 

children (R2 0.45, p=0.00004). (C, D) Random Forest plot showing mean accuracy for 

classifying mothers and children based on hair proteins (mean area under the ROC curve 

= 0.93, Wilcoxon test p=0.00011). (E, F) Random Forest plot showing mean accuracy for 

classifying by sex based on hair proteins for children (mean area under the ROC curve = 

0.60, Wilcoxon test p=0.1703). (G, H) Random Forest plot improved when classifying all 
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participants including mothers and children (area under the ROC curve = 0.73, Wilcoxon 

test p = 0.00831).
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Figure 5. Top 5% Proteins Contributing to Hair Protein Variability
Note. The loading scores for each protein were weighted by the percent variance explained 

by the corresponding Principal Component and then summed to give the Total Loading 

Score (TLS) for each protein. The top 5% proteins based on their TLS were identified as the 

most prominent contributors in each group. (A) All individuals (N=40, 49% of hair protein 

variability), (B) All individuals including keratins and KAPs (N=40, 64.3% variability); 

(C) All mothers (n=8, 89.5% variability); (D) All children (n=32, 57.5% variability); (E) 
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Mothers (n=8) and their biological children (n=16) (49.3% variability), and (F) Mothers 

(n=8) and unrelated children (n=16) (64.6% variability).
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Figure 6. Protein Network for the Top 5% Hair Proteins Contributing to Age-related Differences 
between Mothers and Children
Note. Some hair proteins had higher spectral counts in children (Orange) and others had 

higher spectral counts in mothers (Blue); continuous lines show direct relationships and 

interrupted lines denote indirect relationships. Mothers show higher spectral counts mostly 

for ‘enzymes’ and ‘peptidases’ involved in cellular and metabolic processes, while proteins 

with higher spectral counts in children belong to the ‘other’ group involved in growth and 

biological maturation.
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Figure 7. Protein Network for Top 5% Hair Proteins Contributing to Sex Differences between 
Boys and Girls
Note. Protein network for top 5% hair proteins contributing to sex differences between boys 

and girls. Some proteins had higher spectral counts in girls (Orange) and others had higher 

spectral counts in boys (Blue); continuous lines show direct relationships and interrupted 

lines denote indirect relationships. Girls show higher protein spectral counts mostly for 

‘enzymes’ or ‘ransporters’ associated with cellular localization and metabolic processes. 

Proteins with higher spectral count in boys are ‘enzymes’ like ‘kinases’ or ‘peptidases’ 

associated with biological regulation of cellular and metabolic processes.

Rovnaghi et al. Page 26

Psych. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Canonical Pathways
Note. Canonical pathways associated with biologically significant proteins from the top 5% 

variables in all individuals (n = 40) contributing to age- and sex-related differences were 

identified using the Ingenuity Pathway Analysis. Most of these proteins are involved in 

cellular metabolism, immune responses, brain development, and stress regulatory pathways.
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Table 1

Demographic Characteristics and Hair Protein Data

Family Code Subject Age (months) Age (years) Gender Race Ethnicity # of hair proteins Peptide Spectral 
Matches (PSMs)

F107

Mother 450.6 37.6 F White Non-Hispanic 819 6533

Child1 27.6 2.3 F White Non-Hispanic 568 3949

Child2 58 4.8 M White Other 464 2873

F123

Mother 447.1 37.3 F White Non-Hispanic 809 10370

Child1 24 2 F White Non-Hispanic 499 3728

Child2 52.4 4.4 M White Non-Hispanic 573 5078

F134

Mother 431.8 35.9 F White Missing 684 5445

Child1 20.9 1.74 M Mixed Missing 387 2760

Child2 67.6 5.6 F Mixed Missing 759 6872

F142

Mother 447.3 37.3 F Asian Missing 650 8370

Child1 20.1 1.7 M Mixed Missing 581 6208

Child2 50.6 4.2 M Mixed Missing 226 2353

F183

Mother 530 44.2 F Asian Non-Hispanic 1090 10527

Child1 8.5 0.7 M Asian Non-Hispanic 314 2331

Child2 44 3.7 M Asian Non-Hispanic 1010 8065

F218

Mother 504 42 F White Hispanic 609 4144

Child1 58.5 4.9 F White Hispanic 524 3107

Child2 35.2 2.9 F White Hispanic 631 4475

F271

Mother 402.6 33.6 F White Non-Hispanic 769 7525

Child1 15.1 1.3 F White Non-Hispanic 557 7161

Child2 42.5 3.5 F White Non-Hispanic 600 5615

F286

Mother 489.8 40.8 F White Non-Hispanic 616 9209

Child1 22 1.8 M White Non-Hispanic 403 4727

Child2 52.5 4.4 F White Non-Hispanic 614 6061

F346 Child 50.3 4.2 M White Missing 475 3429

F192 Child 38.1 3.2 F Other Hispanic 283 1731

F132 Child 51.4 4.3 F White Missing 272 1892

F363 Child 56.6 4.7 M Mixed Non-Hispanic 270 1914

F281 Child 53.5 4.5 M Mixed Mixed 406 3192

F173 Child 51.3 4.3 F Other Other 835 7168

F380 Child 14.8 1.2 M Asian Missing 237 1814

F159 Child 62.7 5.2 F White Non-Hispanic 485 3830

F179 Child 53 4.4 F Asian Other 494 2926

F149 Child 61.3 5.1 F Mixed Non-Hispanic 698 5733

F106 Child 56.7 4.7 F Asian Non-Hispanic 668 6390

F153 Child 57.1 4.8 M Asian Missing 275 2549

Psych. Author manuscript; available in PMC 2024 November 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rovnaghi et al. Page 29

Family Code Subject Age (months) Age (years) Gender Race Ethnicity # of hair proteins Peptide Spectral 
Matches (PSMs)

F256 Child 55.8 4.7 M Mixed Mixed 638 7016

F190 Child 31.5 2.6 F Asian Other 527 7460

F104 Child 50.2 4.2 M White Non-Hispanic 672 8084

F113 Child 17.9 1.5 F White Non-Hispanic 441 3640

Note. Demographic data, total number of proteins, and peptide spectral matches observed in all 40 individuals. Mothers’ hair (n=8) had 
significantly higher number of proteins (p=0.001) and protein spectral matches (p=0.0004) compared to children’s hair (n=32). Related children 
(n=16, Cyan) are grouped with their mothers and unrelated children are listed below (n=16, Orange).
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Table 2

Hair Proteins Mediating Differences between Mothers and Children

Entrez Gene Name Gene Symbol: 
human

Expr Log 
Ratio P-value Location Type(s)

Involucrin IVL −2.85 0.0576 Cytoplasm other

Serpin family B member 4 SERPINB4 −2.452 0.0009*** Cytoplasm other

POF1B actin binding protein POF1B −2.097 0.0151* Plasma Membrane other

Plectin PLEC −1.886 0.0004*** Cytoplasm other

Alpha-2-macroglobulin like 1 A2ML1 −1.858 0.0042** Cytoplasm other

H3 clustered histone 1 HIST1H3A −1.743 0.0038** Nucleus other

Ubiquinol-cytochrome c reductase complex III 
subunit VII UQCRQ −1.716 0.0007*** Cytoplasm enzyme

Adenosylhomocysteinase AHCY −1.472 0.0040** Cytoplasm enzyme

Heat shock protein family A (Hsp70) member 1A HSPA1A −1.35 0.0569 Cytoplasm enzyme

H2B clustered histone 9 HIST1H2BH −1.17 0.507 Nucleus other

Histidine ammonia-lyase HAL −1.087 0.0851 Cytoplasm enzyme

COPI coat complex subunit zeta 1 COPZ1 −0.931 0.158 Cytoplasm transporter

Eukaryotic translation initiation factor 3 subunit A EIF3A −0.8 0.0567 Cytoplasm other

Tubulin alpha 1c TUBA1C −0.526 0.262 Cytoplasm other

Casein beta CSN2 −0.269 0.491 Extracellular Space kinase

ATP citrate lyase ACLY −0.249 0.0954 Cytoplasm enzyme

Protein disulfide isomerase family A member 3 PDIA3 −0.051 0.884 Cytoplasm peptidase

Scinderin SCIN 0.028 0.221 Cytoplasm other

Alström syndrome protein 1, centrosome and 
basal body associated protein ALMS1 0.18 0.572 Cytoplasm other

Histone H3.4 HIST3H3 0.64 0.153 Nucleus other

Myeloperoxidase MPO 0.925 0.886 Cytoplasm enzyme

Secretoglobin family 2A member 1 SCGB2A1 5.32 0.0008*** Extracellular Space other

Note. Mothers showed higher spectral counts than children for 7/17 hair proteins (shaded blue), although children had higher spectral counts for 
SCGB2A1 (shaded orange). Of these, SCGB2A1 showed the most prominent results, with >5-fold differences from the mothers. Significance was 
based on Kruskal-Wallis ANOVA with post hoc Benjamini Hochberg corrections for multiple comparisons (*p-value ≤ 0.05, **p-value ≤ 0.01, 
***p-value ≤ 0.001).
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Table 3

Hair Proteins Mediating Differences between Preschool Boys and Girls

Entrez Gene Name Gene Symbol: 
human

Expr Log 
Ratio P-value Location Type(s)

Casein beta CSN2 −3.046 0.0184* Extracellular Space kinase

Serpin family B member 4 SERPINB4 −1.303 0.391 Cytoplasm other

Secretoglobin family 2A member 1 SCGB2A1 −1.036 0.0513 Extracellular Space other

Protein disulfide isomerase family A member 3 PDIA3 −0.78 0.662 Cytoplasm peptidase

ATP citrate lyase ACLY −0.531 0.585 Cytoplasm enzyme

Myeloperoxidase MPO −0.493 0.581 Cytoplasm enzyme

Involucrin IVL −0.476 0.804 Cytoplasm other

Eukaryotic translation initiation factor 3 subunit A EIF3A −0.295 0.226 Cytoplasm other

Alpha-2-macroglobulin like 1 A2ML1 −0.254 0.923 Cytoplasm other

Scinderin SCIN −0.187 0.375 Cytoplasm other

Heat shock protein family A (Hsp70) member 1A HSPA1A/HSPA1B −0.122 0.573 Cytoplasm enzyme

POF1B actin binding protein POF1B 0.094 0.875 Plasma Membrane other

Histone H3.4 H3-4 0.139 0.938 Nucleus other

Histidine ammonia-lyase HAL 0.175 0.522 Cytoplasm enzyme

COPI coat complex subunit zeta 1 COPZ1 0.225 0.536 Cytoplasm transporter

Tubulin alpha 1c TUBA1C 0.245 0.314 Cytoplasm other

H3 clustered histone 1 H3C1 0.249 0.562 Nucleus other

Adenosylhomocysteinase AHCY 0.333 0.202 Cytoplasm enzyme

Plectin PLEC 0.441 0.256 Cytoplasm other

Ubiquinol-cytochrome c reductase complex III 
subunit VII UQCRQ 1.415 0.0976 Cytoplasm enzyme

H2B clustered histone 9 H2BC9 1.423 0.221 Nucleus other

Alström syndrome protein 1, centrosome and basal 
body associated protein ALMS1 1.754 0.0214* Cytoplasm other

Note. Girls showed higher spectral counts than boys for several proteins (shaded orange), whereas boys had higher spectral counts for other 
proteins (shaded blue). CSN2 was significantly higher in boys, whereas ALMS1 was significantly higher in girls. Significance was based on 
Kruskal-Wallis ANOVA with post hoc Benjamini Hochberg corrections for multiple comparisons(*p-value ≤ 0.05).
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Table 4

Validation and Correlates of Proteins Detected in Human Scalp Hair via UPLC- MS/MS

Cortisol Level Based Sample Pools Std Method Cortisol ng/ml AVP pg/ml Cu/Zn SOD ng/ml HTRA2 ng/ml GFAP ng/ml

Low Child pool cortisol (n = 72) 40.84 14.81 0.25 7.54 0.00

Moderate Child pool cortisol (n = 21) 60.34 11.91 0.18 4.61 0.41

High Child pool cortisol (n = 7) 190.89 7.18 0.23 9.14 n/a

Low Father pool cortisol (n = 13) 22.39 8.36 0.63 9.65 2.64

Low Mother pool cortisol (n = 39) 17.24 7.88 0.49 7.71 1.45

High Mother pool cortisol (n = 7) 36.77 11.68 n/a n/a n/a

Note. Hair cortisol concentrations (HCC) were measured for 100 children and 49 parents. Groups of children and parents were determined based 
on low, moderate, or high HCC values. Each of the six pools of samples were loaded in duplicate on the respective ELISA plates for testing 
arginine vasopressin (AVP), Cu/Zn superoxide dismutase (SOD1), HTrA serine peptidase 2 (HTRA2), and glial fibrillary acid protein (GFAP). 
Each methods passed our criteria for low inter-assay (≤8% CV) and intra-assay (≤ 6%) variability.
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